SCATTERING PHENOMENON IN SYMPLECTIC GEOMETRY

KWOKWAI CHAN, NAICHUNG CONAN LEUNG, AND ZIMING NIKOLAS MA

ABSTRACT. For any semi-flat symplectic Calabi-Yau manifold Xy equipped with a La-
grangian torus fibration p : Xo — By, we introduce a differential graded Lie algebra (dgLa)
which should govern “quantum” deformations of the symplectic structure on Xy. Given two
non-parallel walls (equipped with wall-crossing factors) in the base By intersecting transver-
sally as inputs, we solve the Maurer-Cartan equation of the dgla, and prove that the leading
order terms of the solutions give rise to scattering diagrams, which have played a crucial
role in important works of Fukaya, Kontsevich-Soibelman, and Gross-Siebert on the recon-
struction problem in mirror symmetry. This realizes a key step in Fukaya’s program on the
understanding of quantum corrections in symplectic geometry.
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1. INTRODUCTION

The celebrated Strominger-Yau-Zaslow (SYZ) conjecture [I5] asserts that mirror symmetry
is a T-duality. This gives a concrete description of the mirror of a Calabi-Yau manifold X
as the fiberwise dual of a (special) Lagrangian torus fibration p : X — B, leading to a
beautiful geometric explanation for mirror symmetry. Strictly speaking, such a construction
can be carried out directly only in the semi-flat case [I2]; in general, due to the presence
of singular fibers, non-trivial quantum corrections must be taken into account. The SYZ
proposal suggests that such corrections are governed by holomorphic disks in X with boundary
on the fibers of p. Intuitively, holomorphic disks can be glued to form holomorphic spheres,
thus explaining why mirror symmetry is so powerful in making enumerative predictions.

The precise mechanism of how this works was first depicted by Fukaya in his program [§]
on understanding quantum corrections in symplectic geometry. He described how quantum
corrections arise near the large volume limit given by scaling of a symplectic structure on
X, and put forward a conjecture claiming that holomorphic disks in X with boundary on
fibers of p would collapse to Morse flow trees on the base B emanating from the locus of
singular fibers B*™ C B. He also argued that after correcting by these data, the complex
structure on the mirror would be extendable over the singular fibers — this is the so-called
reconstruction problem which is a key step in understanding the geometry of mirror symmetry.
Unfortunately, his arguments were only heuristical and the analysis involved to make them
precise seemed intractable.

In [11], Kontsevich and Soibelman got around the analytical difficulty in Fukaya’s approach
by replacing holomorphic disks with tropical data on the base B and considering rigid ana-
lytic manifolds instead of complex manifolds. Starting from a 2-dimensional integral affine
manifold B with 24 singular points of focus-focus type, they constructed a rigid analytic K3
surface by gluing together standard local pieces via automorphisms (or wall-crossing factors)
attached to the tropical lines (or walls) on B. In [10], Gross and Siebert finally succeed-
ed in constructing a degeneration of Calabi-Yau manifolds from an integral affine manifold
with singularities in any dimension. This is one of the most important results in the Gross-
Siebert program (which recasts the SYZ proposal in an algebro-geometric setting) and mirror
symmetry in general.

During all these developments, a key role has been played by scattering diagrams, which
first appeared as certain combinatorial objects arising from consistency conditions for au-
tomorphisms used to glue the local standard pieces when tropical lines collide and interact
[11, 10]. The primary goal of this paper is to explain how scattering phenomena naturally
occur in the study of quantum corrections on the symplectic side, or more precisely, in solving
the Maurer-Cartan equation of the “quantum” deformation dgla of symplectic structures,
using semi-classical techniques motivated by Witten-Morse theory [16]. As Fukaya [§] has an-
ticipated, holomorphic disks should degenerate to gradient flow lines of certain multi-valued
Morse functions on the base when one goes near the large volume limit, and scattering dia-
grams, regarded as gradient flow trees, would describe how new holomorphic disks are being
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produced by gluing two holomorphic disks with a pair-of-pants. So understanding scattering
phenomena is vital to the study of quantum corrections in symplectic geometry.

Let X be a Calabi-Yau manifold (regarded as a symplectic manifold), equipped with a
Lagrangian torus fibration

S

(X,w,J) B,

p

which admits a Lagrangian section s, and whose discriminant locus is given by B*"9, where
the affine structure develops singularities. If X degenerates to a large volume limit so that
all singular fibers are pushed towards infinity, we obtain a semi-flat Calabi-Yau manifold
Xo < X which is a torus bundle over the smooth locus By = B\ B*™9.

Now classical deformations of the symplectic structure on X, (0-th Fourier mode), which
are rather trivial, are captured by the dglLa

(Q*(Bo, TBo), V. [,"])

on By. In order to recover the symplectic structures of X near the large volume limit, we need
“quantum” deformations of the symplectic structure on Xy (higher Fourier modes). There is
as yet no definition of such deformations, but, in view of the SYZ conjecture, they should be
determined by holomorphic disks in X with boundary on fibers of p and interior intersections
with the singular fibers (at the singular points).

Motivated by Fukaya’s ideas []], and the relation between Witten-Morse theory and de
Rham theory investigated in [0l [7], we define a differential graded Lie algebra (dgla) as
follows. First of all, let M be the space of fiberwise geodesic loops of the torus bundle
p: X9 — By. We consider the complex

Lx, = Q*(Mv TMC)
equipped with the Witten differential locally defined by
dy = e "Velr,
where f, is a function on M (or a multi-valued function on Bj) which records the loop
n € 7 (p~'(z), so(z)) that may shrink to a singular point in B and hence bound a holomorphic

disk in X. Together with a natural Lie bracket {-,-} (defined by combining the usual bracket
on T with a convolution product), the triple

(LXoa dw, {'7 })
forms a dgla (see Proposition [2.13)).

In view of the fact that the “0O-th mode” of this dgla is nothing but (2*(By, T'By), V, [+, ])
which captures the classical deformations of the symplectic structure on X, we believe that
(Lx,,dw,{-,-}) captures the “quantum” deformations of the symplectic structure on Xj.
Another evidence is provided by the fact that the Fourier (or SYZ) transform of this dglLa is
precisely the Kodaira-Spencer dgLa on the mirror side (Proposition [2.15)).

The idea that there should be Fourier-type transforms responsible for the interchange
between symplectic-geometric data on one side and complex-geometric data on the mirror
side can be traced back to the original SYZ paper [I5], and this has already been applied
successfully to the study of mirror symmetry for toric Fano manifolds [4] [5] and toric Calabi-
Yau manifolds (and orbifolds) [3, 2] etc. Nevertheless, there is no scattering phenomenon
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in those cases. The main result of this paper shows that scattering diagrams naturally
appear which one consider the asymptotic expansions of Maurer-Cartan elements of the dgla
(Lx,,dw,{-,-}) which governs quantum symplectic deformations, thereby realizing a key step
in Fukaya’s original program.

We work outside from the singular loci and also restrict ourselves to the 2-dimensional case
(as in Fukaya’s paper), so that we may assume that By = R?. In this case, a scattering diagram
can be viewed schematically as the process of creating new walls from two non-parallel walls
supported on tropical lines in By which intersect transversally. The combinatorics of this
process is controlled by the algebra of the tropical vertex group [I1], [9]. We will give a brief
review of the definitions and notations in Section [3] following [9].

Suppose that we are given a wall w supported on a tropical line in By and equipped with
a wall-crossing factor ¢, which is an element in the tropical vertex group. From the Witten-
Morse theory developed in [7], the shrinking of a fiberwise loop n towards the singular loci
indicates the presence of a critical point of f,, in the singular loci, and the union of gradient
flow lines emanating from the singular loci should be interpreted as a stable submanifold
associated to the critical point. Furthermore, this codimension one stable submanifold should
correspond to a differential 1-form concentrating on w (see [7]).

In view of these, corresponding to the wall (w, gzvﬁ), we write down an ansatz Sy € L}(O
for a solution to the Maurer-Cartan equation of the dgla (Lx,,dw, {-,-}) over By (Section
4.1)), and show by semi-classical analysis that it (or, more precisely, the corresponding gauge
transformation) determines the wall-crossing factor o by letting & — 0 (Proposition .
The details are contained in Section [l

The heart of this paper is Sections [ where we study the case when two non-parallel
walls w1, wy supported on tropical lines in By = R? intersect transversally. In this case the
sum = 1= Sy, + Sy, € LY, does not solve the Maurer-Cartan equation of (Lx,,dw,{-, }).
Instead, by fixing the gauge using the homotopy operator in Definition [4.8] a solution ® can
be obtained by solving equation , and it is written as a sum over directed trivalent planar
trees as in Definition with input =.

In general, to an element ¥ € Lkg satisfying certain suitable assumptions on its asymptotic
expansion in A (namely, having asymptotic support on an increasing set of subsets of rays
{Ray(No)} nyez>o as defined in Definition [5.19)), one can associate a scattering diagram D ().
One of the key observations of this paper is the following theorem which will be proved in

Section (.3l

Theorem 1.1. If U is any solution to the Maurer-Cartan equation (2.2)) having asymptotic
support on {Ray(No)}nyez-, as in Definition then the associated scattering diagram
D(V) is monodromy free.

We analyze the above Maurer-Cartan element ®, obtained by summing over trees as in
Definition [5.9, again by semi-classical analysis and a careful estimate on the orders of the
parameter 7 in its asymptotic expansion. Lemmas[5.10, [5.16] and [5.17]in Section [5.2] together
say that ® has asymptotic support on some set { Ray(Ny)} n,ez>0 of subsets of rays; the proofs
of these lemmas, which involve lengthy analysis on the asymptotic expansion of ®, occupy
the whole Section Combining with Theorem above, we arrive at the main result of
this paper:
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Theorem 1.2. The Maurer-Cartan element ®, obtained by summing over trees as in Defini-
tion has asymptotic support on some increasing set of subsets of rays {Ray(No) } noez,-
Furthermore, the associated scattering diagram D(®) gives the unique (by passing to a min-
imal scattering diagram if necessary) monodromy free extension, determined by Kontsevich-
Soibelman’s Theorem [3.11], of the diagram consisting of two walls wi and w.

See Section for the details. The moral is that tropicalization should be equivalent to
taking leading order terms of the asymptotic expansion of an analytic structure; in our case,
a scattering diagram is on the one hand the tropicalization of holomorphic disks, and on the
other hand the leading order terms of the asymptotic expansion of a Maurer-Cartan element.
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2. FOURIER TRANSFORM OF DEFORMATION THEORIES

2.1. General theory of dgLa’s. In this section, we review some basic definitions and prop-
erties of dgLa, and their deformation theory via Maurer-Cartan equations. We follow [13]
and give a brief discussion on the parts we need. We will work over C.

Definition 2.1. A differential graded Lie algebra (dgla) is a triple (L,d,[-,:]) where L =
D, L' is a graded vector space (we denote by a the degree of a homogeneous element a),
d: L — L is a degree 1 differential satisfying d> = 0 and [-,-] : L x L — L is a graded
Lie bracket such that d and [-,-] are compatible. More precisely, we require the following
conditions to hold:

(1) [-,-] is homogeneous, i.e. [LQLJ'] C Liti,
(2) [-,+] is graded skewsymmetric, i.e.
[a,b] + (=1)®[b,a] = 0

for any homogeneous elements a and b.
(3) |-, -] satisfies the graded Jacobi identity, meaning that
[CL, [ba C]] + (_1)&5-{-&5[[)7 [07 CLH + (_1)&5-‘1-135[0, [CL, b“ =0
for any homogeneous elements a, b, c.
(4) d(L") € L' and

dla,b] = [da,b] 4+ (—1)[a, db]

for any homogeneous element a.
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Definition 2.2. A morphism between two dgLa’s (L,d,[-,-]) and (M,d,|-,-]) is a homomor-
phism f . L* — M* between graded vector spaces such that fod = do f and [-,-] = [f(-), f(*)].
We call f a quasi-isomorphism if it induces an isomorphism on cohomology.

Notations 2.3. We let R = C|[[ty,...,t]] denote the ring of formal power series and m =
(t1,...1tx) denote the mazximal ideal generated by the formal variables. We consider only dgLas
over formal power series ring R to avoid convergence issue.

Given an element a in L° ®c m, we have an isomorphism of L ®c R (as dgLa over R) given

by
a dy
€ = Z an! ’

n>0

where ad,(b) = [a,b]. This defines the exponential group
exp(L’@m) = {e*|a € L°®m},
which acts on L ®¢ R naturally.

aeb

Remark 2.4. We have an explicit formula for the product e® - €® = e, where the product

1
(2.1) aob:a—i—b+§[a,b]+...

is defined by the Baker-Campbell-Hausdorff formula.

We can deform a dgla L formally over R by deforming the differential using an element
¢ € L' ® m. The deformed differential d¢ = d + ad, satisfies dg = 0 if and only if ¢ satisfies
the Maurer-Cartan equation

1
(2.2) &+ 16,8 = 0.
This suggests the following definition.

Definition 2.5. The Maurer-Cartan elements of L over R is the set
1
MCL(R) = {§ cL'®m|dé+ 5[5,5] = O} :

The set M CL(R) does not give the space of deformations since two deformed differentials
d + ¢ and d + 7 may be related by a gauge equivalence given by some e € exp(L° ® m).

Definition 2.6. We define the gauge action by the formal expansion

a ad? ad}
exE = ) n!g_;o(n—i—l)!da

where £ € MCp(R) and e* € exp(L° @ m).
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We see that e® x £ = £ if and only if da + [£, a] = 0 because

Z CLdZ - €ada — 1
(n+1)!  ad,

n>0

is invertible.

Remark 2.7. We can also derive the gauge action from the adjoint action of a new dgLa
(L',d,[-,-]") constructed from L by setting

(L/)i:{ Lj fm’z:?'éla
L'a C{d) fori=1,
where d is a formal symbol of degree 1. L' is equipped with the differential given by
d'(a + vd) = da,
and the Lie bracket given by
la +vd, b+ wd] = [a,b] + vd(b) + (—1)*wd(a).

There is a natural inclusion v : L C L' given by 1+ (x) = x & d. Notice that the image of v is
stable under the adjoint action and we have the relation

e’ x & =11 (e"(é)) = e+ d) —d.

Under the identification ¢, the Maurer-Cartan equation d§ + = [5 &) = 0 is equivalent to the
condition [14(§),t—()] = 0.

Definition 2.8. The space of deformations of L over R is defined by
Defr,(R) = MCL(R)/exp(L’ ® m).
2.2. Deformations of complex structures. In this section, we review the deformation
theory of complex structures via the Kodaira-Spencer dgLa.
Let X, be a complex manifold. The Kodaira-Spencer complex is defined by
KSXU = QO’* (X(], T)lv(’(?),

equipped with the differential 0. The Lie bracket structure is defined in local holomorphic
coordinates z1,...,z, € Xy by

[pdz", vdz") = ¢, ¢ldz" A dz7,
where ¢, ¢ € T'(T )1((?) This is globally defined and gives a dglLa structure on K Sk, .

An element ¢ € QOY(X,, T )1((?) ® m can be used to define a formal deformation of almost
complex structures by letting

T%' = graph(¢) = {u +uil|ue T)[)Z’;} )
In local holomorphic coordinates z1, ..., z, on Xo, 7% is spanned by the frame

(2osed)

7j=1

where { =3, 5]’?8% ® dZz’. An important fact is the following.
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Proposition 2.9. [0, 7% ¢ T%', i.e. the almost complex structure defined by & is inte-
grable if and only if £ satisfies the Maurer-Cartan equation 0§ + %[5, ¢] = 0.

The exponential group K Sg(o ®m acting on M CKSXO (R) can be regarded as automorphism
of the formal family of complex structures over R, so we make the following definition.

Definition 2.10. The deformations of complex structures of Xy over R is defined to be the
space of deformations DefKSxo (R) of the dglLa KSx, .

2.3. A dgLa on the symplectic side. We now turn to deformation theory on the A-
model side. We restrict our attention to the deformation theory of a (non-compact) semi-flat
symplectic manifold (Xg,w + i), which is constructed from an tropical affine manifold B, as
follows.

We follow the definitions of affine manifolds in [I, Chapter 6]. Let
Aff(R") =R" x GL,(R)

be the group of affine transformation of R", which is a map T of the form T'(z) = Az + b
with A € GL,(R) and b € R". We are particularly interested in the following subgroup of
affine transformation

AffR(Z")o = R" x SLy(Z).

Definition 2.11. An n-dimensional manifold B is called tropical affine if it admits an atlas
{(Ui, i)} of coordinate charts 1; : Uy — R™ such that 1; o @/1]_1 € Af fr(Z™)o.

We consider the cotangent bundle T*Bj, equipped with the canonical symplectic form
Wean = 2_; dy; N dx' where z%’s are affine coordinates on By and y;’s are coordinates of
the cotangent fibers with respect to the basis da',...,dz". There is a lattice subbundle
A* < T*By generated by the covectors dz',...,dx". It is well defined since the transition
functions lie in Af fg(Z"™). We put

(23) XO - T*Bo/A*,
equipped with the symplectic form
w=h"! Zdyj A da?
J

descended from A 'w.,. The natural projection map p : Xy — By is a Lagrangian torus
fibration. We can further consider B-field enriched symplectic structure w + i by a closed

form 8 =3, . 8 (z)dy; A da'.
Now, let M be the space of fiberwise homotopy classes of loops with respect to the fibration
p: Xo — By, i.e.

There is a natural projection map pr : M — By which is a local diffeomorphism. We will use
T B to stand for the pullback of TBE to M as well if there is no confusion. We consider the
complex

Lx, = (M, TBY),
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equipped with the Witten differential
dw =V —2msa(w +if).

Here V is the pullback of the flat connection on T'By, and s([v]) = ¥ € T(Xo/Bo)~ () where
7 is the unique affine loop in its homotopy class [y]. For XY € I'(M,TBY), we define the
Lie bracket to be

{X7 Y}W - Z (VX'HY)’YQ - (VYWQX)%
Yit+y2=Yy
pr(vi)=pr(v)

+ 27 ((W - iﬁ)(‘S(rY?)v X’Y1>YV2 - (w - iﬁ)(8(71)7 Y’Y2)X’Yl) )
at a point v € M. It is then extended naturally to Lx, to give a Lie bracket structure.

Remark 2.12. Both the Witten differential and Lie bracket can be written in a more explicit

form in local coordinates. Let U C By be a contractible open set with local coordinates

ol a2y, .y, for pYU). Then we can parametrize pr=(U) = U x Z" by (x,m)

where x € U and m = (my, ..., m,) € Z" representing an affine loop in the fiber p~'(x) with
tangent vector 3 _; mjaiy- We denote the copy U x {m} C pr=*(U) by U,, and the section
J

s, when restricted to the copy Uy, by Sp, = Z?Zl mja%j. Fizing a point xo € U, we define a
function f,, = —2m f:; Sma(w +18) satisfying df,, = =278 a(w +15).

We have a natural identification Q*(U,,, TBS) = Q*(U, TB§) via the projection pr and the
relation

dy = e ImVelm,

on Q*(U,,, TBY) via the identification. For X € T'(Uy, TB§) and Y € T'(U;, TBE), we have

| ePle X e Y] form =k +1,
{X’Y}m_{o form #k+1

via the identification, where [-,-] is the usual Lie bracket on T'(U, TBf).

Proposition 2.13. (Lx,,dw,{,-}) is a dgLa.

Proof. 1t follows from its definition that {-, -} is both homogeneous and graded skewsymmet-
ric.

Now given vector fields X,Y, Z € T'(pr=*(U), T Bf) over a contractible open subset U C By,
we have

{{Xk’ }/2}’ Zm} = efk+l+m [[e_kaka e—leE]’ e_f’" Zm]

by the usual one for Lie bracket on I'(U, TBS), under the identification in Remark [2.12, The
graded Jacobi identity follows.
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For the compatibility between dy, and {-, -}, we take a € Q*(Uy, TBS) and v € Q*(U;, TBY).
By direct computations, we have

dy{o, b} = (e Fenvelin) efetifeFra, e Tyl
= el (Ve Tra), e ] + (1), V(e i)
+2Re(dfriy) A eftile TR, e i)
= el ([ h iy (efra), e fig] + (<)% ra, e AT (ey)])
= ({dwo, ¥} + (-1 o, dw})

2.4. Fourier transform of dglLa’s. Given a tropical affine manifold B, together with 3,
we have constructed a semi-flat symplectic manifold (Xo,w+1483) in Section 2.3] We now con-
sider the tangent bundle T'By, equipped with the complex structure where the local complex
coordinates are given by 17 — ﬁixk + z% Here y7’s are coordinates of the tangent fibers with

respect to the basis -2 -0 i.e. they are coordinates dual to yis on Ti?. The condition

: ' Ozl Ygno
that 3! (x)dz* being closed, for each j = 1,...,n, is equivalent to integrability of the complex
structure.

There is a well defined lattice subbundle A < T'By generated locally by %, ceey 8%. We
set

XO - TB[)/A,

equipped with the complex structure .J descended from that of T'By, so that the local complex

. Lo j . zJ . . %
coordinates can be written as w/ = e~ 27 ~Ae" %) The natural projection map p : Xg —
By is a torus fibration.

So we have dual torus fibrations:

XO XO
By

and the mirror symmetry between the semi-flat pair X, and Xy is a well-understood example
of the SYZ construction [12] (cf. [IL Chapter 6]). The goal of this section is to relate the
dgLa’s KSx, and Ly, via a Fourier transform.

We define the Fourier transform

(2.4) F: Q%(X,, T X)) — Q* (M, TBY),
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as follows. We consider the fiber product M x g, X, and the projection maps

M XBOXO

X Xo.

In a contractible open subset U C By with coordinates as in Remark [2.12] we take the local

holomorphic frame
9 ) !
{8logwj (83/] Zﬂj_—i_@))} .
‘]:

of T)lv(’oo. There is a natural identification p*T B = T'0X, given explicitly by

9 ho
Ologwy 4w dxd-
Given any a =3, > . ozg?l 77777 L dlogw’ ... dlogw’™ @ 5 wk, we define
. o . h 0
o mr—m k 2mi(n,y) 1 m -
(2.5) Fla) = (4m)"n ™y Z /ﬂ (af . ePmmi)dyh  drim @ ( )

where 7 = (y',...,y") and fﬂ denote the integration along fibers of .

Remark 2.14. The zero section of the fibration p : Xo — By is a Lagrangian Lg, and our
fiberwise loop space M is actually the fiberwise path space M (Lg, Lg) introduced in [6]. The
Fourier transform defined in [6] gives a transform

(2.6) F Q% (X)) — Q*(M).
Together with the natural isomorphism T )1((? — p*T'B§ which is in fact given by composing

the embedding T)lv(’ — TXE)C with the projection TXSC — p*TBS, we get the Fourier transform
introduced in ([2.4)).

Proposition 2.15. The Fourier transform F : KSx, — Lx, 1s an isomorphism of dgLa.

Proof. By properties of Fourier series and direct computations using the local expression ([2.4])
for F, it is easy to see that F(0) = dw.
We then compare the Lie brackets on both sides. Without loss of generality, we will only

prove this for 0-forms. Given X = Zk Xk Tog se—rand Y =)V m, we have
. 0 ox* 0
X, Y) = -Y!
FxY]) ZF ( dlog wk dlog w' dlog w' dlog wk>

B h o) SN oo o OXF D
T — (]:(X)*f(ﬁlogwk)@_]:(Y)*}—(alogwl)% '
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Here we have abused notations and used F to stand for both Fourier transforms (2.4) and
([2.6). We use the parametrization U x Z" for pr=1(U) as before. We write X* € Q°(U,,) for
the component of F(X*) on U, and similarly for Y! and their differentials. We see that

oy 1 X h oY
Blogar), = 2 (”k—m;ﬁk”j> Y iror

h oYl h 0

= o T 2w —iB) (s o)

Therefore we have

Fyhe = 3 Z(X’“ fV( F T

ni+ne=n k|l
: . h 0
U pfo oy k
~Y! etV , s <e (- X"laxk))
= {F0. 7))

These show that F is a homomorphism of dgla. To show that it is an isomorphism, we
can define inverse Fourier transform F~': Ly, — K S,  in a similar fashion and check that

FoF1=id = FloF. Details are left to readers. O

Remark 2.16. Mirror symmetry predicts that deformations of structures on the A- and B-
sides should match with each other. However, the deformation theory of complex structures is
nonlinear while the deformation theory of semi-flat symplectic structures is linear. This sug-
gests that we should look for “quantum” deformations of symplectic structures on the A-side.
The above proposition indicates that our dgLa Ly, is governing such quantum deformations.

For later purposes, we also want to give Kéhler structures on X, and X, by considering a
metric g on By of Hessian type:

Definition 2.17. An Riemanm’an metric g = (gij)i; on By is said to be Hessian type if it

is locally given by g = > .
function ¢.

J n
i 8$’8x1 dr' @ dz? in affine coordinates x*,...,x™ for some convex

Assuming first B-field § = 0, a Hessian type metric g on By induces a metric on T B
which also descends to Xj. In local coordinates, the metric on X is of the form

(2.7) gx, = 3 _ 0 gyda' @ da? + gldy; @ dy),

2%
where (¢7); ; is the inverse matrix of (g;;); ;. The metric gx, is compatible with w and gives
a complex structure J on Xy with complex coordinates represented by a matrix

(0 g
J_(—g 0)
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with respect to the frame %, ce %, aiylv ce %, having dz; = dy; + i _._, gjrdz®. Then

we have a natural holomorphic volume form which is

n

Q=dxy N Ndz, = /\(dyj +@'Zgjkdxk).
k=1

j=1
The Kéhler manifold (X, w, J) is a Calabi-Yau manifold if and only if the potential ¢ satisfies
the real Monge-Ampére equation

0%
oxtoxI
In such a case, p: Xo — By is a special Lagrangian torus fibration.

(2.8) det( ) = const.

On the other hand, there is a Riemannian metric on X induced from ¢ given by
95, = O _(F'gyda’ @ da? + hgydy' @ dy).

i,J
It is compatible with the complex structure and gives a symplectic form

O = 2i00¢ = Z gijdy' A da? .

1,J

Similarly, The potential ¢ satisfies the real Monge-Ampére equation (2.8) if and only if
(Xo,w, J) is a Calabi-Yau manifold.

In the presence of (3, we need further compatibility condition between g and ¢ to obtain a
Kahler structure. On X, we treat w + i as a complexified Kéhler class on X, and require
that 8 € Q11(X,) with respect to the complex structure J. This is same as saying

(2.9) Z Bl gieda’ A dz* =0,

irjk
if g = Z” Bf (z)dy; A dz' in local coordinates zt, ..., 2" y1,..., Yn.

On XQ, we treat [ as an endomorphism of T'By represented by a matrix (i, j)-entry is given

by B(x)] with respect to the frame %, e %. The complex structure we introduced before
can be written as

- —hp hi
(2‘10) J,B - ( —ﬁfl(I—&—ﬁQﬁQ) ﬁﬁ )
with respect to the frame 6%17 e a%, %, cee %. The corresponding holomorphic volume
form is given by
(2.11) Qp = /\((dyj - Zﬁidxk) + ik~ da).

j=1 k

The extra assumption (2.9) will be equivalent to the compatibility of jﬁ with w. If we treat
(9:7) as a square matrix, we have the symplectic structure w represented by

(2.12) w:(g _Og).



14 CHAN, LEUNG, AND MA

The compatibility condition

—hB RN (0 —g —hB RI\ [0 —g
RN+ R2B%) BB g 0 —h I+ R28%) BB ) T\ g 0

in terms of matrices is equivalent to Bg = g3, which is the matrix form of (2.9). The metric
tensor is represented by the matrix

(Wl + 12 —hgB
o ~hg hy )

whose inverse is given by
-1 _ hg™! hBg~!
9% =\ hBg~' BRI+ R2BYgt )

If we equip the tangent bundle TBS with the metric %ﬁflg, we can define an Lo inner
product ({-,-))ry, using the volume form

det(g;;)dx" ... da".
Equipping K Sk, with the standard L, inner product induced from the Kéhler structure on

X, we have the following proposition.

Proposition 2.18. The Fourier transform F KSx, — Lx, preserve the Lo inner products
on the two complexes.

3. SCATTERING DIAGRAMS

In the section, we recall the scattering process in dimension 2 described in [9] [1T]. We will
adopt the setting and notations from [9] with slight modifications to fit into our context.

3.1. Sheaf of tropical vertex group. We first give the definition of a tropical vertex group,
which is a slight modification of that from [9]. As before, let By be a tropical affine manifold,
equipped with a Hessian type metric g and a B-field 3.

We first embed the lattice bundle A — p,T )1((? into the sheaf of holomorphic vector fields.
In local coordinates, it is given by

< 0 i 0 , e O 0
R N M R b )k
The embedding is globally defined, and we write Té’(gz to stand for its image.

Given a tropical affine manifold By, we can talk about the sheaf of integral affine functions
on Bo.

Definition 3.1. The sheaf of integral affine functions Af f%o 1s a subsheaf of continuous
functions on By such that m € Afng(U) if and only if m can be expressed as

m(z) = a1z’ + - + a2 + b,
in small enough local affine coordinates of By, with a; € Z and b € R.



SCATTERING IN SYMPLECTIC GEOMETRY 15

On the other hand, we consider the subsheaf of affine holomorphic functions O%f — 5,0 %
defined by an embedding Affgo — pOx,:
Definition 3.2. Given m € Aff§ (U), expressed locally as m(x) = 3, axr’ 4 b, we let

wm = 6271—% (

wh™ (W)™ € O, 4
where w! = e~ 2l =Xy Ba)+ih 2] This gives an embedding

AFFE,(U) = 05,7 (),
and we denote the image subsheaf by O/ .

Definition 3.3. We let g = 0/ @, Té’ooz and define a Lie bracket structure [-,-] on g by the
restricting the usual Lie bracket on ]B*O(T;(?) to g.

This is well defined because we have the following fact.

Proposition 3.4. g is closed under the Lie bracket structure ofp*O(T)lz’f).

Proof. Assuming we are in a small enough local affine chart, we compute the Lie bracket and
obtain

m a m’ / a
®0y] = [w ®(anw)’w ®(2};%W>]

j
erW((m', n>5n/ — (m, n’)én)

- m+m’
= w a(mﬂn)n’f(m,n’)n-

= w

We see that wm+m/5<m/7n>n,_<m7n/>n is still a local section of g. Il

Remark 3.5. There is an exact sequence of sheaves
0—R— Aff5, — A =0,

where R is the local constant sheaf of real numbers. The pairing (m,n) is the natural pairing
form e A: andn € A,. Given a local section n € A(U), we let n* C Af f§ (U) be the subset
which is perpendicular to n upon descending to A*(U).

Definition 3.6. The subsheaf h — g consists of sections which lie in the image of the
composition of maps

P n' @z (Zn) - 0N(U) @z Ty ,(U) — a(U),
neA(U)
locally in an affine coordinate chart U.
Note that § is a sheaf of Lie subalgebras of g. Given a formal power series ring R =

Cl[t1,- - -, tg]], with maximal ideal m = (t1,...,t;), we write gr = g ®c R and hr = h ®¢ R.

Definition 3.7. The sheaf of tropical vertex group over R on By is defined as the sheaf of
exponential groups exp(h ® m) which acts as automorphisms on hr and gg.
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3.2. Scattering diagrams in dimension two. Starting from this subsection, we fix once
and for all a rank 2 lattice M =2 7Z-e1 ®7Z ey, and its dual N = Z - &, B Z - &;. We take the
integral affine manifold By to be Ng = N ®z R, equipped By with coordinates x'&; + x2&,,
the standard metric g = (dz')? + (dz?)? and a B-field 3. We also write Mg = M ®zR. Then
we have the identifications

Xo 2 By x (Mg/M), Xy = By x (Ng/N).

There is also a natural identification M = By x M. We will denote the connected component
By x {m} by By,,. We equip M as well as the bundle TB§ with the metric 1A 'g from
By. We also denote the projection to By by pr : M — By. Notice that when we make the
identification pr : By, = By, the metric is deferred by a factor of %h_l.

As in Remark [2.12] we can fix zg = 0 € By,, = By and define

fm=—2m /Ox Sma(w + 1)

on each By,,. The gradient vector field VRe(f,,) on By, is independent of 4. Notice that
m.g gives a vector field on By and we have the identification —47mm.ag = V Re(f,).

Definition 3.8. A wall w is a triple (m, {,0) where m lies in M\ {0} and ¢ is a codimension
one closed subset of By of the form

E = T — Rzo(mJg),
or
0 =x9—R(mug)

for some xy € By. If  is a ray, we denote by Init(w) = xqy the initial point of w. With a
primitive n € N\{0} determined by (m,n) = 0 and the condition that (—m_g,n) is positively
oriented, © is a section of the tropical vertex group restricting to ¢ of the form

© €T (¢, exp ((Clw™] - w™) ®z (Z0,) ® m) |¢) = L'(¢,exp(h @ m)|,),
That means we can write © = exp(¢ @ 0,) for some
¢ € (Clw™] - w™) ® m.
Definition 3.9. A scattering diagram D is a set of walls {(mq, la, ©n)},, such that there are
only finitely many a’s with ¢ # 0 (mod mF) for every k € Z.,, where ©, = exp(gﬁa).
Given a scattering diagram D, we will define the support of D to be
supp(D) = U Uy,
weD
and the singular set of D to be
Sing(D) = |J 0w U |J tw Nlu,,
weD wirhwa

where wi M Wy means their intersection is 0-dimensional.
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3.3. Analytic continuation along paths. Given an embedded path
v :[0,1] = By \ Sing(D),

with (0),v(1) ¢ supp(D) and which intersects all the walls in D transversally, we can define
the analytic continuation along v as in [9] (which was called the path ordered product there).
It is a process of determining an element in the stalk

.,
0,1 = | Ow € exp(h ® m), (),

weD

if we prescribe the stalk at 7(0) to be ©,) = I € exp(h®m). ) and “analytically continue” it
toy(1). When =y crosses a wall w, we require a “jumping” phenomenon given by multiplication
by Oy

More precisely, for each k € Z,, we define 95(1) € exp(h ® (m/m*)), ) and let

O,1) = lim O,

k—+o0

For each k, there is a finite subset D* C D consisting of walls w with Oy # I (mod m**!),
We then have a sequence of real numbers

0:t0<t1<t2<~"<ts<ts+1:1

such that {v(t1),...,v(ts)} = v N supp(DF).

For each 0 < i < s+1, there are walls w; 1, ... w;,, in D* such that y(t;) € ;; = supp(w; ;).
Notice that we have dim(supp(w; ;) N supp(w;;)) = 1 which follows from the assumption that
7 is not hitting Sing(D). We define the element in the stalk exp(h @ m),,) by

k
G’Y(ti) = H @z‘;i,j’
j=1

where
o — 1 if <’}/(ti),ni7j> > 0,

7 -1 if (’y’(ti),n@ﬂ < 0.
This is well defined without prescribing the order since the elements Oy, ; are commuting
with each other.

For each i, we define inductively a holomorphic section
@[ti—l,ti] el ([ti*h ti]? ’771 eXp(h & m)
by requiring O 4,0 = I and

[ti—1.t:] )

@[t = @’Y(tz‘) © @[tiflzti},ti‘

itit1]sts

Finally, we let

6%) = Op, 15,1 (mod m" ).

Definition 3.10. Two scattering diagrams D and D are said to be equivalent if
@w(l):D = @7(1),®
for any embedded curve v such that analytic continuation is well defined for both D and D.
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Given a scattering diagram D, there is a unique representative from its equivalent class
which is minimal. First, we may remove those walls with trivial automorphism © as they
do not contribute to the analytic continuation along paths. Second, if two walls w; and ws
whose supports and directions coincide, we can simply take the multiplication © = ©; o Oy
and define a single wall w. After doing so, we obtain a minimal scattering diagram equivalent
to D. From now on, unless specified otherwise, we will always assume that every scattering
diagram is minimal.

The key combinatorial result concerning scattering diagrams is the following theorem from
[11]; we state it as in [9)].

Theorem 3.11 (Kontsevich and Soibelman [11]). Given a scattering diagram D, there ezists
a unique minimal scattering diagram S(D) D D given by adding walls supported on rays so
that

O =1
for any closed loop v such that analytic continuation along v is well defined.

A scattering diagram having this property is said to be monodromy free.

In the rest of this paper, we will restrict ourselves to the case where D is a scattering
diagram with walls w; and wy whose supports are lines passing through the origin. We have
the following definition of a standard scattering diagram.

Definition 3.12. A scattering diagram D is called standard if

o D consists of two walls {w; = (m;, {;,0;)},_, , whose supports {; are lines passing
through the origin,
e the dual lattice vectors my and mo are primitive, and
o fori=1,2,
¢i € (Clw™] - w™) @c (C[[t:]] - t:),

i.e. t; is the only formal variable in_the series expansion of &;. Here ¢; is defined by
©; = exp(¢p; ® Oy,) as in Definition .

When considering a standard scattering diagram, we can always restrict ourselves to the
power series ring R = C[[t1, ts]]. S(D) is obtained from D by adding walls supported on rays
starting at the origin. Furthermore, each of the wall added will have its dual lattice vector m
laying in the integral cone Z>om + Z>omy. We will end this section by giving two examples
of standard scattering diagrams from [9].

Example 3.13. We consider D with two walls w; with wall crossing factors ¢; ® 57% =
log(1 + ti(w))™") ® Op,, i = 1,2, as shown in Figure . The scattering diagram S(D) is
obtained by adding one wall wy 1, which is colored in red, to the original diagram D. If we
look at the loop ~v which is colored in blue in the figure, the analytic continuation along v is
given by

O0,1).5(0) = e 9100 o P20-e1 g PL10-c14es P10 o 6_¢28’61,

which is equal to the identity.
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; A
(o5} b

¢ _ f(oz;l);‘]}?glll))& o Wiy = (=1, =1 Rsg - (1,1), eP1%r2)
s = log(l +to(w

&
|

11 = log(1A4 tita(w'w?) ™)

J wp = ((*LO),R.(170)76&1(‘),,2)
ér = log(1+ti(w")™)

FIGURE 1.

€2

L.

Example 3.14. In this example, we consider the diagram D with two walls w; with the same
support as above, but different wall crossing factors ¢; @ O, = log(1 + t;(w")™1) ™2 ® 0,,, (see
Figure @) The diagram S(D) then has infinitely many walls. We have

L A
/rpz(‘),,,l)

Wy = ((07 71)7R . (07 1)7
s log(1 + ta(w?) ™)~

N

foy

J w; = ((-1,0),R- (170)76&18,,2)
5151 log(1 + tl(wl)—l)72

FIGURE 2.

€2

S(D)\D = U Wi k+1 U Witk U{Wi1},

k€Z~q k€Z~o

k+1

where the wall Wi 11 has dual lattice vector (k,k 4 1) € M supported on a ray of slope .

The wall crossing factor ¢p k+1 15 given by

Grpr1 = 2log(1 + A () (w?) D),
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and similarly for qZBHLk. The wall crossing factor associated to wy ;1 is given by

le,l =4 lOg(l — t1t2(w1w2)_1).

Interesting relations between these wall crossing factors and relative Gromov-Witten in-
variants of certain weighted projective planes were established in [9]. Indeed it is expected
that these automorphisms come from counting holomorphic disks on the mirror A-side, which
was conjectured by Fukaya [8] to be closely related to Witten-Morse theory. In the rest of
this paper, we will show how this can be made precise and proved.

4. SINGLE WALL DIAGRAMS AS DEFORMATIONS

In this section, we simply take the ring R = CJ[¢]] and consider a scattering diagram
with only one wall w = (—m,¢,0) where ¢ is a line passing through the origin. Writing
O =exp(p ® 0,), we let

(4.1) 6= > apw e,

j=1 k=1
where a;;, # 0 only for finitely many &’s for each fixed j. The line ¢ divides the base By = R?
into two half planes H, and H_, with 0., € H,. We are going to interpret ¢ ® 0, as a step
function like (distributional) section @g € Q%0(X, \ p~1¢, T)l(:)[[t]] of the form

. (Z; ® 0, on H,,
L W on H_,
and write down an ansatz e? x 0 = = = Z, € Q%Y(X,,T") (we will often drop the %

dependence in our notations) which represents a smoothing of e? % 0 (which is not well
defined itself), and show that the leading order expansion of ¢ is precisely ¢g as A — 0.

4.1. Ansatz corresponding to a wall. Suppose that we have a wall w = (—m, ¢, 0) as
above, we are going to use the Fourier transform F : KS%, — Ly, defined in Section [2.4] to
obtain = € Q' (M, T5,)[[t]], and perform all the computations on Lx,. Via the identification
T)l«(’0 — p*T'BE given in Section we use the notation 9, to stand for the vector /- > nj%.

0
As in Section , we write M =[]

mem Bom and define the Morse function f,, on each By,y,.

Definition 4.1. Fizing —m € M, we use orthonormal coordinates u'é; + u?éy for By with
the properties that €1 is parallel to mag and e is parallel to n, where n € N is the unique
primitive element such that (m,n) =0 and {mug,n} is positively oriented.

We consider a function of the form
1
A 2 7>\(u2)2
(4.2) Om = O = (%) e~ F o du?,
for some A € R, , having the property that ful:e 0_, = 1 for all ¢; this gives a smoothing of

the delta function of . We fix a cut off function xy = y(u?) satisfying y = 1 on ¢ and which
has compact support in U™ = {—e < u® < ¢} near ¢. Then we can also use 0_,;, = X0_n,
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which is supported near ¢, as our smoothing of a delta function. The following Figure
illustrates the situation.

FIGURE 3.

Remark 4.2. This is motivated by Witten-Morse theory where we regard the lines £ as stable
submanifolds corresponding to the Morse function Re(f_ym) (K € Zi) on By _kgm from a
critical point of index 1 at infinity, and

e_f—km(s_m
as the eigenform associated to that critical point. Adopting the notations from [1], we may

write g_m = Mu?)? and 6_,, = e_LTmu_m where fi_p, = (%)%dﬁ.

Definition 4.3. Given a dual lattice vector m € M, we let w™ = F(w™) € Q°(M, TBS) be
defined by

m e_fm on BOm7
(4.3) o _{ 0 otherwise.

It follows from the definition of the Fourier transform that
Fw™®9,) =n"® 0,
for any n € N.

Treating Q*(M, TBS) as a module over *(By), we can multiple to~™ by §_,, to make it
concentrated along ¢ to define delta function liked element =

Definition 4.4. Given a wall w = (m,(,0) with ¢ given as in [{@E.1)), we let

(4.4) E==) apd_m(w " @0,

Jk=1

be the ansatz corresponding to the wall crossing factor ¢.
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Proposition 4.5.
I
dw = +§ {:,:} =0,
i.e. = satisfies the Maurer-Cartan (MC) equation of the dgLa Lyx,.

Proof. Indeed we are going to show that both terms dw = and % {é , = } vanish.

We first show that dW(S_mm*’fman) = 0. Since dyy = e f*mVel-#m_ this is equivalent to

showing that d(d_,,) = 0, but this is clear from the construction.

Next we show that {S,mm_klman, 5,mm_k2m8n} = 0 for any kq, ko. This is simply due to

the fact that p_,, is a covariant constant form (with respect to the affine connection) and
hence

g_ g

{&mm”“m@n, Sfmm””man} =l A fhm {Xe’Tmm*’“man, Xe*%m*RZman} = 0.
O

Taking the inverse Fourier transform F, we see that F(Z) is a Maurer-Cartan element
in the Kodaira-Spencer dgla K Sy, . Since X, = (C*)? has no non-trivial deformations,

the element F (é’ ) must be gauge equivalent to 0. The same holds for = since the Fourier
transform gives an isomorphism of dgla’s.

4.2. Relation with the wall crossing factor ¢. We are going to write down a specific
solution to the equation

ady __ T 5
(4.5) f %0 = — (e—) dwep = =,

ad,,

for ¢ € Q°%M,TBS). We use the coordinates u',u? on By corresponding to the wall w
described above and define a homotopy retract of Q*(M,TBS) to its cohomology. Since
THS is a trivial flat bundle, it is enough to define a homotopy for Q*(M). Due to the

fact the M = H By .m, it is sufficient to define a homotopy for Q*(By), retracting to its

meZ?
cohomology H*(By) = C which is generated by constant functions on Bj.

Definition 4.6. Fizing a point (uj, u3) € By with uj, ui << 0 and letting

N (ud, 2tu? + (1 — 2t)u?) iftel0,3],
0w ) (1) = ((2t — Dul + (2 = 2t)ud,u?) ift € [1,1]

for any (u',u*) € By as shown in Fz'gure we define H : 0*(By) — Q*(By)[—1] by

i o, f@(ul e for a € QY(By),
(Haj(w', ') = f:; (La%oz(s,uQ)) ds for a € Q*(By).

We also let P : Q*(By) — H*(By) be the evaluation at the point (ub, u2) and i : H*(By) —
Q*(By) be the embedding of constant functions on By.
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FIGURE 4.

Proposition 4.7. H is a homotopy retract of Q*(By) onto its cohomology, i.e. we have
[ —iP=dH + Hd.

Definition 4.8. We fiz a base point ¢, 0 € B0 on each connected component By,,. We
choose orthonormal coordinates (ul,u2) on By, = By according to the lattice m € M and

we let (ud, u2) = gmo. We define the homotopy H,, = e~ mHef - Q*(By,m) — @ (Bom)[—1],

projection P,, = Pelm - Q*(Bom) — H*(By,,) and the inclusion t,, = e~ ™I, where H, P
and U are defined as in the above Deﬁm’tion using the coordinates (u',u?). They satisfy

]—LmOPm:dwﬂm—l—Hde
on Q*(Bom).
The homotopy and projection are extended to Q*(M,TBS) by applying H,,, and P,, on each
component of M, and they are denoted by H and P respectively.

Remark 4.9. We should impose a rapid decay assumption on Q*(M, TBS): fora € Q*(M,TBY),
we should have sup,,.)cr [91¥la(y)| = 0 as || = oo for all k € Z>q and compact K C By.

Therefore H*(M, TBS) refers to those locally constant functions (i.e. constant on each con-
nected component) satisfying the rapid decay assumption. Obviously the operators H, P and
L preserve this decay condition.

We will fix ¢, 0 to be the same point upon projecting to By with u << 0 such that the line
{u? = u2} is far away from the support of x. We impose the gauge fixing condition Py = 0,
or equivalently,

¢ = Hdwe
to solve the equation (4.5 order by order. This is possible because of the following lemma.

Lemma 4.10. Among solutions of e? x 0 = =2, there exists a unique one satisfying Py = 0

Proof. Notice that for any o = oy + 03 + - € Q*(M, TB)|[t]] - (t) with do = 0, we have
e? x 0 = 0, and hence e?*? x ) = = is still a solution for the same equation. With ¢ e o given
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by the Baker-Campbell-Hausdorff formula as
1
peo=ptotlpoit...,
we solve the equation P(¢ e o) = 0 order by order under the assumption that do = 0. 0

Under the gauge fixing condition Py = 0, we see that the unique solution to Equation
(4.5) can be found iteratively using the homotopy H. Writing ¢ = @1 + @2 + ..., the first

equation to solve is —dy; = él, which can be solved by taking

Y1 = —-H=.

The second equation is given by —dy s — %{901, deol} = 32, and we can use

oy = H(— S + {901,~1})

to solve it. Suppose we have ¢° = 1 + @3 + - - - 4+ @, solving the equation

a s k
- —d -1 dw® = — Z ad: dwe® =2 (mod t*+)
adw (k + ].)' ’

k>0

we would like to find ¢4, 1 such that @*t1 = 4+ - -+, solves the equation (4.5)) (mod #572).
We set

adk
(4.6) Ps+1 = =+ Z 0! dw ¢ ;
s+1

k>0

where the subscript means the ¢! coefficient in right-hand-side of the above equation.

Remark 4.11. Notice that

dW("—i_Z k1 )'de0> =0
s+1

k>0

and hence the operator H defined by integration along paths is independent of the paths chosen
upon applying to these terms.

Remark 4.12. We also observe that ¢s’s vanish on the components By, for those m’ #
—km. Furthermore, we can see that dyp,’s vanish outside the set pr='(supp(x)) inductively.

We are going to analyze the behavior of ¢ as h — 0, showing that F () has an asymptotic
expansion whose leading order term is exactly given by ¢o on Xy \ p~1(¢).

4.2.1. Semi-classical analysis for p. We will abbreviate 6_,, and d_,, simply as & and 0 in
this subsection if there is no confusion. As we mentioned in Remark the operator H,
when applying on closed 1-forms, can be replaced by the operator H given by

A 1 .2 f@(ul u2) @ forae Ql(BO)’
(4.7) (Ha)(u',u”) = { f:; <L o aful, 3)> ds for a € QQ(BO),

(Y ou?
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where 0,1 ,2) is the path given by

b ay(t) = { (720 P2l ) e )
= (2t =1y + 2= 20008) ift e (L1

We can express ¢; explicitly as

Zalk ( / : La(é)) o F"a,.

= [ i@= [ f(%)éue%) ~{ Gl fe® o B

we sce that F (1) have the desired asymptotic expansion with leading term given by g1,
the coefficient of ¢! in ¢y.

Since we have

Notations 4.13. We say a function f on an open subset U C By belongs to Oy (R') if it is
bounded by Crh! for some constant (independent of h) Ck on every compact subset K C U.

Next we consider the second term 5. Notice that {m_klmﬁn, m_’”m&n} = 0 for all positive
k1, ko. Therefore we have

(4.8) {‘Plaél} = = > a1, [(H)(V,6) — 6(V, (HS)) o~ F1H5mg,
k1,k2

We investigate terms by terms the order in 7. First, notice that |H6| < 2 while

N A~ - aln -
H(HE)V,0) = ™ '\ .

D\‘\

< cﬁl/Q\/ (V o,e7h

< COhrY2

This follows from the fact that Vg_,, vanishes along ¢ up to first order, which gives an extra

order A'/? of vanishing upon integrating against e~ #. Similar, we can show that
[ (3(Va, (113)) ) | < CRM2,

Therefore we have

Yo = ZGQk(ﬁg)m_kman + Z Cllkla1k2oloc(ﬁ1/2)m—(k1+k32)man

k k1,ko
Zk Qoo 8 + ®k>1 Oloc(hl/2)m kma on pril(H-&-)a
@k>1 OIOC(ﬁl/z) kma on pr-'(H_).

Here the notation @k21 Oroe(h?)r07Fm(, stands for a finite sum of terms of the form

oo 0, with ¢ € Ope(h/?) on the corresponding open subsets. We are going to argue
that this also holds true for general . To study the order of A in derivatives of the function
e~ #, we need the stationary phase approximation.
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Lemma 4.14. Let U C R"™ be an open neighborhood of 0 with coordinates x1,...,x,. Let
@ : U — Rsq be a Morse function with unique minimum ¢(0) =0 in U. Let Zy,...,%, be a
set of Morse coordinates near O such that

2

pla) = 5 (@ 4+ 7).

For every compact subset K C U, there exists a constant C = Cg n such that for every
u € C*(U) with supp(u) C K, we have

No1 g

([ e = (2my (3 S A EI0)

k=0

(4.9) < CHY/*N Z sup |0%ul,
o] <2N+n+1
where , )
A=) 8%, = idet(%),
and 3(0) = (det V2 (0))Y/2.
In particular, if w vanishes at 0 up to order L, then we can take N = [L/2] and get

| / e P hy| < CR/2HIL]
K

Lemma 4.15. We have the norm estimate

ul=a

for any j, k € Z>o and arbitrary a € R.

Proof. First we notice that V’(e~9/") consists of terms of the form
N
ﬁ_N (H(Vszg)) e—g/ii’
i=1
where ) . s; = j. We see that
N
V! (H(Wg)) lfu2—0} = 0,
i=1
for I < 32N max(0,2 — s;) =: L. We observe that the terms with the lowest 7 power are

either of the form fi~1"2"] H}iﬁ J(Vs"g)e_g/ﬁ having s; < 2, or of the form i~/ [[1_,(V*ig)e=9/"
having s; = 1. In both cases, applying the stationary phase approximation in Lemma [4.14]

we obtain
1
ul=a

for arbitrary a. O
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Motivated by the above lemma, we consider a filtration
. CF*C..F'CcF'CF'CcF*Cc---CFC---CC™By)

of the space of smooth functions on B, and derive some properties of these functions. Fixing
a real number uZ, we have the following definition.

Definition 4.16. A smooth function ¢ is in F* if for any compact subset K C By, real
number a € R and any j,k € Z,, we have $ =0 on R x (ud — €, u? + €) and

its

HVJ¢||L2k K, S Cjzszhi 2
(Ka)

1
2FFT
where K, = K N{u' = a}.

So Lemma says that e=9/" € FO.

Proposition 4.17. We have VF® C F** and F*-F" C F™*, where - denotes multiplication
of functions.

Proof. The first property is trivial. For the relation F* - F" C F""* we fix j € Z, and a
compact subset K. For ¢ € F" and ¢ € F*, we first observe that

V(gw) = Y (Vo) @ (V'0).
k4l=j
Then the Holder inequality implies that
[(756) @ (V) gy < CIT s g |7 o

ks, 1 lbr 1
Oh~ "2 Tobrz . = 2 Tokrz

IN

Jjtrts

Ch™ 2 +2k%
and the result follows. O

IN

It is straightforward to extend the definition of F*(Q2*(By)) to differential forms Q*(By)
and differential forms with values in TBS. Notice that we work on the base By and use the
metric g = (dz')? + (dx?)? which is independent of # in defining these filtrations.

Lemma 4.18. Given constant vector fields v, vy € T'(Bo, TBE), ¢ € F*(QY(By)) and ¢ €
F"(QY(By)), we have

(H¢) @ v1,9 @ vy € F™(QY(By, TBY)),
where [-,-] is the Lie bracket structure on Q*(By, TBY).

Proof. First of all, we have

[(H) @ 1,9 @ va] = (HY)(Vo,¥)) @ v = Vo, (HY) @ 01,
so we may consider the functions (H¢)(V,,v) and ¥V, (H¢) separately. Fixing k,l € Z
such that k£ + 1 = j, we consider terms of the form

Ve (HO)V'y (Vo).

or terms of the form

V' (Vo HO)V'o (Vu,¥),

ou
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with £ > 1, where —~ can either be 1 or a =Z. Since we have V 2, H ¢ = ¢ so the second case

follows from the previous Lemma 4.15. For the first case, we have V¥, (H¢) = (V’C gb)

ul

and hence

1 1
R : ot R : ot
([ 1 o9, () < 1T dllmie ([ 9 Fu )’
< C hts | ;h_ L+T2+1+2t1+1
< Ch” B
The argument for the term 'V, (H¢) is similar. O

Now we go back to the semi-classical analysis of ¢. We will inductively show that the term

o (Z adfzs J S)
w® )
= (k+1)! .

does not contribute to the leading h order term in the definition of 41 given by Equation
(L.6).
Lemma 4.19. For k > 0, we have
dWSO @ FO 7lma )
7,0>1

for all s. Here @, -, F*(Q'(By)) - (="Mt is a finite sum of terms defined by viewing
O (M, TB§) as a module over Q*(By) .

Proof. We proof the above statement by induction on s. The first case is when s = 1, which
concerns the term adl, (dw 1) = —adf, (Z1). From the equation (48], the case for k = 1 is
equivalent to

(H0)(Va,0) — (Yo, (Hd)) € FO(Q'(By)).
Notice that we have

h|n| 0 0 . < .~
HO® =——,0 ® —| = (Ho J)—9 H§
Mli5 e o 5@ ) = (H)(Va,5) — 5(Va, (H7),
where [, -] is the Lie bracket for By. Therefore the case k = 1 follows from Lemma and
the fact that 6 € F(QY(By)). For k > 2, we can apply Lemma and an induction on k.

Assuming it is true for all [ < s, we first notice that

deOSJrl:—( +Z k—i— )'deO> E@Fl —lm@)
s+1

k>0 §i>1

Therefore we have

e @PH (FHQ(By))) - (0", )t

=1

Applying Lemma again, we obtain the desired result. O
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From Lemma [4.19, we see that
(4.10) oo =—H=, + P H (F(Q'(By))) - (v "™0,)

>1
for all s. For ¢ € FO(Q(By)), we have ||H(¢)||pex) < #iz for an arbitrary compact subset

K C By. Therefore only the term — HZ=, contributes to the leading order in 4. As a conclusion,
we have the following proposition.

Proposition 4.20. For ¢ = @1 + ps + ... defined by the equation (4.6)), we have

. Zk askm_kman + @kZI Oloc(ﬁl/Q)m_kman on pr_l(H+)>
Ps = Dix Otoe (B ?)r0=km o, on pr~Y(H_),

or equivalently

]}(90) = ¢+ @ Oloc(ﬁl/Z)(w_kmén)tjv

k,j=1

% <1
on Xo\ p~'(¥).
5. MAURER-CARTAN SOLUTIONS AND SCATTERING

In this section, we are going to interpret the scattering process, which produces the mon-
odromy free diagram S(D) from a standard scattering diagram D consisting of two non-
parallel walls in the affine manifold By = R?, as solving a Maurer-Cartan (MC) equation.
This is done by considering the MC equation in the Kodaira-Spencer dgla K Sk, , or equiva-
lently the mirror dgla Lx,, and then letting X, degenerate to its large complex structure limit
by sending the parameter A — 0 to obtain a semi-classical approximation for the solution.

5.1. Solving Maurer-Cartan equations in general. Since we are concerned with solving
the Maurer-Cartan equation for a dgla (L,d,[-,:]) over the formal power series ring
R, we can solve the non-linear equation by solving linear equations inductively. We use
Kuranishi’s method which solves the MC equation with the help of a homotopy retracting L*
to its cohomology H*(L) that acts as gauge fixing; see e.g. [14].

Suppose we are given initial data

satisfying d= = 0, where = € L2 ® (m* /m**1) is homogeneous of degree k. We attempt to
find

—

::EQ+E3+...
such that
=0, +Dy+...,

defined by @, = =, + 5 € L2 @ (m*/m**1), is a solution of the MC equation (2.2), i.e.
1
dd + 5[@,@] =0.
This equation can be solved inductively. The first equation

1 o
dd + §[<I>,<I>] =0 (mod m?*) <= d=; =0
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is automatic. Writing ®* = &, + &, + --- + &, and suppose it satisfies
1
dd* + 5[@’“, ¥ = 0 (mod m"™),

we let

1
dor + 5[@’2 ®*] = D441 (mod m*2).

Solving the MC equation for degree k + 1 is same as solving
(5.1) dZ4i1 + Oper = 0.
We first observe that dOy.; = 0 since
Ay = [ddF, oF)
(D, D] — %[[cpk, B*), B4 = 0 (mod m*+?).

Therefore we can solve the MC equation for degree k£ + 1 if and only if the k-th obstruction
class defined by Oy, in H'(L, d) vanishes.

The solutions =, for the equation (5.1) may differ by a d-closed element in L'. This
ambiguity can be fixed by choosing a homotopy retract of L to its cohomology H*(L). We
assume that there are chain maps ¢, P and homotopy H

-~
P

H*(L)/&L*Q H,

such that
Por = 1id,
idr, —toP = dH+ Hd.
Then, instead of the MC equation, we look for solutions ¢ of the equation

.1
(5.2) ¢ == - SH[®,9].

Proposition 5.1. Suppose that ® satisfies the equation (5.2). Then ® satisfies the MC
equation (2.2) if and only if P|®, ®] = 0.

Proof. Applying d on both sides of Equation ({5.2]), we obtain

dd + %[@, d) = %(Hd[d), D] + 10 P[D, B]).

Suppose that ® satisfies the MC equation. Then we see that d[®, ®] = —[[®, ]|, ] = 0 and
hence P[®, @] = 0.

For the converse, we let § = d® + 1[®, ®]. It follows from the assumption P[®, ®] = 0 that
d = H[dD,®] = H[§, D] = (H o ads)™(9)

for any m € Z,. Then by the fact that & € L ® m, we have 6 = 0 (mod m™) by comparing
the lowest order term. O
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Now we look at the equation ([5.2)

1
E—|—§H[<I>,¢>] =0,
and try to solve it order by order. The first equation is simply ®; = =, and the second

equation is

— 1 ~ =
=9 + EH[:l’ :1] =0.
The k-th equation is
_ 1
(5.3) St Y S HI[2;. 2] =0,
j+i=k

and Zj, is uniquely determined by the previous =j’s.

Remark 5.2. For a compact complexr manifold X equipped with a Hermitian metric, an
explicit homotopy for its Kodaira-Spencer dglLa KSy = (QO’*(X,T}(’O),& [-,:]) is given as
follows. The Hermitian metric define 0* and the corresponding Green’s operator G for Ag.
We can then take H*(KSy) = HO’*()V(,T;{’O) to be the space of harmonic forms, and let v be

the natural embedding and P be the harmonic projection. The homotopy operator is explicitly
gwen by H = 0*G.

In the case = = =) € HO’*(X,T}(’O) and P|®,®] = 0, we can solve the MC' equation by
iteratively solving . It can further be shown, using elliptic estimates, that the formal
power series in t;’s we obtained indeed converges for small enough t;’s. This was originally
due to M. Kuranishi; for details, we refer the reader to [14].

There is also a combinatorial way to write down the solution = from the input = in terms
of summing over trees.

Definition 5.3. A directed trivalent planar k-tree, or just k-tree, T' is an embedded trivalent
(i.e. every vertex is trivalent, having two incoming edges and one out-going edge) tree in R?
together with the following data:

a finite set of vertices V(T),

a set of internal edges E(T),

k semi-infinite incoming edges E;,(T), and
one semi-infinite outgoing edge €,y;.

Given a directed trivalent planar k-tree T', we define an operation
oo L¥* — L1 — K],
by

(1) aligning the inputs at the k semi-infinite incoming edges,

(2) applying the Lie bracket [-, -] to each interior vertex, and

(3) applying the homotopy operator —%H to each internal edge and the outgoing semi-
infinite edge €,y;.
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We then let

[, = Z bk, 7,
T

where the summation is over all directed trivalent planar k-trees. Finally if we define ¢ by

(5.4) =) L(Z,....5),

and = by

(5.5) E=) W(E,....5),

then ® = = + = is the unique solution to Equation (5.2).

5.2. Solving the Maurer-Cartan equation with two walls. Suppose that we have a
standard scattering diagram D over R = C[[t;, t5]], consisting of two non-parallel walls in R?
intersecting transversally at the origin and equipped with the wall data w; = (—m;, {;, ©;)
such that {m;.g, myog} is positively oriented according to orientation of By. We abbreviate
O—mys 5_m1, J—m;y M—m, and U_,,, as d;, o, gi, Wi and Uj; respectwely, with &; compactly
supported in U; D ¢;. Assume that the wall crossing factors gbl are of the form

ZZ allwmitl i =1,2.

7=1 k=1

We apply the ansatz
20— 3 i,
Jk=>1
as in Definition Then we solve the MC equation of the dgLa (Lx,,dw,{-,-}) with the

input data
===04=20

by applying the process described in the previous Section [5.1] Notice that the two walls
divide By into 4 quadrants as shown in Figure [5], in order to define the homotopy, we choose

FIGURE 5.

the base point g, in Definition to be lying in the third quadrant and sitting far away
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from the origin. Writing ® = = + = as before, the terms in = are determined iteratively by
Equation ([5.3]).

Now, because of the fact that X has no non-trivial deformations of complex structure, the
solution ® must be gauge equivalent to 0, i.e. there exists ¢ € Q°(M, TBf) ® m solving the
equation e¥ x 0 = ®. Our goal in this section is to show that the semi-classical limit of
determines the scattering diagram S(D).

First of all, for the purpose of solving the MC equation with our specific input as above,
we can restrict ourself to a differential graded Lie subalgebra of Q*(M, T Bf).

Definition 5.4. We let
£y= P £ QM TBf),
aG(ZEO)fwim
where mg = a'my + a*my for a = (a*, a®) and
£=D DB (wma,).
i=1,2 k>1

defined using the module structure of Q*(M,TBS) over Q*(By). Here n; is the unique prim-
itive vector normal to m;ag such that {m;.g,n;} is positively oriented.

Restricting to £3,, we find that the Lie bracket {-, -} can be explicitly written in terms of
the usual differentiation on the base Bj.

Definition 5.5. For a = }_, fiwo~kimeg, e L% and B = Y, gro ™9, € L, we can
decompose the Lie bracket {-,-} into three operators i, § and b given by
e, B) = > frg{w ™m0, whma, ),
4l
i, 8) = > fi(Va, g~ lamathmlg,
4l
b, B) = (_1)fj+§z+1 Zgl<vam fj)m*(kjmaJrkzmb)anj.
4l
Definition 5.6. We further consider an Q*(By)-submodule h of £% defined by
b, = P (Bo) - (07 0,,) > £,
k>1
where n, € m: C N is the unique normal vector determine by m, and the orientation. We
let
hy= € h.
aE(ZZO)irim
Note that hi (for any a) and h}, are closed under the operation .
We will also decompose the operation [; as a summation over colored k-trees.

Definition 5.7. A colored k-tree T is a k-tree together with a labeling of the internal vertices
by b, 4 orb.
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Definition 5.8. Given a colored k-tree T, we define the corresponding operator
o7 L®% — L[1 — K],
by
(1) aligning the inputs at the k semi-infinite incoming edges,
(2) applying the operators 4, § orb to each interior vertex according to the color, and
(3)

3) applying the homotopy operator —%H to each internal edge and the outgoing semi-
infinite edge.

We separate the set of colored k-trees CF into C§ and C¥, where CE consisting of trees having
all vertices colored by f§ and C} = CF\ Ck. We let o = ZTec’g 7 and [, = ZTEC? (.7
Therefore, we can decompose the solution to the MC equation in the following way.

Definition 5.9. Given the input = = =0 4 =@ we define

0= LolZ,....5)= ) 0V

k21 G’E(ZZO)irim

with 2@ € h[[t;,t,]] and

R=> La(Z,....5)= > R,

k>2 a€(Zxo)

2
prim

with R € £%[[t1,1,]]. Notice that we have Q0 = =2 gpd QOD) = =@ and also
o=0+R.

Fixing an arbitrary Ny € Z,, we are going to show that ® (mod m”™°*!) determines the
scattering diagram S(D) (mod m™*!) (denoted by Sy, (D)), by associating each £2( to a
wall w, supported on the ray ¢, = R>q - (m,g) and determining the wall crossing factor 6,
(6, may be trivial) from the asymptotic expansion of £2(*). We prove this correspondence by
showing that the Maurer-Cartan equation (mod m™°*!) implies that the scattering diagram
{ma, o, O4}4 is a monodromy free scattering diagram and hence must be equivalent to Sy, (D)
by the uniqueness Theorem [3.11}

To relate £2(9 with the wall crossing factor ©,, we remove a closed ball B(ry,) centered
at the origin and consider the annulus A = By \ B(ry,) to study the monodromy around
it. We use the polar coordinate (r,8) on the universal cover A, which is isomorphic to
a half plane. We fix once and for all 6, such that the ray Ry, is in the third quadrant
(determined by the walls w1, wy), with a neighborhood defined by {6 | 6y — ¢y < 0 < 0y + €0}
away from all the possible walls w, as shown in Figure [f] We will restrict ourself to the
branch flo = {0 |6y — € <0 <by+ 27+ €} when we investigate the monodromy around

the origin.

With the natural map p : A — By \ B(ry,), we consider the pullback dgLa f&o =
Q*(M, p*(TBS)), where M = MWXPA >~ Ax M = e A,,, equipped naturally with
the pullback of the Witten differential dy, and the Lie bracket {-,-}.

Since p : le% By \ B(ry,) is a covering, we can pullback the element 2(* and R® to A
as 219 and R respectively. Choosing 7y, large enough, we can divide supp(£2(19)) and
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FIGURE 6.

supp(2(®D)) which originally lie in small neighborhood of w; and wy respectively, into two
components in A. Therefore we can decompose p*2(19) (resp. p*2(01)) ag ((1.0) 4 (=10
(resp. QO 1 RUO-D)) " with Q) and 2(-19) supported near p~'(Rsg - m1g) and

“(Rsg - —myg) (similarly for 201 and 2(©=1)) We can therefore unify our notations
by allowing a € (Zx)3,;,,U{(—1,0), (0, =1)}, and using the convention that m_y 0y = m,0) =
my and m _1) = m,1) = My.

Furthermore, we note that there are only finitely many a’s involved when we modulo
m™°*t! and we denote the set of those a’s by Ray(Ny). For each a € Ray(Ny), we let
0, € Ay = {0160y — €y <0 <0by+2m+ ¢} be the direction of the ray determined by a.
We will see that {2 +R® Q@ 4+ R} =0, and dy (2@ + R@) = 0 (mod m™*') on
pr—1(A) in the following Lemma whose proof will be given in Section [5.4}

Lemma 5.10. For each Ny, there exist ry, large enough and €y, such that
dw (29 + RW) =0 = {2@W + R 2@ + RW} (mod m™*),

on A. Furthermore, for Wy = {(r,0) | 0, — en, + 2km < 0, < 8, + en, + 2kn} defined for
each ray a € Ray(Ny) and integer k € Z which are disjoint from each others, we have

supp(2Y) U supp(R U War  (mod m™T),
keZ

Figure E shows the situation for an a € Ray(Ny) on the branch Ay.
This means that 2(® +R(® is itself a Maurer-Cartan element and hence is gauge equivalent
to 0 via some gauge @, € (M, p*TBS) (mod m™+1) on the universal cover A, i.e.
e? %0 =09 +R@ (mod m™+h).

To find ¢,, we first define the homotopy operator H on L X, similar to that in Definition .
We fix a base point (79, 6) € A, and define a path 9,

R 1 — 2t)rg + 2tr, b, if t € [0, 3],
Oy (t) = { EE«, (2t —>1)9 +(2- )275)90) ift e é, 1}

for any given point (r, ) € A. We define a homotopy on A similar to that in Definition .
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FIGURE 7.

Definition 5.11. We define H : *(A) — Q*(A)[—1] by
fé(ne a for a € QY(A),
f:ﬂ (Laaga(r, s)) ds for a € Q*(A).

We also let P : Q*(A) — H*(A) be the evaluation at (ro,0p) and i : H*(A) — Q*(A)
embedding of constant functions on A.

(5.6) (Ho)(r,0) =

Definition 5.12. Fizing a point g0 € A, mapping to (ro,6y) via p, and treating f,, :
A — C, we define the homotopy H,, = e ImHelm + Q*(A,) — Q*(A,)[-1], projection
P, = Pelm : Q*(A,) — H*(An) and the inclusion i, = e ™i. They are extended to

Q*(./\;l,p*TBf)C) as H and P by applying H,, and P,, on each component of M.
Definition 5.13. We let ¢, be the gauge associated to 2% by solving the following equation

iteratively

~ady,
Pa = _H(ead%’a _7J

under the gauge fizing condition P(p,) = 0 (mod mNoT1).

)(fZ(“) + 7~€(“)) (mod m”™°*1),

Lemma 5.14. We have
e c@ D o (o0 (mod o)

=12 k>1
Ji1+j2<No
when restricted to Ao\ Uyey, Waks i.€. ¢ (mod m™o*1) has locally constant coefficients (only

depend on h) away from supp(£2) U supp(R\®). Here the notation C, stands for complex
numbers depending only on h.

Proof. Since 2® +R® (mod m™*!) is a Maurer-Cartan element in L x,® (m/m™o*1) which
is known to be gauge equivalent to 0 (mod m™ ™) we have

w(—=—22) (2@ + R@) =0 (mod m™*1),
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under the gauge fixing condition. The homotopy operator # defined by a path integral of
1-forms is independent of the path chosen when applying to solve for ¢, iteratively. For two
point ¢, ¢ in the same component of A \ Uiez Wak, Wwe can join them by a path g, C
A\U yez Wak 50 that o' 0 0g 4 0 04 gives a closed loop in A. Therefore we see that the value
of the path integral is the same at ¢ and ¢’ when applied to a closed form, since integral on
0q,q 8lVES zero. U

We will see later that R(® is in fact redundant and we can simply solve the linear equation
Yo = —H(2)  (mod m™ot?)
when we restrict our attention to the leading order terms of ¢, in A. We will define a filtration
- CF*C..F'CF'CF'CcF*c---CcFC---CQ(4)
of Q*(A) similar to that in Definition m

Definition 5.15. A smooth form o € Q*(fl) is in FS if for any compact subset K C A, real
number a € R and any j, k € Z, it satisfies « =0 on {0 | 6y —eg < 0 < 0y + €} and

||Vja||L2k (Ka) S Cjk’Kﬁ*jgerﬁ’

where K, = KN {r =a}.
Lemma 5.16. We have
20e @ FUQA) (w0, )6 (mod mH),

E>1
Jj1+72<No

and
ROe@ @ FUQA)- (v 0,)8 8 (mod m™+).

=12  k>1
J1+72<No

Therefore, we deduce that
o= AN+ P P H(FOA)) - (om0, )t (mod m™*),

i=1,2  k>1
J1+j2<No

Furthermore, it can be shown that the asymptotic expansion of —?:[(fZ(a)), and hence ¢,
takes a special form.

Lemma 5.17. There exists constant bﬁ) € C independent of h, with bﬁ) # 0 for finitely
many k’s for each fized j, such that

—H(2) = lpap + @ @ Ooc(BY?) - (0™Fmag, VI 2 (mod m™+1),
=12 k>1
J1+72<No

on the branch (0, + 2(l — 1)m + €ng, 0, + 20T — €, ), where
Pao =Y b0 7Fmeg, NP (mod mNotY).

k>1
Jj1+j2<No
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The proofs of Lemmas [5.16] and [5.17], which involve careful estimates of the order of & in
asymptotic expansions and is done by lengthy analysis, will be postponed to Section

5.3. Main theorems. We are now ready to prove our main theorems, namely, Theorems
and [1.2] We first recall some notations in Section [5.2] We consider the annulus A = By \
B(ry,) for some 7y, together with its universal cover p : A — A with coordinates (r,8). We
fix an angle § such that £ is irrational and take the branch Ay ={(r,0) | 6y < 0 < 6y +27}.
We define M = Mx Bofl which is equipped with the natural map p : M = M (by abuse
the notation p if there is no confusion). As before, we consider the formal power series ring
C[[t1, t2]] with its maximal ideal m = (¢, t2).

We use Ray = (Z?)pim to parametrize the rays with rational slopes emitted from the
origin. Similar to Definitions [5.4] and [5.6] we define

e P - P (PPUA (v,

a€(Z?)prim a€(Z2)prim nEL2 k>1
and ~ )
= P b= P (PrA-w™a,)
a€(Z?)prim a€(Z2)prim  k>1

on M as modules over Q*(A). Making use of the filtration F* on Q*(A), we can define a
filtration

CCFT(L) C. L FTY L) CFU L) Cc FYE) CFY £ C--CF3(£)C---C £

a

on £*, and a filtration

CCFMmY) c...F'(h) c F'(h) c F(h*) Cc F*(h}) C---C F*(h}) C--- C h}
on flz. These filtrations will be used to describe the asymptotic order of A.

Given a finite subset Ray(Ny) C Ray, we restrict our attention to those elements in
QY(M, TBY) ® m which have asymptotic support on Ray(Ny). To give a precise definition
to these elements, we consider disjoint open neighborhoods W, ;. of each ray ¢, € Ray(Ny),
or more precisely, the pre-image p~*(/,) as in Lemma . Without loss of generality, we
assume that the ray with angle 6, is not contained in any of W, ’s.

Definition 5.18. An element ® € QY(M,TBES) ® m is said to have asymptotic support on

Ray(Ny) (mod m™*1) if we can find ry, > 0, a collection of small enough open neighborhoods
{War} and write

p(P) = Z (Q(“) + 7@(@)) (mod m™ot1)

a€Ray(Noy)

on M = /\;ITNO with each individual summand 2@ + R satisfying the Maurer-Cartan
equation, such that

supp(2Y) U supp(R U War (mod m™T),
keZ

QW e F'(h;), R e Fo(£:) (mod m™+h),
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and the asymptotic expansion

—H(2) = a0+ @ Oloe(AY?) - (0™Fmag, V11422 (mod m™oT1)

E>1
J1+j2<No

holds on M XBO A \ UkeZ aks With ©q0 € h? independent of h, where n, 1 m, is defined in
Definition |5.6| and H is the homotopy operator in Deﬁmtwn “ 1| (we choose a based point
(ro,00) by taking ro large enough).

Definition 5.19. Given an increasing set of subsets of rays { Ray(No)}noez-,, we say that
® has asymptotic support on {Ray(No)}nyez-, if it has asymptotic support on Ray(Ny) for
each Nj.

Now it is not hard to see that a scattering diagram D(®) with support on | J, UéaeRay(No) l,
can be associated to those elements ® having asymptotic support on { Ray(No) } nyez.,- More
precisely, this is done by defining D(®) (mod m™*!) and letting Ny — oo. Fixing Ny and
given ¢, € Ray(Np), we use the angular coordinate 6, to record the pre-image of the ray
{, lying in the branch 1210. We use W,y C 1210 to denote the open set containing ¢,. From
Definition [5.18 we can write

Yoo =Y bW (rw07Fmg, 12 (mod mMotY)
k>1
J1+j2<No

on A \ Wy, for some constant bgak) independent of .

Definition 5.20. The wall w, with wall crossing factor ©, = exp((ﬁa & 3%) supported on £,
is defined by the equation

Go ® O, = Z b§ak) (wkmad, Y = f(SOa,o) (mod m™o*1),
k>1
J1+32<No

when Ny runs through Z-.

Similar to [9] or Section [3.3] we consider an anti-clockwise loop 7 around the origin with
v(0) = v(1) = (1,6p). The following theorem is one of the key observations of this paper,
relating Maurer-Cartan elements to monodromy free scattering diagram.

Theorem 5.21 (:Theorem. If® € Q" (M, TBS)®m is a solution to the Maurer-Cartan
equation (2.2)) having asymptotic support on {Ray(No)}nyez~,, then the associated D(P) is
a monodromy free scattering diagram, i.e. the followmg identity

ND(@) = H 0, =1,

wqe€D(P)

holds for a path ordered product HWQ@(@) O, defined in Section .

Proof. 1t is enough to fix an integer Ny and show that @(@) is a monodromy free diagram
for each Ny. From the fact that all deformations in Q*(M, p*T'BY) are trivial, we can write

e?r %0 =0+ RYD  (mod m™*)
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as in Definition making use of the homotopy operators # defined in Definition and
the corresponding projection P (we choose a based point (rg,0y) by taking ry large enough).

We first show that
N

H e?* =id (mod m™*1)
La€Ray(No)
which can simply be interpreted to be an ordered product, and then obtain our result by
taking the leading order terms of the asymptotic expansion.

We first observe that

vy
[T ex0= Y (29+R®) (mod m™),
Lo € Ray(Nop) a€Ray(No)

on the branch A,. Since W,o's are disjoint from each others, the supports supp(fZ(“)) U
supp(R@) (mod m™*1) on the branch Ay are disjoint for different a’s, and ¢, = 0 in the
region {0 | 0 < 0, — en,} N Ag. Therefore we have

{(pa2, Q) ﬁ(al)} =0 (mod m™*)

for 0,, < 6,, in 1210, and hence
ez 5 () 4 R)) = (e2) 4 Rw2) 4 @) L R (mod m™ ™)

in Ag. We obtain the above observation by applying this argument repeatedly according to
the anti-clockwise ordering.

Since ® is a Maurer-Cartan element in L% , we have ® = ¥ x 0 as all deformations
of L%, are trivial. We can use the homotopy H in Definition with base point ¢,
satisfying pr(gmo) = p(ro, ), to solve for the gauge e¥ * 0 = ®, subject to the condition
that P(¢) = ©(gmo) = 0. We can further pullback ¢ to M using the covering map p so that
it satisfies P(p*(¢)) = 0 for P defined on M in a similar fashion. Therefore, we have the
relation

v
e_P*(SD) H GSOa * 0 — 0 (HlOd mNo-‘rl)’
Lo, € Ray(No)
o
on Ay, which implies that e? (¥) = H e?s on A (mod m™*1). As a result, we see that
Lo €Ray(No)
N
the term H e?* (mod m™°*™!) is monodromy free.
La€Ray(No)
Now we have the equation
v
H e?* = I (mod m”™*)
Lo €Ray(No)

on AgN {(r,0) | o + 21 — €N, < 0} disjoint from UZaeRay(No) Wa,0. From Definition |5.18] we

can argue that ¢, depends only on % on Ay \ U, Ray(vg) Wao using similar arguments as in
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Lemma [5.10p. Writing ¢, = @40 + 0, 01 Ay \ UfaeRay(No) W0, where

e @ @ O (-0, (mod m
=12 k>1
J1+j2<No

(Here the notation O(#!/?) refers to those constants depending only on % which bounded by
h'/2.) we can extract the leading order terms ©q,0 by choosing f small enough to obtain

-
H e#0 = (mod m™*1)
éaeRay(NO)
as desired, using the explicit Baker-Campbell-Hausdorff formula. O

Combining Lemmas [5.10}, |5.16}, [5.17| and Theorem [5.21], we obtain our main result.

Theorem 5.22 (=Theorem [1.2). The Maurer-Cartan element ®, defined by summing over
trees as in Deﬁm'tion has asymptotic support on some increasing set { Ray(No) }nyez-, Of
subsets of rays. Furthermore, the associated D(P) gives the unique (by passing to a minimal

scattering diagram if necessary) monodromy free extension of the diagram consisting of two
walls w;’s determined by Theorem [3.11]

Proof. We use notations from Section [5.2] parametrizing the rays in the first quadrant using
(Z50)3yim and the rays coming from the two initial walls w;’s using {(£1,0), (0,£1)}. In view
of Lemmas [5.10] [5.16], [.17] and Theorem [5.21], we already know that D(®) is a monodromy
free scattering diagram consisting of rays parametrized by (Zso)2,, U {(£1,0), (0, £1)}. Tt
suffices to show the wall crossing factors associated to initial walls constructed from ® agree

with the given ©,’s, i.e. to show the identities
O10) = 01", Open =637

This can be done as in the single wall case, using results from Section [4.2.1| with straightfor-
ward modifications. O

5.4. Semi-classical analysis for integral operators associated to trees. We will give
the proofs of Lemmas [5.10], [5.16| and [5.17] in this section.

We need to investigate the operation [ 7 associated to a colored tree 7. Fixing a colored
tree T, we consider terms of the form

(57) [kﬂ’(gjlm_llmjl anjla ey Sjkm_lkmjk 8njk)
where js =0, 1.

Notations 5.23. We can attach an element p.ro~"<0,, to each edge e inductively along the
tree T, with n, € N in the following way. With two incoming edges e1, ex and one outgoing
edge es at a vertex v such that e1, es, e5 being clockwise oriented, we let ™ ™es = o~ (Mertmes)
and

0 if v is colored with f,

(Meys Mey)One, — (Meys My )Op,,  if v is colored with 4,
ane Ne
’ { 0,1; if v is colored with b.
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The form pe, € QV*(By) is defined accordingly so that pe,to~"s On,, s the term obtained after
taking operation at the edge e3.

We observe that the differential form p, satisfies the property that ¢, 4pe = 0 by the
definition of the homotopy operator in Definition [4.8] Therefore if we have two incoming
edges ey, es at v such that m,, is parallel to m.,, we can see that p., A pe,, pe; A Vpe, and
V pe, N\ pe, all vanish. Therefore we can always assume that m., is not parallel to m,, to avoid
trivial operations.

Assuming the non-trivial situation, we can then associate a ball B(r,) centered at origin to
each vertex v, such that supp(pe,) N supp(pe,) C B(r,), where e, e5 are the incoming edges
at v. For the outgoing edge e at v, we have supp(pe,) C B(r,) + Rxg - me, g since the
homotopy operator applying to fto~"s is defined by integration along the vector field m., g
to its coefficient function f € C*(By).

Proof of Lemmal[5.10. For each of the terms involved in order (mod m™°*!)  we consider
the support of its coefficient p. attached to an edge along a tree 7. Suppose v, is the
root vertex of the tree 7, with incoming edges e, es and outgoing semi-infinite edge e,,
we have the ball B(r,,) satisfying supp(pe,) N supp(pe,) C B(ry,). Since p., is essentially
obtained from pe, A pe,, pe, A Ve, or Vpe, A pe, by apply —%H_m% to them, we see that
supp(pe,) C B(ry,) +Rsg-me, 19 and supp(dp.,) C B(ry,). Since there are only finitely many
trees and outputs p,, involved in order (mod m™°*!), we can take 7y, large enough such that
lemma [5.10] holds. O

Assumption 5.24. As we are interested in those terms of the form (5.7) in 2 and R
(mod m™ ) - from now on, we assume ry, large enough such that lemma 15 satisfied
and supp(pe, ) N supp(pe,) C B(rn,) for any two incoming coming edges at a vertex v for any

terms of the form (5.7)) involved.

5.4.1. Asymptotic expansion of I 7. To prove Lemma , we need to obtain an asymptotic
expansion for H(£2®). We restrict our attention to those terms of the form associated to
a colored tree 7 with all vertices labeled by 1, which appear in 2® (mod m™+1). According
to Notations what we need is an asymptotic expansion of p., associated to the outgoing
edge e, of T. We assume that ry, is large enough so that it satisfies Assumption

We obtain an alternative way to describe the operation [; 7. We define a labeling m. on
edges of 7 as in Notations to record the basis v~ on an edge e. We let E(T )y be the
set of edges which are not semi-infinite incoming edges, and 75 : By — B stand for the flow
of me_g for time s associated to e € E(T)o.

Definition 5.25. Given a sequence of edges ¢ = (eg,e1,...,e;) which is a path starting at
e = eg following the directed tree T, we can define a map

¢ RIEDeol x By — By,

by

r(8,2) = 15 0+ 0 (@),
where s; is the time coordinate associated to e; and E(T)eo = {e1,...,e} is a subset of
E(T)o. It can also be extended naturally to a map

7A_e . R|E(T)O| X BO — R'E(T)g,ol X BO
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by taking product of T with the copy RIFTMeol  where E(T)eo=E(T)o\ E(T)eo-

Definition 5.26. We define an orientation of RIZ(Tol inductively along the tree T. We
attach a differential form v, on RIF(Tol 1o each e € E(T), satisfying:

e v, = ds, for those e adjacent to an incoming edge of T ;
° U, = (—=1)Ve2ly, Ave, A dse, if v is an internal vertex with incoming edges ey, es € Ty
and outgoing edge es such that ey, eq, e3 is clockwise oriented.

Let eq,..., e, be the incoming edges of T in clockwise ordering. We associate to each e;
a unique sequence ¢; joining e; to the outgoing edge e,. Writing the input at the edge e; as
pito~ e 0, according to Notations with p; = §;, (j; = 1,2), we express the output form
pe, defined by

[k,T(plm_mel ama s 7pkm_mek ank) = Pe, [k,T<m_mel anl? s 7m_mek 87%)
as an integral over the space (—oo, 0]E(Mol as follows.

Lemma 5.27. We have the identity

o= | G0 0,

with respect to the volume form defined by v,, on RIE(T)ol,

Proof. We proof by induction on the number of edges of 7. Taking the root vertex v, of T,
we can split it into two trees 77 and 7T, such that 77, 73, e, are clockwise oriented. We assume
that the lemma holds for 77 and 75 with outgoing edges é; and é; respectively. Therefore we
have

o= | (7 (o) - () (o)
(—0070]‘E(7—1)0|
and
o= | () (o) - (7 (),
(—o0,0]1E(T2)0l
where ¢; is the sequence obtained from e¢; by removing the last edge e,. We have

%o=/1<wﬂ%A%>
(_0070]

B /<—oo701 T (/<—oo,owE<T1>o ) /<—oo,01E<TQ>O| (T ) (pren) - (7))

= (_1)‘E(7§)0\ / (7_60)* ((7_51)*(p1) o (TEk)*(pk))
(—00,0]1 E(T1ol x (—00,0]1B(T2)0l x (—0,0]

=/’ () (o) - ()" (o).
(—o0,0]/E(Tol

This completes the proof of the lemma. O
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In order to compute the leading order expansion of H acting on p,,, we essentially need to
compute the integral

/ %z/ (Y () - (7 ()
Eep=cC (—00,0]E(Mol xR,

by restricting p., to every line &, = ¢, where we denote R, = {{, = c¢}. We describe
the change of coordinates which allows us to compute the integral, namely, the coordinates
(T)* (Ney)s - - -, (T%%)*(ne,. ). We consider RF with coordinates 7.,’s, and define

7 RIEMol « R, — R,

by 1., = 7761'(7—%(5: 7760))-

Lemma 5.28. 7 is a linear isomorphism.

Proof. It suffices to show that 7*(dn,, ...dn.,) # 0. We prove this again by induction on the
number of edges of the tree 7. We split the tree at the root vertex v, into two trees 7; and 7 as
in the proof of Lemma By the induction hypothesis, both (751)*(dn, ) . .. (7)*(dn,,) and
(T41)*(dNeyy, ) - - - (%)% (dne,, ) are non-degenerate on RIF(7Tol x R, —¢, and RIE(T2)ol 5 Re, =,
respectively. Therefore (7¢1)*(dn,,) ... (7%)*(dne, ) is non-degenerate on RIE(Tiol x RIE(T)ol 5
By simply by taking the product. Finally we observe that 7¢ : R X R¢, —. — By is an linear
isomorphism. Il

Letting C(7) be the image of the standard cone (—oo, 0]"(7)ol x R, we have the identity

k

_k _Ef:l "gi
(5.8) LA %=M®{L(HM%W S

(7) =1

with respect to the orientation 7i(v,,). Therefore, [ e —cPeo has an asymptotic expansion of
the form ’

(5.9) /E e = UOZ(UC;(ZZ? B) (£1 + CyO(RY)),

for arbitrary N € Z, by the stationary phase approximation in Lemma 4.14] Here B is the
unit ball in R* and vol is the Euclidean volume. Having the above expansion, we are ready
to prove Lemma [5.17]

Proof of Lemma[5.17. Recall that we take the annuals A = By \ B(ry,) with coordinates
(r,0), and we have to compute an asymptotic expansion of the integral f(fo Pe, and show that

it has locally constant leading order terms on A\ Urez Wa,k- We also recall from Lemma :5.10
that supp(pe,) C Uyez Wa,r and we therefore consider the integral for those (r,0) ¢ (Uycy Wak-

Since p., is a closed form in A and hence the integral we are interested in is independent of
the path chosen. Therefore we can always choose a path + which is homotopic to the arc
from 6y to 6 for a fixed r > 7y, such that 7 is a part of line of the form &, = const. inside
Usez War containing supp(pe,). The lemma then follows from the formula (5.§). O
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5.4.2. Integral operators associated to generalized trees. To prove Lemma [5.16] we consider
the term p.,to~™0,,  associated to the outgoing edge e, of a colored tree 7, and investigate
po € C®(By) and its derivatives to obtain estimates for their orders in A. To study the
derivatives of p.,, we introduce generalized trees T and define the following integral operators
associated to it, acting on a subspace of smooth functions C;°(By) C C*°(By), defined in
[5.33] in order to analysis their orders in h.

We consider a tree T" with k inputs and at most one output (possibly none), allowing higher
valence vertices with more than two incoming edges and one unique outgoing edge joining to
it.

Definition 5.29. m is a labeling of the edges by the lattice Zsomy + Zsoma \ {0} satisfying

e m(e) = —Im;, where I > 1 and i = 1,2, for an incoming semi-infinite edge e;
e given incoming edges ey, . ..,es and outgoing edge e intersecting at an internal vertex
v, we require m(e) = m(ey)+---+m(es), and at least two m(e;), m(e;) are non-parallel,

v is a labeling on edges, and p is a labeling on vertices such that v(e), u(v) € (Zso)*. We call
T = (T,m,v, ) a generalized tree, or simply a tree if there is no confusion.

Definition 5.30. Given a tree T = (T, m, v, u) with k inputs, we define

R(T) =BT =2k = Y (nle) +wa(e) + D (mv) + pa(v)),

e€ E(T) VeV (T)

as the order of the tree.

Definition 5.31. We inductively define coordinates (&.,m.) of By and a positive definite
quadratic form Q. associated to each edge e along the tree T.

e [or the incoming semi-infinite edge e with m(e) = —Im;, we let Q. be the quadratic
form determined by the quadratic function g_,,, (recall that §; = e_%ui), and &, m. be
the unique positively oriented coordinates such that Q. = &> + n? where a%e s along
the direction m;_g.

e For the outgoing edge e from a vertex v with incoming edges ey, ...es, we let Q. =
Yoy 7731, and &.,n. be the unique positively oriented coordinates such that Q. = £2+n?

0

where 5 is along the direction —m(e).g.

We can also associate coordinates &,,n, and a quadratic form Q, for each vertexr v by taking
Qv =Y, Qe,, where ey, ... e, are the incoming edges at v. The coordinates &,,n, are positively
oriented and chosen to satisfy Q, = &2+n? where % is along the direction of —>;_, m(e;) g,
.e. Q, = Q¢ if v has an outgoing edge e.

Example 5.32. We choose a basis which identifies M = 7Z.-e1 B Z-ey and N 2 7Z-&, B Z- &,
and use x'é, + x%&5 as coordinates for By = R%. We consider the tree T with three incoming
semi-infinite edges e, €9, €3 and one semi-infinite outgoing edge e, joining at a unique vertex
vy, with m(er) = m(ez) = —eq and m(e3) = —ey as shown in the Figure[§ We can take

Ney = \/Lg(—xl + 22?) and &, = \/g(xl + 2?) to write Q. = Qc, = & +n2 such that
1

o, = vo(22' o) = —J5(m(eo)g).
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FIGURE 8.

Definition 5.33. We denote by Cs°(By) the set of f € C*°(By) such that any j > 0 and any
compact K C By, there is a constant (independent of h) C; i, satisfying

IV fllz ) < Cie
We can define an operation associated to T with inputs from C;°(By) in the following way.
Definition 5.34. Associated to T = (T, m,v, p), we define
Tex : G (Bo)®* — C%(By)
by an integral operation on (fe,, ..., fe,) € C;°(Bo)®F:

e input ﬁ_%(vy(e)G_gTii)fe at an incoming semi-infinite edge e if m(e) = —Ilm; (1 =1,2)
and v(e) = (n1,ns), where Ve = A\ IV
O€e One

e taking product of functions at an internal vertez, and then multiple by &4 pt2)

e for e being an internal edge or the outgoing edge, we take the operator V)l., where

L(f)(p) = ff)oo f(7E(p))ds with 7¢ being flow of the vector field B%c (which is a constant
multiple of —m(e).g) by time s.

We will see that the operations J,r can be expressed as a linear combination of those
associated to reduced trees.

Definition 5.35. A tree T = (T, m,v) with two labelings is said to be partially reduced if
v(e) = (0,0) for all e except the incoming edges. It is said to be reduced if v(e) = 0 for all
edges and p(v) = (p1(v),0) for all v except the root vertex.

Proposition 5.36. Given any tree T = (T, m,v) with at least one vertex and f € C°(By)®¥,
there exist finitely many reduced trees Ty, ..., T, and corresponding fi € Cs°(Bo)®* such that

Tea(F) =Y eh 3,1, (f7),
j=1

and
R(T) < K(T;) — 255,
for some c; € C.
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Proof. We first prove the same statement for partially reduced trees with s; = 0 using an
induction on the number of edges. Taking the root vertex v, and Sphttlng the tree T into
several subtrees T(l) T( ~y and the input function f as f f( ~y- When v, is joined to
a unique outgoing edge €o, we see that

(_> VV -[eo ( ul(vr)lr]’f}lf vT H [k? T(l) f(l ) .

We can first simplify the operator V. )le, to I,V (., if v(e,) = (0,12(e,)) by commuting
with integral operator, or to V,(c,)—(1,0) by canceling differentiation with integration. In both
cases, we can further use the commutator relation of operators

Vanaeo(fvr) = (fvr)
Van‘io (%r) = (nvr)v

to simplify the operation (notice that &, =&, and 1., = n,,).

Bneo

+ 1,

aneo

That means we can express Ji1(f) as linear combinations

ch €o < pior) ﬂ2(w) H[k Ty f(l) )

or

jk,T( _> — Z ngﬂl(vr)nug ’Ur) H [k T(l) (l

S

where T(, are trees modified from T(l) by changing the label v of the outgoing edge and p*(v,)
is some labeling on the root vertex v,.

Fix each T4y there exist T(l) 's together with f(l 's such that
(z) Z & l)’j k sz) (Sl)d)’

where each T(Z),j is partially reduced by the induction hypothesis. We also see that the order
k is not decreased when we expressed T as a linear combination of partially reduced trees.

s

To obtain the statement concerning reduced trees, we can assume that T is partially re-

duced with at least one vertex. We first observe that at an incoming edge e adjoining to a
94 . . .

vertex v, the term V,e”» can be expressed as a linear combination of terms of the form

h™* szl(vyj () gi)e_%. Since the term V, ()g; is either a constant or a linear function of the
form a&, + bn,, we can express the T as a linear combination

)
= h 3,5, (f7),
Jj=1

with v(e) = 0 for all edges in T;, with the inequality x(T) < k(T;) — 2s;. Finally, we simply
observe that for a vertex v with outgoing edge e, The operator nffz(”) commutes with I..
Therefore we can rearrange the labeling u(v) to obtain reduced trees. U
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5.4.3. Estimate on Order of i in Jir. We are going to prove Lemma [5.16] We will restrict

ourself to a reduced tree T with input f and count the order of 7 that the operation Jjr
carries. Without loss of generality, we first assume that there is an outgoing semi-infinite
edge in T. We can attach an element (. to each edge e to stand for the function after taking
the operation at the edge e similar to Notations [5.23]

Lemma 5.37. For the unique outgoing edge e, attachz’ng to root vertex v,, we have

w(T)— MQ(UT)

Gy = W e
such that (V|| L=y < C is a bounded function (C independent of h).

O

Proof. For an edge e, we define the subtree T, < T by taking the part of T before e, with e
being the outgoing edge of T.. We are going to show that

£(Te)

g =hz we
for some bounded function 1., inductively along the tree T.

Suppose we have a vertex v with incoming edges ey, ..., e, and outgoing edge e such that
the statement holds for (.;’s. We are going to show that it holds also for (.. We see that

Qi
h

(= hE Weﬁf“”Hm

Writing g1 (v) = g, ([T5=y ¢e,) = ¢ and Q, = & + n?, we have

2 0 2
C, = A5 m(Te) 2= (/ %8*(5511;@_%)63) :
—00

Under the coordinates &, 7., we can express the flow 7, explicitly as 75(&e, 7e) = (& + S, 7e)
and therefore we have

r/ (g e MﬂSHW/MMf%&

H1+1

< Ch 2
This complete the proof of the lemma. U

We can now prove Lemma [5.16| making use of Lemma [5.37]

Proof of Lemma[5.16. We consider the term V7p, , where p. o~"™9,_ is the output asso-
ciated to a colored tree T. Using Notations [5.23, we see that what we need to prove is
p*(pe,) € FH(Q*(A)) for T € ¢k, and p*(p,) € FO(Q*(A)) for T € ¢k Therefore we need to

2— k:
consider (fKa IV7p*(pe,)|? > for K, = K N {0 = a} as in Definition |5.15|

We observe that V7p,., can be expressed as CAU7)J, +(¥)dn., = Ch47¢, dn.,, where C
is some constant, d(7) is the number of vertices in 7 having color £ or b, and the inputs
X = (Xj1»-- - Xj,) are cut off functions (j; = 1,2). T is obtained from from 7 by

e distributing the differentiation using Leibniz’s rule in # or b associated to a vertex to
the incoming edges e;’s of the vertex, and label e; with v(e;) accordingly, and



SCATTERING IN SYMPLECTIC GEOMETRY 49

e putting a label v(e,) at the outgoing edge e, according to the differentiation V7.

Since 7 and hence T is a directed trivalent tree with one outgoing edge e,, we compute and
find that x(T) = —1 — d(7) — j. Making use of Lemma |5.37, when T has an outgoing edge

€,, we see that

AT)—1—j—A 2y

Vjpeo = Cﬁd(T)Ceodneo =h 2 iﬂ(ﬁ?o@*T)dﬁeoa
and hence
2~k 2 27k

02 e 02 2
( / IvjpeOIQ’“c%)) < op'tE ( / ke dee)
91 91

AT)—1—j

< Cr o7t

for a fixed r > 0 using the polar coordinates (r, ). If T does not have an outgoing edge from
the root vertex v,, we have

, K (D) —p1 (vr) —pg (vr) 2+ng
N S L
which gives
02 ; k 2 551
(/ 1V pe, | d9> < Coe™ ™
01
for any r > 0. Therefore we conclude that p,, € F=4T)(Q(A)). O
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