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Abstract. We study orientability issues of moduli spaces from gauge theories on Calabi-

Yau manifolds. Our results generalize and strengthen those for Donaldson-Thomas theory
on Calabi-Yau manifolds of dimensions 3 and 4. We also prove a corresponding result in the

relative situation which is relevant to the gluing problem in DT theory.

1. Introduction

Donaldson invariants count anti-self-dual connections on closed oriented 4-manifolds [14].
The definition requires an orientablity result proved by Donaldson in [15]. Indeed, Donaldson
theory fits into the 3-dimensional TQFT structure in the sense of Atiyah [1]. In particular,
relative Donaldson invariants for (X,Y = ∂X) take values in the instanton Chern-Simons-Floer
(co)homology HF ∗CS(Y ) [16]. The Euler characteristic of HF ∗CS(Y ) is the Casson invariant
which counts flat connections on a closed 3-manifold Y .

As was proposed by Donaldson and Thomas [18], we are interested in the complexification of
the above theory. Namely, we consider holomorphic vector bundles (or general coherent sheaves)
over Calabi-Yau manifolds [43]. The complex analogs of (i) Donaldson invariants, (ii) Chern-
Simons-Floer (co)homology HF ∗CS(Y ), and (iii) Casson invariants are (i) DT4 invariants, (ii)
DT3 (co)homology H∗DT3

(Y ), and (iii) DT3 invariants.
As a complexification of Casson invariants, Thomas defined Donaldson-Thomas invariants for

Calabi-Yau 3-folds [39]. DT3 invariants for ideal sheaves of curves are related to many other
interesting subjects including Gopakumar-Vafa conjecture on BPS numbers in string theory [20],
[21], [25] and MNOP conjecture [29], [30], [31], [35] which relates DT3 invariants and Gromov-
Witten invariants. The generalization of DT3 invariants to count strictly semi-stable sheaves
is due to Joyce and Song [24] using Behrend’s result [4]. Kontsevich and Soibelman proposed
generalized as well as motivic DT theory for Calabi-Yau 3-categories [26], which was later studied
by Behrend, Bryan and Szendröi [5] for Hilbert schemes of points. The wall-crossing formula [26],
[24] is an important structure for Bridgeland’s stability condition [9] and Pandharipande-Thomas
invariants [36], [40].

As a complexification of Chern-Simons-Floer theory, Brav, Bussi, Dupont, Joyce and Szen-
droi [7] and Kiem, Li [25] recently defined a cohomology theory on Calabi-Yau 3-folds whose
Euler characteristic is the DT3 invariant. The point is that moduli spaces of simple sheaves on
Calabi-Yau 3-folds are locally critical points of holomorphic functions [8], [24], and we could
consider perverse sheaves of vanishing cycles of these functions. They glued these local perverse
sheaves and defined its hypercohomology as DT3 cohomology. In general, gluing these perverse
sheaves requires a square root of the determinant line bundle of the moduli space. Nekrasov
and Okounkov proved its existence in [34]. The square root is called an orientation data if it is
furthermore compatible with wall-crossing (or Hall algebra structure) [26] whose existence was
proved by Hua on simply-connected torsion-free CY3’s [22].

As a complexification of Donaldson theory, Borisov and Joyce [6] and the authors [11], [12]
developed DT4 invariants (or ’holomorphic Donaldson invariants’) which count stable sheaves
on Calabi-Yau 4-folds. The orientation issue here is whether c1(LM) = 0 for the determinant
line bundle LM of the moduli space. It was solved by the authors in [12] for Calabi-Yau 4-fold
X which satisfies Hodd(X,Z) = 0 (for instance, complete intersections in product of projective
spaces). Later, we generalized this result to torsion-free (i.e. homologies are torison-free) Calabi-
Yau 4-folds [13].

In this paper, we generalize and strengthen these results concerning orientability to Calabi-
Yau manifolds of any dimension.

Theorem 1.1. (Theorem 2.2, Theorem 3.2)
Let X be a compact Calabi-Yau n-fold with Hol(X) = SU(n) and Tor(H∗(X,Z)) = 0, MX be
a moduli space of simple sheaves with fixed Chern classes, and we denote its determinant line
bundle as LX with LX |F = det(Extodd(F ,F))⊗ det(Exteven(F ,F))−1. Then, we have
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(1) if n is even, c1(LX) = 0,
(2) if n is odd, LX has a square root.

The proof of this main theorem relies on varies tricks in gauge theory: firstly we use a ma-
chinery called Seidel-Thomas twist [24], [38] to transform the problem to a problem on some
moduli spaces of simple holomorphic bundles; secondly, we use Donaldson’s argument [15] to
further reduce the problem to complex vector bundles with high ranks and vanishing first Chern
classes; thirdly, we calculate the torsion part of the second cohomology group (as an abelian
group) of the base of the index bundle and prove it vanishes; finally, we apply the Atiyah-Singer
family index theorem to calculate Chern classes of the index bundle directly (modulo torsion).
We remark that in the proof of (2) in the above theorem, we further need to use a brilliant idea
due to Maulik, Nekrasov and Okounkov [34].

Along this line, we also prove an orientability result for the relative situation where we have
Calabi-Yau manifolds as anti-canonical divisors of even dimension projective manifolds. This
generalizes the orientability result in the relative DT4 theory [13] (taken as a complexification
of the Donaldson-Floer TQFT theory for 4-3 dimensional manifolds).

Theorem 1.2. (Theorem 4.2)
Let Y be a smooth anti-canonical divisor in a projective 2n-fold X with Tor(H∗(X,Z)) = 0. In
particular, Y is a Calabi-Yau (2n− 1)-fold. Let MX be a moduli space of simple bundles on X
with fixed Chern classes which has a well-defined restriction morphism

r :MX →MY ,

to a moduli space of simple bundles on Y with fixed Chern classes.

Then there exists a square root L
1
2

Y of LY (i.e. L
1
2

Y ⊗ L
1
2

Y
∼= LY ) such that

c1(LX) = r∗c1(L
1
2

Y ),

where LX (resp. LY ) is the determinant line bundle of MX (resp. MY ).

We remark that these results might be viewed as the orientability for corresponding derived
schemes with shifted symplectic structures in the sense of Pantev-Töen-Vaquié-Vezzosi [37], [10].
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2. Orientability for even dimensional Calabi-Yau

We move to even complex dimensional Calabi-Yau manifolds and extend the story of orien-
tations for moduli spaces of sheaves on Calabi-Yau 4-folds. We fix a compact spin manifold
X of real dimension 4m, a complex vector bundle (E, h) → X with Hermitian metric, and

define the twisted Dirac operator /DEndE : Γ(/S
+
C (X)⊗EndE)→ Γ(/S

−
C (X)⊗EndE). We intro-

duce the space B∗X = A∗/G0 of gauge equivalence classes of irreducible unitary connections on
(E, h) → X, where G0 = G/C(U(r)) is the reduced gauge group and C(U(r)) is the center of
U(r) which acts trivially on A [19]. B∗X is an open subset of the orbit space BX = A/G0 whose
complement is of infinite codimension [17]. There exists a universal family E → X ×B∗X and an
index bundle Ind(/DEndE)→ B∗X with Ind(/DEndE)|E = ker( /DEndE)− coker( /DEndE).

Theorem 2.1. For any compact spin manifold X of real dimension 4m with Tor(H∗(X,Z)) = 0,
and a Hermitian vector bundle E → X, the index bundle Ind(/DEndE) satisfies

c1(Ind(/DEndE)) = 0.

Proof. As in Donaldson theory [15], by considering E
′

= E ⊕ (detE)−1 ⊕ Cp, we are left to
show c1(Ind(/DEndE)) = 0 ∈ H2(B∗X ,Z) for a SU(N) complex vector bundle on X with N � 0.
Analogs to Theorem 10.14 of [12], we apply the Federer spectral sequence [32],

Ep,q2
∼= Hp(X,πp+q(BSU(N)))⇒ πq(MapE(X,BSU(N))).

For N � 0, we get π1(MapE(X,BSU(N))) ∼=
⊕

k≥1H
2k+1(X,Z). It is torsion-free by the

universal coefficient theorem and our assumptions. From Atiyah-Bott (Proposition 2.4 [2]), we
have a homotopy equivalence

BG 'MapE(X,BSU(N)),
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which shows π0(G) is torsion-free. From the exact sequence

π0(C(SU(N)))→ π0(G)→ π0(G/C(SU(N)))→ 0,

we know π0(G) ∼= π0(G/C(SU(N))) as there is no homomorphism from the torsion group
π0(C(SU(N))) to the torsion-free group π0(G). Then

H1(B∗X ,Z) ∼= π1(B∗X) ∼= π1(BX) ∼= π0(G/C(SU(N))) ∼= π1(MapE(X,BSU(N)))

and H2(B∗X ,Z) is also torsion-free. We are thus left to show for any embedded surface C ⊆ B∗X
c1(Ind(/DEndE)|C) = 0. We denote E|C to be the universal bundle on X × C, and apply the
Atiyah-Singer family index theorem [3],

c1(Ind(/DEndE)|C) = [ch(EndE|C) · Â(X)](4m+2)/[X] = 0,

as chodd(EndE|C) = 0. �

We fix a compact Calabi-Yau 2n-fold X, and denote the determinant line bundle of a moduli
space MX of simple sheaves by LX with LX |F = det(Extodd(F ,F))⊗ det(Exteven(F ,F))−1.

Theorem 2.2. Let X be a compact Calabi-Yau 2n-fold with Tor(H∗(X,Z)) = 0 and Hol(X) =
SU(2n). For any moduli spaceMX of simple sheaves with fixed Chern classes, we have c1(LX) =
0.

Proof. By the Seidel-Thomas twist [38], [24], we are reduced to a problem for moduli spaces
of simple holomorphic bundles. On Calabi-Yau manifolds, the index bundle Ind(/DEndE) in

Theorem 2.1 satisfies Ind(/DEndE)|A = H0,odd
DA

(X,EndE)−H0,even
DA

(X,EndE), we are done. �

Remark 2.3.
1. The point here is: on Calabi-Yau manifolds, Â = Td and /D = ∂̄.
2. Index bundles could be understood as tangent bundles of moduli spaces in the derived sense.
Theorem 2.2 would then be understood as moduli spaces of simple sheaves on even complex
dimensional Calabi-Yau manifolds are ’derived’ Calabi-Yau spaces. When n = 2, it recovers
the result on CY4’s. If n = 1, it reflects moduli spaces of simple sheaves on K3 surfaces are
Calabi-Yau manifolds (in fact hyper-Kähler by Mukai [33]).
3. Smooth complete intersections in torsion-free toric varieties satisfy the above condition.

3. Orientability for odd dimensional Calabi-Yau

We move to complex odd dimensional Calabi-Yau manifolds and extend the story of spin
structures on moduli spaces of sheaves on Calabi-Yau 3-folds. We first prove a general result for
spin manifolds of dimension 2m, which says moduli spaces of bundles on even dimensional spin
manifolds are ’spin’.

Theorem 3.1. For any compact spin manifold X of real dimension 2m with Tor(H∗(X,Z)) = 0,
and a complex bundle E → X, the determinant line bundle det(Ind(/DEndE)) of the index bundle
of twisted Dirac operators over B∗X has a square root.

Proof. As before, we only need to prove det(Ind(/DEndE)) has a square root for a SU(N) complex
vector bundle on X with N � 0, By the Federer spectral sequence,

Ep,q2
∼= Hp(X,πp+q(BSU(N)))⇒ πq(MapE(X,BSU(N))),

we get π1(MapE(X,BSU(N))) ∼=
⊕

k≥1H
2k+1(X,Z) for N � 0, which is torsion-free. Then

H1(B∗X ,Z) ∼= π1(B∗X ,Z) ∼= π1(MapE(X,BSU(N))) and H2(B∗X ,Z) is also torsion-free. We are
thus left to show for any embedded surface C ⊆ B∗X c1(Ind(/DEndE)|C) ∈ H2(C,Q) is even.

We denote E|C → C ×X to be the universal bundle, and abuse the notation Ind(/DEndE)→
B∗X × B∗X for the index bundle of twisted Dirac operators /DD∗A1

,DA2
’s. We consider C × C ⊆

B∗X × B∗X and apply the Atiyah-Singer family index theorem [3],

(1) c1(Ind(/DEndE)|C×C) = [ch(p∗1(E|C)∗ ⊗ p∗2(E|C)) · Â(X)](2m+2)/[X],

where pi : C × C ×X → C ×X are two natural projections with i = 1, 2.
Motivated by the idea of Maulik, Nekrasov and Okounkov [34], we consider an involution

σ : B∗X × B∗X → B∗X × B∗X ,

σ([A1], [A2]) = ([A2], [A1]).
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We denote the determinant line bundle to be L = det(Ind(/DEndE)|C×C) → C × C. From the
index formula (1), if m is even, c1(L) = −c1(σ∗L); if m is odd, c1(L) = c1(σ∗L). In both cases,
we obtain

(2) c1(L) ≡ c1(σ∗L) (mod 2) ∈ H2(C × C,Z2).

Now we are reduced to prove c1(L|∆) ≡ 0 (mod 2), where ∆ ↪→ C × C is the diagonal.
By the Künneth formula,

H2(C × C,Z2) = H0(C,Z2)⊗H2(C,Z2)⊕H2(C,Z2)⊗H0(C,Z2)⊕H1(C,Z2)⊗H1(C,Z2).

Assume {ai} is a basis of H0(C,Z2), {bi} is a basis of H2(C,Z2), {ci} is a basis of H1(C,Z2),

c1(L) ≡
∑
i,j

nijai ⊗ bj +
∑
i,j

mijbi ⊗ aj +
∑
i,j

kijci ⊗ cj (mod 2).

Under the action of involution map,

σ∗
(
c1(L)

)
≡
∑
i,j

mijaj ⊗ bi +
∑
i,j

nijbj ⊗ ai +
∑
i,j

kijcj ⊗ ci (mod 2).

By (2), we obtain mji ≡ nij (mod 2), kji ≡ kij (mod 2). When we restrict to the diagonal,

c1(L|∆) ≡
∑
i,j

nij(ai ∪ bj + bj ∪ ai) ≡ 0 (mod 2).

�

We fix a compact Calabi-Yau (2n+1)-foldX, and denote the determinant line bundle of a mod-
uli spaceMX of simple sheaves by LX with LX |F = det(Extodd(F ,F))⊗det(Exteven(F ,F))−1.

Theorem 3.2. Let X be a compact Calabi-Yau (2n + 1)-fold with Tor(H∗(X,Z)) = 0 and
Hol(X) = SU(2n + 1). For any moduli space MX of simple sheaves with fixed Chern classes,
LX has a square root.

Proof. By the Seidel-Thomas twist [38], [24], we are reduced to a problem for moduli spaces of
simple bundles. On Calabi-Yau manifolds, the index bundle in Theorem 3.1 satisfies

Ind(/DEndE)|(A1,A2) = H0,odd
D∗A1

⊗DA2
(X,E∗ ⊗ E)−H0,even

D∗A1
⊗DA2

(X,E∗ ⊗ E), we are done. �

Remark 3.3. This result was proved directly (without going to gauge theory) by Nekrasov and
Okounkov, see Lemma 6.1 of [34]. The advantage here is we could hope to choose compatible
square roots for different components of MX simultaneously, as the space BX is (homotopically)
independent of the choice of the complex structure and polarization of X.

From the proof of Theorem 2.2, it’s obvious that Theorem 3.2 also holds for even dimensional
Calabi-Yau manifolds. Then one would be interested to know whether Theorem 2.2 holds for
odd Calabi-Yau. In fact, it is not true in general.

Example 3.4. Let X be a compact simply connected Calabi-Yau 3-fold such that Tor(H∗(X,Z)) =
0 (for instance, a generic quintic 3-fold). We consider the Hilbert scheme of two points on X
(which is smooth), i.e. Hilb(2)(X) = Bl∆(X ×X)/Z2, where ∆ ↪→ X ×X is the diagonal. Its
determinant line bundle satisfies c1(LX) = 2c1(Hilb(2)(X)) 6= 0.

4. Orientability for the relative case

We take a smooth (Calabi-Yau) (2n − 1)-fold Y in a complex projective 2n-fold X as its
anti-canonical divisor, and denote MX to be a moduli space of simple bundles on X with fixed
Chern classes. We assume it has a natural restriction morphism

r :MX →MY ,

to a moduli space of simple bundles on Y with fixed Chern classes. Motivated by the long exact
sequence in relative DT4 theory [13], we have

Lemma 4.1. We take a simple bundle E ∈MX , and assume Y is connected, then we have the
following long exact sequence,

0→ H0,1(X,EndE ⊗KX)→ H0,1(X,EndE)→ H0,1(Y,EndE|Y )→ · · ·

··· → H0,n−1(Y,EndE|Y )→ H0,n(X,EndE⊗KX)→ H0,n(X,EndE)→ H0,n(Y,EndE|Y )→ ···
· · · → H0,2n−1(X,EndE ⊗KX)→ H0,2n−1(X,EndE)→ 0.

Proof. We tensor 0→ OX(−Y )→ OX → OY → 0 with EndE and take its cohomology. �
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We denote the determinant line bundle ofMX by LX with LX |E = det(H0,odd(X,EndE))⊗
det(H0,even(X,EndE)))−1 (similarly for LY →MY ), and note that the transpose of the above
LES with respect to Serre duality pairings on X and Y remains the same. This implies

2c1(LX) = r∗c1(LY ).

Meanwhile, if there exist a square root L
1
2

Y , with c1(LY ) = 2c1(L
1
2

Y ), then c1(LX) = r∗c1(L
1
2

Y )
provided H2(MX) is free of even torison. In general, we have

Theorem 4.2. Let Y be a smooth anti-canonical divisor in a projective 2n-fold X with Tor(H∗(X,Z)) =
0. In particular, Y is a Calabi-Yau (2n− 1)-fold. Let MX be a moduli space of simple bundles
on X with fixed Chern classes which has a well-defined restriction morphism

r :MX →MY ,

to a moduli space of simple bundles on Y with fixed Chern classes.

Then there exists a square root L
1
2

Y of LY (i.e. L
1
2

Y ⊗ L
1
2

Y
∼= LY ) such that

c1(LX) = r∗c1(L
1
2

Y ),

where LX (resp. LY ) is the determinant line bundle of MX (resp. MY ).

Proof. By the Lefschetz hyperplane theorem, Tor(H∗(Y,Z)) = 0. By Theorem 3.2, there exists

a square root L
1
2

Y coming from the pull-back of a square root det(Ind(/DEndEY ))
1
2 → B∗Y . As

BY \B∗Y ⊆ BY has large codimension, det(Ind(/DEndEY ))
1
2 uniquely extends to a complex line

bundle det(Ind(/DEndEY ))
1
2 → BY . As before, we are left to show

(3) c1(Ind(/DEndEX ))− r∗c1(det(Ind(/DEndEY ))
1
2 ) = 0 ∈ H2(B∗X ,Z),

for a SU(N) complex vector bundle on X with N � 0, where r : B∗X → BY is the restriction
map to the orbit space of connections on Y , and EX (resp. EY ) is the universal family over
B∗X (resp. B∗Y ). The index bundle Ind(/DEndEX ), (defined by a lifting c1(X) of w2(X)) satisfies

Ind(/DEndEX )|A = H0,odd
DA

(X,EndE)−H0,even
DA

(X,EndE). The Federer spectral sequence

Ep,q2
∼= Hp(X,πp+q(BSU(N)))⇒ πq(MapE(X,BSU(N))).

gives π1(MapE(X,BSU(N))) ∼=
⊕

k≥1H
2k+1(X,Z) for N � 0, which is torsion-free. Then

H1(B∗X ,Z) ∼= π1(B∗X ,Z) ∼= π1(MapE(X,BSU(N))) and H2(B∗X ,Z) is also torsion-free. Thus to
prove (3), we only need

2c1(Ind(/DEndEX ))− r∗c1(det(Ind(/DEndEY ))) = 0 ∈ H2(B∗X ,Q).

We are furthermore left to show

2c1(Ind(/DEndEX )|C)− c1((r∗det(Ind(/DEndEY )))|C) = 0 ∈ H2(C,Q)

for any embedded surface C ⊆ B∗X .
We denote the universal bundle over C to be E → X ×C, πX : X ×C → C, πY : Y ×C → C

to be projection maps, and i = (iY , Id) : Y × C → X × C. The commutative diagram

Y × C i //

πY
##

X × C

πX

{{
C

implies that πX!
◦ i! = πY!

for Gysin homomorphisms on cohomologies. We apply the Atiyah-
Singer family index theorem [3],

c1(Ind(/DEndEX )|C) = πX!
([ch(EndE) · Td(X)](2n+1))

= (

n∑
i=1

ch2i(EndE) · Td2n−2i+1(X))/[X],
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c1((r∗det(Ind(/DEndEY )))|C) = πY!
([ch(End(i∗E)) · Td(Y )](2n))

= πX!
◦ i!([i∗ch(EndE) · Td(X)|Y

Td(NY/X)
](2n))

= πX!
([i! ◦ i∗(ch(EndE) · Td(X)

Td(K−1
X )

)](2n+1))

= πX!
([ch(EndE) · Td(X)

Td(K−1
X )
· c1(K−1

X )](2n+1))

= [ch(EndE) · Td(X) · (1− e−c1(X))](2n+1)/[X].

We introduce T̃ d(X) = Td(X)·(1−e−c1(X)). To prove c1((r∗det(Ind(/DEndEY )))|C) = 2c1(Ind(/DEndEX )|C),
we are left to show

(4) T̃ d2i−1(X) = 2 Td2i−1(X), for 1 ≤ i ≤ n,

i.e. T̃ d(X)− 2 Td(X) consists of even index classes. Note that the Â-class satisfies

Td(X) = e
c1(X)

2 · Â(X),

and

T̃ d(X)− 2Td(X) = Â(X)(e
c1(X)

2 − e−
c1(X)

2 )− 2Â(X) · e
c1(X)

2

= −Â(X)(e
c1(X)

2 + e−
c1(X)

2 ),

which is of even index as both factors in the RHS are so. �
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