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Abstract

In this paper, we investigate the uniform regularity for the isentropic compressible Navier-Stokes
system with general Navier-slip boundary conditions (1.6) and the inviscid limit to the compressible
Fuler system. It is shown that there exists a unique strong solution of the compressible Navier-Stokes
equations with general Navier-slip boundary conditions in an interval of time which is uniform in the
vanishing viscosity limit. The solution is uniformly bounded in a conormal Sobolev space and is
uniform bounded in W°°. Tt is also shown that the boundary layer for the density is weaker than
the one for the velocity field. In particular, it is proved that the velocity will be uniform bounded
in L*(0,T; H2) when the boundary is flat and the Navier-Stokes system is supplemented with the
special boundary condition (1.21). Based on such uniform estimates, we prove the convergence of the
viscous solutions to the inviscid ones in L>(0,T; L?), L=(0,T; H') and L>([0,T] x Q) with a rate
of convergence.

Keywords: Compressible Navier-Stokes, Euler equations, vanishing viscosity limit, convergence
rate.

AMS: 35Q35, 35B65, 7T6N10

Contents
1 Introduction
2 Preliminaries

3 A priori Estimates
3.1 Conormal Energy Estimates . . . . . . . . . ... L
3.2 Estimates for divu and Vp . . . . . . . .. L
3.3 Normal Derivatives Estimates . . . . . . . . .. .. . L oo
3.4 L-Estimates . . . . . . . . . . e
3.5 Uniform Estimate for Ap . . . . . . . .
3.6 Proof of Theorem 3.1 . . . . . . . . . . . . e

4 Proof of Theorem 1.1: Uniform Regularity

5 Proof of Theorem 1.6: Flat Boundary Case

*

(Yan Yong)

9

9
10
15
25
29
34
36

37

39

Email addresses: yongwang@amss.ac.cn (Yong Wang), zpxin@ims.cuhk.edu.hk (Zhouping Xin), yongyan@usst.edu.cn



6 Proof of Theorem 1.8: Inviscid Limit 41

7 Appendix 50

1 Introduction

In this paper, we consider the isentropic compressible Navier-Stokes equations

{pi +div(p7u®) = 0,

. xeQ, t>0 (1.1)
pous 4 pfu - Vu® + Vp = peAuf + (u+ N)eVdivu®,

where € is a bounded smooth domain of R3, p°

p° = p(p°) is the pressure function given by y-law

,u® represent the density and velocity, respectively,

p(p) = p7, with y > 1.
The viscous coefficients e and Ae satisfy the physical restrictions
w>0, 2u+3X>0, (1.2)

where the parameter € > 0 is the inverse of the Reynolds number.

Here, we are interested in the existence of strong solution of (1.1) with uniform bounds on an interval
of time independent of viscosity € € (0, 1] and the vanishing viscosity limit to the corresponding Euler
equations as ¢ vanishes, i.e,

{pt + div(pu) = 0, (1.3)

(pu)¢ + div(pu @ u) + Vp = 0.

There has lots of literature on the uniform bounds and the vanishing viscosity limit when the domain
has no boundaries, see for instances [6, 5, 11, 15]. However, in the presence of physical boundaries, the
problems become much more complicated and challenging due to the possible appearance of boundary
layers. Indeed, in presence of a boundary, one of the most important physical boundary conditions for
the Euler equations is the slip boundary condition, i.e,

u-n=0, 09, (1.4)

and there exists a unique smooth solution for the initial boundary value problem (1.3) and (1.4) at least
locally in time. This boundary condition is characteristic for the Euler equations (1.3). Corresponding to
(1.4), there are different choices of boundary conditions for the Navier-Stokes equations, and the no-slip
boundary condition

u® =0, on 09,

is one of the frequently used one. Another one is the well-known Navier-slip boundary condition, i.e,

u®-n=0, (Su® n);=—ou

T

x € 09, (1.5)

where n is the outward unit normal to 0f2, u, represents the tangential part of u. S is the strain tensor
1 t
Su = §(Vu+ Vu').

The boundary condition (1.5), which was introduced by Navier [18], expresses that the velocity on the
boundary is propositional to the tangential component of the stress. This kind of boundary condition
allows the fluid to slip at the boundary, and has important applications for problems with rough bound-
aries.

The Navier-slip boundary condition (1.5) can be written to the following generalized one

u*-n=0, (Su®-n);=—(A4u%),, z€9Q, (1.6)
with A a smooth symmetric matrix ,see [7]. For smooth solutions, it is noticed that

(2S(v)n — (V xv) xn)_ = —(25(n)v),



see [27] for details. Therefore, as in [25, 26], the boundary condition (1.6) can be rewritten in the form
of the vorticity as
u®-n=0, nxw =[Bul, z€0d, (1.7)

where w® = V x u® is the vorticity and B = 2(A — S(n)) is a symmetric matrix. Actually, it turns out
that the form (1.7) will be more convenient than (1.6) in the energy estimates, see [25].

For the incompressible fluid, the vanishing viscosity limit of the incompressible Navier-Stokes with
no-slip boundary condition to the incompressible Euler flows with boundary condition (1.4) is one of
the major open problems due to the possible appearance of boundary layers, as illustrated by Prandtl’s
theory. In [20, 21], the authors proved the(local in time) convergence of the incompressible Navier-Stokes
flows to the Euler flows outside the boundary layer and to the prandtl flows in the boundary layer at the
inviscid limit for the analytic initial data. Recently, Y. Maekawa [13] proved this limit when the initial
vorticity is located away from the boundary in 2-D half plane.

On the other hand, for the incompressible Navier-Stokes system with Navier-slip boundary condition
(1.5), considerable progress has been made on this problem. Indeed, the uniform H? bound and a uniform
existence time interval as ¢ tends to zero are obtained by Xiao-Xin in [25] for flat boundaries, which are
generalized to W*? in [2, 3]. However, such results can not be expected for general curved boundaries
since boundary layer may appear due to non-trivial curvature as pointed out in [10]. In such a case,
Iftimie and Sueur have proved the convergence of the viscous solutions to the inviscid Euler solutions
in L>(0,T,; L?)-space by a careful construction of boundary layer expansions and energy estimates.
However, to identify precisely the asymptotic structure and get the convergence in stronger norms such
as L>°(0,T; H®)(s > 0), further a priori estimates and analysis are needed. Recently, Masmoudi-Rousset
[16] established conormal uniform estimates for 3-dimensional general smooth domains with the Naiver-
slip boundary condition (1.5), which, in particular, implies the uniform boundedness of the normal first
order derivatives of the velocity field. This allows the authors([16]) to obtain the convergence of the
viscous solutions to the inviscid ones by a compact argument. Based on the uniform estimates in [16],
better convergence with rates have been studied in [7] and [26]. In particular, Xiao-Xin [26] has proved
the convergence in L°(0,T; H') with a rate of convergence.

For the compressible Navier-Stokes equations, however, the study is quite limited. Xin and Yanagisawa
[28] studied the vanishing viscosity limit of the linearized compressible Navier-Stokes system with the no-
slip boundary condition in the 2-D half plane. Recently, Wang and Williams [24] constructed a boundary
layer solution of the compressible Navier-Stokes equations with Navier-slip boundary conditions in 2-D
half plane. The layers constructed in [24] are of width O(+/€) as the Prandtl boundary layer, but are
of amplitude O(y/€) which is similar to the one [10] for the incompressible case. So, in general, it is
impossible to obtain the H3 or W%P(p > 3) estimates for the compressible Navier-Stokes system (1.1)
with the generalized Navier-slip boundary condition (1.6) or (1.7). Recently, Paddick [19] obtained an
uniform estimates for the solutions of the compressible isentropic Navier-Stokes system in the 3-D half-
space with a Navier boundary condition. As expected, the boundary layers for the density must be weaker
than the one for the velocity, however, this has not been proved in [19].

In the present paper, we aim to obtain the uniform estimates in some anisotropic conormal Sobolev
spaces and a control of the Lipschitz norm for solutions of the compressible Navier-Stokes equations (1.1)
with the Navier-slip boundary condition (1.6) in general 3-dimensional domains. As a consequence, our
uniform estimates will yield that the boundary layers for the density are weaker than the one for the
velocity. Furthermore, we obtain an uniform estimate in L°(0, T; H?) when the boundary is flat. Finally,
we study the vanishing viscosity limit of viscous solutions to the inviscid ones with a rate of convergence.
Since the divergence free condition plays a key role in the analysis of [16], delicate estimates for divu are
needed to complete the analysis for the compressible Navier-Stokes system. Moreover, the compressible
Navier-Stokes system is much more complicated to handle than the incompressible one.

The bounded domain € C R? is assumed to have a covering such that
QC QU Q, (1.8)
where Qy C  and in each €, there exists a function v, such that
QNQ ={z = (1,22, 23) | 23 > Y(x1,22)} N Qg and NN Qg = {x5 = Y(x1,22)} N Q.

Q is said to be C™ if the functions v are C™-function.



To define the Sobolev conormal spaces, we consider (Zy)1<k<n @ finite set of generators of vector
fields that are tangent to Q2 and set

Hy ={f e 12(9) | 2'f € L*(9), for 1] <m},

where I = (k1,- -+, k). We will use the following notations
3
lullyy = lellFrm =D > 12 )72,
J=1I|<m
|uHmoo_ Z ||Zlu||L°°7
[1]<m
and

IVZmul? = Y IV 2"l .

[I|=m

Noting that by using the covering of €2, one can always assume that each vector field is supported in
one of the Q;, moreover, in Q the norm || - ||, yields a control of the standard H™ norm, whereas if
Q; N O # @, there is no control of the normal derivatives.

Denote by Cj a positive constant independence of ¢ € (0,1] which depends only on the C*-norm of
the functions ;. Since 0 is given locally by z3 = 9(x1,z2)(we omit the subscript j for notational
convenience), it is convenient to use the coordinates:

Ve (y,2) — (y,9(y) +2) =

A local basis is thus given by the vector fields (9,1,0,2,0.). On the boundary d,: and J,» are tangent
to 0, and in general, 0, is not a normal vector field. By using this parametrization, one can take as
suitable vector fields compactly supported in ; in the definition of the || - ||, norms:

Z; = 8yl = 81' + aiwaza i=1,2, Z3 = @(Z)azv

where ¢(2) = 17 is smooth, supported in Ry with the property ¢(0) = 0, ¢’(0) > 0, p(z) > 0 for 2 > 0.
It is easy to check that
Iyl =ZjZy, j, k=1,2,3,

and
8221 = Zlaz, 1= 1,2, and ang # Zgaz

In this paper, we shall still denote by 0;, j = 1,2,3 or V the derivatives in the physical space. The
coordinates of a vector field u in the basis (9,1, 0y2,9.) will be denoted by u’, thus

u=u'dp +u?0y2 +u*0,. (1.9)

We shall denote by u; the coordinates in the standard basis of R3, i.e, u = u101 + u20s + u303. Denote
by n the unit outward normal in the physical space which is given locally by

) O\ )
o) =n(y2) = Z=uorE | YW ) = AT Neer

and by II the orthogonal projection

() = (W (y, 2))u = u — [u-n(¥(y, 2))]n(¥(y, 2))-

which gives the orthogonal projection onto the tangent space of the boundary. Note that n and II are
defined in the whole 2; and do not depend on z.
For later use and notational convenience, we set

— OO 7 = QPO T 7§12 7319, (1.10)



and use the following notations

IF O3 = D IZ7F @20 1/ Ollree = D IZ°F D72, (1.11)

la|<m la|<k

for smooth space-time function f(z,t). Throughout this paper, the positive generic constants that are
independent of e are denoted by ¢,C. | - || denotes the standard L?(Q;dz) norm, and || - |gm (m =
1,2,3,---) denotes the Sobolev H™(Q;dx) norm. The notation | - |gm= will be used for the standard
Sobolev norm of functions defined on 9. Note that this norm involves only tangential derivatives. P(-)
denotes a polynomial function.

Since the boundary layer may appear in the presence of physical boundaries, in order to obtain the
uniform estimation for solutions of the compressible Navier-Stokes system with Navier-slip boundary
condition, one needs to find a suitable functional space. Here, we define the functional space X (T") for
a pair of function (p,u) = (p,u)(x,t) as follows:

X5 (1) = {(p,w) € L((0,7], £2); - esssupgcperll (0, u) (1), < +00 ), (112)

where the norm |[|(-,-)[|x:, is given by

m—2
(P, w)(®)llxs, = 1P, w) () + V() [Fem—1 + Y 10F VD) 701 + [AP(0)]5
k=0
+ {1Vl + el VO ()1 + el Ap(t) 3z (1.13)

In the present paper, we supplement the compressible Navier-Stokes equations (1.1) with the initial data

(p°u)(z,0) = (p5, ug) (), (1.14)
such that 1
0< =— <pj <Ch< oo, (1.15)
Co
and
m—2
sup (PG, ug)|[xs, = sup {II(pS,UE)llim S A P S IF2A v/ [
0<e<1 0<e<1 k=0
+ 1 AP5I5 + Vgl + el VO p5II> + €|Ap8|3r¢z} < Gy, (1.16)

where p§ = p(p§), Co > 0, Co > 0 are positive constants independent of € € (0, 1], and the time derivatives
of initial data in (1.16) are defined through the compressible Navier-Stokes system (1.1). Thus, the
initial data (p§,u§) is assumed to have a higher space regularity and compatibilities. Notice that the a
priori estimates in Theorem 3.1 below is obtained in the case that the approximate solution is sufficient
smooth up to the boundary, therefore, in order to obtain a selfcontained result, one needs to assume
that the approximate initial data satisfies the boundary compatibility conditions, i.e. (1.6)(or equivalent
to (1.7)). For the initial data (p§,u§) satisfying (1.16), it is not clear if there exists an approximate
sequence (pé"s, ué’é)(é being a regularization parameter), which satisfy the boundary compatibilities and
(p5° — g, ug® — ug)|lxs — 0 as & — 0. Therefore, we set

XN ap = {(p, u) € C*™(Q) |0Fp, OFu,k =1,--- ,m are defined through the Navier-Stokes
equations (1.1) and OFu,k =0,--- ,m — 1 satisfy
the boundary compatibility condition}, (1.17)
and
Xys = The closure of Xy¢', in the norm ||(-,-)]|xz,- (1.18)

Then our main result in this paper is follows:



Theorem 1.1 (Uniform Regularity) Let m be an integer satisfying m > 6, Q be a C™*2 domain and
A € Cm (0. Consider the initial data (p§,uf) € Xy given in (1.14) and satisfying (1.15) -(1.16).
Then there exists a time Ty > 0 and C; > 0 independent of € € (0,1], such that there exists a unique
solution (p°,u®) of (1.1), (1.6), (1.14) which is defined on [0,Ty] and satisfies the estimates:

m—2

sup {(uf,ps)(t)lim Va5 + Y 10V (D)7 -1 + AP (D13
0<t<Ty =0

To
+ Vs (1) 1310 +€Valn_lpg(t)ﬂz+€||Ape(t)||%z} +/O Vo~ p® (1) dt

To To m—2 T,
[ 1A ORedt e [ Ve O de e Y [ 1920k O de
0 0 =0 /0

T, ~
+€2/ V207 us ()] 2dt < Cy < oo, (1.19)
0
and )
— < pa(t) <2Cy Vte [O,To], (120)
2C)

where Cy depends only on Cy, Co and Crto-

Remark 1.2 Recently, we notice that Paddick [19] obtained a similar uniform estimates for the solu-
tions of the compressible isentropic Navier-Stokes system in the 3-D half-space with a Navier boundary
condition. However, the details of proof are different, and our regularity is better than the one in [19],
especially, we show that ||Ap5(t)|\3_[1 is uniform bounded which yields immediately that the boundary layer
for the density p® is weaker than the one for velocity u® as expected.

Remark 1.3 It is obvious that Xy§ C {(p,u) € L*(Q) |0F(p,u) defined through (1.1), |(p,u)|x: <
+00,0 < k < m}, yet it is not clear whether > C 7 can be changed to” = 7. And we will not address
this problem since our main concern is the uniform regularity of the solution of Navier-Stokes equations.
Here, it should be pointed out that there are lots of data contained in X', for example, let (p§,u§) be
sufficiently smooth functions, and in a vicinity of the boundary, pf is positive constant and u§ vanishes,

then it is obvious that (p(p§), u§) € X3 -

Remark 1.4 For (p§,uf) € Xye, it must hold that uf - nlsg = 0 and (Suf - n)-laa = —(Auf):|sq in
the trace sense for every fized € € (0,1]. For the solution (p°,u®)(t) of (1.1), (1.6), (1.14), the boundary
conditions (1.6) are satisfied in the trace sense for every fized ¢ € (0,1] and t € (0, Tp).

Remark 1.5 When time derivative is applied to the boundary layer, it has the same properties as the
tangential derivatives. So, the time derivative is regarded as a tangential derivative in this sense.

We now outline the proof of Theorem 1.1. First, we obtain a conormal energy estimates for (p°, u®)
in H™-norm(see (1.11) above for the definition of H™). Second, since the divu® is no longer free for the
compressible Navier-Stokes equations, one has to get enough estimates for divu®. Indeed, we can obtain
a control of Z;’!OQ 167 (divus, Vp?)||Z,_,_; at the cost that the term f(f |VZ™2divus||?dr appears in
the right hand side of the inequality. And, in general, it is impossible to obtain the uniform bound of
fg | Z2m=20, . u%||?dT due to the possible appearance of boundary layers. However, the situation is different

for [} ||VZ™ 2divu®||?dr, because divu® is not expected to have boundary layer structure. Another
difficulty is that, due to the singular behavior at the boundary, we can only obtain the uniform estimate
of ]|y~ *(divu®, Vp?)||? which is not enough to get the uniform estimate for ||[V;"~'u?||. Fortunately,

we can obtain the uniform estimates for fg |0/~ 1Vp?||? and get a control of |9 'divus|| in terms of

Z;»TZOQ ||85(Vu5,Vp5)||3n717j and ||(p®, u®)||sm which are independent of ||0/" ! (divu®, Vp)||?. These
key observations play an important role in this paper. The third step is to estimate the ||0,u®||3m-1.
Similar to [16], due to the Navier-slip condition (1.7), it is convenient to study 7 = w® x n + (Bu®),
with a homogeneous Dirichlet boundary condition. Indeed, we get a control of ||5||gm-1 by using energy
estimates on the equations solved by 1. The fourth step is to estimate |[Vu®||y1.. In fact, it suffices to

estimate [|(9,u®)r |31 since the other terms can be estimated by the Sobolev imbedding. We choose



an equivalent quantity such that it satisfies a homogeneous Dirichlet condition and solves a convection-
diffusion equation at the leading order. Before performing the estimates, we generalize some results of
[16] in the Appendix, so that it can be applied to the compressible Navier-Stokes system. Moreover, we
also need to get some control on ||Vdivu®| . Then, all these preparations will enable us to obtain a
control of ||Vuf||31.. The last step is to obtain the uniform estimate of ||Ap®||4: which gives a control
of ||Vp®||gr. from Proposition 2.3. Then Theorem 1.1 can be proved by the above a priori estimates
and a classical iteration method.

In general, it is hard to obtain the uniform estimate of |[u®|| (o, 7;z2) due to the possible boundary
layers. However, the uniform H® bound and a uniform existence time interval as € tends to zero are
obtained by Xiao-Xin in [25](which are generalized to W*? in [2, 3]) when the boundary is flat and the
Navier-Stokes system is imposed with the following special Navier-slip boundary condition

n-u® =0, nxw =0, xed. (1.21)

In Theorem 1.6 below, we prove that |[u®|| ;e (o,7;#2) is uniformly bounded for the solution of compress-
ible Navier-Stokes system (1.1) when the boundary is flat and the special boundary condition (1.21) is
imposed.

In order to avoid the unessential technical difficulties, without loss of generality, we assume that the
domain 2 is given by

Q="T2?x(0,1), (1.22)
and set
F={z=(y1,y2,2) | 0<wy1, yo<1, and z=0o0r z =1}. (1.23)

Then, the boundary condition (1.21) will be imposed on T'. Hereafter, the flat case means that Q =
T? x (0,1) and the Navier-Stokes system is supplemented with the special Navier-slip boundary condition
(1.21). In this domain, we define the conormal derivatives as following

Zi =0y, i=1,2, and Z3 = 2(1 —2)0,. (1.24)
Then, we have better uniform estimates for ||u®|| g2 as follows:

Theorem 1.6 (Flat case) Letm > 6 and Q = T?x(0,1). Consider the initial data (p§, u§) € X5 NH?
given in (1.14) and satisfying (1.15)-(1.16). Then there exists a time Ty > 0 and Cy > 0 independent
of € € (0,1], such that there exists a unique solution (p°,u®) of (1.1), (1.14), (1.21) which is defined on
[0,Tb] and satisfies the uniform estimates (1.19) and (1.20). Especially, it holds that

T[] ~
sup [|u®(8)[|32 + 6/ [u® ()| Fradr < exp(C1)(1 + [|uoll2), (1.25)
0<t<Tp 0

where C’l depends only on Cy, C'g,

Remark 1.7 This theorem implies that ||(p°, u®)|| Lo (0,7;m2) is uniform bounded which yields immediately
that the boundary layers for (p°,u®) is very weak for the flat case.

Based on the uniform estimates of Theorem 1.1, using similar arguments as [16], one can prove the
vanishing viscosity limit of viscous solutions to the inviscid one in L°°-norm by the strong compactness
argument, but without convergence rate. However, we are interested in the vanishing viscosity limit
with rate of convergence. In Theorem 1.8 below, we prove the vanishing viscosity limit with rates of
convergence, which generalizes the corresponding results for the incompressible case in [25, 26].

We supplement the compressible Euler equations (1.3) and the compressible Navier-Stokes system
(1.1) with the same initial data (pg,ug) satisfying

(po,uo) € H* N X5§ with m > 6. (1.26)

It is well known that there exists a unique smooth solution (p,u)(t) € H? for the problem (1.3), (1.4)
with initial data (pg,uo) at least locally in time [0,71] where T} > 0 depends only on ||(po,uo)| gs. On



the other hand, it follows from Theorem 1.1 that there exists a time Ty > 0 and C; > 0 independent of
e € (0,1], such that there exists a unique solution (p°, u®)(t) of (1.1),(1.6) with initial data (po,uo) and
satisfies [|(p(p%), u®)(t)| x, < Ci.

We justify the vanishing viscosity limit as follows:

Theorem 1.8 (Inviscid Limit) Let (p,u)(t) € L>(0,T1; H3) be the smooth solution to Euler equations
(1.3), (1.4) with initial data (pg,uo) satisfying (1.26).

Part I(General case): Let (p°,u)(t) be the solution to the initial boundary value problem of the
compressible Navier-Stokes equations (1.1),(1.6) with initial data (po,ug) satisfying (1.26). Then, there
exists To = min{Ty, Ty } > 0, which is independent of € > 0, such that

1(p° = pyu® = u)(B)]|7 + E/Ot 1(u® = w)()[3ndr < C=3, t € [0, Ty], (1.27)
16 — pu® =) (0)|[3n + / = w)()edr < Ot e [0, Ty, (1.28)

and
16" = po® = W)l (@x o)y < 10" = pou = w)l[fa - (0" = pou = W) < CeTo,  (1.20)

where C depend only on the norm ||(po, o) zs + [[(p(po), uo)l x:, -

Part II(Flat case): Let 2 = T? x (0,1) and (p°,u)(t) be the solution to the initial boundary value
problem of the compressible Navier-Stokes equations (1.1),(1.21) with initial data (po,wo) satisfying (1.26).
Then, there exists To = min{Ty,T1} > 0, which is independent of € > 0, such that

16 = pou =)0+ [ ' — ) B < €2, te 0.73), (1.30)
16 = po = w)@) s+ [ I — ) < CeF, e 0,73), (1.31)

and
167 = " = W)l axiompy < 1(6° =y = W)l - 107 = po " = W)l < CEF, (132

where C' depend only on the norm ||(po, uo)| ms + ||(p(po), uo)||xs,. Moreover, the solution (p,u) of the
Euler system sasifies the additional boundary condition, i.e.

nXxw=0, onl. (1.33)

Remark 1.9 In general, it is hard to obtain uniform bound for ||uf||ze (o r;m2), otherwise, the corre-
sponding Euler solution will satisfy (1.33) as above. However, usually, it is impossible for the solution of
Euler system to satisfy the additional boundary condition (1.33) because the boundary condition (1.4) is
enough for the well-posedness of Euler system (1.3).

Remark 1.10 The multi-scale analysis implies that the convergence should be of order €7 in L>(Q x
[0,T]), so the justification of this rate is still an difficult problem.

The rest of the paper is organized as follows: In the next section, we collect some inequalities that will
be used later. In section 3, we prove the a priori estimates Theorem 3.1. By using the a priori estimates,
we prove Theorem 1.1 in section 4. By careful boundary analysis, Theorem 1.6 is proved in section 5.
Based on the uniform estimate in Theorem 1.1, Theorem 1.8 is proved in section 6. In the Appendix,
we generalize the Lemma 14 and Lemma 15 of [16] so that it can be applied to the case of compressible
Navier-Stokes equations.



2 Preliminaries

The following lemma [25, 23] allows one to control the H™(€2)-norm of a vector valued function u by its
H™ (Q)-norm of V x u and divu, together with the H™~2 (9)-norm of u - n.

Proposition 2.1 Let m € Ny be an integer. Let uw € H™ be a vector-valued function. Then, there exists
a constant C > 0 in dependent u, such that

el < C (I1V X wll s + divull s+l + el oy o) - (2.1)

and

lllzm < € (19 5 ll gy + Ndivul s + |full e + 0 x 1 (2.2)

H”L*%(@Q)) ‘

In this paper, we shall use repeatedly the Gagliardo-Nirenbirg-Morser type inequality, whose proof
can be find in [8]. First, define the space

W™(Q x [0,T)) = {f(z,t) € L>(Qx [0,T]) | 2°f € L*(2 x [0,T)), |a] <m }. (2.3)
Then, the Gagliardo-Nirenbirg-Morser type inequality is as follows:
Proposition 2.2 For u,v € L*(Q2 x [0,T]) N W™ (2 x [0,T]) with m € Ny be an integer. It holds that

t t t
| Nz 0@ P S i, [l mdr + i, [ llndr, 181+ bl =m. (24

We also need the following anisotropic Sobolev embedding and trace estimates:

Proposition 2.3 Let my >0, my > 0 be integers, f € H?'(Q) N HI2(Q) and Vf € HT2(Q).
1) The following anisotropic Sobolev embedding holds:

113 < (195 Nz + 1z ) - 1 iz (25)

provided m1 + mo > 3.
2) The following trace estimate holds:

oy < C(IIV ]

e+ W e ) -1 (2.6)

provided mi + mgy > 25 > 0.

Proof. The proof is just a using of the covering  C Q¢ Uy_; Q) and Proposition 2.2 in [17], the details
are tus omitted here. O

3 A priori Estimates

The aim of this section is to prove the following a priori estimates, which is a crucial step to prove
Theorem 1.1. For notational convenience, we drop the superscript € throughout this section.

Theorem 3.1 (A priori Estimates) Let m be an integer satisfying m > 6, Q be a C™*? domain and
A € C™L(R). For very sufficiently smooth solution defined on [0,T] of (1.1) and (1.6)(or (1.7)), then
it holds that

\P(%O)Iexp(—/o [divu(T)|| Lo dT) < p(,t) < Iﬁ(x,())lexp(/0 [divu(T)||L=d7), ¥t € [0,T].  (3.1)

In addition, if

1
0<eo<p(t) < — < oo, ¥E[0,T], (3:2)
0
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where ¢y is any given small positive constant, then the following a priori estimate holds
t t
Nm(t)+/0 IV p(r)|* + ||AP(T)||3{2dT+€/O IVu(r) |3 dr
m—2 t t
v 3 [ IOk yadr o+ e [ 9RO ) Par
=0 Y0 0

< CaCnio PN (0)) + PNon(0)) - /0 PWu(r))dr}, vt e 0.7, (3.3)

where Cy depends only on %, P(:) is a polynomial and

m—2
Nonlt) 2 Nonlpo)(©) = sup {14 10 ) (7)o + V() s + 3 108 90(7) 21
STS k=0

+ApOI35 + IVu(n) e + el VO p(r)|* +ell Ap(7) 3,2 } (34)

Throughout this section, we shall work on the interval of time [0, 7] such that ¢y < p(t) < L. And

we point out that the generic constant C' may depend on = in this section. Since the proof of Theorem
3.1 is quite lengthy and involved, we divide the proof into the following several subsections.

3.1 Conormal Energy Estimates

Notice that
Ay = Vdivu — V x V x u, (3.1.5)

then (1.1), is rewritten as
pur + pu - Vu+ Vp = —pueV x w+ (2p + N)eVdivu, (3.1.6)

where w = V x u is the vorticity. Since p > 0,2p + A > 0, we normalize p and 2 + A to be 1 and 2
respectively for simplicity.

In this subsection, we first give the basic a priori L? energy estimate which holds for (1.1) with (1.6).
Lemma 3.2 For a smooth solution to (1.1) and (1.7), it holds that for e € (0,1]
Lo 1 ' 2 1 2 2
sup ( —plul” + 7p“’dx) +cie [ ||Vul|*dr < | =poluo|” + 7p0da: +C ||uH dr, (3.1.7)
0<r<t 2 v—1 0 2
where ¢1 > 0 is a positive constant.
Proof. Multiplying (3.1.6) by u, using the boundary condition and integrating by parts, we have that

d

7 p\u|2dx+/Vpud:c = —s/V xwudw—i—%/Vdivuudm. (3.1.8)

By using (1.1),, we obtain that
/Vpudx = L/Vﬁ_l - pudx = L/p“’ Lopda = —/7p7dx. (3.1.9)
v—1 v—1
Integrating by parts and using the boundary conditions (1.7), one has that
—E/V X wudr = —¢||w||? — 5/ (n x w) -udo < —¢||wl||® + Ca|u|2L2(aQ),
a0
and

6/quivudm = —¢||divul?. (3.1.10)
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Substituting (3.1.9)-(3.1.10) into (3.1.8) leads to that

d 1 1 .
%(/ Solul? + — 1p7d:17) + eflwl® + 2¢|dival® < Celul3a o0 (3.1.11)
Due to Proposition 2.1, it holds that
] + [[divul® > 2¢1[|Vul|? = Cflu|®.

The trace theorem implies

1
eluliz o) < ellulle - llul < SerelVull® + Cellul*. (3.1.12)
Then (3.1.13)-(3.1.12) give that
d 1 1
@(/ Solul? + ﬁ,ﬂdas) + ere]|Vul]? < Clull. (3.1.13)
Integrating the above inequality with respect to ¢ yields (3.1.7) immediately. Thus the proof of the
Lemma 3.2 is completed. O
Set
m—2
A (t) 2 ([0, W) (O3 + V(O l3r + D IVOF RO 1 + eIV 0 ()], (3.1.14)
k=0
and
Q)£ s {I(Vp, Vu) ()l + 10, pe ) (O] - (3.1.15)

Lemma 3.3 For every m € N_, it holds that

t t
sup. 2} + [ 197 g < O {0 o) o+ 322 [ 1920l B

0<r<t
t =Ly (0)||dr t T)dT §. 1.
+8 [ 190p=ta(r) P + ol + P [ An(ir} (3.1.16)

Proof. The case for m = 0 is already proved in Lemma 3.2. Assume that (3.1.16) is proved for k¥ < m—1.
We shall prove that it holds for K = m > 1. By applying Z with |a| = m to (3.1.6), we obtain

pZ%u + pu - VZ + Z%Vp = —eZ°V x w + 2 Z°Vdivu + C{ + C, (3.1.17)

where
Cy = —[Z2% plug = — Z Cp~,2P pZhuy, (3.1.18)
[B|>1,8+y=a

and

C8=—[2%pu-Viu=— > Cp,2%(pu)2"Vu - pu-[2°,V]u. (3.1.19)

1BI>1,8+7=a

Multiplying (3.1.17) by Z%u, and integrating by parts, one gets that

d

1
a/gp\Zo‘uFdx—i—/Z"VpZo‘udx

= —E/ZO‘V X w - Z%dx + 25/Z“Vdivu - Z%idx + /(Cf +C$H Z%dx. (3.1.20)
Notice that

,g/gav X w- Z%dx = fs/V X Z"‘w~Zaudxf€/[ZQ,Vx}w-Zaudx

IN

fE/ZO‘w~V><Z°‘udx76/ nx Z% - Z%do
o0

+ Ce|V2ullpm-1 [ullzem + CUIVull g + l[ulFm)

N

—3—5||v x Z%))* — 5/ nx 2% - Z%do
4 o

+ 6% ||V2ul|3m-1 + Cs(||[Vull3m-r + |Jul|3m)- (3.1.21)
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In order to complete the estimates of (3.1.21), one needs to estimate the boundary terms involving Z%u
with ay3 = 0(For a3 # 0, Z%u|sq = 0 by definition). Due to (1.7), one has for |ag| + |a1| = m
In x Z%w|12(90) < Cm+2 (|5fow|mallfl(ag) + |ata°U\H\a1|(aQ))
1 1 1 1
< V0w, - 107wl + Cral V02wl - 00wl
+ a2 ([Vullzgm—r + Jufl3m)
1 1
< Cong (IV2ul s - IVl 31+ 90

1 1
Bl 4+ [ Fullpens + lullen ), (31:22)

thus

£ < 5|n X Zaw|L2(QQ) . ‘Zaule(ag)

/ n X Z% - Z%do
o0

1 1 1
< Conp2e([[Vullzm + ullZm) - Nullm (V2ullggm— 4+ [Vullzm + [ Vullgm-1 + [Ju]l3m)
< 8¢ Vul2m + 022 V20l 21 + CsCompa ([l Zem + [|Vee] 21 ) - (3.1.23)

This, together with (3.1.21), yields that

—e/zav X w - Z%dx < —%Hv x 2%l + 8| Vul|Fm + 62| V2ul|3m-1
+ CsCrmsa (Vg + llul3m). (3.1.24)
Notice that
5/Zanivu - Z%udx = 5/VZadivu - Z%udx + 5/[20‘, V]divu - Z%udx
< —¢ / Z%divy - divZ%udx + € Z%ivu - (2% - n)do

o2
+elV2ullgm1 - ullaen + CUIVull3pmr + [lullFm)

3
< — 2| divZeul +g/ Zdivu - (Z2%u - n)do
4 o
+ 082 || V2ul|3m-1 + Cs(|Vul3m-r + [|ull3m)- (3.1.25)

In order to estimate the boundary term in the above term, one needs to discuss the following two cases.
If |ap| = ||, then by (1.7), one has that 9;°u - n|sq = 0 which implies that

5/ Z%ivu - (2% - n)do = 0. (3.1.26)
a0
If |ay| > 1, then by using (1.7) and integrating by parts along the boundary, one obtains that
5/ Z%ivu - (2% - n)do = 5/ Zr oy divu - (2007 °u - n)do
a0 a0

=—¢ /m Z g0 divu - Z, (205w - n)do < e|Z* 1080 dival 12| Z,(Z 95w - n) |2
< Cm+2€|Za1716?0diVU|L2 . \8f‘°u|H|a‘_‘%|

1 1 1 1 1 1
< Conp2e(IV2ul| 3 ms + 1V Ul Zpn) - IVl s - (YUl Zm + lullFn) [l 3
< 0|Vl Zpm + 022 V20 21 + CoCrma (V] g1 + [l 2 (3.1.27)

where Z,, or 0, represents the derivatives involves only the tangential parts. Then (3.1.25)-(3.1.27) yield
that

3
E/Z"‘Vdivu - 20ude < 5% |divZ ul? + 5c] Gl + 2627 V2ul s

+ CsCrmap2 (| Vull3m-1 =+ |[ul|3m)- (3.1.28)
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On the other hand, it follows from Proposition 2.1, that

201[V2°ull3z < (IV x Z*ull3 + laivZ ullfs + | 2°ul3: +|2°u- m;(@ﬂ))

< (19 x 2%ulfs + vz uls) + Coso(ulfen + [ Vulfenr) (3120
where one has used
0, if k=m,
|Z;"*k8tku ‘nl,1 < C'm+2|(9tkulefk7% <3 al<moi BT (3.1.30)
< Cousa (Il + ullzen), i k< m—1,

which is a consequence of (1.7) and (2.6).
Integrating the resulting equation (3.1.20), and substituting (3.1.29), (3.1.28) and (3.1.24) into (3.1.20),
one gets that

1

t t
5/p\Z“uFder/ /Z“Vp'Z“udxdTJchls/ |V Z%(7)||32dT
0 0

1 t t
< 5/,oo|z%|2dgc+0552/ ||V2u(7')||§_[m,1d7'+065/ V() |2y
0 0

t t
+ C(;Cm_,_z/ V()3 mor + w(T)||FmdT Jr/ /(Cf‘ +C3) - Z%udadr. (3.1.31)
0 0

Now we estimate the pressure term on the left hand side of (3.1.31). Notice that

t t t
/ /Z“Vp - Z%dxdr = / /VZap - Z%dxdT +/ /[Z“,V]p - Z%dxdT
0 0 0

t t t
> — / /Zo‘p - divZ%udxzdr + / / ZZ% - ndodt — C’/ llulzm VDl ggm—1dT
0 0 Joo 0

Y

t t t
—/ /Zc‘p-Zadivud:ﬂdT—k/ zapzau-ndadT—a/ |V p3m-rdr
0 0 JoQ 0
t
~Cs [ 1. wlFen + [Vl sdr (3.1.32)
0

First, we treat the boundary term when ay3 = O(for a3 # 0, Z% = 0 on the boundary) in the right
hand side of (3.1.32). If |ag| = |a, one has, from (3.1.30), that

t
/ / Z%Z% - ndodt = 0. (3.1.33)
0 Jon
If |o1| > 1, integrating by parts along the boundary and using (3.1.30), one has that
t t
|/ Z%Z% - ndodr| = |/ / Z1 07 pZy 07 u - ndodr|
0 Joq 0 JoQ

t
:/0 |Z§”*18;)‘”p|H% ~|Z;‘18f”u~n|H%dadT

t 1 1
< e [ (V7= 0opll + 121 0gopI) Y 12255y, (1l + sl
0

2w )dr. (3.1.34)

t t
5251;HVM@pwadT+Ckch+gA(HVUWWH1+HQ%UN

Therefore, it follows from (3.1.33) and (3.1.34), that

t
<5 [ 9p
0

21+ |, u)||3m)dr. (3.1.35)

t ¢
/ ZpZ% - ndodr
0 Joo 0

f2;_[m—1d7'+050m+2/ (||Vu|
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In order to estimate the first term on the right hand side of (3.1.32), one rewrites the equation (1.1); as

Dt Uu

divu = —(lnp); —u-Vlnp=—-——— — - Vp.
v P
Applying Z¢ to (3.1.36) yields that
1 1
Zodivu = ——Z°p, — — - Z°Vp— Y Cp,Z(—) Z'p

w P 1B1>1,6+7=a w

— Cs .. 2B . Z7Vp.

Z By (’Yp)

[8]>1,8+y=a

It is easy to get that

t 1 t 1 t 1
/ /Zo‘p~—Zo‘ptdwdT:/ /(—\Zap|2)tdxd77/ /(—)t|Zo‘p|2dxdT
0 P 0 29p 0 2vp
1 1 !
2/—\ZQpIde—/—\Z‘)‘polzdw—cllptllm/ |1 2°p|*dr.
2vp 2vpo 0

It follows from integrating by parts and (1.7), that
//ZO‘ - Z9Vpdxdr
2 U ¢
> — V(| Z%|*)dzdT — C||— Loo/ pllgm + | Vp||lgm-1)||p||3¢m dr
/0 /Qw (12°p2) P R e

t t
> =5 [ 196t = C5PQ) [ ol
0 0

Due to Proposition 2.2, one has that

\/ /C’ﬂ ZopZP( ) ZVpydxdr|

\/3\>1 BH+y=a
%
( / 127 zvpmdv)

1
2
< ([ 19tpencr)
0
5 t
Hd) (30 12013~ [ Il + sup Il [
77—7

<([ 1w

\/3\>1 B+y=c

<[+ PQ / Ipl3dr,
and
| / / Cp,2op2P (2 ) Z'Vpdxdr|
\ﬁ|>1 Bty=a
: 3
< (/[ 1oitenar ([ 12 z7vpiear)
0 \ﬁ|>1ﬁ+v a
‘ 2 : ! 2 U2 :
< ([ tolBnar) ([1+P(Q(t))] L IVBs 4 12 B
<5/ IVpl3mordr + [L+ P(Q / 1(p, w)[|3m dr,
where in the estimates of (3.1.40) and (3.1.41), one has used
er [ Iplendr — 11+ PIQ / Pln-sar < [ 100

< f/ Ipl2,mdr + C[1 + P(Q / [ E—

1
t 3
1
|2md7>
p H

(3.1.36)

(3.1.37)

(3.1.38)

(3.1.39)

(3.1.40)

(3.1.41)

(3.1.42)
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here a € R is any given constant and ¢y is a positive constant depending on é,a. It follows from

(3.1.37)-(3.1.41), that

t 1 1
f/ /Zap~Zadivud:z:dTZ/—\Zapﬁdx—/r\zapoﬁdx
0 YD
—05/ IVpl3m-rdr — Cs[1+ P(Q / 1(p, w)|5gm dr. (3.1.43)

In order to complete the estimates in (3.1.31), it remains to estimate the terms involving C¢ and C$.
It follows from Proposition 2.2 and (3.1.42) that

/||c1 [Pazdr<c Y /Hzﬁp 2, |2dr

[B|21,8+y=c

<C s |2l / s +C s / o2

<[1+P(Q /|| D) |2pmdr, (3.1.44)
and
t
/ g Pdedr < C / 12 o) - 27Vl + sup o~ / Va2 sdr
0 \m>1 B+y=a
<Cl+P@Q / IVl2s + pullZmdr < CLL+ P(Q /p (3.1.45)

As a consequence of (3.1.44), (3.1.45) and the Cauchy inequality, one has that

//C1 +C§) - Z%dadr < C[1+ P(Q /P (3.1.46)

Therefore, substituting (3.1.43) and (3.1.46) into (3.1.31) yields (3.1.16). Thus the proof of the Lemma
3.3 is completed. O

3.2 Estimates for divu and Vp

To deal with the compressibility of the system, we need to derive some uniform estimates on ||divul||gm-1,
which will imply the desired uniform estimates on ||Vul|gm-1.

Lemma 3.4 For every m € N, it holds that

1 1 3 /[
sup (/fp|dz'vu(r)|2—|——\Vp(T)PdﬂU —&—75/ |V divu(r) |2dr
0<r<t 2 2

/ — po| divug|? +7|Vpo| dx + Cs3[1+ P(Q / A (3.2.1)
Proof. Multiplying (3.1.6) by Vdivu yields that

t t
/ /(put + pu - Vu)Vdivudzdr + / /Vp - Vdivudzdr
0 0

t t
= 75/ /V X w - Vdivudzdr + 25/ | Vdivu|?dr. (3.2.2)
0 0
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Integrating by parts and using the boundary conditions (1.7), one obtains that
t t
/ /(put + pu - Vu)Vdivudzdr = — / /(pdivut + pu - Vdivu)divudzdr
0 0

¢ ¢
- / /(Vp ug + V(pu) - Vu)divudrdr + / / p(u - V)u - ndivudodr
0 a0

1 1
< —i/p\divu|2dx+§/po|dlvuo| dx + C[1+ P(Q / | (ug, Vu)||2dr
t
+’/ / p(u~V)n~udivud0dT‘
0 Joq
1 P
< ~5 pldivu|“dz + 3 poldivuo|?dx + C[1 4+ P(Q || ug, Vu)||?dr
t
+02[1+HPVU||L°°]/O IVl |[ulldr
1 1 !
< —§/p\divu|2dat+§/p0|divu0|2dx+02[1+P(Q(t))]/ Apn(7)dr- (3.2.3)
0

Using (3.1.36) and integrating by parts lead to

t
/ /Vp~VdivudxdT: —/ /V -V( )dasz—/ /Vp Viu- v—)dmdr
< - // ptdxdT—/ /— V(|Vp|?)dzdr + C[1 + P(Q / |Vp|/2dr

_/%|VP|2dx+/7|vP0‘ dz + C[1+ P(Q / | Vp|*dr, (3.2.4)

IN

and (1.7), together with integration by parts along the boundary, implies that

t
/ / n X w - Vdivudodr
o0

/ (Bu) - Z,divudodr
89

=&

t
/V X w - Vdivudzdr

=& =&

/ (Bu) - II(Vdivu)dodr
6(2

< 035/ lu| 1|divu| 1dr < 035/ |lwll 1 || dive|| g dr
o H? H2 0

¢ ¢
< Z/ ||Vdivu||2d7'+03€/ (V| + ||u|/?)dr. (3.2.5)

0 0
Substituting (3.2.3)-(3.2.5) into (3.2.2) proves (3.2.1). Thus the proof of Lemma 3.4 is completed. O

Next, we consider the higher order estimates. One starts with the estimates of Z*divu for |ag| < m—2
with |a| =m — 1.

Lemma 3.5 For every m > 1 and |a] < m — 1 with |ag| < m — 2, it holds that
1 t
sup (/p\Z"‘divu(Tﬂ2 + f\Zo‘Vp(T)Fdx) +6/ |V 2% divu(T)||>dT
0<7<t p 0
a g, 2 1 et 2 ! m—1 2
< | polZedivug|? + —|Z29Vpo| dx+CCm+2{5 IVor—p(r)|2dr
YPo 0
t t
+@+e) [ V2" 2din(r)|Pdr + Csl1 + PQU) [ An(r)dr
0 0

+ 5/0 |V 2u(T)

where the last term doesn’t appear if m — 2 < 0.

| %{m_sz} (3.2.6)
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Proof. The case for |a| = 0 is already proved in Lemma 3.4. Assume that it is proved for |a] < m — 2,
one needs to prove it for |a] =m — 1 > 1 with |ag| < m — 2.
Multiplying (3.1.17) by VZ%divu leads to

t t
/ /(pZO‘ut + pu - VZ%%)V Zdivudzdr + / /Z“Vp - VZ%divudzdr
0 0
t ¢
= —e/ /ZO‘V X w - VZ%divudzdr + 28/ /Z“Vdivu -V Z%divudzdr
0 0

¢
+/ /(Cf‘ + CS )V Z4divudadr. (3.2.7)
0

Integrating by parts gives that
¢
/ /(pZO‘ut + pu - VZ%)V Zdivudzdr
0
t
—/ /(pdinaut + pu - VdivZ@u) Z*divudzdr
0

t
- / /(Vp - Z%uy + V(pu) - VZ%) Z*divudrdr
0

t
+ / / (pZ%us -n+ p(u - V)Z% - n) Z*divudodr 2 I + I + I3. (3.2.8)
0 Jon
For I; and I, one obtains easily that
¢
L = —/ /(pZ“divut + pu - VZ%divu) Z2*divudzdr
0
¢ u- N
—/ / (p[div,Zo‘}ut +p(urZyp +usZy2 + WZS)[diV’ Za]u) Z*divudzdr
0
< —/g|2adivu(t)|2dx+/ | Z*divuo|?dx + Ca[1 / A (3.2.9)
and
L <Cll+P(Q / A (3.2.10)

Noting that Z“ contains at least one tangential derivative Z,, integrating by parts along the boundary
and using (3.1.30) , one obtains that

I3 = /Ot /69 [pPZ%u -n—p(u-V)n-Z% 4+ p(u- V)(Z% - n)| Z%divudodr
= /t /89 Z%u -n —p(u-V)n- Z% + p(ur Zy + us Z,2 ) (2% - n)| Z%divudodr
< C[1+ P(Q(t))] /Ot (|Z°‘ut |y 1%l + 12 n|H) |2 =2diva]  y dr
< CsCmiall + P(Q())] /0 A (r)dr 46 /O V2" 2 divul2dr. (3.2.11)
Substituting (3.2.9),(3.2.10) and (3.2.11) into (3.2.8), yields that
/Ot /(pZaut + pu - VZ2%u)V Z4divudzdr
< —/[2)|Z“divu(t)|2dx+/p0|2“divu0|2dm+6/0t IV 2™~ 2divul2dr

+ Cs[1+ P(Q / A, (3.2.12)
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It is easy to obtain
t
6/ /Zanivu~VZadivudxdT
0
t t
= E/ |V Z*divu|?dr + e/ /[ZQ,V]divu -V Z*divudzdr
0 0

¢ ¢
> Zs/ |V Zdivul||*dr — C’s/ V2™ 2divu||® 4+ Ay (7)dT. (3.2.13)
0 0
It follows from (1.7) and Proposition 2.3, that for k <m — 1

In x Z;n_k_lafw|H% < Cm+2lafw|Hm—k—% + Cm+2|8fu|Hm—k—%

1 1
< CosalV2ull s 19l s + Consa ([ Vtllgns + e ). (3.2.14)

This, together with integrating by parts, shows that
t
— 5/ /ZO‘V X w - VZivudzdr
t t
= —E/ /V x Z% - VZdivudxdr — E/ /[Zo‘, VXxw - VZdivudzdr
0 0
- t
> —f/ |V Z24divul|?dr — 6/ / n X Z% - I(VZdivu)dodr
8 Jo 0 Joo
t
- Cs/ [VZ™2w||* + A (7)dT
0
- t
—f/ ||VZ°‘diqu2dT—C’5/ Inx Z%| 1 -|Z%ivu| 1dT
8 0 0 H?2 H?2

t
— C’E/ IVZ™ 20|12 + Ay (7)dr
0

v

t t t
—2/ ||VZ°‘diqu2dT—Ce/ ||V2u||3{m,2dr—cm+2/ P(Ap(7))dr. (3.2.15)
0 0 0

Now we estimate the terms involving the pressure. It follows from (3.1.36) that
t
/ /Zo‘Vp-VZo‘divudxdT
0
t t t
< / /Z“Vp - Z2°Vdivudzdr + (5/ |V Z™2divu|*dr + Cg/ A (T)dT
0 0 0
t p t w
—/ /Z("Vp : ZO‘V(—t)dxdT — / /Z"‘Vp - Z9V(— - Vp)dzdr
0 P 0 vp
t t
+6 / |V 2™ 2divu|dr + C; / A (7)dr (3.2.16)
0 0
For the first term on the right hand side of (3.2.16), one notices that

1 1
Z“V(%) =—ZVpi+ Y, Cﬂﬁzﬁ’(fp) . Z7Vp,
7 18121,5+7=a 7

1
+ > CpyZPp- 27V ().
Bry=a P

Therefore, Proposition 2.2 shows that
t Dy 1 1
—/ /Zan-ZaV(%)dwdT < —/—|Zavp|2dx+/—\zavp0|2dx
0
+5/ VO —tp||?dr + Cs(1 + P(Q / A (3.2.17)
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To estimate the second term on the right hand side of (3.2.16), we notice that

i N
Z0V(—= . Vp) = 3 L zova,p+ “Wz“azw

P S P
-N
+3 Y a2 2oy Y. a2 270V
i=1,2|8|>1,84+v=c P [B]>1,8+7=c w
+ > cﬁvzﬂv ) 270,p+ > Cs, 7zﬂw ) Z70.p. (3.2.18)
1=1,2 f+y=a BHy=a
Then integrating by parts gives that
N
/ /Zan 7zava P+ =200, Vp ) dudr
=1 2 TP
/ /Zan a i Z9Vp + —a zavp)me
=1 2
@ u-N @
ZVp - [ UV, 0yilp + ——¢(2)[2 ,8Z]Vp)dxd7'
1 12 pe(2)
< Cull + P(Q(1))] / A (7). (3.2.19)
0

Using Proposition 2.2, one has that

- Z > OM/ /zavp 259 (2 ) 270, pdzdr

i=1,2 [B4y=«a

t .
- Y. Cay / / Z“vp-zﬂ(ﬂ)zvvayipd:m)
1B121,6+= 0 w
Y=«

< 5/ IV p|2dr + Cs(1 4+ P(Q / Ap(r (3.2.20)

and

- > Cay / / zovp- 2PV (Y ) 270, pdxdr

Bty=c

< 5/ Vo~ p||2dr + C5Chia (1 + P(Q / Ay (T)dr. (3.2.21)

On the other hand, notice that for |3] > 1,64+ v =, and |a] =m — 1

25Ny zg.vp = izﬂ(“ Ny o(2)270.7p
©(2) P
- N
B<BA<y v

where |5+ |5] <m —1, |3 <m —2 and Cj 5 is some smooth bounded coefficient.
If 3 =0, and hence |7] < m —2, it holds that

¢ 5, U N
/0 12 <pso( )>

< Cal1 + ulfyne) [ An(r)dr < Cal1 4 P [ Anlriar (3.2.22)

- Z27(Z3Vp)|?

t
/ ||Z?)Vp(7-)||3.[m,—2d7—
0
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where one has used ||%||Lm < Cllullwy1. due to the boundary condition u-n = 0. On the other hand,

by using Proposition 2.2 for 3 # 0, one obtains that

- ¥ Bw/ /zav 2N 2 (2, p)dadr

_ z
BLBALY ptp( )

<o [izwnlear)t - s 1205 2l [ 12

0<r<t

-N
)|
so( )
< Cmt1[l+P(Q / A
where one has used the following hardy inequality in the last step of (3.2.23)
u- N
12(—)I

o(2)
which is proved in page543 of [16]. Then (3.2.22) and (3.2.23) yield immediately

Hm—2 < Cm+1(||Vu|

Hm—1 + ||’LL| ’Hm—l),

- Cp~ / / zevp. 282 ) Z70,Vpdxdr
|ﬁ|>15+7 o

< Cooa(1+ P(Q(E)) /0 Apn(7)dr.

Combining (3.2.18)-(3.2.21) with (3.2.25), one obtains that
¢ u
f/ /Z“Vp~Z“V(— - Vp)dzdr
0 P

t t
<o / VO pl2dr + CsCrnsr (1 + PQ(E)) / A (7)dr.
0 0

Due to (3.2.17), (3.2.26) and (3.2.16), it holds that
¢
/ /Z“Vp~VZadivudxdT
0
1 1 K
< —/—|Z(’Vp|2dx+/—|Z°‘Vp0\2dx+05/ |V 2™ 2divu|?dr
2yp 29po 0
¢ ¢
+ 05/ VO, p||2dr + C5Cry1(1 4+ P(Q(1))) / A (7)dr.
0 0

Finally, using Proposition 2.2 and integrating by parts, one can get that

t
| / / (€O 4 €9V Z°divudadr|
0

¢ t
< |/0 /(Cf +€$) 2V 2o N divudzdr| + C/O /(|C1a‘ +Ce) |V 2o Y divu|dedr

t
< |/ /(|ZC§’| 1208+ 100 + [C2]) - |V 20 Ldivuldadr
0
t t
< 5/ ||VZm’2divu||2dT+C/ s, Co)I3 dr

<5/ |V 2™ 2divu|?dr + Cs5(1 + P(Q / A,

where the following estimate has been used:

/0 1€, €52 dr < C(1+ P(Q(E)) / A (7)dr.

1

2
’2}_[7n72 + ||ngp||%_[mfz }

(3.2.23)

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

Substituting (3.2.12), (3.2.13), (3.2.15), (3.2.27) and (3.2.28) into (3.2.7) proves (3.2.6). Therefore, the

proof of Lemma 3.5 is completed.

O
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Remark 3.6 It should be pointed out that in general, it is hard to derive an uniform estimate to
the term fo |Z2m=20, ul|?dr due to the possible appearance of boundary layers. However, the term

fo |V Zm=2divu||>dr is expected to be controllable since one could expect that there is no strong boundary

layer in either divu or pressure p.

Although we have obtained the bound for ||Z%(divu, Vp)| for |a| = m — 1 with |ag] < m — 2. Yet,

the estimates on ||0;" ! (divu, Vp)|| is weaker:
Lemma 3.7 For every m > 1, it holds that

1 t
sup (5/p|8{”71divu(7)|2 + %|8[”71Vp(7)|2dx) -‘1-62/0 Vot divu(T)||*dr

0<r<t

1 t
S 5/p0|8Z”71divu0|2 + %th*leOFdx + C5Cm+1[1 + P(Q(t))} / Am(T)dT
0

Proof. Applying 97! to (3.1.6) shows that
POty + pu - VO T u + 0 Vp = —eV x 0" tw + 2e VO T divu 4+ C T Y

where
== == Y Cpn0p0]w,
[8]1>1,84+y=m—1

and
Cyt =0 pu-V]u Z C.,07 (pu)d] V.
18121, 8+y=m—1

The boundary conditions become
n-OMu=0, nxo" ‘w=[Bo" tul,, xcaN.

Multiplying (3.2.31) by eVdivd" u yields that

t t
5/ /(p@{"ilut + pu - VO ) Vdivo" tudrdr + 5/ /8{"71Vp - Vdivoy* tudzdr
0 0

t t
= —62/ /V x O tw - Vdivo" tudxdr + 252/ Vo~ divul|?dr
0 0
t
+e / / et + ey hHvdivoy fudadr
0

It follows from (3.2.34) and integrating by parts that

2|/ /Vx@m Yo - Vdivo" tudrdr| —52|/ / n x O tw - T(Vdivey" 'u)dodr|
o0

< 52/0 [n x 3:”_1w|H% . |div3{"‘1u|H%dT < C3€2/0 |5‘tm_1u|H% . |div8§”_1u|H%dT

t
50352/ 10 L o - ([ divOm | g dr
0

t t
< 564/ \\V@Z”_ldiquszJrC’gCg/ A (7)dT.
0 0

(3.2.30)

(3.2.31)

(3.2.32)

(3.2.33)

(3.2.34)

(3.2.35)

(3.2.36)
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and
t
6/ /(p@zn_lut + pu - VO~ tu)Vdivo!* tudzdr
0
t
= —s/ /(p@tm*ldivut + pu - VO divu)divo)" ™ tudzdr
0
t
- 5/ /(Vp SOy + V(pw)t - VO ) divo  udaedr
0
t
75/ / plu-V)n -0 tud tdivudodr
a9
t
< ¢ / §|8;”’1divu(t)|2dx+5 / PO 5m =1 divu 2z + C[1+ P(Q(E))] /O Apn(7)dr
+C[1+P(Q / o) 2 || 0 1u||Hl |0~ 1d1vu||H1||5m Ldivul|zdr
< fs/p|8;n_1divu(t)|2dx+s/p0|8f1_1divu0| dx
t 1 t
+ O+ PQW))] / Ap(r)dr + &2 / IV or—"divu|2dr. (3.2.37)
0 0
By similar arguments as in the proof of (3.2.27), one gets that
! 1 1 1 1 1 1
5/ /8{”_ Vp - Vdivo," ™ “udzdr < —s/—\Vﬁtm_ p|2dx+5/—|V8Z”_ po|?dx
0 29p 27po

+Conal1+PQO) | Aur)ar (3.2.38)

and by using (3.2.29), one can obtain that
t 1 t t
€|/ /(C{”_l + ChVdive tudadr| < 752/ HV@Zn_ldiquszJrC/ e + ey |Pdr
0
/ Vo divu||?dr 4+ C[1 + P(Q / A, (3.2.39)

Substituting (3.2.36)-(3.2.39) into (3.2.35) proves (3.2.30). Therefore Lemma 3.7 is proved. O
Since the estimate in Lemma 3.7 is not enough to obtain the uniform estimate for Vo[ 'u, so we need
some new estimates on || 'divu||. Fortunately, we have the following subtle control about ||9]"divu|:

Lemma 3.8 Define

M) = IOl + S 122901+ Y [12°Vu()]. (3.2.40)

[B|<m—2 |B1<m—2

Then, for every m > 3, it holds that
0" divu(t)|2 < Co{ P(Am (1) + P(Q(®)) }- (3.2.41)

Remark 3.9 It should be pointed out that it does not contain the terms |VO/" *u| and |V 'p| in
the right hand side of (3.2.41). This estimate allows one to obtain the uniform estimates for | V" ul.

Proof. Applying 9! to (3.1.36) yields that
o Mdivu = —9;"(In p) — 9" " (u;0,: Inp) — 9" ' (u- N9, Inp). (3.2.42)

Since
m—1

m m—1,0tD Lo e
0" (Inp) = 9y 1(%)1235(2;)@ *p,

k=0
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it holds that

(%] m—1
1 e o 1
o n I < CloTplE + 3 IFC B ool + 3 0P sl - lOE DI (3:2.4)
k=1 P k=1+[2] p

Note that for |5] < [%] and m > 3, it holds that

Yo IE%plie <0 Y I(VE D 201 - 27l
1Bi<] Bi<I2]

<C(Iplde + > 12°9pI}) < CP(Am (1), (3.2.44)

|B]<m—2
where (2.5) has been used. Therefore, substituting (3.2.44) into (3.2.43) leads to that
107 (n p)[|I* < P(Aym(t))- (3.2.45)

Similar arguments as (3.2.44) and (3.2.45) show that

Implgn + S 123 < P(Aim (), (3.2.46)
[B]|<m—2
and
S l2Pulie+ >0 12%ulli< < P(Aim(t). (3.2.47)
[Bl<m—2 181<[%]
It follows from (3.2.46) and (3.2.47) that
(5]
107" (widy: Inp) > < ) 10Fulge - 107710y I p|?
k=0
m—1
3 10T mpl e - OFul? < CP(Avm (D). (3.2.48)

h=1+(3]

Additional efforts are needed to bound 9" *(u - N9, In p), since it involves d, In p. First, rewrite this
term as

9" (u- NO.Inp) = %Zgag”*l np+d.np- 9" (u-N)
m—2
+ Y Crdf(u-N)- 0,07 FInp.
k=1

Hence, by using (3.2.46) and (3.2.47), one has that

107" (- NO )2 < O 2 e 1 plZ + C V3 107"

90(2)

-2
. m—1—k, VD
0 X Jotul~ o OO
k=1

< (1099, Tu) e + P18 (P(Ain () + Z LA

m—2
< Ca(I(Tp. V) e + P (2) (PAam(®) + Pl (0) 3 1041
k=1

< Co(I1(7p, Vi) [3 + P(A1m (1)) ) P(A1n(1)): (3.2.49)

Therefore, (3.2.41) follows from (3.2.42), (3.2.45), (3.2.48) and (3.2.49), which proves Lemma 3.8. [
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Lemma 3.10 For every m > 1, it holds that
t t t
/ VO~ p(r)|Pdr < 052/ |\V28[”_1u(7)||2d7+0[1+P(Q(t))]/ Ap(T)dr.  (3.2.50)
0 0 0

Proof. Applying 97! to (3.1.6) yields that
VO tp = 0" Y pus — pu - Vu — eV x w + eVdivu).
Using Proposition 2.2, one obtains (3.2.50), which thus proves lemma 3.10. O
In general, it is hard to obtain the uniform estimate for the term fot VO~ 2divu||?dr since it may

involve two spacial derivatives in the normal direction. However, divu can be expressed by the variation
of the density which is expected to have no strong boundary layers.

Lemma 3.11 For every m > 2, it holds that

t t t
/ IV 272 divu(r) |2dr < C / VO =p(r)|[2dr + Co[1 + P(Q()) / Am(r)dr.  (3.2.51)
0 0 0
Proof. Applying VZ¢ to (3.1.36) with || < m — 2 gives that
VZedivu = —=VZ%(Inp); — VZ*(u;0y: Inp) = VZ%(u - NO. Inp) (3.2.52)
It follows from Proposition 2.2 that
t t t
| IvzeupiPar < ¢ [ Iver-tpiPar + i+ P@)) [ An(rdn (3.2.53)
0 0 0
and
/ [VZ%(u;0,: Inp)||*dr < C[1 + P(Q / Am (3.2.54)
Finally, by using Proposition 2.2 and the hardy inequality (3.2.24), one has that

t t
/||VZa(u~N8zlnp)H2dT§/ IV (u- NO,Inp)||3m_zdr
0 0

K Lou-N
< [190 90,0 atr + [ 1) 2,10 s
0

<C1+ PQM) + sup | ()nm} | (8

0<r<t

u-N
m—2 d'T
< Ol / A (3.2.55)

Therefore, collecting all the estimates, one obtains (3.2.51). Thus the proof of Lemma 3.11 is completed.
O

Tt follows from (3.2.51) and (3.2.50) that
t t
5 [ 19z 2divu(r)|* + [Voyp(r)dr + = [ [90Pp(r) Pdr
0 0
t t
< 06/ Vo, p(r)||%dr + C’/ e[|V Ip(r)|IPdr + C[1 + P(Q(1))] / A (T)dT
0 0

0

< 522 /0 IV2or () |Pdr + Cl1 + PQ(L)] /0 "A(r)dr (3.2.56)
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Substituting (3.2.56) into (3.2.6) yields that

m—2 t m—2
sup > [1(0F Vp, Of diva) ()7 -1 +€/0 > o Vdiva(r)|7 -1 _gdr
k=0

0<7<t 3 )
1 t
< C/p0|Z“divuo|2 + —|zavp0|2dx+ccm+2{552/ V207 u(r)|dr
YPo 0
t t
+ 6/ [V2u(T) |3 jm—2dT + Cs[1 + P(Q(1))] / P(Am(T))dT}. (3.2.57)
0 0

Then, combining (3.2.57) with (3.2.30) shows that

m—2
sup { > 0 Vp, 0 diva) (7) |17 -1, + | (9" diva, 32"_1Vp)(7)||2}

0<r<t

k=0
t m—2 t

e ZHadeivu(Tm,l,de+52/ oV divu(r)|2dr
0 k=0 0

gCCm+2{Am(O)+C<552/O ||v2a¢-1u(7)||2d7+5/0 V() g2
L+ PQ®)] /O P(An(r))dr ). (3.2.58)

3.3 Normal Derivatives Estimates

In order to estimate ||Vul||yym-1, it remains to estimate ||xOpul|/gym-1, where x is compactly supported

in one of the Q; and with value one in a neighborhood of the boundary. Indeed, it follows from the

definition of the norm that ||x0y:u|ym-1 < C|lullgm for i = 1,2. So it suffices estimate ||xOpul|zm-1.
Note that

dive = Opu - n + (1101 u)1 + (I10,2u)s. (3.3.1)

and
Ot = [Onu - n|n + II(Onu) (3.3.2)

Thus it follows from (3.3.1) and (3.3.2) that
IxOntllzn—r < Xt nl3gm—1 + [NTL@D0 1)1
< Con{ Ixdivullpen-+ + IXTLOn0) 1 + |fullpem |-

Thus it suffices to estimate ||[xII(Opu)||ym-1, since |ju||gm and ||xdivu|ym-1 have been estimated in
subsection 3.1 and subsection 3.2, respectively. We extend the smooth symmetric matrix A in (1.6) to be

Ay, 2) = A(y).

Define
n= X(w X n+ H(Bu)) = X(H(w X n) + H(Bu)). (3.3.3)

The 7 defined here, which enable us to avoid the term V?2p, is slightly different from the one in [16]. Then
in view of the Navier-slip boundary condition (1.7), n satisfies:

nloa = 0. (3.3.4)
Since w x n = (Vu — (Vu)') - n, so n can be rewritten as
n= X{H(anu) —T(V(u-n)) + I((Vn)! - u) + H(Bu)}, (3.3.5)
which yields immediately that

X Onw) l3gm—1 < Congr([mllgm—1 + [[ullagm). (3.3.6)

Hence, it remains to estimate ||n||m-1. In fact, one can get the following conormal estimates for n:
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Lemma 3.12 For every m > 1, it holds that

t
S In(m) 3 + E/ IV0(T)[Fpn—1dT < CCpa([u(0)[Fpm—r + [IVu(0)|[3—1)

+CCm+2 55 / |V2u(7)||3m-rdT + Cs[1 + P(Q /P } (3.3.7)

Proof. Notice that
Vx(u-Vu) =(uVw—(w-V)u+divu - w,
so w satisfies the following equations

pwi + p(u - Vw = eAw + F, (3.3.8)

with
Fi 2 -Vpxu—Vpx (u-Vu+ plw-V)u— pdivuw. (3.3.9)

Consequently, the system of 7 is

P+ purdyin + puady2n + pu - N0 — eAn

= x[F1 x n+I(BFy)] + xF3 + Fy + exA(IIB) - u =: F, (3.3.10)
where
Fy = eVdivu — Vp, (3.3.11)
Fy = —2i5<9jw X 0jn —ew X An + ipuiw X Oyin
j—1 2 i=1
+Zpu2 (IB)u — 22 > 9;(11B)d;u (3.3.12)
j=1

Fy = Zpui8y1,x “(wxn+T(Bu)) 4+ pu- NOyx - (w x n+ II(Bu))
i=1
3
- ZZeﬁanj(w x n 4+ II(Bu)) — eAx - (w x n 4+ II(Bu)). (3.3.13)
j=1

We start with m = 1. Multiplying (3.3.10) by 7 and integrating lead to that

t t
sup /p|77|2dx+25/ Vn|2dr < /p0|770|2dx+/ /FndxdT. (3.3.14)
0 0

0<r<t

To handle the right-hand side, one notes that

| I ) Bnsdr < Cnlt+ PQE) [ (IV0P 51 + A ) (3.3.15)
0 0

t t t
/ HXH(BFQ)‘ ’?_l'rn—ldT S Om+1{ / Am + ||vazn—1p”2d7- —+ 52/ ||XVdiVUH§_im_1dT}, (3316)
0 0 0

and

t t t
/||XF3||§U,L,1dTgcm+2{52/ ||Xv2u||§{m,1d7-+[1—|—P(Q(t))]/ A(r)dr}, (3.3.17)
0 0 0

Since all the terms in Fj are supported away from the boundary, one can estimate all the derivatives by
the || - [[m norms. Therefore, it is easy to obtain

/ | a3 m- 1dr<(}m+1 / XV2ul|3m-rdT + C[1 + P(Q /Am dT (3.3.18)
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Finally, by integrating by parts, it is easy to obtain that

t t t
/ /5Zm*1(A(HB) cu) - 2™ ndr < 55/ Vl3m-1dT + C’m+2/ A (T)dT. (3.3.19)
0 0 0

Consequently, substituting these estimates into (3.3.14) and using the Cauchy inequality, one has that

t t
sup [ pnds+ 25 [ |Valar < [ polmofds + Cosa{8 [ 1907 pir) Par
0 0

0<r<t
t t
+ Cs[1+ P(Q(1))] / A (T)dT + 552/ ||XV2u||§{m_1dT}.
0 0
Thus, (3.3.7) is proved for m = 1 by using Lemma 3.10.

To prove the general case, we assume that (3.3.7) is proved for k¥ < m — 2. Applying Z¢ to (3.3.10)
for |a| = m — 1 yields that

P2+ p(u-V)Z —eZ9An = Z°F + C$ + Cf, (3.3.20)
with
Cs =—[2%pm= >,  Cp,2’pZm, (3.3.21)
18121,8+7=a
2
Ci=— > 2 CsZpu)Z0m— Y CayZ’(pu-N)ZV0.g)
[B1>1,8+y=a i=1 [B]>1,8+y=a
—plu-N) > Czo.2P, (3.3.22)
18] <m—2

where C and Cp  are functions depending only on z. Multiplying (3.3.20) by Z%n and using (3.3.15)-
(3.3.19), one obtains that

1 ! 1 !
sup /§p|Z“77|2dz §5/ /ZaAnZO‘ndxdT—l-/5pg\Z“ﬁg|2dm+/ /(CéJZ + C) Z%ndxdr
0 0

0<r<t
+ CsCia{ 1+ PQ())] /Ot Apdr + 52 /Ot V2|2 dr + 5/; IVor—tpldr}. (3329
In the local basis, it holds that
0; = BjOy + B0, + B30, for j=1,2,3.
Therefore, we have the following commutation expansion

ZOAn=AZn+ > Cip0ZPn+ Y (Cop0:2°n+ CspZ,2%). (3.3.24)
[B|<m—2 |B]<m—1

By using the expansion (3.3.24) and the inequalities before (3.3.20), one obtains that

t t
5/ /Z“AnZandxdT = a/ /AZan - Z%dxdT +
0 0 |Bl<m—2

t
+ Z € {C’gg@zzﬁn+ngZyZﬁn}Z“ndxdT
. Jo

|B]<m—

¢
E/ /Cw@zzzﬁn-zandxdr
0

t t t
< —Zs/ HVZ“?]HQdT—FCs/ HV77||§_[m72dT+Cm+2E/ A (T)dr. (3.3.25)
0 0 0

Note that there is no boundary term in the integrating by parts since Z%n vanishes on the boundary.
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It remains to estimate terms involving C§ and C§. By using Proposition 2.2, it is easy to obtain

t t
/0 Ics2dr+ S s, / 128 (pus) 270, |2

[B|21,8+y=c

< Cia[1 4+ P(Q / A (3.3.26)

The remaining terms are more involved, since it is desired to obtain an estimate independent of 0.7.
First, it is easy to obtain that

OﬂZ{;ZﬁUHdT

/ (- N)Cpd. 20dr < / (™

[B|<m—2 |B|<m—2

< Couia[1 + P(Q(D))] /O Ao (r)dr. (33.27)

Z

On the other hand, we notice that for || > 1,8 +v =a, and |a| =m — 1

ZP(pu- N)Z70,n = %Zﬁ(pu N)-p(2)270:m
o(z

= > Cg,azg(p%)-zﬁ(%n),

B<BA<Y

where |3 + |7] <m—1, |5 <m —2 and C'5 5 is some smooth bounded coefficient. Therefore, by similar
arguments as (3.2.22), (3 2.23) and using the hardy inequality (3.2.24) , one has that

> / 1Cs4 22 (pu- N)Z78.7|2dr < Cryi[1 + P(Q / Am (3.3.28)
1B]>1,8+y=c

Then, it follows from (3.3.26)-(3.3.28) that
/ (€5, C3)|2dr < Coniall + P(Q / A (3.3.20)

Substituting (3.3.25) and (3.3.29) into (3.3.23) and using Lemma 3.10, we obtain that

1 ¢ 1 !
s [ solznlde v [ vz ndr < Cuia{ [ Smizowlde e [ 1V dr
0 0

0<r<t

+C[1+P(Q(t))]/0 Am(T)dT+552/O ||v2u||?Hm_1dT}. (3.3.30)

By the induction assumption, one can eliminate the term e fot [V9|3,m—-2dr. So the proof Lemma 3.12 is
completed. O

It follows from (3.3.1)-(3.3.6) that

m—2

> 12Vl <Cm+1(||ullwm G+ > 0Fdival?, k) (3.3.31)
[B|<m—2 k=0
t t
/ Hvzunim,mgcmw/ (HVUH%m + V031 + | Vdivul|3m- +Am)d7, (3.3.32)
0 0

=2 st t
> [ 190t ulE s < Consaf [ 190l + IVl rdr
=0

t
+ Z / 18FV divul|2, ,_ dr + / Ade}, (3.3.33)
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and

t t t
c / V227 20|2dr < Chusre / V01 —adr + Cop / Apdr, (3.3.34)
0 0 0

where (3.2.50), (3.2.51) are used in the estimate of (3.3.34). Then, taking ¢ suitably small and using
(3.1.16), (3.2.50), (3.2.50), (3.2.51), (3.2.58), (3.3.7) and (3.3.31)-(3.3.34), one has that

t
sup { A1 (7) + [0(7) [3gn—s + 10"~ divu, 7" Op) (1)} + ¢ / V9 G-

0<7<t
t m—2

t t
+€/ ||vu(T)||§de+e/ 3 ||8deivu(7')||fn_1_de+62/ om =V divu(r)|2dr
0 0 0
m—2 .t t t
v 3 [ TPk u(rIE, y pdr o+ / IV u() s+ [ 907 p(r) Pdr
k=070 0
< CCm+2{Am(O)+ 1+ P(Q / P(A (3.3.35)

3.4 L*-Estimates

To close the estimates, we need to bound the L*°-norms of v and p. First, one has the following Lemma:

Lemma 3.13 For every |a| > 0, it holds that

1250 p.p. u)(D)3 < CP(Aam(t)), for m>2+]al, (3.4.1)
IV 0, p)(8) 3. < Ca(PUIARIEA) + P(Aim (1)), for m = 5, (3.4.2)
ldivu(t) 3. < C3[P(Arm(8) + P(|Ap|20)], for m>5, (3.4.3)
IV divu(t) 2 < C5sP(Q(1)), (3.4.)
IV divu(t) 3. < Calt + PQ] - (CsP(Aum(t) + 0l ApIE: ), for m>6,  (3.45)
Q) < Cs sup {IIVu(n) [ + P(Arm(r) + PP Fa) o for m =5 (346)

Proof. The proof of (3.4.1) is a consequence of (2.5) and thus omitted here. In order to prove (3.4.2),
one notes that

O = 0% — 0, (0102) — 02p0.0y: + (00)?02, for i=1,2,
which implies that

= (L4 [Ve)o.. + > (aji — 0, (01)0.) — aiwazayi). (3.4.7)

i=1,2
Since
|AmplZ, < C{PUIAPIZS) + P(Aim) fom > 3,

1Apl3s < {P(HAlnpll D)+ P(Ai) }om >3,
(3.4.8)

Jampl3s < C{IApIZ: + P(1AIpIZ) + P(Ai) b > 4
1Apl3, < c{nmnpnw + PIAWplZ0) + P(Aum) o m = 4,
it then follows from (3.4.8), (2.5) and (3.4.7) that for m > 5

IV (I p, p)[|7 < C (10:-V (I p,p) |12, + IV p, p) |l ar2,) V(I p, p) || 122,
< C(la(mp,p)[IF, + 11V p,p)|172)
< CllIA(Inp, p)|I3;: + Aim(t)] < C3[P(|Ap[|F1) + P(A1m(2))],
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and

12V (inp,p)|Zee < C (10:2V (I p,p)| + |2V (I p, p)|) |2V (0 p, p) | 2,
< CllAa(np, p) 5 + P(Aim ()] < Cs[P(1Ap]I30) + P(Aim(t))],

which proves (3.4.2).
By (3.1.36), (3.4.1) and (3.4.2), it is easy to obtain, for m > 5, that

ldival3~ < Ol + [ulf= - 1V Ipl3x) < O3 (P(Aam(®) + P(18p1B0) ),

and
|Zdivul} < C(IZap)lix + 1 Z(u- TInp)lia ) < Co(P(Aam(®) + P(1API))-

Thus (3.4.3) follows. By using (3.1.36), one obtains (3.4.4).
It follows from (3.1.36), (3.4.1) and (2.5) that

IVivulf < €O+ P@UON- (10 ol + 191l )
< O+ PQ)] - (P(Aim(t)) + 0V plls2 P(A1(1)))
< i1+ PQ)] - (CoP(Aum(t) + 0| Apl: ), for m > 6, (3.4.9)

which gives (3.4.5). Finally, (3.4.6) is an immediately consequence of (3.4.1) and (3.4.2). Therefore,
Lemma 3.13 is proved. O

The following lemma is devoted to the estimate of || Vu(t)||3,1.-
Lemma 3.14 For m > 6, it holds that

t
IVu®)l3 .~ < CCm+2{H(uO,VUO)II3¢m + P(A1m (1) + P(1Ap(#)[3,) + €2t/0 IV2ull3dr

+1 /Ot[l + P(Am) + P(Q)] - [1 + €2HAp||$_Lg]dT}. (3.4.10)

Proof. Away from the boundary, it follows easily by the classical isotropic Sobolev embedding theorem
that

IXZVul]3 e + [ XVul|Fo < Ollull3m < Aim(t), for m >4, (3.4.11)

where the support of x is away from the boundary. Therefore, by using a partition of unity subordinated
to the covering (1.8), one needs to estimate only ||x;ZVu|r~ + ||x;Vu|/re for j > 1. For notational
convenience, we shall denote x; by x. Similar to [16], we use the local parametrization in the neighborhood
of the boundary given by a normal geodesic system in which the Laplacian takes a convenient form.
Denote

U (y, 2) = ( w(yy)> —zn(y) =z,

where

| ) |,

V1I+IVY(y)l? -1

is the unit outward normal. As before, one can extend n and II in the interior by setting
n(¥™(y,2)) = n(y), T¥"(y,2)) =(y).

Note that n(y, z) and I(y, z) have different definitions from the ones used before. The advantage of this
parametrization is that in the associated local basis (9,1, 0,2,0;) of R3, it holds that 9, = 9,, and

(ayi) wn(yz) (az)

n(y) =

U (y,z) B
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The scalar product on R? induces in this coordinate system the Riemannian metric g with the form
9y, 2) = < g(yo,z) (1))
Therefore, the Laplacian in this coordinate system reads
Af:aZZer%az(ln 9D0.f + Asf (3.4.12)

where |g| denotes the determinant of the matrix g, and Aj is defined by

1 o
= 0yi (31912 0ys ),
V1l ;2 Y Y

which involves only the tangential derivatives and {G/} is the inverse matrix to g.

Asf =

It follows from (3.3.1)(n and II in the coordinate system we have just defined) and Lemma 3.13 that
for m > 5,

IXVul3 e + I EVul < Co(IINTTOul3 o + |2 (TT0u) 3 + xdlivad]3
+ |1 2dival}~ + |1 22,0l + 1 Zyul}~)

< Ca{ N0l + | Z0TB00) |32 + P(Aam (1)) + P(I2p1B) }- (3.4.13)

Consequently, it suffices to estimate ||xII0,ul|? < + || Z(XI19,u)||? . To this end, it is useful to use the
vorticity w. Indeed,

H(w x n) = I((Vu — Vu') - n) = (0,u — V(u-n) + Vn' - u).

Therefore,
D, + [ Z00,0) [ < Co{ N0 x )3 + (20T x )3 + Ai(®)}, (3.4.14)
which shows that it suffices to estimate ||[xII(w x n)||%« and | Z(xII(w X n))||% .-

In the support of x, set

dz(y,z) = w(\l’n(y,z))7 ([)7 ﬂ)(yvz) = (P, u)(\l’n(y,z))

It follows from (3.3.8) and (3.4.12) that
1 _
Pt + P Op @ + putdye@ + pi - n.o = £(9,.0 + §az(ln 19))0.@ + Ag@) + Fi, (3.4.15)

and

1 N
Pl + pu' O, + putdyeti + pi - n, 0 = e(0,. 0 + 5az(ln 19])0.1 + Agit) + Fh, (3.4.16)

here
Fl(y7 Z) = Fl(\lj”(% Z))v F2(y7 z) = F>(¥"(y, Z))7

where F; and F; are defined in (3.3.9) and (3.3.11), respectively. Note that we use the same convention

as before for a vector u, and u/ denotes the components of u in the local basis (9,1,9,2,9.) just defined

in this section, whereas u; denotes its components in the standard basis of R3. The vectorial equation of

(3.4.15) and (3.4.16) have to be understood component by component in the standard basis of R3.
Similar to (3.3.5), one can define

iy, 2) = x (@ x n +T(B7)), (3.4.17)
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where A is extended into the interior domain by A(y, z) = A(y). Thus, (1.7) implies that
ii(y,0) = 0. (3.4.18)
Due to (3.4.15) and (3.4.16), 7 solves the equations
Pile + P Dy i) + puatdye i) + pi - nd.ij
= (0.0 + 50-(nlgd:) + x(Fy x n) + XTU(BE;) + Fy + xFy,
with
Py = ([)ﬂlayl + i, + i - n@z)x- (@ x n+ II(Bi))
— e (0uex+20.x0- + 50-(ngl) - 0oy ) - (@ x n + TI(Bi)),
Fy = (pilo 11+ pic0,e11) - (Ba) + 6 x (pa'0,n + pitd,en)
+ (50, + 02 + i - n0.)B - @) + A x
+ eTI(BA; ).

Note that in the derivation of the source terms above, in particular, F,, which contains all the commu-
tators coming from the fact that n and II are not constant, we have used the fact that in the coordinate
system just defined, n and II do not depend on the normal variable. Since Aj involves only the tangen-
tial derivatives, and the derivatives of x are compactly supported away from the boundary, the following
estimates hold for m > 6,

IX(Fy % 1)[|21.0 < C2P(Q(1)), (3.4.19)
[Pl < Cs(llpullip,w JlulFz. e +52\|u||%s,m) < Cg{P(Q) + P(Alm)}, (3.4.20)

IFelBr < Cof s + Tl [Pl e + Dol + 2 loe + [Fln0) }
< Cu{ PQ®) + P(Aim) + 2| V2ullds }, (3.4.21)
and (3.4.5) implies that
INI(BES) B < Cof e[ Vdivalne + [V l30 . }
< G PQU) + P(hun(®) + C1+ PQ] - |89l ). (3.4.22)
Consequently, it follows from (3.4.19)-(3.4.22) that for m > 6
1P 1w < Co{ PQUD) + P(Arn(t) + 201+ PQU - 188l + 2 IV2ul ), (3423)
where F' = y(F} x n) + xII(BEy) + Fy, + xFj.

In order to eliminate the term 3. (In|g|)d.7, one can define

1

fi= —7 = . (3.4.24)
|g|
Note that
[7ll3.0e < Cal|llagoe, and [[7]l3.00 < Csl7]l31., (3.4.25)

and 7 solves the equations
Pt + put O, + pud,2n + pii - nd,i) — €01
1/~ 1 o~ I\
= (F +e0:27 -+ 5e0:(Inlgl)dzy -7 — p(a- Vv)n) =: S. (3.4.26)
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Tt is difficult to obtain the explicit solution formula for (3.4.26) directly, so one rewrites it as
pt,y,0) [ﬁt +a' (t,v, O)aylﬁ +a? (t,y, O)Gyzﬁ + 20;(1 - n)(t,y,0)0.7| —€0.:0

=8+ [p(t,y,0) = plt,y, )]0 + Y [(p)(t,y,0) — (5T)(t, y, 2)]0ye7)

i=1,2
- ﬁ(t? Y, Z)[(’l] : n)(t’ Y, Z) - Zaz(a . n)(t7 Y, O)]azﬁ
—[p(t,y,z) — p(t,y,0)] - 20,(G - n)(t,y,0)0,7 =: G for z >0, (3.4.27)

with the boundary condition 7(¢,y,0) = 0. By Lemma 7.2 in Appendix, one has that

t
il < Iollrr e + / 15~ o [ Gl
0
t
+ / (U 17 ) (4 10ty V) 2y [l e

S ol +C [ 1Glhs~dr +0 [ 0+ P + 1290l )l ~dr. (3429)
It remains to estimate the right hand side of (3.4.28). First, by (3.4.23), one has that
813 < Co{ CHIPQ®) + P(Aum(8)] +2[1 + P(Q()] - [ Apl3s
+ 1+ PArm ()] - 71200 + 5€2||V2u||3_[4}, for m > 6. (3.4.29)

Next, by the Taylor formula and the fact that 77 is compactly supported in z, one can obtain that

122, y,0) = 5t y, 2)iel31. < Cllll3oe + ClZ(E v, 0) = At y, 2)] [T - N7l 7
1At y,0) = Aty 2)] - Ziell
< Ol + Cl2plLe - 1Tell L + ClIVAlL - l(2) 27|70 - (3.4.30)
By (2.5), one has the following inequality, for |a] > 0
le(z)2%ll7 < C(IV () 22Dz, + l9(2) 2%l a2, ) lo(2) 27 12,
<Clznl%e, - (3.4.31)

Therefore, substituting (3.4.31) with |a| = 2 into (3.4.30) shows that

13t ,0) — p(t, v, Nl < Call + PQE] - (3 + 12272 )
< O+ PQW)] - (111~ + P(Ar(t)), for m > 5. (3.4.32)

Similarly, one has that for m > 5

I(put)(t,y, 0) = (") (¢, y, )0y ll3n.00 + I1(P87)(E,,0) = (pE*) (v, 2))0y217 31,
< Caft+ P - (7150, + P(A1m (1)), (3.4.33)

[A(t, y, 2) = p(t,y,0)] - 20 (@ - n)(t,y,0)D-7||51.
< CIVp B [Vl o () o3 < C{P@Q) + P(Aim(1))}. (3.4.34)
and

1A(t,y. 2)[(@- n)(ty, 2) = 20:(a - n)(t,y, 0)]0:7] .
< CllplFp . - ll(@-n)(t,y, 2) — 20:(@ - n)(t,y,0)]0:77 3

< Cillple e (Wl 173010 + 121 1)t 2) = 2025 m) (1, 0)] - a3
LG )y, 2) = 20. (0 ) (1,9, 0) 2027113~ )
< Cullolg o (V01 Nl + IV 0l31 | Zl o + 11020 ) 3 0% (2) 202701 )

< Ca[l+ P(Q(1) + 1|0:2(a - n)||F] - (Hﬁl\%m + P(Alm(t))). (3.4.35)



34

To complete the proof, one needs to dealt with the term ||0,,(@-n)||2 on the right hand side of (3.4.35).
Since that n is independent of z and 9, = 0,, it follows from (3.3.1) that

0:2(t-n) = 0, (0pt - n) = d.divu — 0, (1101 u)1 — 0, (110, 2u)s. (3.4.36)
Then, this, together with (3.4.36) and (3.4.4), shows that
1022 (@ - n)l[ Lo < [[0:divul| e + (|82 (D1 u) [ oo + (|02 (TTDy2u)2|| L= < C3P(Q(F))- (3.4.37)
Substituting (3.4.37) into (3.4.35) yields that

||ﬁ(t7 Y, Z)[(ﬂ : n)(t7 Y, Z) - Zaz(ﬂ’ : n)(t7 Y, 0)]azﬁ||§-tl°°
< Calt + PQW) - (Il + P(Aim (1)), for m =5, (3.4.38)

Combining (3.4.29), (3.4.32)-(3.4.34) with (3.4.38) leads to that for m > 6,
1613 < Cu{ PQU) + P(Arn(®) + 201+ PQU - [0l + V2l ). (3.439)

Then, substituting (3.4.39) into (3.4.28) gives that for m > 6,
t
I S Wil + it [+ (i) + PIQUar
0

+ C’4t52/0 ([1 + P(QM)] - |Apl2s + ||v2u||;4)d7. (3.4.40)

Then, (3.4.10) follows from (3.4.40), (3.4.25), (3.4.14), (3.4.13) and (3.4.11). This completes the proof of
Lemma 3.14. O

3.5 Uniform Estimate for Ap

In order to complete the a priori estimates, we still need to estimate Ap. Due to (3.4.8), it suffices to
estimate Alnp. Applying div to (3.1.6) yields that

—2eAdivu + Ap = —div(pw), with @ =u; + (u- V)u.

Substituting (3.1.36) into the above equations leads to that

3
2eA(Inp)t +2eu- VAlnp+ Ap = —2eAu - Vinp — 4e Z Oru - VO In p — div(pd). (3.5.1)
k=1

Lemma 3.15 For m > 6, it holds that

t
sup. (1897 e+ <l () e) + [ 10 e

0<r<t

< COpia PINGL(0) + 1L+ PQ(1))] /O PNiu(r))dr}, m > 6. (3.5.2)

Proof. Applying Z*(|a| < 2) to (3.5.1) gives that

3
26Z°A(Inp) + Z“Ap = —2eZ%(Au-Vinp) —4e Z Z%(0ku - VO In p) — Z%div(pu)
k=1
72626‘( Z ui~6yiAlnp+u~No82Alnp). (3.5.3)

i=1,2
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Multiplying (3.5.3) by Z2A1In p, one can obtain that

t
el Z“Alnp|? +/ /Z“Ap - Z“Aln pdrdr < ]| Z*Aln pol|2.
0
t 3 t
—25/ /ZO‘(AuVIHp)ZQAIdede—452/ /Za(aku-vak In p) Z*Aln pdxdr

—25/ /Za Zuz O0yiAlnp+u-N - 8A1np)ZaAlnpdxdT

i=1,2
— / /Zo‘div(pu)Zo‘Aln pdxdr. (3.5.4)
0
Note that
Ap =~ypAlnp+~4Vp-Vinp. (3.5.5)
This implies that
t
/ /Z“Ap~ZO‘Alnpda:dT
0
. t t
> Jpleo) [ 127 AlmplPdr — ClL+ PQ)) [ P(An)+ A plsdr (3.5.6)
0 0

The terms on the right hand side (3.5.4) can be estimated separately. First, it follows from (1.1),, (3.2.51)
and (1.7) that for m > 5,

2 ! 2 ¢
. /O ||Au||H2dT§C[1+Q(t)]/O P(A (7))dr. (3.5.7)

Thanks to (2.4), (3.5.7) and Cauchy inequality, one has that
t t t
—25/ /Za(AuVlnp)Zo‘AlnpdxdT < 6/ ||ZO‘Alnp||2dT—|—C’5€2/ |Z2%(AuV In p)||*dr
0 0 0
¢ ¢ t
ga/ ||ZaAlan2dT—|—0562||Au||%oo/ ||V1np||3_[2d7+C552P(Q(t))/ | Aul3,.dr
0 0 0

ga/ ||Z°“A1np|\2dr+C(;[1+P(Q(t))]/ P(A,)dr, (3.5.8)
0 0

where one has used the following estimate,
e Aulie < E2VdivulTe + VDT + llpuellie + llow - Vullf
< Cl1+ P(QM))];
here (3.4.4) has been used. It follows from (2.5) and the Cauchy inequality that for m > 5,

—4523:/t/2a(8ku-V8k In p) ZAln pdxdr
t 3 t

< 5/ HZ“Alnp||2dT+C(;62Z/ | Z%(8pu - VO In p) |2

<(5/ |Z*Aln p||?dr + Cse?[1 + P(Q / P(An (1)) + || Aln p||3,2d7
+ 02 [ |20Vl [P(0) + AT pi7dr

<6/ |Z*Aln p||*dr + Cse*[1 + P(Q / P(A,) + [|Alnp|)3,2dr

+a2/ ||V2u||3{3dr+0552/ IVl - [ A pll* + P(A))dr. (3.5.9)
0 0
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Note that
div(pr) = pdivu; + p(u - V)divu + Vp - uy + V(pu)' - Vu

-N
= pdivuy + Vp - us + V(pu)' - Vu + Z pu;0yidivu + pz(iz)zsdin
i=1,2

This, together with (2.4) and the hardy inequality (3.2.24), implies that
t t
/ |div(p) ||32dT < Crpall + P(Q(t))]/ P(A,)dr for m >4, (3.5.10)
0 0

which yields immediately that
t

—/ /Zadiv(pa)ZaAln pdxdr
0

< 5/0t [Z*Alnp|*dr + C5[1 + P(Q)] /Ot P(Ap,(t))dr. (3.5.11)

Finally, by integrating by parts, one has that for m > 5

. t
_25/ Za< Z U; - 8y1:A1np+ u-N - 8ZAIHP>ZQA1npdxdT < 52‘/ Hv2u”i[3d7—
0 i=1,2 ’

t t
+5/ ||ZO‘Alnp||2d7'+C§Cg[1+P(Q(t))]/ 2| Alnp|2e + P(An)dr.
0 0

(3.5.12)

Substituting (3.5.6), (3.5.8), (3.5.9), (3.5.11), (3.5.12) into (3.5.4) and choosing ¢ suitably small, one
obtains that

t t
A p(t)le + [ AInpledr < CollAn i +C [ [VPulBudr
0 0

t
Ol +P(Q(t))]/0 (1A ple + 1Al + P(A))dr. (3.5.13)

On the other hand, it is easy to get that
t
|81 p(0) B < A (O + [ 100 Inp(r) s
0

t
< [|AInp(0)3,: +/ |Alnp(7)|3,2dT. (3.5.14)
0

Combining (3.5.13), (3.5.14) with (3.3.35), one obtains that

t
sup. (A1 p(r) By + el Alnp(r)Ee) + [ 1A p(r) Bndr
0<7r<t 0

t
< COpa{ll + P(Q(t))]/o (1+ <Al + Aol + P(A))dr

+ C(| A pollZs + €l Aln pol|22 + Am(O))}, m > 6. (3.5.15)

Therefore, (3.5.2) follows from (3.4.8),(3.3.35) and (3.5.15), which completes the proof of Lemma 3.15.

3.6 Proof of Theorem 3.1

Noting the definition of N, (¢) in (3.4), and using (3.4.6), (3.4.10), (3.3.35) and (3.5.2), one has, for
m > 6, that

Q) 5 sup {IVu() [~ + P(Arn(r) + P12 3 }

0<r<t

< o { PWin(0)) + PN (1)) - /O P(Niu(r))dr . (3.6.1)
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In order to close the a priori estimate, one still needs to get the uniform estimates for ||V 'ul|. Due
to (3.6.1), (3.3.35) and Lemma 3.8, it holds, for m > 6, that

IV a2 S Consa { @)l + In(®) -1 + 1divoy = ue) 2|
S Congo{ PR () + [0(8) s + PQ(1) }
S Conia{ PWin (0) + P81 (0) + [9(0) s + PWin(8)) | PNGu ()i}
S Cosa{ PAA(0) + PNL(0) [ PNin(r))ar . (36.2)
0

Then, one obtains from (3.3.35) and (3.5.2), (3.6.1) and (3.6.2) that
t m=2 .t t
N (t) +a/ Vu(r)||3m-rdr + € Z/ |\v26fu(7)||$n,17kd7+g2/ V20 Lu(7) | 2dr
0 o /0 0

+ [ Ivor Il + 18p(r) [Beds
0
S Cm+2{P(Nm(0)) + P(Nm(t))/o P(./\/m(T))dT}. (3.6.3)

Therefore, (3.3) is proved. Furthermore, (1.1) implies that
t t
I, 0)| exp(~ [ [diva(r)ll=dr) < plat) < [pler,0)|exp | div(r)|z~dr)
0 0
which proves (3.1). Thus we complete the proof of Theorem 3.1.

4 Proof of Theorem 1.1: Uniform Regularity

Proof of Theorem 1.1: In this section, we shall indicate how to combine our a priori estimates to
obtain the uniform existence result. Fix m > 6, we consider initial data (p§,u§) € Xy's such that

m—2
Im(0) = S {II(UE,pS)II%m Vg [5ma + D 10FVD3 71— + 1RG5
€

k=0
+ | Vug 3.0 +el| VO pglI> + 5|Apg||§[2} < Cy, (4.1)
and )
0< = < pf < Co, (4.2)
Co

For such initial data, since we are not aware of a local existence result for (1.1) and (1.6)(or (1.7)), we shall
prove this by using the energy estimates obtained in previous sections and a classical iteration scheme.
Noting (p§, u) € Xy, we can find a sequence of smooth approximate initial data (pg’é, ug’é) € XNGap(0
being a regularization parameter), which have enough space regularity so that the time derivatives at
the initial time can be defined by Navier-Stokes equations and the boundary compatibility conditions are
satisfied. We construct approximate solutions, inductively, as follows

(1) Define u® = uf°, and

(2) Assume that u*~! has been defined for k > 1. Let (p*,u*) be the unique solution to the following
linearized initial boundary value problem:

pF +div(pFuF=1) =0 in (0,T) x 9,

pPuf + pkuk=1. Vuk + Vp* = eAuF + eVdivuF in (0,T) x Q,
£,0 &,0 . €,

(0*,uF) =0 = (p5°,up®), with 52¢ < pg® < 3G,

with boundary conditions (1.6) or (1.7).
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Since p* and u* are decoupled, the existence of global unique smooth solution (p*,u*) of (4.3) with
0 < p* < 0o can be obtained by using classical methods, for example, the same argument of Lemma 3 in
Cho, Choe and Kim [4] and the standard elliptic regularity results as in Agmon-Douglis-Nirenberg [1].
An alternative method is to use a similar arguments (modified slightly) in [9](or [29]) to get the existence
of smooth solutions to (4.3).

Applying the a priori estimates given in Theorem 3.1 and by an induction argument, we obtain a
uniform time 77 > 0 and constant C3(independent of € and §), such that it holds for (p*,u*), k > 1 that

t t
Nm(pk,uk)(t)Jr/ Vo~ 1p*|I” + ||Apk||%¢2dT+5/ IVuF|Fgm dr
0 0
m—2 t . t ~ _
te Z/ \|v2aguk\|3n,j,ldf+52/ V20 u|2dr < Gy, Vit € [0, T3, (4.4)
= Jo 0

and 1
— < pF(x,t) <20y, Vte[0,T], (4.5)
2CYy
where T} and Cs3 depend only on Cjy and Z,,(0). Based on the above uniform estimates for (p*,u"), by
the same arguments as section 3 in [4], there exists a uniform time T5(< T3)(independent of € and d)
such that (p*,u*) converges to a limit (p?,us?) as k — +oo in the following strong sense:
(p*,ub) = (p°°,u=%) in L=(0,Ty; L?), and Vu* — Vus? in L2(0, Ty, L?).
It is easy to check (p=%, u?) is a weak solution to the problem (1.1), (1.6) with initial data (5, us?).
Then, by virtue of the lower semi-continuity of norms, we deduce from the uniform bounds (4.4) and
(4.5) that (p=°,u°) satisfies the following regularity estimates

t t
Now (™0, u=0) (1) +/ IV a7~ 1p™°|* + IIApg"slliszJrf/ VU3 dr
0 0

m—2 t t
e Z/O V2000 |3n,j,1d7+g2/0 V20 usd|2dr < G, Vi € [0, T, (4.6)
7=0
and )
—— < p¥O(x,t) < 2Cy, Ve 0,Ty], (4.7)
5C,

Based on the uniform estimates (4.6) and (4.7) for (p=°,u®?), we pass the limit § — 0 to get a strong
solution (p°,u) of (1.1), (1.6) with initial data (p§, uf) satisfying (4.1) by using a strong compactness ar-
guments. It follows from (4.6) that (p=?, u?) is bounded uniformly in L>°([0, T5]; H), while V (p®?, us?)
is bounded uniformly in L ([0, To]; H7Z~1), and 9;(p>%, u®%) is bounded uniformly in L ([0, To]; H~1).
Then, one can obtain by the strong compactness argument(see [22]) that (pe"s,uf"s) is compact in
C([O,TQ];HZ)L_l). In particular, there exists a sequence d, — 0+ and (p°,u®) € C([O,Tg};Hﬁ‘l) such
that

(p=0m, u) — (p°,uf) in C([0,Ta); H™™1) as 6, — 0+,
or equivalently

(p=0m ufom) — (p°,uf) in C([0,To); H™Y) as d, — 0 +. (4.8)

Moreover, applying the lower semi-continuity of norms to the bounds (4.6) and (4.7), one obtains the
bounds of (1.19) and (1.20) for (p°,u®). It follows from (1.19), (1.20), (4.8) and the anisotropic Sobolev
inequality (2.5) that

sup |[[(p>0" = p%, u" — uf)||7
t€[0,T]

< C sup (”v(pe,én _ pe7ue,6n _ us)l
t€[0,T)

wy, - ([ (070 = pf s — UE)HH@,) — 0. (4.9)

Then, it is easy to check that (p®,u®) is a weak solution of the Navier-Stokes system. The uniqueness of
the solution (p®,u®) is easy since we work on functions with Lipschitz regularity. Therefore, the whole
family (p=?, us?) converges to (p°,u). Taking Ty = T» and C; = Cs, one completes the proof of Theorem
1.1. O



39

5 Proof of Theorem 1.6: Flat Boundary Case

Due to Theorem 1.1, there exists a time Th > 0 and C; > 0 independent of ¢ € (0,1], such that there
exists a unique solution (p°, u®) of (1.1), (1.14), (1.21) which is defined on [0, Tp] and satisfies the uniform
estimates (1.19) and (1.20). Therefore, it suffices to prove (1.25).

In the case of flat boundary, it follows from the boundary conditions (1.21) that

u3 =0, wi=0, wsg=0, on I (5.1)
Lemma 5.1 Let (5.1) holds, then the vectors (u® - V)w® and (w® - V)u® are normal to I'.

Proof. It is easy to check that Osuj = w5 +01u5 = 0 and Jsu5 = wi + O2us = 0. Then direct calculations
yield that (u® - V)w® and (w® - V)u® are normal to I'. Thus, the proof of this lemma is completed. [

The following formula plays a important role in the proof of uniform bounds for ||u®||ze (0,7, a2)-

Lemma 5.2 Let (p°,u®) be smooth solution of (1.1) and (1.21), then it holds that

pn x (VxV xw®) =—nx (v/:s x (pAu® + (p + )\)de'ws)> , onT. (5.2)
Proof. Applying Vx to (1.1), gives that
powi + pfuf - Vw® — pfw® - Vuf + pidivetew® = —pueV x V x w® — Vp© x (uf +u® - Vu©). (5.3)
Since w® x n = 0 on the boundary, so
wixn=0, onT. (5.4)
It follows from Lemma 5.1 that
nXx (v -Vw®)=nx ((w*-V)u') =0, onT. (5.5)
Combining (1.21) and (5.3)-(5.5) gives that
pen X (Vx V xw®) = —n x (Vp° x (uj +u° - Vu)), onT. (5.6)

It follows from (1.1), that

(> =1 € . €Y __ VpE £, € £, € . 1>
Vp® x (uf +u® - Vu) = —— x (p°ug + p*u® - Vu)
_ Vps / £ £ 15 . g\ __ Vpg £ . €
= X (=p'(p°)Vp® + peAu® + (u+ NeVdivu®) = ¢ p= X (AU + (p+ A)Vdivu©). (5.7)
Then, substituting (5.7) into (5.6) yields (5.2). Therefore, the proof of this lemma is completed. O
Lemma 5.3 It holds that
t
IV @l +2 [ 1A 3adr
0
t t
<CH |Ju§||%s + C(s/ | V2us ||2dT + (552/ | V3us||2dr, (5.8)
0 0

where C' = P(C}) > 0.
Proof. Applying Vx to (5.3) shows that

p(V x W) 4 p*(u” - V)(V x W)
= —pueV x VxV xw —Vp® xw; —[Vx,p°u® - V|w®

-V x (Vps X (uf +u° - Vu®) — p°w® - Vu' + psdivusws). (5.9)
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Multiplying (5.9) by V x w®, one obtains that

1 t
5/ £V x w€|2dar+,ue/ IV x ¥ x wF||2dr
0
¢
= —,us/ /(n X (V x V xw)) - (V xw)dydr
oJr
t
—/ / (Vps X wy + [Vx, pfu® - V]ws) -V X wedxdr
0
¢
- / /{V X (Vps X (uf +uf - Vu©) — pfw® - Vu® + psdivuscf)} -V X wedzdr. (5.10)
0
First, it follows from uniform estimates of (1.19), (1.20) and Cauchy inequality that
¢
‘ / /{V X (VpE x (uf + u® - Vu®) — p*w® - Vu' + padivuewe)} -V x wdxdr
0
¢
+ ‘/ / (Vps x wy + [Vx, pfu® - V]Lf) -V x wgdxdT‘
0
t
<CP(1+ \l(ﬂ87u87p§,U§)|\3v1~oo)/0 [l + 1AD° 12 + VP27, + %1772 dr
t
<c+ c/ |2y dr- (5.11)
0

For the boundary term, it follows from Lemma 5.2 that

‘us/ot/r(n x (Vx V xw)) (Vx ws)dydr‘

- \e/ot/r {nx (Vp’f x (uAuEJr(qu)\)Vdiqu)) b (7 x wf)dydr

t t
< C’s/ / |V2us |2 dydr < C’s/ V3 ||| V20l + || V2us||2dr
0 Jr 0

t ¢
< 552/ HV3uE||2dT—|—C(;C’/ V20| 2dr. (5.12)

0 0
Substituting (5.12) and (5.11) into (5.10) and noting that Aw® = —V X V X w®, one proves (5.8).
Therefore, the proof of this lemma is completed. O

Lemma 5.4 It holds that

|V divus||> < C < +o0, (5.13)
and
V2 divus ||> < C(1 + ||uf|%2). (5.14)
where C' = P(C}) > 0.
Proof. Since . R
dives = - 2L~ X ype, (5.15)
e Pt

then, it follows from the uniform estimates (1.19) and (1.20) that

Vdive®||* < CP(||(p%, u*, pf, Vs, Vp©) [T + | VD® I3 + [u502p°|I72)
| ¢ L HL, 39:P L
< P(|(p%, u®, pf, V&, VP ) 1w + VU512 VD N7 ) < P(Ch), (5.16)
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and

IV2dive|* < P(1+ [[(p%, u, pf, Vs, Vpo)ll7) - (1AP° I3 + 1p° I3 + [l 32 + [u502p7)1*)
< PCOA+ [luf [ + Vsl T 1A9°[13,) < PCL)(1+ [[uf]lF2) (5.17)

where one has used uz|r = 0 in (5.16) and (5.17). Thus, (5.13) and (5.14) are proved. Therefore, the
proof of this lemma is completed. O

Proof of (1.25): Tt follows from (1.19) that ||Vu®|/z: and [[u®||g2 are bounded uniformly. Note
that Au® = —V x w® + Vdivu®, one obtains that

[ul[7r2 < CUIV x W + [ Vdive®||* + [|u|[F, + VU@l
<O+ ||V x wf|?), (5.18)

where one has used (5.13) and the uniform estimate (1.19) in the last inequality. On the other hand, it
follows from (2.1) that

e < € (ol + ldive|e + 3 + us - n )
< C (110213 + N02divus 3z + V20 Iy, + 90 s, + g, )
< O (183 + 02divutllFe + V20 [y, + V07 s, + s, )
< C (1+ 18w 32 + 1IV2u Iy, ) (5.19)

where (5.14) and the uniform estimate (1.19) have been used in the last inequality.
Therefore, combining (5.8), (5.18) and (5.19), one obtains that

t
ol + = [ I ldr
0
t t t
< C + [ |2e +5g/ ||ueui,3d7+g/ V2|, d7+05/ 1V2uF | 2dr.
0 0 e 0
Taking ¢ suitably small and using the uniform estimate (1.19), one has that
t t
s+ = [ I ldr < €+ uglle +C [ 9% Par,
0 0
Then, it follows from Gronwall inequality that
t ~
[[uf 32 +€/ [uf||Fsdr < exp(Cr) (1 + ||ug|F2), (5.20)
0

which proves (1.25). Therefore, the proof of Theorem 1.6 is completed. O

6 Proof of Theorem 1.8: Inviscid Limit

In this section, we study the vanishing viscosity limit of viscous solutions to the inviscid one with a rate
of convergence. It is well known that the solution (p,u)(t) € H? of Euler system (1.3), (1.4) with initial
data (po,ug) satisfies

3

~ 1
> ey wlleno.1y:m3-+) < Ca, 3Cq < p° <2, (6.1)
k=0

where C; depends only on ||(po, uo)|| 3. On the other hand, it follows from Theorem 1.1 that the solution
(p°,u®)(t) of Navier-Stokes system (1.1),(1.6) with initial data (pg, ug) satisfies

~ 1
1(p(p%), u?)(B)llxs, < C1, 20, = po(t) < 2Co, Vit el0,To], (6.2)
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where Ty, Cp, and C; are defined in Theorem 1.1. In particular, this uniform regularity implies the
following bound R
16, )l + [94(6°, ) e < G, (6.3)

which plays an important role in the proof of Theorem 1.8. Based on these uniform estimates, using the
strong compactness argument as [16], one can prove that

(p%,u°) — (p,u), ase — 0, in L*™°. (6.4)
For the flat case, Theorem 1.6 and lower semi-continuity of norm imply that
lullFz < exp(Cr) (L + [luollFe), (6.5)

which yields immediately that, for the flat case, the solution (p, u) of Euler system satisfies an additional
boundary condition, i.e.

nxw=0, onT. (6.6)

In general, it is impossible for the solution of the Euler system to satisfy (6.6). The observation of (6.6)
will enable us to obtain better convergence rate for the flat case than the general case. For later use, we
extend smoothly the normal n to . In particular, for the flat case, we extend the normal n such that it
is constant vector in the vicinity of T'.

Define
¢° =p°—p, Y =u°—u. (6.7)
It then follows from (1.1) and (1.3) that

6; + pdivy® + u- Vé* = R,

pUE + pu - Ve + V(p° —p) + @ = —peV x (V X 9¥°) + (2u + N)eVdivy© + RS, (8)
where
{Ri = —¢%dive® — V6 — ¢"divu — Vpu*, ©9)
R = —¢%; — ¢°uy + pelAu + (p + A)eVdivu,
and
O° = (p°u — pu) - Vu® = (p°u° — pu) - VY© + (p°u® — pu) - Vu. (6.10)
The boundary conditions to (6.8) are
Y -n=0, nx(Vxy)=[ByY]; +[Bul —n xw, on . (6.11)
In particular, in the flat case, it follows from (1.21) and (6.6) that
v n=0, nx(Vx¢?)=0, onT. (6.12)

Lemma 6.1 It holds that
CE%, general case,

t
€ F 2 1%, d 0,Ts], 6.13
(¢, %) (®)] +s/0 1< 1% T<{C€27 fat ease. t[0,1)] (6.13)

where Ty = min{Ty, T1}, C > 0 depend only on Cy, Cy and Cy.
Proof: Multiplying (6.8), by 1, one obtains that

d 1
— *p\¢€l2dm+/ q>€.¢€dx_|_/ V(p® —p) - pdx
dt Jg 2 Q Q

= —ue/ V x (V x¢%) -%dx + (2u + /\)5/ Vdivy®© - ¢dx —|—/ RS - ¢du. (6.14)
o Q Q



It is easy to check that

DF - pdx
Q

=| [ = g 0 v

and
/ V0 - p)-vFde = — / (5" — p)divyeda
Q Q
/ % (V6165 +u- Vo — Rilde — C(1+ [ Vo] ) 672
d
>4 / V162 Pz — C(1+ [[(py s 0%, 0 o)1 6%
d 52 £112
> & | T o pas - i

Next, (6.11) implies that

e [ Vo (Vi) vda = —pe [V xuPde—pe [ nx (V00

IN

e[V x | + Ce

/ [BY® + Bu —n x w| - ¢°dx
N

IN

|V x 2|2+ Ce (1¢% 3 om) + [V |12(00) ) -

For the flat case, it follows from (6.12) that

—,ue/QV x (V x ¢%) - ¢°dx

= —ue/ |V x ¢f|%dx — ua/ n x (V x %) -¢sde = —pe||V x ¢°||2.
Q r

It is easy to obtain that

5/ Vdivy® - ¢dx = —5HdiV"/}E”2’
Q

‘/ RS -¢fdx
Q

Collecting all the above estimates, one gets that

and

< Cll(¢7,9°) 122 + Ce™.

d
dt

Cll(¢%,v°)||22 + Ce® + Ce (|v°|32 + [¢°|12) , general case,
<
C||(¢%,¢°)||3. + Ce?, flat case.

It follows from (2.1) that
1% 1% < Cr (IIV x %1 + [1divyp®]|* + [[4°]) -

The trace theorem yields that
¥ [72 < 8lIVe©)? + Csllve|?,

and

elyf| e < del| V|2 + Coellw®||5 < 8el|Vape||? + [[9° |2 + Cse.

< O+ I(p%, u, Vu©) =) [[ (6%, ¢

( [ olurtz+ '2”)|¢5|2dw)+usvxwf||2+<2u+A>s||divwf||2
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(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)
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Substituting (6.22)-(6.24) into (6.21) and taking J suitably small, one gets that

d e p c . Cll(o%, ¢)7- + Ces, general case.
. P Cl(¢%,v°)||2. + Ce?, flat case.

Then, (6.13) follows from the Gronwall inequality. Therefore, the proof of Lemma 6.1 is completed. O

Lemma 6.2 It holds that

I(divg®, V (0" = p))(B)I|72 + (20 + A)E/O IV divp* (7)|[72dr

5ft |[v5 ||2dT + Cs ft (6%, 4%)||%, . dT + Csez, general case,
<{ ° i ] t e [0,Ts], (6.26)
6 [y IV lIPdr 4+ Cs [y 11(¢°,¢°)|3.d7 + Cse2, flat case,
where § > 0 will be chosen later.
Proof: Multiplying (6.8), by Vdivy®, one obtains that
/ (pt§ + pu - Vy©) - Vdivep®da + / V(p® —p) - Vdivy©dx (6.27)

- —Ma/v x (V x ¢°) - Vdivede + (2u + N)e|| Vdivy®||? + /R; - Vdivy©dz — /<I>8 - Vdivy*©dz.
First, it follows from (3.4.4) and (1.19) that

[|[Vdivus || L= + ||[Vdive® |z < C < oo, (6.28)

where C' > 0 depends only on Cy. Integrating by parts and using Holder inequality, one has that
/(m/}t8 + pu - V) - Vdivyp®de < — / (pdive); + pu - Vdivy®) divep©de

+ | / (Vo + V(pu)' Vi) divepda| + | / p(u - V)YF - ndive®do]|
o0
d
<-= §|div1/}€\2d:v + §||vE]1? + Cs|| VY| * + ’/ p(u - V)nyedivy©dr
o0

< *% §|diV¢€|2d$+5H7f’fH2+Ca||V1/J€H2+C|w5\Lz(3Q), general case,
B _% 21divep®|?da + 8][4 ||? + Cs|| Vo= ||?, flat case,

(6.29)

and

‘/(I)E - Vdivy©dx

= ‘/[(Peus — pu) - VY© + (p°u® — pu) - Vu]Vdivy©de

< CAI(o%, u)llwroe) (67, ) 10 + ’/BQ((PEUE — pu) - Vu) - ndivydo

< O+ 11(p°, w) lhwroe ) 1(6°, %) 17 + ‘/m((/fus — pu) - Vn) - udivydo

<) CA+ 1007 u)llwre) (110675, 9713 + (67, 9°)[L2(00)) - general case,
— L CA (%, uf)llwr=)1(6°, ¥°) 13, flat case,

(6.30)

where one has used that Vn is a zero matrix in the vicinity of I" for the flat case.
Rewrite (6.8), as

(0" —p)e +u-V(p° —p) +p(p°)divy)® = =) - Vp — v(p° — p)divu, (6.31)
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which implies immediately

. e 1 & 5 5 £ 1: €
Vdivy) = [V(p —p) + (U - V)V(p® —p) +vVpdivy

+ VutV(p® — p) + V(@ - Vp) + vV ((p® — p)divu)|. (6.32)

Using (6.32), one obtains that

/V(p5 —p) - Vdivyp®dx

< —/ wljgv(pE —p) [V(p5 )+ (- V)V —p)}dx
+ O+ 1, )l ) 16 — 9 0B

d
IV(p* = p)[de + O+ |[(u, p°) wree) | (" =, 0% |- (6.33)

= dt) 2yp°

It follows from the integrating by parts that

S =€

/v x (V x ¢°) - VdivySda

/ n x (V x ¢°) - Vdivip°do
o

=&

/ (BY® 4+ Bu — n x w) - II(Vdivy®)do
19]9)

< Ce (14671, ) divee]
< Celldive® |l ss (1 + 0% [ 11) < S| Vedive|® + Coe(L + 14°]3). (6.34)

For the flat case, it follows from (6.12) that

3 =&

/V x (V x ¢f) - Vdivy)©dz

/ nx (V x 4%) - Vdivwedy‘ 0. (6.35)
r
For the term involving R5. It follows from (6.28) and integrating by parts that

’/RWdivwde < O+ [[Vdive [ zoo) 167105 1 + [1(6°, &) lI7p]

+ ellullgs 9= +

/ (neAu + (p + N)eVdivu) - ndivyp)®do
0

< O[5 1P + Cslli(¢°, ¥°) I3 + %] + Cellull o lldive®| 7 [l dive© | 72

< 5@+ NelVaivg |7 + 8951 + Calll(8°, ) s + <2, (6.36)

It follows from the trace theorem that
(8,09 e S 167003 + (6%, 9915 < 116, 6°) 13 + €. (6.37)
Collecting all the above estimates, we obtain (6.26). Thus, the proof of Lemma 6.2 is completed. O

Lemma 6.3 It holds that
t
IV x 9% + 6/0 1V x %) (1) dr <8IV (6%, 9|72

t t
+ 05/ ||1/1§||2 + E||V21/J8H2d7' + Cs / (%, QZJE)H%U dr + Cg{:‘%, general case, (6.38)
0 0

and
t
IV x 4°? +e/ IV % %) (r) |2 dr
0

t t
gC&/ ||1/Jf||2+5||V2w5||2d7-+05/ 165, 6%) |2 + Cse, flat case, (6.39)
0 0

where § > 0 will be chosen later.
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Proof: Multiplying (6.8), by V x (V x %), one obtains that
/psthV x (V x ¥®)dz + /V(ps —p)-V x(Vx¢)dz
= —pe||V x (V x 9)|? 4+ (2u + /\)s/V x (V x ¥°) - Vdivip*da:
+/&vaxwwn+/%vaxme (6.40)
where one has rewritten (6.8), and

RS = —¢uy 4+ peAu+ (p+ NeVdive and ®° = p°u® - VY© + (p°u — pu) - Vu.

Note that the second term on the right hand side of (6.40) has been estimated in (6.34) and (6.35). It
remains to estimate the other terms of (6.40). First, it follows from integrating by parts that

[0V (9 < v)da
— [ x ) Vo ] (T xw)da ot [ (nx (9 x o
o0

d 1

> §/§p€\(v X ’(/)5)|2d.%‘+/89p5wt5[3w5+3u_n xw]da—6||¢§||2 _Cé||¢6||?{1
d 1. o 1. . E .

Z@ §p|(V><1/;)\ dr + §P¢B¢ + p*Y*(Bu — n X w)do

= OwE11* = Cs (1% 1 + [9°[72 + |97 2)
1 1
> % (/ §p6|V x ¢ |2dx + / ipEwEBz/JE + p°Y*(Bu —n X w)da)

=87 1I* = Cs (19° 117 + [¥°|r2) - (6.41)
For the flat case, it follows from (6.12) that

/ PUEY X (V x 4°)da
- / [0V 090+ Vo x 5] - (V x ) + / 55 - (0 x (¥ % §°))do

oN
d 1
> & ([ 57719 x was) - ol ? - Colwel (6.42)
Integrating along the boundary, one has that

\/wpfp)-w (V x 4°)da

/ V@ —p) - (0 x (V x ))do
o

[ TG =) (B0 + B e < C (167 =0l 10715+ 157 = ple]

< Clp* = pllip + 19717 + 1 = plre] - (6.43)
For the flat case, it follows from (6.12) that

V(p® —p)-nx(V x¢)do
oN

‘/V(pe —p) -V x (V x¥%)dz =0. (6.44)

For the term involving Ri, integrating by parts leads to that

’/R;v X (V x 9°)da:

< Cll(¢*, v + \ [ s nx (v x w))\ T Celfullmal[6 o + Cellull s 7 x 4]

< ClI(¢7, )7 + 0l V(V x ¥7)||* +

s - [BYF + Bu—n x w]\ T Csed + )
o0

< eV (V x 09)I2 + Cs (1067, ) 3 + (6%, )2 + £ ) (6.45)
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For the flat case, it follows from (6.12) that

‘/R;v x (V x ¢f)dx

< Oll(¢%,¥%) I3 + ‘/89 Pug - (nx (V x W))‘ + Cellull s [¢° [l + Cellufl sV x 972

< 6]V x (V% 47) 12+ Cs (11(67,4°) |30 +2#). (6.46)

For the term involving ®¢, we will follow the ideas in [26]. Indeed, it follows from the integrating by
parts that

’/&fv x (V x ¢°)dx

< ‘/V x ®F - (V x 9°)dx| + /89 ¢ (BYF),do| + /89 ®°[(Bu), — n x wldo

= N+ BN + BNL. (6.47)

Noting

8111 . ng — 82(1 . Vbl
= (a-V)(V xb)+ (Va)* - Vb, (6.48)

82a . ng - 83(1 . ng
V x ((aV)b) = (GV)(VXb)—F 0za - Vby — 01a - Vbs

which implies that

V x &% = p7us - V(V x 9°) + (V(p"u?)) " - VY© + (p°u® — pu) - Ve
+(V(p*u® — pu))* - Vu (6.49)

Integrating by parts and using Cauchy inequality, one has that

N < C+ (o7, u) o) (67, ) 1o (6.50)

For the term BN, it holds that

/ ¢ (BY*) do

o0

/ n x ® - [n x (ByYF)|do
o

BN =

/ n x ®° - [n x (BY®),|do
o0

= ‘/v X ®° - [n x (ByY®)|dz — /ciﬁ -V x [n x (By®)]dz| . (6.51)
It follows from the Cauchy inequality, integrating by parts and (6.49) that
‘/v X ®° - [n x (ByF)]dx
‘/ )V x %) - [n x (BYF)]da| + C(L+ (0%, u®) [Frr00 )1 (67, ) |72
< O+ (0%, u) a1 (6, ) 1 s (6.52)
and
‘/‘fe -V x [0 x (BYF)]da| < C(L+[|(0%, u) e 167, 95) 72 (6.53)




Substituting (6.52) and (6.53) into (6.51), one obtains that

BN = C(1+ [[(p%, u) |Gy 1(67, %) I3
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(6.54)

Finally, we estimate the leading order term BNL on the boundary. Since the boundary layer may

appear, in general, the term (Bu), —n X w is not zero.

BNL =

/ ®°[(Bu), — n x wldo
a9

< O+ 1B @ 0N+ | [ pu 90I(B0), = x o]
In order to estimate the last term in (6.55), we note that
u - Vi© = u1010 ) + uz0,29°, x € 0.

It follows from (6.56) and integrating by parts along the boundary that

Therefore, substituting (6.57) into (6.55), one gets that
BNL < C(1+ [[(p%, ) 5.0 ) 167, 90°) | 2.

Substituting (6.50), (6.54), (6.58) into (6.47), one obtains that

‘/&)E -V x (V x yf)dz| < Ofll(¢%, %) 7 + (67, 4°)|12].

For the flat case, it follows from (6.12) that

’/cﬁfv X (V x ¢ da +

:‘/vXéE-(va)daz

/cﬁf-(nxvxw)do
I

< ‘/v X B - (V x v¥)dz| < C||(67,9°) |2,

where the last inequality follows from (6.50).

Combining (6.40)-(6.46), (6.59), (6.60) and (6.34)-(6.35), we obtain that

4
dt
e12 2, €12 e 1E\|12 i
< ColJuf |2 + CoelIV2ue |12 + Cs (11(6°, v°) I3 +<% ) , general case,
and

d 15 £12 1 112
dt(/2p |vwdx>+2ue||w<vw>||

< Coll5 |12 + Co= |20 12 + s (6%, 0I5 + 2% ), flat case,
where we have used

(6%, 0) 22 < N6, 99 3 - (6%, 9911 < BV (6, 4|1 + Cie,
(0%, 99) 32 < I1(6%, ) larr - [1(6%, 9°)I| < 8]V (67, 9°)||2 + Cise2,

/{m pu - VY&[(Bu), —n x wldo| < Oz - |pu((Bu)r —n X w)|gr < Clyf|pz.

1 1 1
</ §p6|v x V¢ dx + / FP U BYT + p°°(Bu —n x w)da) + 5ue||v x (V x 4°)]|?

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)
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which are consequences of the trace theorem and (6.13). It follows from (2.2) that

e (IIV X (Vx| + [[div(V > %) 2 + IV > 97 + [ x (V x 1/)6)@[%)
A
A

Substituting (6.64) into (6.61) yields that

1([[V x (V x 9
1(J[V x (V x ¢

C 12+ |V x ¢]|% + |Bw5|§{% + |(Bu); — n x w|2%), general case
C

C V x 9
C

2+ ||V x ©¢]|?), flat case

1>+ |23 + C), general case,

6.64
12+ [[<]13,.), flat case. (6.64)

~— —  ~— ~—

(
(
1([[V < (
1([[V < (W x e

4
dt
< Colju5 |12 + Coel V20|12 + Cs (11(6°, 953 + 2% ) , general case, (6.65)

1 1
(/ §pE|V x V¢ ?dx + / §p51/)EB¢E + p*¢(Bu — n x w)da) + coe||V x 9% |3

and

d 1 £ £ £
= (/ IV X de> + coe||V x 9% |3

< Coll5 |2 + Coz| 2912 + Cs (11(6%, 013 +2F) , flat case. (6.66)

Integrating (6.65) and (6.66) over [0,¢] and using (6.63), one gets (6.38) and (6.39), respectively. There-
fore, the proof of Lemma 6.3 is completed. d

Proof of Theorem 1.8: It follows from (2.1) that

1l < © (I x 017 + v |2 + 12 + [0 -l )
< O (IV % v + vy + 47]1) (6.67

and
16°13 < € (IV x 913 + live 3 + 16°)3 + [9° -n 3 )
< C(IV x 9%l + Idive® I3 + [9°]3) - (6.68)
While (6.8), implies that
Wi 1122 < C (e, )72 + 2 IV2ee 12 + &%) (6.69)

Then, collecting (6.69), (6.38)-(6.39), (6.67)-(6.68), (6.26), (6.13) and choosing ¢ suitably small, one
obtains that

! Cfot IV (p* — p,v%)||Pdr + 08%, general case,
IV (¥°, p° _p)Hz—f—e/ [|2% (7) ||372dT < . .
0 Cfo V(p® — p,°)||?dT + Cez, flat case,

where one has used [¢°]|3,: < C|lp® —pl|3: < [¢°]13;:- The Gronwall’s inequality yields immediately that

~

Cez, general case,

§ 6.70
Cez ( )

¢
V@57 =PI+ [ 07 () ndr < { :
0 , Hat case.
Then, (6.13) and (6.70) imply (1.27)-(1.28) and (1.30)-(1.31). On the other hand, (1.29) and (1.32) are
immediately consequences of (1.27), (1.30) and (6.1)-(6.3). Thus, the proof of Theorem 1.8 is completed.
]
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7 Appendix
Let S(t,7) be the C° evolution operator generated by the following equation
[Oth + b1(t,y)Oyrh + ba(t,y)0y2h + 2b3(t,y)0:h] — ed(t,y)0:..h =0, 2> 0, t > T, (7.1)

with the boundary condition h(t,y,0) = 0 and with the initial condition h(7,y,z) = ho(y,z). The
coefficients are smooth and satisfies
1

c3 < d(t,y) < .
3

, and |b;] <eq, 1=1,2,3 (7.2)
for some positive constant c¢g > 0 and ¢4 > 0.

Then we have the following estimates which are generalizations of Lemma 15 in [16].

Lemma 7.1 [t holds that, fort > 1> 0

15(t, m)hollzes < l[hollz=, (7.3)
120:5(t, T)hollL < C([[hollz= + [|20zholl <), (7.4)

where C > 0 is a uniform constant independent of the bounds for d(t,y) and b;(t,y), j =1,2,3.

Proof. Set h(t,y,z) = S(t,7)ho. Then h solves the equation (7.1). We first transform the half-plane
problem into a problem in the whole space. Define h as

h(t,y,z) = h(t,y,z), for z >0, h(t,y,z) = —h(t,y,—z), for z < 0. (7.5)
Then h solves
[(‘3th + by (¢, y)(‘)ylil + ba(t, y)ayziz + zbs(t, y)aziz] —ed(t, y)@zziz =0, z € R,

with the initial condition h(7,y,2) = ho(y,z). Similar to [16], we shall obtain the estimate by using
an exact representation of the solution. Indeed, we can change the above equation into the generalized
Fokker-Planck type equation, see [14].
Set R
v(t,y,z) = h(t, (t,7,9), 2), (7.6)

where ® is solution of

0, = ( ni gg), (r,my) = .

Therefore, v solves the equation

Ay + zbs(t,y)00 — ed(t, y)0..v = 0, z € R, (7.7)

where _ -
d(t7 y) = d(t, q)(t7 T, y))’ and b3 (tv y) = b3(t7 (I)(t, T, y))

The equation (7.7) is just the one dimensional generalized Fokker-Planck type equation with y as param-
eter. We use the change of variables

t
=2 7O {= 5/ efzr(s)d(s, y)ds,

where T'(t) = f: bs(s,y)ds. Through this change of variables, the equation (7.7) reduces to the heat
equation

ag’l) = 8552),
U(Ta Y, 2) = hO(ya 2)

Therefore, by using the standard heat kernel and transforming the variables (, Z) into (¢, z), we obtain
the explicit representation

oty 2) = / k(b m, s 2 — ') - Foly, /e T®)d!,
R



o1

with
k(t,7,y,2 —2') = ! exp(— — |2 =21 ) (7.8)
\/47rs [t d(s, y)e2TO-T)ds de [ d(s,y)e2TO-T()ds
Since that the kernel k is non-negative and that fR k(t,7,y,2)dz = 1, thus, it holds that
]l < || /Rk(tmy7z’) -Sgplﬁo(y’ (z = 2")e " )|d || ge. < Ilhollz=, (7.9)
which is the Maximum principle and proves (7.3).
Next, we observe that
20.k(t, Ty, 2 — 2') = (2 — 2)0.k(t, Ty, 2 — 2') — 20 k(t, 1y, 2 — 2'),
with
/R |(z — 2")0.k(t,7,y,2 — 2')|dz’ < 1.
Thus the integrating by parts, gives that
l0.tllie < Clliolle + | / Bt 7,2 — 2) - e PO (0.00) (9, e T OV |
< C(llhollz + [l20:hol ). (7.10)
It follows from (7.5), (7.6) and (7.10) that
120:hll L < Cllz0:h|z < C)l28:0]| L < C(llhollz= + [120:ho] =)
< C(l[hollzee + 1120:ho o< ). (7.11)
Thus the proof of Lemma 7.1 is completed. O

Lemma 7.2 Let h be a smooth solution to
a(t,y)[0ch + bi(t,y)0yrh + ba(t,y)0y2h + 2b3(t,y)0:h] — €0..h = G, z >0, h(t,y,0) =0, (7.12)

for some smooth function d(t,y) = ﬁ and vector fields b = (by,ba,b3)!(t,y) satisfying (7.2). Assume

that h and G are compactly supported in z. Then, it holds that:

t
1
Il S ol + [ 12l Glmdr
t 1 2
[ a1+ bl + 12 o dr. (713)

=0

Proof. This will follow from Lemma 7.1. The estimates of ||h| Lo, ||0¢h|| L~ and ||0yih|[ L = || Zih| L, (i =
1,2) follow easily from the maximum principle. Indeed, by Duhamel formula, one has that

K G(7)
h(t) = S(t,0)ho + /0 S(t:7) oy (7.14)
Consequently, (7.3) yields that
! G(7)
= =150l + [ 15075 lumdr
tG(r ¢ 1
<ol + [ 1S uwdr < ol + [ 161~ 15 1etr. (@19
o a(r) 0 a
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Set Zy = 0;. Then, applying Z;(i = 0,1,2) to (7.12), one has that

a(t,y) [0 Zih 4 b1 (t,y)0yr Zih + ba(t, y)Oy2h + 2b3(t,y)0. Z;h] — €0..Z;h
=7Z;G — Zia(t, y) . [8th + by (t, y)aylh + by (t, y)8y2h + zbs (t, y)@zh}

Consequently, (7.3) yields that

L(7)
a(T)

t t
1
S 1 Zihol| Lo +/ ||5||L°°||ZiG||L°°dT+/ (L4 [[Zibll o) | Zh]| Lo dr
0 0

t
| Zih(t)||L = [|S(t,0) Ziho| Lo +/ I1S(t, ) | Loodr
0
tq
+/O 1= llzee (L + [[Bll o< ) [ 2 Rl| o< [| Zial| L d
¢
S 1 Ziholl e +/O II;IILwllZiGIILoodT

t
1
+/O (L4 = lleee) (1 + [BllZ + [1Z:(a, 0)l[Zoe) 1R ll302 o dr (7.17)

It follows from (7.4) and (7.14) and the fact that h and G are compactly supported in z that

t
G 20,G
[1Z3h()]|z < hollzee + [120zholl L +/0 1=z + 1= = llzedr
bl
S Mol + [ 13l - 1Glhrwdr (r.19
0
Therefore, (7.15), (7.17), and (7.18) yield (7.13). This completes the proof of Lemma 7.2. O
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