VANISHING VISCOSITY AND SURFACE TENSION LIMITS OF
INCOMPRESSIBLE VISCOUS SURFACE WAVES

YANJIN WANG AND ZHOUPING XIN

ABSTRACT. We consider the dynamics of a layer of viscous incompressible fluid, subjected to
gravity and surface tension forces. The upper boundary is a free boundary, and the lower
boundary is a fixed boundary on which the Navier-slip boundary condition is imposed. It is
proved that there is a uniform time interval on which the uniform estimates independent of
both viscosity and surface tension coefficients can be established. These allow one to justify
the vanishing viscosity and surface tension limits by the strong compactness argument. In
particular, a unified local well-posedness of the free-surface incompressible Euler equations
with or without surface tension can be obtained by the inviscid limits.

1. INTRODUCTION

1.1. Formulation. We consider the motion of an incompressible viscous fluid, subject to the
influence of gravity and surface tension forces, in a moving domain

Q) ={z eR® | —b<z3 < h(t,z1,72)}. (1.1)

The lower boundary of €(¢) is assumed to be rigid and given with the constant b > 0, but the
upper boundary is a free surface that is the graph of the unknown function h : R, xR? — R. The
fluid is described by its velocity and pressure, which are given for each t > 0 by u(t,-) : Q(¢t) — R3
and p(t,-) : Q(t) — R, respectively. For each t > 0, (u,p, h) solve the following problem for the
incompressible Navier-Stokes equations

(O +u-Vu+Vp—ecAu=0 in Q(t)

V-u=0 in Q(t)

pn — 2eSun = ghn — cHn on {xg = h(t,x1,x2)} (1.2)
Oth=u-N on {z3 = h(t,z1,22)}

us =0, (Su(—es3));i=—ku;, i=1,2 on {x3=—b}

for Su = % (Vu+ Vu') the symmetric part of the gradient of u and n = N/|N| the outward
unit normal of the free surface with N = (—01h, —02h,1)!. & > 0 is the viscosity, g > 0 is
the strength of gravity, o > 0 is the surface tension coefficient and & is the friction coefficient.
Finally, H is twice the mean curvature of the free surface given by the formula

H=v. [——2 ). (1.3)

V14 |Vh|?
The kinematic boundary condition, the fourth equation in (1.2), implies that the free surface
is adverted with the fluid, and the dynamic boundary condition, the third equation, states
the balance of stress tensor on the free surface. We have imposed the Navier slip boundary
condition on the lower fixed boundary. Note that in (1.2) we have shifted the gravitational
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forcing to the boundary and eliminated the constant atmospheric pressure, putm, in the usual
way by adjusting the actual pressure p according to p = p + gr3 — Patm-

The initial surface is given by the graph of the function h(0) = hg : R? — R, which yields
the initial domain £(0) on which the initial velocity u(0) = ug : Q(0) — R? is specified. It will
be assumed that hg > —b and that (ug, ho) satisfy certain compatibility conditions.

The movement of the free boundary and the subsequent change of the domain create numerous
mathematical difficulties. To circumvent these, as usual, we will transform the free boundary
problem under consideration to a problem with a fixed domain and fixed boundary. Consider a
family of diffeomorphism ®(t,-) of the form

B(t,-): Q=R?x (=b,0) = Q(¢)
(y,2) = (y: p(t, 9, 2)).-

© is chosen so that d,¢ > 0 which ensures that ®(¢,-) is a diffeomorphism. For the fluid domain
under consideration, ¢ can be chosen as

(1.4)

(ty,2) = z+n(t,y, 2), (1.5)
where 7 is a chosen extension of h onto {z < 0} defined by
A z 2
i(t,€,2) = (147 ) exp (A[|)h(t. ). (1.6)

Here * stands for the horizontal Fourier transform with respect to the y variable. It is verified
in Proposition B.1 that for given hg if the number A > 0 is chosen sufficiently small, then

0:¢(0,y,2) > ¢ > 01in Q. (1.7)
Then one can reduce the problem into the fixed domain 2 by setting
v(t,y, z) = u(t,®(t,y, 2)), q(t,y,z) = p(t,®(t,y,2)) in . (1.8)
Set 5 .
0 '
of =0, — @az, i=t1,2, 0y=0¢= azwaz
such that

duo®(t,-) =0v, i=t1,1,2,3.
Then by the change of coordinates (1.4), the problem (1.2) becomes

(0Fv+v-VPu+V9q—ecAPv =0 inQ

V#.v=0 in
gn — 2eS¥vn = ghn — ocHn on {z =0} (1.9)
Oh=v-N on {z =0} '

v3 =0, (S%ve3);=rv;, i=1,2 on{z=-b}
(v, h) Jt=0= (vo, ho).

Here we have naturally written (V%) = 0f, A¥ = 9707, V¥ -v = 9fv; and S¥v = 3(VPv +
(V¥v)!). Note that V¥ - S¥v = %A‘Pv for vector fields satisfying V¥ -v = 0.

1.2. Previous works. Free boundary problems in fluid mechanics have been studied inten-
sively in the mathematical community. There are a huge amount of mathematical works, and
we only mention briefly some of them below. We may refer to the references cited in these
works for more proper survey of the literature. For the incompressible Navier-Stokes equations,
we refer to, for instance, Beale [6], Hataya [22], Guo and Tice [19, 20, 21] for the well-posedness
without surface tension, and Beale [7], Tani [39], Tanaka and Tani [40] for the well-posedness
with surface tension. Those well-posedness results are strongly based on the regularizing effect of
the viscosity, and the solutions are shown to be global for the small initial data [22, 20, 21, 7, 40].
Note that the surface tension only has a regularizing effect on the free surface, and its effect
serves to enhance the decay rate, see [20, 21] for more discussions. For the incompressible
Euler equations, the problem becomes much more difficult. The early works were focused on
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the irrotational fluids, which began with the pioneering work of Nalimov [34] of the local well-
posedness without surface tension for the small initial data and was generalized to the general
initial data by the breakthrough of Wu [41, 42] for the case without surface tension and by
Beyer and Giinther [9] for the case with surface tension. For the irrotational inviscid fluids,
certain dispersive effects can be used to establish the global well-posedness for the small initial
data; we refer to Wu [43, 44|, Germain, Masmoudi and Shatah [16], Ionescu and Pusateri [25]
and Alazard and Delort [1] for the case without surface tension, and Germain, Masmoudi and
Shatah [17] and Ionescu and Pusateri [26] for the case with surface tension. For the general
incompressible Fuler equations without the irrotational assumption, only local well-posedness
results could be found. The first local well-posedness in 3D was obtained by Lindblad [29]
for the case without surface tension and by Coutand and Shkoller [11] for the case with (and
without) surface tension. We also refer to the results of Shatah and Zeng [36] and Zhang and
Zhang [47].

Various approaches are used to prove those well-posedness results mentioned above, depend-
ing on whether viscosity or surface tension is presented or not. It is then very natural and
interesting to study the asymptotic behavior of vanishing these two parameters in the equa-
tions. The vanishing viscosity limit for the Navier-Stokes equations is a classical issue. When
there is no boundary, the problem has been well studied; we refer to Swann [37], Kato [27],
DiPerna and Majda [12, 13], Constantin [10] and Masmoudi [31] for example. However, in the
presence of boundaries, the situation is more complicated and the problem becomes challenging
due to the possible formation of boundary layers. In a fixed domain with the no-slip boundary
condition, there is formation of boundary layers in the vicinity of the boundary and the solu-
tion u® of the Navier-Stokes equations is expected to behavior like u® ~ u® + U(t,y, z/+/2) (we
assume the boundary is locally given by z = 0), where u” is the solution of the Euler equations
satisfying only the impermeable boundary condition and U is some profile. In view of this small
scale behavior, it is impossible in general to get uniform strong estimates in any Sobolev spaces
containing normal derivatives. Consequently, the vanishing viscosity problem with the no-slip
boundary condition is widely open except the works by Asano [5] and Sammartino and Caflisch
[35] in the framework of analytic initial data and and the work by Maekawa [30] for the initial
vorticity located away from the boundary and a recent work by Guo and Nguyen [18] for a
steady flow over a moving plane. However, when the no-slip boundary condition is replaced by
the Navier slip boundary condition, the situation becomes better. Indeed, now the solution is
expected to behavior like u¢ ~ u® + \/2U(t,y, z/+/€); the amplitude of the boundary layer is
weaker, and one can hope to get an uniform estimates involving one normal derivative. In this
case, the vanishing viscosity limit in 3D has been justified rigorously in Iftimie and Planas [23],
Iftimie and Sueur [24], Masmoudi and Rousset [32] and Xiao and Xin [46]. Furthermore, for
some special types of Navier boundary conditions or boundaires, uniform estimates in higher
order Sobolev spaces can be obtained, see Xiao and Xin [45] and Beirao da Veiga and Crispo
[8].

Going back to the free-surface incompressible Navier-Stokes equations, since the dynamic
boundary condition can be viewed as the same type of slip boundary conditions, one has the
hope to establish the vanishing viscosity limit. For the case without surface tension and there
is no boundary below the fluid, Masmoudi and Rousset [33] justified the inviscid limit by using
the framework of their earlier work [32] and some additional techniques. Later, Elgindi and Lee
[14] discussed the same problem for the case with surface tension, however, some key points in
their arguments are not clear to us. On the other hand, for the free boundary problems, it is
also interesting to show the vanishing surface tension limit. This is supposed to be somewhat
simpler than the inviscid limit problem since the equation on the free boundary is defined
without boundary. Yet, one needs to develop the well-posedness which is uniform with respect
to surface tension, and generally this is nontrivial. These have been done for the irrotational
Euler equations, see [3, 4] and references therein; for the general Euler equations, a priori
uniform estimates have been derived in [36]; while for the Navier-Stokes equations with small
initial data, we refer to the recent work of Tan and Wang [38]. The purpose of this paper is
to derive the uniform estimates of solutions of the system (1.2) (equivalently, (1.9)) on a time
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interval independent of both viscosity and surface tension coefficients. These allow us to justify
the vanishing viscosity and surface tension limits by the strong compactness argument. As a
byproduct, we can get a unified local well-posedness of the incompressible free-surface Euler
equations with or without surface tension by the inviscid limits.

2. MAIN RESULTS
2.1. Statement of the results. We shall use Sobolev conormal spaces on 2 as [32, 33]. Set
Zi=0;,1=1,2, Zs=2z(z+b)0,,
which are tangent to 9. The Sobolev conormal space HE is defined as
HE(Q)={fe L*(Q), z°f € L*(Q), a € N°, |a] <k},

where Z% = Z{' Z5? Z5*, with norm defined as

£l = D 125 e 1A= 1Fllg = £l -

aeN3
la|<k

Similarly, cho’oo is defined as
WE(Q) = {f € L¥(9), 2°f € L*(Q), a €N, |a| <k}

with norm

1 koo = D 12 fllpos -

aen3

la|<k
H* and W*°° will denote for the usual Sobolev spaces on Q, and | - |s and | - |5 « stand for the
standard Sobolev norms on R2. To estimate the time derivatives of the solution, as [14], we
introduce also the spatial-time Sobolev conormal norms on 2 as:

m 2 m
2 ¢ ¢
m - 8 H 3 m — m,0 s d m = Ha H 3 21
11 ;%H e Wb =W lno and Uf e =3 o], @D
and the spatial-time Sobolev norms on R? :

Pl = [ Ul = Ul and ISl =S JoAS 0 (22)
£=0 £=0

—{,00

Note that in these definitions k and m are assumed to be non-negative integers, but s is allowed
m

to be any real number, typically, halfs. In the following we will abuse the notation % for [7]

The aim of this paper is to get a local well-posedness result for strong solutions of (1.9) in
Sobolev conormal spaces which is valid on an interval of time independent of €, € (0, 1]. Note
that such a result will also imply the local well-posedness for the Euler equation with or without
surface tension. As it is well-known that when there is no surface tension a Taylor sign condition
on the free boundary is needed to get local well-posedness for the Euler equation; when there
is surface tension, no such condition is needed. By the change of coordinates (1.4), the Taylor

sign condition reads as

—0%qg+ 9> co>0on {z =0} (2.3)
In the below, N and n are extended to ) by
N(t,y,2) = (=01p(t,y, 2), —0app(t, y, ), 1)" and m = N/|N]. (2.4)

Note that N(t,y,0) is indeed the outward normal to the free surface defined before, and
N(t,y,—b) = e3. Define II = I — n ® n, and let x be a smooth function which takes the
value zero in the vicinity of {z = 0} and one in the vicinity of {z = —b}. Let HHL;%X be the
norm of the space LP(]0,T]; X). Then the main result in this paper is stated as follows.
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Theorem 2.1. Let m > 14. Assume that the initial data (hg”,vy?) is given such that

[h5 (0) 5 + & [B*7 (0)gm1 + £ =7 (0)]2

Xm,%

+ 1057 (0) 5 + 182077 (O)|zem—1 + 102077 (0)I[5, 3 42 + £ 11022057 (0) |70 < Ro,

(2.5)

and that initially the compatibility condition 1159 (S‘ps’cvg’”na"’ - KXUE’U) =0 on {z =0, -0b},
the diffeomorphism (1.7) and the Taylor sign condition (2.3) on {z = 0} hold. There exists
T > 0 and C > 0 such that for every e,o € (0,1], the unique solution (v, h®7) of (1.9)
satisfies the estimate:

1 B g + 010 s+ Wy (26)
2 2 2 2
+ 10 L goxxm-1.0 + 102057 [ Loogem—2 + ||8Zv€"’||L%OY%+2 +&[|0220" || o0 oo

2 2 2 2 2
+ 107 h* a2 + 0 |07 |La g + € IG?hE’U\L%H% 1005 Ls 2 + 10207 ]|a xmr

+o Iha’”\i%xm_l,g +elIVo 7|72 g1 + € VD07 T250m—2 < C.

It should be remarked that the reason for the L*-in-time estimates of ||0,0%° ()||xm-1 rather
than in L*° stated in Theorem 2.1 is related to the boundary control of the vorticity for
the Navier-Stokes system (i.e., viscous boundary layers). Also, owing to the less regular-
ity of the pressure as will be shown in our proof later, which is due to the presence of sur-
face tension, we can only prove the L*-in-time estimates of the highest time derivative term
= (D] 2 + /3 |07 R (8)] 1+ VEIFPR (D] 4 + 107057 (D] 2. As immediate conse-
quences of the uniform estimates of Theorem 2.1, one establishes easily, by standard compact-
ness arguments, the justification of the inviscid limit, vanishing surface tension limit, and any
their combinations. In particular, we can obtain a local well-posedness of the free surface Euler
equations, independent of surface tension, by the inviscid limit. Furthermore, for the Euler
equations, by using the equation for the vorticity one can improve those L*-in-time estimates
to be in L*° and also recover the standard Sobolev regularity.

2.2. Strategy of the proof. The main step in the proof of Theorem 2.1 is to derive the a
priori uniform estimates on a time interval small but independent of ¢, o € (0, 1] for a sufficiently
smooth solution of the equations (1.9). Our approach is strongly motivated by the strategy of
Masmoudi and Rousset [33] where the vanishing viscosity limit was justified for the problem
without surface tension. However, there are several new difficulties arising in the presence of
surface tension. Indeed, it has been already known for the free-surface incompressible Euler
equations that the problem with surface tension is more difficult than the problem without
surface tension in certain sense, see Coutand and Shkoller [11] for some discussions. This is
even so when one wants to show the inviscid limit for the free-surface incompressible Navier-
Stokes equations. When showing the inviscid limit for each fixed o > 0, one finds that surface
tension only serves to provide the improved regularity of the free surface. Indeed, the presence
of surface tension makes the problem more difficult: first, the required nonlinear estimates are
more difficult to close due to the mean curvature term; second, the less regularity of the pressure
makes the arguments much more involved. Note that the less regularity of the free surface for
the problem without surface tension was get around in [33] by using Alinhac good unknowns
[2]. In this paper we will still use Alinhac good unknowns also without taking advantage of the
improved regularity of the free surface provided by any fixed surface tension; nevertheless, we
will develop some ideas to overcome the difficulties caused by the presence of surface tension as
illustrated below. As a consequence, we will be able to deal with both the vanishing viscosity
and surface tension limits.

For notational convenience we shall suppress the subscripts e and o below. Let NV (T) be
the quantity appearing in the left hand side of (2.6), while Q(T") be the first two lines in (2.6).
The crucial point is thus to get the closed a priori estimates of N'(T') on a small time interval
independent of € and ¢ in terms of the initial data. We start with the basic physical energy
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identity:

1d / , / \ ( >
g v|*dV; + glhl* + 20 1+|V,h]2—1) dy 2.7
th(gu [ ol Ny 27)
+25/|S¢U|2th+2/<55/ lv|* dy = 0.
Q z=—b

Here dV, stands for the volume element induced by the change of variable (1.5): dV; = 0,¢ dydz.

To get the estimates for higher order conormal estimates, one then applies Z for 1 < |a| <m
to the equations (1.9). Since the operators 9 involve Vo, the estimate of the commutator
between Z* and 9/ needs a control of ||[Z*Vy| < |Zh|y /5. In the absence of the surface
tension this yields a loss of 1/2 derivative, and the difficulty was overcome in Masmoudi and
Rousset [33] by using a crucial cancellation observed by Alinhac [2]. The idea is to use the
good unknowns V& = Z% — 0YvZ%) and Q% = Z%q — 07qZ“n, and some cancellation occurs
when considering the equations for V' and Q® which allows one to derive an L? type energy
estimates similar to (2.7):

1d
—— (/ |Va|2th+/ (g—afq)|zah|2+a|vyzah\2dy> +25/ ISPV Ay, (2.8)
2dt \Jg 2=0 Q

:_/ oZ°H Y Cg"ZO"N-ZO‘_""vdy—/Ca(d)Zaqut+Zo+Z )
z=0 Q 7

lo’|=1
where, using the symmetric commutator notation [-, -, -] defined by (A.3),
0,0C*(d) = [Z% N, -0,v] 4+ [Z“, 0.1, O1v1 + Dava) . (2.9)

Here ), denotes the terms that can be controlled in a similar way as the case without surface
tension [33], and ) stands for the terms related to surface tension, after some delicate argu-
ments, that can be controlled well with the improved energy estimates o |Z O‘h!%. The first two
terms in the right hand side of (2.8) are singled out in order to indicate the main difficulties
for the case with surface tension. Note that the regularity o |Zah|% in the energy is not enough
to control the first term. Indeed, one needs o ]Zo‘h|3/2, i.e., there is a loss of 1/2 derivative. To
improve the regularity of h, one then resorts to the “dissipation” estimate by using the dynamic
boundary condition: —cH = g — gh — 2¢S¥vn - n on {z = 0}, which requires a control of
|Z%|_, /2 On the other hand, it seems that the only way to control the pressure ¢ is through
the elliptic equation with the Neumann boundary conditions

APq=—-V?.(v- V%) in Q
Véq-N=—-0w-N—(v,-Vy)v-N+eA%v-N on {z =0} (2.10)
V#q¢-N =eA%v-N on {z = —b}.
It should be noted that on the boundary {z = 0} one could not use the Dirichlet boundary
condition ¢ = —oH + gh + 2¢5%Yvn - n since there is no control for —oH yet, which is in

contrast to the case 0 = 0 where the Dirichlet boundary condition is successfully used in [33].
Note that the appearance of div in (2.10) forces one to include the time derivatives in Z¢.
Then elliptic estimates for (2.10) provide a control of ||V¢||xm—1, which then yields a bound for
o \h\xmfl’ 3- This implies in particular that we need to separate the estimates of (2.8) into two

cases: ag < m — 1 and ag = m. For the former case, the main conclusion is that
[0 () |Fm-11 + [B(E) fm-11 + 0 [A(E)[Fm-12 + & Ih(t)@mflg (2.11)
t
< Co+ A (Q(T)) <t +/ 07" hIZ 1 + o |07 Rl + (10 v]* + y|azu||§m1> :
0

The crucial step is to treat (2.8) for the case ay = m, which can be rewritten as

1d
Ld </ yvm\2dvt+/ (g—@fq)\@tmh]Q—|—0|Vy8;"h\2dy> +2g/ SEVTRAY, (2.12)
2dt \ Jq 2=0 Q
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=~ [ oopmmon o tdy— [ monN - optoworadyiz+ 0+ 30 43
z2=0 Q o q

Here Zq stands for the terms related to ¢, which are easier to estimate after some delicate
arguments than the second term on the right hand side above. The main difficulties now are
that there are no any estimates for 9;"¢ so that it is difficult to bound the second term, and hence
that the regularity o \atmhﬁ in the energy can no longer be improved through the dissipation
so that it is difficult to bound the first term. Our approach to overcome these difficulties is to
integrate by parts over ¢t and z in an appropriate order to obtain a crucial cancelation. More
precisely, we integrate by parts in z first and then in ¢ the second term to obtain

— / moN - 910,00 q dydz (2.13)
Q
= —/ mdN - O Lo q dy + / md, (O;NO"q) - O™ v dydz
z=0 Q

=— mdN - O o q dy + 4 / md, (NI 1q) - O Lvdydz + Z :
z=0 dt Q 0

Note that one can not integrate by parts in ¢ for the first term in the last line of (2.13) since we

can not control 97"v on {z = 0}. The crucial observation is that there is a cancelation between

this term and the first term in the right hand side of (2.12). Indeed, by the kinematic boundary

condition, it holds that

— / o0 HmoyN - 07" o dy — / moN - O Lo q dy (2.14)
2=0 z=0

=— mON - 9" v (g h 4 2e0 (S¥vn - n)) dy = Z .
z=0 0
The last difficulty in closing the conormal estimate for the case ap = m is due to the second
term in the last line of (2.13): the control of |V¢|xm-1 (especially involves the dissipation) is
not pointwise in time but only L2. To get the estimates, we are forced to integrate in time twice
and the main conclusion is that

1
t 2\ 2
([ (rarel® + ioni + ol + < o)) (2.15)

t
< Co+A(Q(T)) <t+/ 07" g + o |07 RI; + 107 0[” + 1020 m —|—5|8,Z”h|25>
0

The next step is to derive the conormal estimates for 0,v. As in [33], the main idea is to first
introduce the equivalent quantity S, = II (S¥vn — kxv), which satisfies a convention-diffusion
type equation with the homogeneous Dirichlet boundary condition. The main difficulty is that
Q(T) controls only /¢ ||0,,v]|| ;. Since we have included the time derivatives, so if one followed
the arguments of [33], which only involves the spatial derivatives, to estimate the commutator
resulting from the viscosity term, one would need to control /e ||0,.v||y» for some high k& > 1.
Our key observation here is that since in the vicinity of the boundary the solution behaves like
v(t,z) ~ Ot z) + eU(t,y, z/\/€), so it is possible to control £d,.v (and even €d,.,v!). This
can be done easily by using the first equation in (1.9). We can then perform the L? type energy
estimates to conclude that

t
10,0(t)I3m—2 < Co + A(Q(T)) <t+/0 ||azv||§m1). (2.16)

Note that the m —2 order estimate above cannot be improved to be m —1 due to the appearance
of (V¥)2¢ in the source term in the equation for Sy, which is only in X™~2. To get a better
estimate, following [33, 32, 45|, one would proceed with the vorticity w = V¥ x v instead of
Snh- w again satisfies a convention-diffusion type equation, but the main difficulty is that it
does not vanish on the boundary and the boundary value is at a low regularity. To split the
difficulty, for || = m — 1 we set Z% = wg, + wj, where w¢, satisfies the nonhomogeneous
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equation with the homogeneous boundary condition which can be handled by performing the
L? type energy estimates and wyy, satisfies the homogeneous equation with the nonhomogeneous
boundary condition. Note that w(, solves exactly the same problem as [33] so that one can apply
their estimates directly, though, the proof is quite involved. Combining these two estimates,
one concludes that

(/ 10, 0(t) | 5m-— 1>1 < Co+ A(Q <t+/ 10,]|3m- 1>. (2.17)

The last step is to derive the L estimates of d,v and /€d,,v. In this step, one needs to
estimate a low number of derivatives of v, say 5 + 2, while the boundary is H™ with m being
as large as needed, it is convenient to use a normal geodesic coordinate system in the vicinity
of the boundary so that the Laplacian has the simplest expression. Note that /£0..v can be
controlled in the same way as [33], however, for d,v we will employ a different argument. Again,
it is more convenient to estimate the equivalent quantity Sy,. After some computations, we find
that p, an equivalent quantity of Sy in the new coordinates, solves

Op+w-Vp—elyp=H (2.18)

for some source term H and a vector field w with ws = 0 on the boundary. The main difficulty in
the analysis of [33] is a commutator between Z¢ and €0,, which is difficult to control when ap-
plying the maximum principle. The main idea in [33] is to rewrite (2.18) into a one-dimensional
Fokker-Planck type equation and then use the explicit representation of the solution. Our ob-
servation here is that since we have included the time derivatives in Z¢, it is easy to estimate
the commutator by, roughly speaking, replacing the €0,, with d; by using the equations. Main
conclusion in this step is that

10:0(8)115 3 12 + £ 10:20() |7 < Co+ A(QT)). (2.19)

Combining the estimates in all these steps, we then derive the desired estimates N (T') < Cy
for some T sufficiently small but independent of ¢ and o. Note that the Taylor sign condition
and the condition that ®(¢,-) is a diffeomorphism can be easily justified due to our estimates
of time derivatives. Finally we remark that for each fixed o > 0, the Taylor sign condition is
no longer needed for the inviscid limit problem. This can be seen from (2.7) and (2.8): even

— 07q <0, one can use the Sobolev interpolation to get the estimates of h for each o > 0.

We will set the conventions for notation to be used later. N = {0,1,2,...} stands for the
collection of non-negative integers, N'*¢ = {a = (g, a1, ..., aq)} is used to emphasize that the
0—index term is related to temporal derivatives, while N¢ is related for spatial derivatives. For
o € NI Za = grozor ... 724 The Einstein convention of summing over repeated indices will
be used. Throughout the paper C' > 0 will denote a generic constant that does not depend on
the data, the surface tension coefficient o and the viscosity coefficient £, but can depend on the
other parameters of the problem, g, x, m > 14 and ). We refer to such constants as “universal”.
Such constants are allowed to change from line to line. We will employ the notation a < b to
mean that a < Cb for a universal constant C' > 0. Throughout the paper, the notation A(-,-)
stands for a continuous increasing function in all its arguments, independent of ¢ and ¢ and
that may change from line to line, and Ay = A(%)

The rest of the paper is organized as follows. We collect some analytic tools related to
Sobolev conormal spaces, the properties of Poisson extension and some geometric estimates
in Appendixes A, B and C, respectively. In Section 3 we study the equations satisfied by
(Z%, Z%q, Z*h) and present the estimates of the commutators. Section 4 is devoted to derive
the pressure estimates using elliptic regularity in Sobolev conormal spaces, and Section 5 con-
tains the smoothing regularity estimates of h due to viscosity and surface tension. In Section
6, the conormal estimates of the solution are derived, and the conormal estimates for normal
derivatives are given in Section 7. In Section 8, we prove the needed L estimates for normal
derivatives. Finally, the proof of Theorem 2.1 is given in Section 9.
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3. EQUATIONS SATISFIED BY (Z%v, Z%q, Z*h)

3.1. A commutator estimate. In order to perform higher order conormal estimates, one
needs to compute the equations satisfied by (Z%v, Z%q, Z“h), which requires to commute Z¢
with each term in the equations (1.9). It is thus useful to establish the following general
expressions and estimates for commutators to be used often later.

We will not commute Z with 9; directly. For i =1, 2, 3, set

2008 f = 07 Z°f — 0F 0 20 + C2(f), (3.1)
where the commutator C{*(f) is given for a # 0 and i # 3 by
Ci'(f) = Cia(f) + Cia(f) + Cis(f) (3:2)
with
o _ _|ga O
7,1 — |:Z ’(9290’8ij| ) (33)
]. ! ]_ /
&= =0, |Z% 0,0, — | — 00, f |27, Z%0,m, 3.4
a _ O 4 Oip o
1,3 T azSD[Z ,8z]f+ (8z80)2 8Zf[Z 782‘]777 (35)

for any |o/| = 1. Note that for i = 1, 2 , 9;pp = 9;n and that for a # 0, Z*0,¢ = Z*.n. For
i = 3, similar decomposition for the commutator holds (basically, it suffices to replace 9;¢ by 1
in the above expressions). Since 9 and 97 commute, it holds that

ZOOFf =07 (Z2f — 0L fZn) + 0L0F fZ%n + C{(f). (3.6)

It was first observed by Alinhac [2] that the highest order term of 1 (which is difficult to control
for the case 0 = 0) will be canceled when one uses the good unknown Z°f — 07 f Z%n, which
allows one to perform high order energy estimates.

Since the expressions as f/0,¢ will appear often later, we shall first state a general estimate.
It is assumed that 0,0 > % and |hl2,c0 < L

co’

Lemma 3.1. For every k € N, it holds that

f 1
5ozl S G Pl + 161 (1Rl g + 11l ) - (3.7)
Proof. Since 0, =14 0,7, so
/ 0.m
D= / f1+8zn f = 1F©@:n)

where F(x) = z/(14x) is smooth and bounded together with all its derivatives on 1+z > ¢y > 0
and F'(0) = 0. Consequently, the product estimate (A.1) implies that

‘ f

Do || = 1 s + 1Al 1@l s+ 1N 5 1 (D)5 -

Xk
Notice that

1
IF@n)l5 <A (vl ).
and (A.1) implies again,
1
POl £ 4 (2195 ) 101l
Hence the estimate (3.7) follows from these, (B.7) and (B.6). O

Next lemma deals with the estimates of the commutators CX(f).
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Lemma 3.2. For 1< |a] <m,i=1,2, 3, it holds that
1
IeE < A (£l + 1073 ) (10:Fens + i) (33

Proof. We only present the proof for ¢ = 1, 2, and the last case is similar and slightly easier.
First, for €7, it follows from the commutator estimate (A.4) that

dip dip
A A
HC 1” ~ <8ZS0> <8z$0>
Consequently, (3.7) yields that

Jezill < & (19l + gt 410y ) (10t + Al + 0l

It then follows from (1.5), (B.7) and (B.6) that

o 170:F s +120: 5] e

Xm—2

o 1
lesa |l < A (co, Bl + Hazfuﬁ) (102 F s + Bl sy ) (3.9)
Next, for the first term in Cf%, one can use similar arguments: (A.4) and (1.5) yield that
Z0,m Z0,n
8f[ZO‘ i 5 ]H< 0. f N(Zalgpm — +Z@lg0 mZH >
10 e (1205l | G| s + 120000 s | 520

and hence by using (3.7), (B.6) and (B.7), one can show that

. 1 1
0.0 (20,01, 5 || <4 (& o + 10200 ) Wy

By (A.2) instead of (A.4), the same estimate holds for the second term in Cf%. Hence,

o 1
Jegall <4 (bl + 10:l ) Wy (3.10)
It remains to estimate ng. Notice that
(2,0, f = ) s0:(2°F) (3.11)
|B|<m—1

for some harmless smooth bounded functions cg. This yields, by using again (B.6),

g < A ( N8l + 110 me) (102 F s + 8:lls) (3.12)

<A (el 10 A5 ) (10 s + i)
Consequently, the estimate (3.8) follows by collecting (3.9), (3.10) and (3.12). O

3.2. Interior equations. We shall now derive the equations in the domain €2 satisfied by the
good unknowns V& = Z% — 9¥v Z% and Q = Z%q — 0Yq Z°7).

Lemma 3.3. For 1 < |a| < m, it holds that

VY +v-VIVY + VPQ™ — 2eV¥ . S¥V (3.13)
= (0%v - V¥0) 2% — C*(T) — C*(q) + eD*(S¥v) +eV¥ - (£%(v)),
Ve .V =-C%d), (3.14)
where the commutators C*(q), C*(d), E*(v) and C*(T) satisfy the estimates:
o 1
(@ < & (o -+ 10ualy ) (102allgnes + Bl (3.15)

o 1
@1 < A (2 lilys + 100l ) (10svlhons + il sy ) (3.16)
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o 1
€@ < A (Il + 10:0lys ) (10:0ms + DLy ). (3.17)

1
e (< A (o Blys + ollys + 1020l ) (Rollns + 10svlns + bl ).
(3.18)
and D*(S%v) is given by
D« (SSO’U)Z.j = 2C§X (S¢U)ij.
It should be noted that the commutator D(S¥v) will be estimated later by using the inte-
gration by parts.

Proof. First, the equations (3.13)—(3.14) follows from applying Z“ to the equations (1.9). In-
deed, (3.6) implies that

ZoV%q=VrQ" + 07V¥qZ%n+ C%(q), (3.19)
where C%(q) = (C%(q),C$(q),C$(¢))!, and
ZoN? v =V? - V4 097V? - vZ%% + C*(d), (3.20)
where C*(d) = S22_, C¥(v;).
Next, note that
O +v-V? =0 +v, Vyv+ V.0, (3.21)
where V, is defined by
1
szﬂvz with v, =v-N -0 =v-N — 9. (3.22)
By using (3.21), one can thus get that
ZOf +v-V#)v= (0 +vy-Vy+V.0.) Z% + (v Z*N — 8, Z°n) 0% v (3.23)

— 02 7°n(v - N — ) d2v + C*(T)
= (0f +v-V#)Z% — v (0f +v-V¥)Z% +C*(T)
= (0f +v- VAV 4+ 07 (8f +v V) vZ%% — v - V¥vZ + C*(T),
where the commutator C%(7) is defined by

1
0.

- [Z%,v] - NO,v, (3.24)

0,0,V

(9.0)?

CHUT) =[Z%vy| Oyv + [Z%, V., 00 + [Zo‘,vz, ] 0,0 + 01

+ v,0,v {Zaa/, Zo‘/azn + V. [Z% 0, v+ [Z¢,0.]n

o)
(0=9)°
for any |o/| = 1.
It remains to compute eZ*A%v = 2eZ*V¥ - (5%v). Note that

22V - (§P0) = 2V¥ - (2% §70) — 2(0 §¥0)V#(2%) + DO (5%v)
with D¢ (S“"v)i =2C¢ (5%v);j, and

22%(5%v) = 28%(Z%) — 9¥v @ V¥ Z% — V¥ Z% ® 0Fv + E%(v) (3.25)
with (50‘(1)))Z.j = C*(vj) + C§'(vi). Hence one deduces that

eZNv =2e V¥ . S%(Z%) —2eV?. (8;% @V¥Z -V¥Zn® afv) (3.26)
— 2¢(8¥ S¥v)V¥(Z%) 4+ eD*(S¥v) 4+ V¥ - (E%(v))
=2e V¥ SV = 26(87VY - §%v) 2% + eD*(5%v) 4+ V¥ - (£%(v)).
Consequently, these and (1.9) imply (3.13)—(3.14).



12 YANJIN WANG AND ZHOUPING XIN

Now we estimate these commutators. First, thanks to Lemma 3.2, the estimates (3.15)—(3.17)
hold. To estimate the commutator C*(7) defined by (3.24), one needs to bound v, and V. It
follows from (B.7) that

loslly + IVally <A( Mol + 19005 + 19l )<A( ol +\h\wl).

(3.27)
And (A.1), (B.6), and (B.7) yield that

1Z0: g2 S 120mllns + (1190l g2 ) Bellgns + [0l gz [ 90llgn s (3:28)

<A (HUHYQ}Q * WY%) (HUHmel + ‘h|xm»*%) :
With (3.28) and (3.27) in hand, by using (A.1), (3.7), (B.6) and (B.7), one can obtain that

1
Z B
‘ <8z60> ’ Xm—2

<A (ol + Al ) (Iolhnes + i)

Consequently, one may use (A.2), (A.4), (3.11) and (3.7) combined with (3.27)—(3.29) and also
again (B.6), (B.7), similarly as in the proof of Lemma 3.2, to conclude the estimate (3.18). O

1
Zv,

ZV,|lgm—2 S
12V -2 o

(3.29)

.

Xm—2

3.3. Boundary conditions. We shall now also compute the boundary conditions satisfied by
(Z%, Z%q, Z*h) when ag = 0 (for ag # 0, Z% = 0 on the boundary). As a preliminary, one
has one has the following.

Lemma 3.4. For k € N:
1
Vol < A ( Bl g + HVUHYI;) (Toksr + lsr) (3.30)

and
11

1
[Volgrs <A <607 ‘h|Y§+z + HVU”Y§H> (Ivlxk,s41 + [hlgse1) for s = 3y (3.31)

Proof. Note that it suffices to prove the estimates for d,v. Since V¥ - v = 0, thus
8Zg0 (811)1 + 821)2) +0,v-N=0. (3.32)
Then for s = —%, %, (A.12) implies that

1
020 - mfgrs A — [Vl ko + IVl g ) (0lgks +Vnlxes) (3.33)
(&) Y2 Y2

1
<A (il 4 190l ) Cobons + i)

where the second inequality follows from Lemma B.2 and the trace estimate (A.6).
To bound I10,v, we shall use the boundary conditions in (1.9) which yield
IT(S¥vn — kyv) = 0. (3.34)
To compute I (S¥vn), one can use the local basis (0,1,0,2,0,3) in O induced by (1.4). The
induced riemannian metric is given by g;; = 9, - 9,5, whose inverse denoted by g". Tt follows
from the definition and (1.8) that (9,:u)(t, ®(t,-)) = d;v. Hence,

25un = n - Vu + Vugng, = Oqu + gijayju ‘00, = Opu + gijajv N0y (3.35)

Note also that
N _ N
0 — V%
TN YT

0,0 — 0101V — Dopdav, (3.36)
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one then gets from (3.34) that

o, v = ?;;T (01011010 + DapIlOv — g7 0v - nlld, — rxIlv) . (3.37)

Hence, using (A.12) again shows that

1
0 v[xr,s <A (Co’ Vel 5 + ’VUHyé“H) (lvlxrotr + [Plxnosr + 1020 - 1fge.s) (3.38)

1
<A (2l #1900 ) Coboss + o).

where in the second inequality (3.33) has been used.
Consequently, we conclude the estimate (3.31) by combining (3.33) and (3.38). And (3.30)
follows similarly by using (A.1) instead of (A.12). O

We now study the dynamic boundary condition on {z = 0} and the Navier slip boundary
condition on {z = —b}.

Lemma 3.5. For 1 < |a] <m such that as = 0, it holds that on {z = 0}
2e8°VEN — (2% — gZ“h+0Z°H)N (3.39)
= —2eSPVIIZ*N — 2e Z*hd? (S¥v)N + eC*(B.),

where the commutator C*(B.) satisfies the estimate:

2 Blo A (2 lhlygon + 190y ) (olnss + g (3.40)
Similarly, on {z = —b} one has that
Ve =0, (SPV%s);=kV® —E%)i, i=1,2, (3.41)
and
€20 < A (o blyss + 190l ) (olgoss -+ lncss). (3.42)

Proof. Applying Z¢ to the dynamic boundary condition and using (3.25), one gets
£(28% (Z%) = 0Zv @ VP Z%% — VY Z% @ 07v + e£%(v)) N — (Z%q — gZ°h + 0 Z*H)N
=—(2e8%—(¢q—gh+oH)I)Z*N — [Z*,2eS5%v — (¢ — gh+ ocH)I,N].
= —2¢(S%v — S%vn-nl) Z°N — 2 [Z%,5%v — SPvn - nl, N]| (3.43)
= —2eSYIIZ*N — 2¢ [Z¢, S#vII, N].
This yields (3.39) with the commutator C*(B;) defined by
C*(B:) = —E%(v)N — 2[Z“, S#vII,N]. (3.44)

Similarly, applying Z* to the Navier slip boundary condition and noting that V* = Z%v, one
shows (3.41).
Now, it follows from (A.4), (B.7) and Lemma 3.4 that

(2%, S#UILN]|y S |Z(S70ID) g2 |ZN] s +|Z(S70ID)| s |ZNIyys  (3.45)
(E. 19z + 190l ) (Folns + blgrrs)
1

<A (2 lilyos + 190l ) Qebnoss + Blinsa).

On the other hand, following the proof of Lemma 3.2 and using again Lemma 3.4, one has

o 1
€20y < A (oo I¥ly3 + 190l ) (Vebnes + [Vl (3.46)

1
<A (Co’ ‘h‘y%ﬂ + HVUH-{S) (lvlgm-11 4 [Plgm-11) -
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Consequently, the estimates (3.42) and (3.40) follows. O
Finally, we study the kinematic boundary condition on {z = 0}.
Lemma 3.6. For 1 < |a] <m such that as = 0, it holds that on {z = 0}
0, Z%h + vy - Ny Zh — VO N = —9%v - NZ% + C°(h) (3.47)

where the commutator C*(h) satisfies

o 1
2o < A (il + [0l ) Qibeness + o) (3.43)

Moreover,
Co(h) = Y C¥Z° v, V,Z%h+C*h), (3.49)
lo/[=1

and C*(h) satisfies the estimate:

Com, <& (s + ol ) Qtbose + ohonoss). (3.50)
Proof. Applying Z¢ to the kinematic boundary condition yields
OhZh + vy - VyZh — Z% - N =C*(h) (3.51)
where
C(h) = —[Z% vy, Vyh]. (3.52)

This yields (3.47), and the estimate (3.48) follows from (A.4). One may further single out the
highest order derivative terms according to (3.49), where C*(h) is defined by

C¥h)y=— > Cp,2%y V,Z7h. (3.53)
Bty=a
B#0,|v|>2
And the estimate (3.50) follows by using (A.1). O

4. PRESSURE ESTIMATES

In view of the equation (3.13), one needs to estimate the pressure gq. The first equation in
(1.9) implies that

A¥qg=—-V?.(v-V¥v)in Q. (4.1)
Moreover, the dynamic boundary condition gives
q=2S%vn- n+gh—oH on {z =0}. (4.2)
Projecting the first equation in (1.9) along N onto {z = 0} and {z = —b} yields
V¥#q¢-N=—-0w-N—(vy-Vy)v-N+eA% - N on {z =0} (4.3)
and
V¥#q-N =eA%v-N on {z = —b}. (4.4)

Here in (4.4) one has used the fact that N = e3 and v3 =0 on {z = —b}.

Note that to solve the pressure, one has two choices of boundary conditions on {z = 0},
i.e., (4.2) and (4.3). Without surface tension, one can use the elliptic problem (4.1), (4.2) and
(4.4) to establish the regularity estimates for g. The subtlety lies in that the energy dissipation
estimates of (1.9) in the case without surface tension provide the needed estimates for those
boundary terms. When there is surface tension, however, the energy dissipation estimates do
not provide enough estimates for the boundary term —o H (which is of one half regularity less).
This would suggest that the elliptic problem (4.1), (4.2) and (4.4) is not the right choice for
estimating the pressure g in the case with surface tension. Our way to get around this difficulty
is to use instead the elliptic problem (4.1), (4.3) and (4.4). It is then noticed that this approach
forces one to estimate the time derivatives of v, that is, one needs to perform energy estimates
for the time derivatives of the solution. However, there is an essential difficulty arising: when
doing energy estimates with time derivatives up to m order, we can only obtain the estimates
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of time derivatives of ¢ up to m — 1 order due to the presence of dyv in (4.3). Thus the energy
estimates cannot be closed since it seems that m order time derivative of ¢ is involved. We will
explain this and our way to overcome it in more details in Section 6.3.

It follows from the definition of 97 that

0, 0 0

1 1
V“’-vza V-(Pv), V“"f:a—P*Vf, P= 0 O 0 . (4.5)
14 2P —dp —bap 1
And then A% can be expressed as
1
APf=VY¥.(V¥f) = 5 V. (EVf) (4.6)
with the matrix E defined by
1 aZSD 0 _8190
E=-—PP'= 0 9 —Op
2P —p —Dyp 1+(31<P(%2;-(32<P)

Note that E is symmetric positive and that if ||V p||p~ < % and 0, > co > 0 then there
exists d(¢p) > 0 such that

EX-X >6X?, VX eR3 (4.7)
Moreover,
1
||E||§{k <A <CO, |hlyk+1> . (4.8)
One can write
o U/ %y
E=1d+E, E= 0 921 2—02772 ,
(911m)*+(92m)"—0-
—ou —ogn Q0
where
~ 1
8l <8 () i (19)
Here X¥ and Y* are referred to the usual spatial-time Sobolev spaces as defined similarly as
(2.1).
Since N = P*e3 on {z = 0, —b}, the equations (4.1)—(4.4) can be rewritten as
— V- (EVq) = F:=0,¢V¥v- V¥ in Q, (4.10)
q=G':=2:S%vn-n+gh—oH on {z = 0}, (4.11)
EVq-e3=G*:= 0w -N—(v,-V,)v-N+eA®v-N on {z =0}, (4.12)
EVq-e3=G%:=cA%v-N on {z = —b}. (4.13)
We shall now prove the estimates for the pressure q.
Proposition 4.1. The following estimates hold:
lallsr + IVallgr + 1022l 61 (4.14)
1
< A (il + e + ol g + 190l s + Dol gz + 1900150 )
x (1] s,y + 0 Bl + ollges + [ Vollge ol g +elhlg) o for k>3
lallyr + IVallyr + 110zl gr— (4.15)

1
< A (b s + ol sgs + 190+ Dol + [ 90l ) for k2 1,
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Proof. Multiplying the equation (4.10) by ¢ and then integrating by parts over 2, using (4.12)
and (4.13), one obtains

(BVq, Voo = (F.a)g+ (G 0) .y — (G*.0).__,- (4.16)

Here (,-)g, (-,+),—o and (-,-),__, denote the L? inner products on Q, {z = 0} and {z = —b},
respectively. It follows from the trace estimate |¢|1 < ||¢||;: and Cauchy’s inequality that
2

1 2 2 2
IVl < - 0 (IFI° + 1615 + G2 + 1672, ) +mlall (4.17)
for any 1 > 0. By the Poincaré inequality (A.8) and (4.11), one can get by taking 7 sufficiently
small that
lallzn < Ao (IF)1+ 1G]+ 162y + 1G], ). (4.18)

Note that if one uses solely the problem (4.1), (4.2) and (4.4) to estimate p, then one needs
!Gl‘ 1. This half less regularity requirement enables us to control the surface tension term by
2

the energy dissipation estimates.
Next, applying Z® with |a| = k to the equation (4.10) and using (4.12)—(4.13) lead to

(Z(E-Vq),VZ%q)g = (Z°F, Z°q)q + (2°G*, 2%) ,_, — (2°G°Z%) __, - (4.19)
Then as for (4.18), one can derive after using (4.11) that
HQHXk + ”VQHXk < Ao (”ank + ‘Gl‘xk + |G2‘Xk,—% + |G3‘Xk,—% (4.20)

+ |- [2°,V]q| + 2%, E] - Vall ).
We then estimate the commutators in the right hand side of (4.20). First, (3.11) implies that
1E-12% V]l S Il Lo Vallxe-1 < [hlyr IVallge- - (4.21)

However, the other communtator needs more attentions according to 1 < k < 3 or k > 4.
Indeed, for 1 < k < 3, direct estimates by controlling the V¢ terms in L? and E terms in L™
yield

112 E]-Val S [|1Ellgr 1Valixe-— S [Plyrn [[Vallgn-1 - (4.22)
Plugging (4.21)—(4.22) into (4.20), by an induction argument and (4.18), one can deduce that

1
el + 1¥lber < & (- 1BLgs ) (1l + 16+ 621y +16% gy + W)

xk 2

1
<A < |h|Y4) 1Pk + |G gr + ‘GQ‘X’“ 1t |G? ‘ %> . (4.23)
Since the equation (4.10) gives
1
0:2q= 5— | ' = 0 > B30 | - > 0i(Eijoq) |, (4.24)
33 , =
7<3 1<3,J
in a similar way and by (4.23), one can also obtain
1
oucaliacs < A 21BN ) (1F s + W) (1.25)
1 1 2
<A (ot ) (T + G+ 1621y +16% )
It then follows from (4.23) and (4.25) that for 1 < k < 3,
lallser + IVallgr + 1022l xx1 (4.26)

1
SA(,h‘Y4+’h’ k3 + |h| ks 1+ | F| ks —i—‘Gl‘ k+3 —l—‘Gz‘ E+3 _1 +|G3‘ k+31>
co Y 2o X 23 X 2z X 2 X 2732 X 273
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< (I gy + 1Pl + 16" e + (G2 g + (G )

We now claim that (4.26) holds for all £ > 1. This will be proved by induction. Assume that
k > 4 and that (4.26) holds for & — 1. The commutator estimate (A.2) yields that

112%, E]-Vall SIZEl -1 [IVall isr + 1 ZE]| 51 [[Vallsr-s (4.27)

<A (2l + HanYkQ-l) (rhka,% + Vgl
Plugging (4.27) and (4.21) into (4.20) and using (4.24) again lead to
1
oo+ 19l + 10usalinos <A (oo Bl g + 19l ) (g + 1 ¥alhacs (128

F Pl + |G s + |Gy + Gy ) -

To remove the dependence of A on ||VqHY k-1, One applies the anisotropic Sobolev embedding

estimate (A.5) and the induction assumption to obtain

IVall i SN0:Vall s [Vall xys (4.29)

2

( Ahlys 1Bl ga g + B agasy |+ IFI oy

‘27‘27‘27

1 2T
2 X 2

+ ‘Gllxlﬁiw + ‘GQ‘XHTZ’-&-S
< (bl sgoy +1F ], gs + 16 sgo + 162 sy +16°] sss )
<A <17 \hlya + |h|_kss +|R|_kss 1 + || F||_wss + ‘G1’ ki3 + ‘G&‘ ks 1+ |G3‘ ks —1> :
co Yoz X203 X"z X2 X772 X2z

Here one has used the fact that % < k —1 since k > 4, which allows one to use the induction
assumption. Plugging the estimate (4.29) into (4.28) and using the induction assumption to
estimate ||Vq||xr-1, one thus concludes (4.26) for all £ > 4.

We now estimate the right hand side of (4.26) for k£ > 3. It follows by the product estimate
(A.1) that

1Pl = 10-69%0 - 70 (4.30)
1
<A (ol g o #1900 ) (g + 1900k
Similarly, since k > 3,

1
IFI isa < A (CO, Bl i + erw) (1] gy + V0] g0 ) (4.31)

1
2
1
S A o Plygan IRl TVl + 1Vl g )
By (A.1) and Lemma 3.4,

|Gl‘xk =|2eS%vn- n+ gh —oH|x (4.32)

1
<A (il + 190l ) € 190boc+ s + ke
1
<A <Co’ Al 5 + ||VUHY§> (€ [vlgra + |hlxr + o |hlx.2) -
Similarly, since k > 3, the trace estimate implies that

1
|Gl‘ ks <A (, |h| kt3 o, T |Vl k+3) <€ |v|_k+s | + |h|_kss + 0 |h|_ ks 2) (4.33)
Xz co’ YA Ve Xz Xz Xz
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gA( AL g+ (Bl gz + V0]l +||v||xg+3+||w||xg+2).

To estimate the most delicate term Gz, we start with eA%v - N. Note that
A%y -N =2(V¥.5%y) - N =2V?¥.(S%N) — 25% : V¥N

and
1
V¥ . (SPuN) = 0 (S¥vN), + 02 (SPvN), + 0. (S¥vN) - N.
z
Hence by the estimate (A.12) with s = —%, %, one can get
1
|A%v - N -} < —8 (SYvN)-N + |SPUN|_, 1 + |S¥v: VPN|_, 1
k=% xF 2 xk—2
( Al s+ 1700 g + 102 (576) - Ny,
x (102 (SN Ny [0y + g )
But

9. (S?vN) - N = 9, (SPvN - N) — S?uN - 9,N,

and recalling the matrices P and F,

1
0, (SPvN -N) =9, (VPuN-N) =0, (8 P*VuP*es - P*eg)
2P
= V“D(azv)N -N — 6jvi8Z(E3iP3j),
one can then deduce from (4.36) that
1
AN, <A (co, Bl s + V0] + V2 (0.0)N Nuygﬂ)

x (|w<azv)N Ny + Vol + \h\x,@,%> .
Note further that
V#(0,0)N-N=V?(0,v-N)-N—-(N-V?)N - 0,0,
and one can compute by using V¥ - v = 0 that
V#(0yv-N) N = —=V?¥(0,0(01v1 + Oav2)) - N.
It follows from these, (4.39) and Lemma 3.4 that

1
A% N[,y <A (CO, Pl g s + IIVUIIY§+2> (IVlek,% + |h|Xk,%)

1
<A (il 190000 ) (ol + D)

Next, one easily has

1
0900 Ny <& (bl g+ ol ) (Tl + 1)
Finally, we estimate the remaining time derivative term d;v - N. One first has

1
00Ny <A 9+ 1000l ) (el + i)

1
<A (bl 4ol ) (g + Ity )

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

It then suffices to estimate ‘Bf (Opv - N)L 1. However, this will lead to some difficulties since k
2

can be m — 1, and energy estimates yield only 9/"v € L?() which cannot ensure the control of
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the Hfé{z = 0} norm of 9;"v. The key observation is that 9]"v- N is indeed in Hfé({z =0}).

The way of achieving this is to use the Alinhac good unknown, returning back to k, VF! =

OFT Ly — 9fvdF 1y, Indeed, since V¥ - VF+H1 = —CF+1(d) with C¥+1(d) defined as in (3.14) with
@ = 9F+1 by Lemma C.3, and using the estimate (3.16) and (B.6), one gets that

ety < (5) (el e =
<A (gt o + o« for

1 k
A (ot 4 190 g0 ) (J0F 0]+ sy + 1900 ).

IN

This in turn implies

‘af“v - NL < ‘vk“ -NL + (N : a%af“n‘ (4.46)
2 2

1 K
<A (bt + 190l ) (Job 0] + Ity + 1900

Hence, it follows from (4.44), (4.46) and the trace estimate | - |7% <] Sl that

1
2

O N,y <[00 Nl y s+ \af(atv : N)] (4.47)

_1
2
1
<A (CO, Bl gs + ol sgs + HWHW) (Il + 190l + Rl )
Therefore, we conclude from (4.42), (4.43) and (4.47) that
1
‘G2|Xk’_% <A (CO, \h|Yg+3 + Hvaﬁrs + HVU”Y5+2> (4.48)

X (ollgas + 1V0lge + Bl -y + [0y +2 1Rl ) -

Similarly, since k > 3, due to the trace estimates, one can get

1
‘G2‘ ks 1 <A <,|h| k3, + V]| kst ||VUH ) (4.49)
X373 co YA S
e |h] res )
X3 0%

<A ( bl s + 1] gn + 0] ega + 1900 g0 + ol gz + V0], )

X (Il ego o + V0l go + Bl_ego .,y +e ol igo.

o

Consequently, plugging the estimates (4.30)—(4.31), (4.32)—(4.33) and (4.48)-(4.49), along
with doing the the same estimates for G3 as for G2, into (4.26), we can obtain that for k > 3,

lallge + 1Valge + [9s2alems (4.50)
SA( Bl + 1] gz + 0] egs + 1900 g0 + ol gz + 1901 )

% (1Rl -y + 0 Blgee + [0lgenn + [ Vollgs +elol g+ |h|Xk,%) .

This proves the estimate (4.14).
To prove (4.15), one can use the anisotropic Sobolev embedding estimate (A.5) and the trace
estimates to have that for k > 1, by (4.14),

lallys + 1Vl S 19allgos + 1102l gee (451)
1
<A (CO, Bl g o + Bl sgo + ol szs + 1900 g g + Dol igo + |Vv||xk2+7)

X (’h‘xm—&—% +o |h|Xk+2a2 + ||U||Xk+3 + ||VUHX’C+2 +e ’U|Xk+2,% +e |h|Xk+2,%)
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1
<A (CO, Bl g o + Blirs + ol sgs + 1900 g + [0llgesa + HWHW) -

Note that one has used the fact that £ +2 > 3 so that (4.14) can be used with k + 2. This,
together with (4.24) again, proves (4.15). O

5. SMOOTHING ESTIMATES OF h

We first show the smoothing regularity estimates of h coming from viscosity.

Proposition 5.1. For every m € N, ¢ € (0, 1), it holds that

t
S W@,y << IRO, g + /0 A (Ilygsz + ollyie) (ol g +elnl0g) (51)
and
t
eh(B)2,y <2lhO)2,; + /0 A (Ilygse + ollygie) (ol y +elbly ) (5:2)

Proof. We prove only the estimate (5.2), and the estimate (5.1) follows in the same way. Apply
Z% with a € N2 |a| < m, to the kinematic boundary condition to get that on {z = 0}:

0 Zh +v -V Z%h — Z%vs + 2% v,] - Vyh = 0. (5.3)
Then applying further A%, the tangential Fourier multiplier, to (5.3) gives
BABZOh + v - VA3 Z%h — A3 2% + [A%, uy} N, Zoh+ A3 (2% 0,] - Vyh) = 0.  (5.4)
A standard energy estimate on the equation (5.4) yields
L1ZHE < 190l e L, (55)
 (Folygg + | [A2 0] - Vu2o0] +112%,0,) - Vyhly ) 1By

Due to the commutator estimate (A.10), one has

1 (6%
|[A%0] -V, 200 S IVl e 1Bl y + 19 h e 0]y (5.6)
And the estimate (A.12) leads to
2% 0] - Vyhly < 30 )Zﬂ—ﬂ’zﬂ’vy "V, 27|, (5.7)
i |

S ol ea (Bl s + 1lyg e 0]

XTVL X’rn

Hence, plugging the estimates (5.6) and (5.7) into (5.5) and summing over |a| < m, by Cauchy’s
inequality, one can deduce that

d ;e
Iy S (L IRl + lollyge ) (10,5 +102,.) (5.8)
Integrating the inequality (5.8) directly in time yields (5.2). O
Next, we show the smoothing estimates of A due to surface tension.

Proposition 5.2. For every m € N, ¢,0 € (0,1), it holds that

1
Ty <A (o Bl s + 190l ) (s + 0
X3 co’ Y v X

Xm IQ

+€2‘U‘ XM 13 +€2‘h‘ XM 17)‘
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Proof. Apply Z¢ with o € N'*2 |a| < m, a9 < m — 1, to the dynamic boundary condition to
have

—0Z“H = Z%q —2¢Z%(S%vn - n) — gZ%h. (5.10)
Note that
V,h
Z°H=V, | 2% ——X20—vo 5.11
Y ( <‘/1+|vyh\2)) (5.11)
V,Z%h 1 1
=V, | — 4V hZ | ———— | + |2,V h
Y <\/1+\vyh|2 Y <\/1+|vyh|2) ST+ [V, h)? )
and

1 ;o 1 . h-V,Z%h
7N = | =22 | —=— | = 2" Lﬂ’g (5.12)
V1+|Vyh| V1+|Vyh| /T4 [V h[?

Vyh-Vy,Z% oo v, h Wy
= _y—y3 — |z ’?J?)] -V, Z%h
V1+|Vyh|? V1+|Vyh|?
for any |o/| = 1. Hence,
V,Z%h Vyh-V,Z%
Z°H =0V, - Y = - —————V,h +C(B7) |, (5.13)
V14 [Vyh 1+ [V,
where
/ V,h / 1
C(Bg)=— |27, ——L—=| - VyZ* hVyh+ | 2%, ———=——=,V,h (5.14)
NGES e ! VIFIVR2 Y

for any |o/| = 1. It follows that

7z -V, 2°
_avy-< e h):avy-6<6§>+zaq—2aza<5%n-n)—gzah-

VIFIVRE i vaR

(5.15)
Then apply further A3 to (5.15) to get
1 1
A2Z%h h-V,AN2Z%h
N A 2—Vy V220 (5.16)
V1+|Vyh| V1+[Vyh?
1 h
=0V, | AR e — 1| v, 2% - A, G| w20
V1+|Vyh| 1+ |Vyh|?

+ A2 (oVy-C(By) + 2% —2eZ%(S¥vn- n) — gZ%h) .
It follows from a standard energy estimate for this elliptic equation that

L ap 2 . L oap2
02/ <|VyA2Z h2 Vb VA2 Z%h) ) " (517)
z=0

VIFAE  JT5 Vi

— —o? A%,% — 1|V, 2% — A%,Lgvyh- Yy Z%h, VA2 Z%h
V1I+[V,h| 1+ [V, h?

P (A%C(Bg), vyA%Zah) + (A% (Z°q — 2:Z°(S¥vn - n) — gZ°h) ,aA%zah) .
Since for any vector a € R?,
|af? [Vyh - al? > 1 2

> al”,
VIHIVRE  TH VAR I+ VA

(5.18)
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so Cauchy’s inequality, together with (A.11) and (A.12), since |a1| + |az] > 1, give

2 Vyhlrg < R0 (la2ry + 221890 0l g+ 12, (5.19)
. 2
+o2C(BOA + 02| |A2, ————— — 1|V, Z%
2 V 1 + ’vyh‘Q 0
V,h ’
+o? || A2, —— Y, h| V, 2%
V14 |Vyhf? 0
1
<A (bl mgs + 1V0ll g ) (a0 g + 10,
o Y 2z Y 2o xm-13 xm-13
+o2|n:, s +%|S%un- n)? | ;) :
X 2 X ’2
Using the similar arguments in the previous section, one can have
1
2
s70me 02,y <A (il 1900y ) (g + Pl g
Then (5.9) follows from (5.19), the Sobolev interpolation and Young’s inequality. O

6. CONORMAL ESTIMATES
We shall derive a priori estimates on a time interval [0, Ta"’] on which it is assumed that
1
0,0 > > @ , |hl2,00 < — and g — 0Yq > 5 on {z =0}. (6.1)
Co

Note in particular that this Wlll allow one to use Lemmas C.1 and C.2.
To derive the higher order energy estimates, we shall use the good unknown V¢ = Z% —
OfvZ%, a # 0. A key point is that the control of V® and Z%h will yield a control of Z%v:

122l S IV +4 (2 IVl ) 12200y VoIS 1250+ A (190l ) 200y

(6.2)
Define
1 1
A (t) = A <60’ |h()]gz4s + [l gz +s + 10003 +a + [[0:0(8) |y 42 + €2 ||3zzv(t)||Loo)
(6.3)

It will be shown then that those functions A(:,-) defined in the previous three sections can be
bounded by A for sufficiently large m, and also the elliptic estimates of ¢ and the smoothing
estimates of h will be restated along the way. First, taking k = 5 for m > 6 in the estimate
(4.15) yields

lallyy +11Vallyg + 11024/l 5 (6.4)
=A <Co’ hlym e+ [hlgga + vl gmos +1VOllyzes + vl + |Vv||ng+3> < Ao,

while taking k = m — 1 in the estimate (4.14) gives
gllsm—1 + IVallgm-1 + 110224 xm—2 (6.5)

1
<A (CO, B mgs + [hlygsa + [0l o1 + 900 mss + 0l oo + ||VU||X’2;+2>
X (g, y + 0 [Blgnosz + [Wllgn + 1V 0llgmos + € [0], s g+ lhlynor g )

< Ao (1hl g+ Wrlsnr + [ollgn + [19:0llgmns + & ol v g +€lhlmorg )
Here one has required m > 6 so that by Sobolev’s inequality

|hlymsa <[] mgs S (R

X%-‘n’) )
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and that by the anisotropic Sobolev embedding estimate (A.5)
[l mgs 1 S Mol es + 11050l 4a -

It can be checked easily that all the functions A(-,-) defined in Propositions 5.1 and 5.2 and
Lemmas 3.3, 3.5 and 3.6 are bounded by A, due to (6.4). Moreover, Proposition 5.1 implies
that

t
e |h(t)2, g <elhO)P, 1+ /0 Moo (2102, 1 g +2 b2 0g) (6.6)

and .
e h(B)2,y <2 IhO)2,y + /0 Ao (el012,y +2 105 ) (6.7)

Proposition 5.2, together with (6.5) and the trace estimate |q| IS S gllxm-1 + | Va|lgm-1,
yields that

2 B2, 1 g oo (112 + 0% Blmsa + [0l + 102005 + 22 0, g + 202, g)
(6.3)

2 3 3
Since |hlgm-12 < [hlgm-1 ||

gm-1,§> O may improve (6.8) by using Young’s inequality to get
m—lg

2 2 2 2 2 2
P2 g <Boo (11 g+ [0l + 1000 s + 2 oy +2HE, L g) . (69)
Note that in the following we will use frequently these L bounds involved in Ay,

6.1. Basic L? estimate. We start with the estimates of (v, h) itself, that is, the case a = 0.

Proposition 6.1. For any smooth solution of (1.9), it holds that
2 2 2 ! 2
)1 + g WO+ WO+ [ 170 (6.10)

t
< Ao (uvou? +lhol +o hoft + an?).
0

Proof. Standard energy identity yields

2dt/ |v|? th—i—s/ |SPu|? dVy = / (QES‘pU—qI)N-vdy—/ (2eS%v — ql) ez - v dy.
z2=0 =—b

- (6.11)
The Navier slip boundary condition implies that

—/ (2eS¥v —ql)es - vdy = —/ 2e(S%ves)v; dy = —2/15/ lv|? dy. (6.12)
z=—b z=—b z=—b

While the dynamic boundary condition and the kinematic boundary condition give

/ (25S‘pv—qI)N-vdy:—/ (gh—aH)N'vdy:—/ (gh — cH)0:h dy (6.13)
z=0 z=0 z=0

1
=L g oo (VIF+IVAE ~1) dy.
z=0

2dt
Consequently,
55 </ |v[2th+/ZOgh|2+20 (W—l) dy> (6.14)
+ 25/Q |S%v |2 dV; + 2/{5/ . lv|2 dy = 0.
Note that -

1

Vh|?

V1+|Vh|2 -

l\’)\»i
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due to (6.1), and the trace estimate
2 2
[0lz2(z=—ap) S IVl 0l + o)™
Hence, (6.10) follows from (6.14), Lemma C.2 and Cauchy’s inequality. O

6.2. Estimate of (Z%v,Z%h) for ag < m — 1. Next, we derive the energy estimates of
(Z%, Z%h) for 1 < |a] < m and ap < m — 1, that is, except the cases a = 0 or ag = m.

Proposition 6.2. Any smooth solution of (1.9) satisfies the estimate
Jo06) s IO + ) s+ ) + V0l 0 B2, g
< 80 (10(0) s + (O rss + 0 (O + £ HO,, , ) (6.15)
[ e (1B + 1+ 0 s €2+ ol + 1001

Proof. The energy identity for the equations (3.13)—(3.14) yields

1d
th/ Ve v, + 26/ ISV dV, = I$ + I + RE + RE, (6.16)
Q Q
where
0= / (26SPV* = Q)N -V dy (6.17)
z=0
To— / (2eS9V — Q°T) e5 - V dy, (6.18)
z=—b
R¢ = / ((9%v - VPvZ%) — C*(T) — C*(q)) - V* — C*(d)Q%) dV, (6.19)
Q
% = / (eD*(S%v) +eV? - (£%(v)) - V dV. (6.20)
Q

We first estimate Z§'. The boundary condition (3.39) implies

o / (2eS°V — 21 + 02 Z°nI)N - V* dy (6.21)
2=0

= / —(9g—0%q)Z“hN - V¢ dy+/
z=0 z

— / 2eSPVIIZN - V< dy — / 2eZ°h0¢ (S(’DU)N -Vdy.
z=0 z=0

ocZ“HN -V*dy + / eC(B:) - V*dy

=0 z=0

By (3.40), the third term in the right hand side of (6.21) can be bounded by

/ cCO(BL) - VO dy
2=0

Due to (A.11), it holds that

< Asce ([v]gm-11 + [Algm—1,1) [V - (6.22)

/ 2:5I1ZON - V° dy‘ < 26 |ZVh|_1 |SPuIIV|, (6.23)
z=0 2 2

< Mg V01
Note that Ay, involves v/2||0.,v||Le, one has

/ 22 7%h O (SP0) N - V° dy‘ < 2¢|2°h], 19¢ (S70) N[ o [V, (6.24)
2z=0

< A2 |hfsgm—1 [V, .

For the first gravity term, one may use the boundary condition (3.47) to rewrite it as

/ (g — 02 ZhN - VO dy (6.25)
z=0
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= / —(9—029)Z°h (0 Z°h + vy - VyZ h + 0Fv - NZ%h — C*(h)) dy.
z=0
Integrating by parts in ¢ and using (6.4) lead to

1d
/ —(g—0%q) Z°ho:Z“hdy < 3t ). (g — 829) | Z°h)? dy + Ao |hZm—11 . (6.26)
z=0

The integration by parts in y gives

/ ) (g — 82q) Z%hv, - V., Z°h dy‘ < Ao [h)Zm-11 - (6.27)

Due to (3.48), one has

| a0z 200 (070 Nzoh — c*(h) dy] < Ao [lgros ([Blignss + folgrr) - (6:28)
2=0

Hence, in light of the estimates (6.26)—(6.28), one may conclude from (6.25) that

/ (g — 02q)ZhN - VO dy (6.29)
z=0
1d
<—-— (9 — 029) |Z°h|* dy + Ao <\h\§gm—1,1 + !v|§gm_1>.
2dt ).,

To deal with the second term involving surface tension, one has by (5.13) that

VA AVAVA
/ cZ“HN -V*dy = / ( VyZTh _ Nyh VyZ7h Vyh+ C(Bg)> N .- V*dy,
z=0

VIHIVhE T VR

(6.30)
where C(BS) is defined by (5.14). By Lemma 3.6, one may deduce
[ 09, CBIN Ve dy <019, CB 02+ v, -, 2% + 070 - N2~ C(b),
z=0

< AooU ’h’Xm—l,Q (’h’Xm,l + ’h’Xm—l,Q + ‘h’Xm—l,l + ‘v’Xm—l) (6.31)
< Ao |l gm-1.2 ([Rxm.a + [vlxgm—1) -

To study the other two terms, one rewrite it as, by using the boundary condition (3.47) again,

/ V,Z%  Vyh-V,Z%
VI+IVhE  TF VA2
_/ ( VyZ°h VbV, Z%

VIFIVE STF VR

Vyh> N -V dy (6.32)

Vyh) (B Z°h+ vy -V, Z°h) dy + Ry,

where

5 z/ ( VyZ7h Vyh - VyZ%h & h) (0%v-NZ°h — C*(h))dy.  (6.33)

mm3

It follows from an integration by parts, (3.49) and (3.50) that

V,Z°h  Vyh-V,Z%
1 N
5, NV Vh[2
( V2% VyhV,2°hg h)‘

VI+IVRE T+ ViR

<Aoo (0 nbgnor (hlgn-v + [olgn-2) 0 [

‘vy (8;% NZ°h — éa(h)> ‘O (6.34)

p |29y - Vy Z%h|,
2

1

V]

XM 1§‘ ‘Xm 1§>'
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Integrating by parts in both y and ¢, one finds that
/ VyZ*h — Vyh -V, Z%
VIFIVAPE T VR

Za2 h - ZahQ
——ii/ <rv WP V-V, \)dyﬂgg,

VIHIVAE VR

vyh> 0 Z%h dy (6.35)

where
1 1 1
Rps = / o | 0| === | IVyZ°h* =0 | ——=—5 | IVyh-V,Z%h[> (6.36)
° 20 V1+[Vyh| 1+ |Vyh|?
Jh -V, Z%h
—L?,v oh -V, Z% | dy
V1 + |V, h[2

< Ao | B2 -
Similarly, the integration by parts twice yields
VyZ%h Vyh -V, Z%h
“J <¢m I+ VA

Hence, by the estimates (6.31), (6.34)—(6.37), one may conclude from (6.30) that

Vyh> vy - VyZohdy < Moo |hlgm-12.  (6.37)

1d VyZ*h? Vyh -V, Zh?
/ ocZ*HN - Vdy < — —— | | > | :|3 dy (6.38)
2=0 2dt \/1+’V h| /1_|_|v h’Z
+Aoo( [Blsn-12 Vg 4+ bl s 1olcs g ) -
Note also that Lemma A.4 implies that
V9 S |vlgm-1.1 + Ao |h|gm-11 and ]VO‘]1 < |v| gm-1.3 + Ao ]h\xm 13- (6.39)

Consequently, plugging the estimates (6.22)—(6.24), (6.29) and (6.38) into (6.21), by (6.39) and
Cauchy’s inequality, one may finish the estimates of Z§ as:

1 d V,Z°h2  |Vyh-V,Z°h)
<t L [ (g_oeq)zent 4o T2 | (6.40)
2dt J,_o 1+ |Vyh| 14 |Vyh]?
o+ Aoo (111 + [olmos + 0 [Rlignos2 lgms + 0 [Bls g [0l g
e (ol + 10, g+ g [olong )
It also follows from (3.42) and (6.39) that Z;* admits the following bound:
Iy = _/ (265%V %), - Vi dy = _/ 2e (RV;® = E%(v)is) - V™ dy (6.41)
z=—b z=—b

< Aot (Vg + [vlgm-1,1 + |Blggm-1.1) [V*]g
< Axe <‘U’§§m—1,1 + ‘h@gm—l,l) .

Next, the commutator R¢ is estimated by using (3.18), (3.15), (3.16), (6.2), (6.5) and (6.4)
as

RE: < Moo (I12°0]] + llE= (D] + IC @I IV + e (@1 1Q°) (6.42)
< Koo (Il y + [0l + V0 lgonms + Vs ) (0llss + bl sy )
Ao (IIV0 -1 + hlygr.g ) (lallgmosa + Bl y)

Aeo (1Bl + 0 Blinos + [0llgm + [V0llyns + €0l sy +€ Bl g )
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X (I0llgmsa + V0 lgmes + [l oy ) -
It remains to estimate the commutator Rg. First, it follows from the integration by parts,
(3.17) and (3.42) that
/ EVP(EX(0)) - VOV, = / E£%(0) - VAV, + / CENN-VOdy  (6.43)
Q Q 2=0

< Boce ((IV0llgms + Blmsg ) IFVEI 4 (g1 + ol 1) [V2o)

Next, for the first term, one actually has to estimate

G =c / C2(8%0)i;VEdV, (6.44)

= 5/ "1(S%0)i VidWy —i—s/ " S%)”Vadvt —i—e/ "3 S“%)Z]V dV,
=R+ RE + RE
due to (3.2). For R‘;;l, by (3.3), it suffices to estimate terms like

0;p . o
c /Q 2 (G2) (Z 0,570 Vi v,

where /3 and 4 are such that g # 0, ¥ # 0 and || + |§| = m. By using (3.11), one can reduce
the problem to the estimate of

0;p o
. /Q o 27 (F2)0.(27(5%0)) Vv,

with £ as before (thus |5| < m —1) and |y| < |§] < m — 1. The integration by parts shows that
it suffices to estimate three types of terms:

9
T :5/25 =17 Z27(8%v); 0. VAV,
! Q (8290) ( )] J !

a «
T, = g/ (8 Zﬁ(az(p))Z”(S“’v)wV Vi,
and

0

T :5/ Z8(HL) 27(5%v)i, Vi dy.
z=0 az(,D

For Z; and 7y, since 8 # 0, it follows from (A.1), (3.7) and Lemma B.2 that

Tl < Moot (V0 lms + [l y ) VYV

and
Zal < Acce (V01 + Bl sy ) IV

y (A.1), 8 # 0 and Lemma 3.4, it holds that
|Zs| < Aoce (|Alxm-11 + [VOlxm-1) Vg < Asce (|Alxm-11 + [0]xm-11) [V -
Consequently, one can get from the previous three estimates that
RG] < Aot (V01 + Bla g ) IV + (190l + bl g ) IV (6.45)
+ ([hlgm-11 + []gm-1.1) [V*]o) -

The estimate of Rgf is straightforward, one gets from the definition (3.4) that

a,2
RS

< Aes? [l 0y [V (6.46)

To estimate Rgf’, one derives from (3.5) and (3.11) that

dip 0
P Z%, 0.V}
5 /9(6280)28 (5%0)[Z2, D]V dVy

1
S AOO€2 ’h"xmfl,% HVaH °
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Note that one has used again in the previous two estimates the fact that A, involves ez 10220l f oo -
For the term

/ aziva (Z°,0.](S?v)dV,,

performing an integration by parts and using a similar arguments as for R}% show that

< Acoe [[Vollgm—s (IVEI -+ [VVELD -

/ a:iva (Z°,8,](SPv)dV,

Consequently,
o, L « « «
RG] < A (4 Al sy IV + [ F0lmn (VI I9VED) . (647
It then follows from (6.45)—(6.47) that

€ / DY(S¥v) - VOdV,
Q

1 «@
< Ao (23 oy + 2 Blgis g + 21 V0lgnos ) [V (6.48)
2 (I90lms + Blyns g ) IV + (Blignors + olgmo1) [V, ) -
This, together with (6.43), (6.2) and (6.39), implies that
a 1
RE oo (2 bl g +elhl g +el90lonr) (ol + i) (649)
& (I90llms + Bl g ) IFVE ]+ 1ot + folfmora) -
We can now finish the proof of the proposition. By the estimates (6.40)— (6 42) and (6.49),
1

the trace estimates |v| I P S vllgm=1 + V| gxm-1 and [v]gm-1.1 ||VUHXW_L1 o2 ——
|0l xm-1.1, using Cauchy s inequality, one may deduce from (6.16) that
Ldea 25/ 1SV dv (6.50)
2 dt ! '
2
<Aoo (Bfm-11+ 0 [Rlign-12 [hlgma + 0 1kl s g (lellgn- + [V0n)
1Ly + V0l + ollm +elRL, g

e ol g (olgmosa + [V0llgnos + Bl g )
2 (I90lms + Bl g ) 19V

where

V., Z%h|? V,h-V,Z%h|?
£ ::/\V‘”\Qth+/ (g—@fq)|ZO‘h|2+J< VyZ°h" V-V, 270 ) dy. (6.51)
Q z=0

VIFIVE ST H VR

It follows from (6.2), the Taylor sign condition in (6.1) and (5.18) that

12| + | Z°R[2 + o |22 < A <clo> ge.
One can use the Korn inequality of Lemma C.2 and (6.2) to get that
ovelE <& () ([ 1570eR avict ol + 02, ).
On the other hand, by the definition of V¢,
e IVZ|? < e IVVIP + Moo (e l1AI2,0 1 g + 1AI,0 g ) -

Then integrating (6.50) in time, using the trace estimate Mxm—l’% < IVollgm—11 + |0]lgm=1.1
and Cauchy’s inequality, together with (6.10), one deduces that

t
o) 1.0 + 1A v + 0 |A(E) o2 + 6/ V0] 3m1. (6.52)
0
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2 2 2
< 80 (00O -1 + [-(O) 11 + 0 [A(O) 12
t
2
[ Ao (s + 0 Wb Wb+ g (Boloss + V)

Ry 190 s+ 0l + 2 1R2, 1) -
This, together with (6.6), (6.9) and Cauchy’s inequality, leads to (6.15). O

6.3. Estimate of (9]"v,9;"h). We now derive the energy estimates of (9;"v,d/"h), that is, the
case g = m

Proposition 6.3. Any smooth solution of (1.9) satisﬁes the estimate

t
[ (oo s ooz v oo+, ) [ (= [ 1woraiz) (6.53)

< o (170(O) I + 9RO + o [0 h(O): + < hO)F,,., )
t 2
et ([ e (1 + 0 s + Tl + 1001k + €IVl + 01, 3))

t
b [ B (12 y 0 s ol + 020
0
2 2 2 2 2
x (112 0y + 0 B+ 00+ 00l Fms + €202, g + <2 1B, 1) -

Proof. In the current case, (6.16) can be restated as:

M/ VI v, + 25/ SPVIR AV, = TP+ T+ RE + RE+RE, (6.54)
where
m_ / STV QN -V (6.55)
- / @eSPYT = QM e V™ dy, (6.56)
RE = — /Q Cm (d)am g dvi, (6.57)
o= /Q ((0Zv - V#00)"n — C"™(T) = C™(q)) - V™ + C™(d)0%q0;"n) dVy, (6.58)
m_ /Q (eD™(S90) + £V - EM(v)) - V™ V). (6.59)

Here V™ = 9/"v — 0Zvd"n, Q™ = 0/"q — 0£vd;™n, and C™(-) are those commutators C*(-) for
the case g = m. Note that we have singled out the term RO from Rf.
We first estimate ZJ", which can be rewritten as (similar to (6.21))

m / (g — OPQ)O KN - V™ dy + /
z=0

COMHN - V™ dy + / SCM(B) V™ dy (6.60)
2=0

2=0
— / . 2eSYVIIO"N - V™ dy — / . 2¢0"h 87 (SPv)N - V™ dy.
Following the analysis in (6.22)-(6.24), or:e can bound the last three terms in (6.60) by
Moo (& (0lm-11 + Ibgn-10) [V™]g + Al
As (6.29), one deduces

/ —(g—0%2q)0"hN - V™ dy (6.62)
z=0

g (V711 3 il [V]) (6.61)
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1d 2 2 2
< ——— —0%q) |0 ).
<~ | 9= QOB dy o+ A (JAn + ol

However, as explained in Section 2, one can not use the arguments leading to (6.38) to estimate
fz:O c0f"HN - V™ dy since there is one half regularity loss for 0;*h so that it is difficult to
control the following term, after using the kinematic boundary condition,

—/ o0 HmoN - 9" Lo dy. (6.63)
z=0

The crucial observation here is that, this term will be cancelled out from estimating the term
RO defined by (6.57). So the estimates of this term will be postponed till we estimate RG-
Similarly as (6.41), Z;"* admits the bound

TP < Ao (IV™lg + ol + Rl [V - (6.64)

We now estimate Rg). Note carefully that there is no any estimates of 0;"¢, so one needs to
integrate by parts in t. To continue, one needs more explicit expression of C"(d). Indeed, we
will use a variant of (3.2). It follows from the divergence free condition that

azgo (81111 + 62’[)2) +0,v-N=0.
Applying 9} to the above and using the definition of C™(d), one gets that
0,0C™(d) = [0/, N, -0,v] + [0}, D.n, D1v1 + Dava] . (6.65)

Moreover, to integrate by parts in ¢, one needs to single out in C™(d) the highest m — 1 order
time derivatives terms and use the following decomposition

0,¢C™(d) =C™(d)1 +C™(d)2 + C™(d)s +C™(d)s +C™(d)5 (6.66)
with
C"™(d); =mIN - 9" 1d,u,  C™(d)y = mdd.nd" " (D1v1 + awa), (6.67)
C™(d)3 =m0 'N - 90.v, C"™(d)s = md}" 9.0 (O1v1 + Dov2), (6.68)
m—2
cm(d)s =Y CL, (afN O, + 800,m - O (Oruy + 321}2)) . (6.69)
=2
Accordingly,
RE = — /Q (C™(d)1 + C™(d)s + C(d)3 + C™(d)s + C™(d)s) g dydz.  (6.70)
The fifth term in (6.70) can be easily treated by the integration by parts in ¢ as
d
—/ C"(d)s0{"qdydz = —/ C"™(d)50" g dydz + R, (6.71)
Q dt Jo
with
m /Qatcm(d)sagn—lq dydz < Ao (|h|Xm_l,% + Hazvnxm_z) 107" q|| - (6.72)
Integrate by parts in ¢ to write the fourth term as
- / C™ ()40 g dyd> — —% / Cm™(d)adr g dydz + R, (6.73)
Q Q

where, by further integrating by parts in z and the trace theory,

Ry = / m (8{”@17&(311)1 + Ogug) + 8{”718,27783(81111 + 82112)) 8tm71q dydz (6.74)
Q

= MmO hd; (1v1 + Dava) O g dy — / md;"nd. ((81v1 + dovo) 8{”_1(]) dydz
z=0 Q

+ / ma?—laznaf(am +82v2)8;”—1q dydz
Q
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<A Omh, 8m—1 am 8m—1 8m_18 am—l
> Ao ’ t ‘_%} t Q‘% + H t 77” H t qHHl + H t ZUH H t QH
<Aoo [Pl gy 107" al 11 -
Similarly, integrate by parts in both ¢ and y to bound the second and third terms by

d — m
— /Q (C™(d)2 + C™(d)3) 0" q dydz = @i ) (C™(d)2 +C™(d)3) 0" Yydydz + Ry, (6.75)

where
m /Q 90 (C™(d)2 + C™ (d)s) O~ q dyd= (6.76)

<Aoo (Il vy + ol + 19012 97"l 0

Finally, we turn to the most delicate term, the one involving C™(d); in (6.70). Integrate by
parts in z first to get

—/ C™(d)19;"qdydz = —
Q

Then integrate by parts in ¢ to obtain

moN - " v q dy +/ md, (8" q0N) - 0" 1w dydz. (6.77)
z=0 Q

/ md, (O"qON) - 0" tv dydz = ccllt/ md, (0" 1qoN) - 9" v dydz + RY", (6.78)
Q Q
with
R = —/ md, (8] 1qoN) - 0"v + md, (9" 'q02N) - 9" v dydz (6.79)
Q

< Ao [[0]l50m [|0-07" ] -

Note carefully that we integrate by parts in z first rather than in ¢ since there is no estimates
of 0/"v on the boundary. This also indicates the difficulty in controlling the first term in the
right hand side of (6.77) since one can no longer integrate by parts in t. Recall here that there
was also one term out of control, that is, (6.63). Our crucial observation is that there is a
cancelation between them since ¢ = gh — 0 H + 2¢SYvn - n on {z = 0}. This motivates us to
estimate together the first term in (6.77) and the second surface tension term in (6.60), by the
kinematic boundary condition,

/ GO HN V™ dy - / _ mON: oy o g dy (6.80)
= / . o0"H (N - V™ +mdN - 0" 'v) dy
- / _ mON -0 o (g0 h + 207" (S7vm- m) dy
= /0 oo H (agnﬂh + vy - V0" h + 9%v - NO"h — 5m(h)) dy
_ /_0 MmN - "Ly (A" h + 207 (SPun - n)) dy,

where C™(h) is the commutator C%(h) defined by (3.53) for the case ag = m. Note that the
last term in (6.80) can be estimated as follows, thanks to Lemma 3.4,

- mN - 9" v (g h 4 2¢0 (S¥vn - n)) dy (6.81)
z=0
<Aoo |07 o]y (107h1_y + 10" (S7vn- m)|_y )
2 2 2

< Ao [0 10 (|8;”hl,% +elhl

1 1
2 X™2

+6|U‘ 1).

X™2
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The integration by parts and (3.50) yield
/ o H (afv - NOh — ém(h)) dy (6.82)
z=0

h
<olom [ Yol
VI+IV,E )|,
S AOOU ‘h|mel (|8Znh|1 + |h’Xm71,2 + |/U‘X'mf?,l) .
It follows from (5.13) and (5.14) that

. (afv NO"h — ém(h)) ‘0

/ o Z°H (0] h + vy - V,0"h) dy (6.83)
z=0
"h h -
:/ vyt : _ Vyh-V,0rh sVyh+C(BY) | (07" h+ vy - V,0h) dy,
1+ [Vyh| \/1+|v hP?
where
V,h 1
CB™) = — |gm=t, YV Y 9V h+ |, Y,k . 6.84
e [ e I VA | T (o5
Similarly as (6.35)—(6.37), one can deduce that
/ VyOr'h > _ Yy VO Zvyh (07" h + vy - V4,0 h) dy (6.85)
L+ [Vyh[? TV, A2
1d IV, 0Ph2Vyh V00 )
——— dy + Aooo | |5m1 -
2 dt (\/H!V W2 T VR i

Integrate by parts in both ¢ and y to have

/ oV, - (C(B™) O™ hdy < — aC(B;")-vya;"hdy+/ G0, C(B™) - V, 0 h dy
2=0

dt 2=0
< —% . oC(B™) - VoM hdy + Moo [h|Fms - (6.86)
One easily has
[ oV €Y vy V00 iy < A Blges s (6.57)
Hence, by the estimza:tes (6.81), (6.82), (6.85)—(6.87), one may conclude from (6.80) that
/ ocO"HN - V'™ dy — ) moN - O Lo q dy (6.88)

=0
1 |2 yh - V,0mh|?
0

VIFIVEP T \v R’ ot
+ Ao (a\h@m,l + 0 [hlgons [olgrmsa + 00| (\atmm_% +elhl .y +e \”U]Xm,%>> .

This in particular finishes the estimates of the second surface tension term in (6.60) and R,
which can be stated as follows:

/ O HN - V™ dy + R (6.89)
2=0

_1d VO (9P L d

I VIFIVAE TV A2

+ Ane (0 1fms + 0 Bl [z + (07 0]y (191°RI_y + € Bl y +elolyny )

Aos (lygnos g + Ioln + V0l ) 107" all 1
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where

g" = /Q (C™(d)2 + C™(d)3 + C™(d)4 + C™(d)5) 8" q dyd (6.90)

— / md, (8]" 1qo,N) - 0" v dydz —i—/ oC(By") - V40i"hdy.
Q 2z=0

It remains to estimates the commutators Ry and RE. It follows from (3.18), (3.15), (3.16),
(6.2), (6.5) and (6.4) that

RE < Ao (107"l + I (T + IC™ (@1]) - V™ + ™ @) 1951 (6.91)
Aoo (1hlygn, -3 + Iollgnos + V0l gn-s + [ Vallgn—s ) IV + 107"])
Ao (Il -y + 0 [hlgm-12 + [0l + [V 0llgn-s + & [0l s g+ lr g )
X (Wollsn + [l -y ) -
Similarly as (6.49), it holds that
RY <Aoo (23 oy + € hlnor g +21V0llgnos ) (Iollgm + Rl -y ) (6.92)
& (I90llnms + 1l ygros. g ) 19V (Blgnosi + [olgm-s.0) (Bl + olgn) ) -

We can now finish the proof of the proposition. As a consequence of (6.61), (6.62), (6.64),
(6.89), (6.91), (6 92) and Cauchy’s inequality, one may deduce from (6.16) that

1d
53"t g gm + 2 / |SPV™? dy, (6.93)
2 dt
(rh|Xm + 0 s + [V mor + ol + € [0l +2 L2, 5
e 0]y (lollgn + 1V0lle + Bl y ) + & (IF0llgmms + Blyor g ) IFV)
where
V0 h|? Vyh -V, 0mh|?
em ::/ |Vm]2th+/ (9 — 02q) |O"h|* + o V0 > _ Yy it :L dy. (6.94)
Q 2=0 V14 [Vyh| /T+ [V P
Similarly as (6.52), by the trace estimates
1 1
[Vl gm 3 S M0llgm + [VOllgm and [vlgm S ([VOllgm [[0]lgm + |0]l50m ,
using Cauchy’s inequality and (6.7), one can then deduce that
t
107 o + 107" h()[g + o 107" A ()} + e Rt 5 +€/0 IVa; g (6.95)

< Ko (197 0(O)]” + 07RO + o 107 ()} + 2 [h(O)2,, ) =™

t
+ /0 oo (11l + & lm s + [0l + 1000 + & V0)mra + 2 [RI2,0 )
Note that
_gm S AOO ((|h|xm71’% + |’U‘X'm71,1 + H82’UHX77L72> Hazn_quHl + g ‘h‘X'mflﬂ ’h’XnLJ) . (696)

In contrast to the previous case, the difficulty here is that H@tmfqu ;1 and hence —G™ are not
in L°°([0,T]) but only in L?([0,T]). Our basic idea is to integrate in time twice. Indeed, we
take the square and then integrate in time to have, by Cauchy’s inequality,

! 2 2 2 2 2 ¢ ® 2 2
[ (ool + a4 oiorn +einiz, )+ [ (= [ iwors) (6.97)
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< tho (17"0() | + 187 RO + o |3 R(O)[2 + = |h(0) / g™ ?

t 2
ro( [ (rh&mo\h@w,l+HvuiwHazvu%m-l+euw|§gm-1,l+erhr§gm,;)) .
0

It follows from (6.96) and (6.5) that
t t
Lrigm < [ h (s + ol 10:00ms) (Mg + 0 Blgss (699

2
2 2
ol + 10:0ll g1 + € [0] s g+ lhlyr g ) + 02 hlEmora |hxm,1)

t
< [ Ao (B 0 ol + o+ 0:00s)
0

< (120 0 (A ol + 1003+ 22 02 g+ 2B )
We thus conclude (6.15) by plugging the estimate (6.98) into (6.97). O

7. NORMAL DERIVATIVE ESTIMATES

In view of the conormal estimates in Propositions 6.2 and 6.3 in Section 6, the next main
step is to estimate ||0,v]|xm-1-

Recall the definition of Ay from (6.3) and all the facts of the L>° controls elaborated in
the beginning of Section 6. Note that A involves only \/€|0;.v| ;. For the case without
surface tension [33] that involves only the spatial derivatives, this is sufficient for deriving
the normal derivative estimates since in such situation applying the product or commutator
estimates to control the commutators resulting from the viscosity term needs only the control
of \/€]|0::v| . However, in the current case that involves the time derivatives, following
the arguments of [33] would require the control of /¢ |0,,v||yx for some k& > 1. Recall from
Proposition 9.8 in [33] that deriving the bound of /¢ ||0,.v|| ;« requires a crucial use of the heat
kernel and the first order compatibility condition Sy |;—o = 0 on the boundary. Hence, to control
Ve 10220 ||y, it seems to involve much more delicate use of the various properties of the heat
kernel for the time differentiated problems; furthermore, it should require more compatibility
conditions of initial data.

Our key observation here is that since in the vicinity of the boundary the solution behaves as
v(t,x) ~vO(t, ) + eU(t,y, 2/+/%), it indicates that there may be better control of £d,,v (and
even £0,,,v!) in Sobolev conormal spaces. This is indeed the case as shown in the following
lemma.

Lemma 7.1. It holds that
el0zzvlly g +€l10zz0llyp <Aoo (7.1)
and for k <m —1:
1020l < Moo (2 (190l + bl g ) + 10:0lle + ol + Bl -y + [ ¥allzs) (7.2)
and
e [10=-0lcer < Ao (& (IV0lana + Al rg ) + 1Ay (73)
+ 10205k + [[0lisrn + IV @lsr-1.1 + 102V |51 )
Proof. 1t follows from the first equation in (1.9), (3.21) and (4.6) that
€0,,0 = 1 —€ Z 0, (E3,0v) —¢ Z 0; (E;;05v) + 0. (Opv + vy - Vyv) + 0,00 + 0,0V¥q

Es3 j<3 i<3,j
(7.4)
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This implies that, since v, = 0 on the boundary,
c10.c0lygon <A (e (IV9y0lyos + 1Bl ges) + [ty (75)
+10:0lly g1 + 0l 42 + [ Vallygn ) < Ace.
Applying 0, to (7.4), using the estimate (7.5), one deduces
N HazzzUHY% <A <61075 (WY%H + HVQVyvuy%) + ’h‘y%w (7.6)

10:0l 41+ [0l 42+ 19:Val, g + 1 Vallyp ) < Aco

lv

where one has used the fact that, since v, = 0 on the boundary,

||8z(vzc‘9zv)HY% < HazvzaszY% + HvzﬁzszY% = HazvzaszY% + Hz(z—i—b)vzzgazv o
N Hazvzny% Hazvuy% + Hazvzuy% ||<9ZUHY%+1 . (7.7)

Combining (7.5) and (7.7) proves the estimates (7.1).
The estimates (7.2)—(7.3) follow by a similar argument as that for (7.1). Indeed, it follows
from (7.4) and (A.1) that for k > m — 1,

10220l < Ao (2 (IVVy0llge + Bl ) + Il g + 10:0le + [0lles + 1l —y + ¥l ) -
This yields (7.2). Now applying Z;, i = 1,2,3 to (7.4) and then using (A.1) again lead to
1020 lr < Moo (2 (IVVy0 s+ Bluoag ) + Il g (78)
+110:0lsgk-1.0 + [Jv]lxgra + ka,% + ||VQHkalyl) .

Then applying 0, to (7.4) and using the estimate (7.1) and the similar observation as in (7.7)
give

e 10:z0llemr < Aoe (2 ([IV2Vllygecs + Blysg ) + Bl g (7.9)
F10:0lge + 0llge v + Bl y +10:Vallge s + [ Vallger) -
Combining (7.9) and (7.8) thus proves the estimate (7.3). O
Lemma 7.1 then allows one to derive the normal derivative estimates.

7.1. Estimate of ||0,v|ym-2. As in Section 8 of [33], one defines

Spn = (SYvn — kxv). (7.10)
The main advantages of this quantity are that

Sn=0on {z=0,-b} (7.11)
and that the following estimates hold:

Lemma 7.2. For every k > 0:
10:0l < Ao (ISullge + [l g + lollge) (7.12)

and
19=0lce < Moo (10-Sallce + ]y + llellzes) (7.13)
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Proof. We start with the estimate (7.12). The normal component of 0,v is given by, due to the
divergence free condition,

8.v-n = —%\;T (D101 + Oova) . (7.14)

Then it follows from (A.1) and Lemma B.2 that
100 mllge < Aoo (Ilollges + bl y ) - (7.15)

It thus suffices to estimate the tangential components of d,v. Recall from the derivation of
(3.37) that

%
IN]

which follows from the derivation of (3.37). Hence, by (A.1) and Lemma B.2, one has

IIo,v = (algol'[@lv + O2pI10ov + 2S5y, — gijﬁjv -nlld,: — mva) , (7.16)

I00.01l e <Aoo (Ilellges + [Blye g + ISulle + 190 - 0l ) (7.17)

Thus the estimate (7.12) follows from combining (7.15) and (7.17).
The estimate (7.13) follows from applying 0, to (7.14) and (7.16), employing a similar argu-
ment as for (7.12) and using (7.12). O

In light of Lemma 7.2, we then turn to estimate Sy, instead of d,v. It follows from the first
equation in (1.9) that

AV + (v- V) V¥ + (VP0)? + (V¥)? g — eAPV¥0 = 0. (7.18)
Taking the symmetric part of (7.18) yields
1
O S% + (v V¥) SPv+ o ((VP0)2 + (V#0)1)?) + (V¥)? ¢ — eAP(S¥v) = 0. (7.19)
Consequently,
97 Sn + (v-V¥) Sy — eA?(Sy) = Fg (7.20)
where
Fs=Fs+ F3+F2+ F§ (7.21)

with
1
Fl= —51_[ ((V“"U)2 + ((V“"v)t)Q) n+ (Il + v - V¥II) SPvn + I1S%v (On + v - V¥n)  (7.22)
+ K (0f +v - V?) (xIIv),

Egz-JTQVWfq)n, (7.23)
F3 = —¢ (A®II) S¥vn — el1SPvA%n, (7.24)
F§ = —2e0fT10¢ (S¥vn) — 2¢I1 (0f (SPv) 9 n) — ex A% (xITv). (7.25)

Note that the pressure estimates in (6.5) indicate that at most, one can estimate only ||Sn||xm-2
and hence [|0,v||xm—2 at this stage. However, we shall prove a control of ||0,v||xm-1 based on
the vorticity equation in the next subsection.

Proposition 7.3. Any smooth solution of (1.9) satisfies the estimate

t
1SnlZ s+ /0 1V 502 (7.26)
X”m72,%

t
< A0 Sa(O) s+ [ Ance? (IV0loas + 02,0 g)
0

t
b [ By + 0 il + olfmors + 0.0l s + [Salfns
0
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Proof. We start with the estimates of Fgs. It follows from (A.1) and Lemma B.2 that

| Edllin2 < Aso (1902 + bl sy + lollns ) (7.27)
18]l sem— < Ao | Vallgm-2. (7.28)
1 F8ll 2 < Ao (V0o + Bl g ) (7.29)
14l < Ao (1l gz [[920]lgmma + 1 gy [V20]] 2 ) (7.30)

< Ao (219021 + 18:0lgm2 + Rellges + Vol o3+ [Villgns + Al sy )
Here in the second inequality of (7.30), one has used (7.1) and (7.2) with K = m — 2. Hence,

1Fslln-2 < Ao (& (IV0llmozs + Bl ag ) + 10:0llm—2 + lollgmos + |l y + 1V allgm-21)

(7.31)
It follows from applying ﬁZ‘l(azgo-) for || < m — 2 to (7.20), (3.21) and (4.6) that
Of Z%Sn + (v-V?) Z%Sy —eA¥Z*Sy = Z*Fs + Cs, (7.32)
where the commutator is given by
Cs =Ct+C2 (7.33)
with
1
Cy = 00 [Z%,0.¢] (0r + vy - Vy) Sn + [Z2%,vy] - VySu + [Z2%,v:] 0,50 (7.34)
= Cg1 + Cgo +C3
and
1 1 1
2= Z% V- (EVSy) — ([Z2% E]VSy) — (E[z~ n .
Cs eazw[ V] (EVSy) eaz(pv ([Z2%, E]V5y) eaZ(PV (E[Z*,V]Sn)  (7.35)
= C51 + Cy + Cis.
Since ZaSn = 0 on the boundary, one can obtain
2 - / 1Z20Snl? dV;+ ¢ / V22052 V) = / (Z%Fy + Cs) - Z%Sa dV:. (7.36)
Q

The right hand side of (7.36) can be estimated as follows. (7.31) implies immediately that
/QZO“FS 28V, < Ao (= (100l g2 + ) + 100 (7.37)
lolgmes + |l g + 1V allgm—21 ) ISallgn-s
Next, we estimate the part involving C&. (A.2) yields
leall + €3l < Aoo (IWlln-2 + ISallzn-z + Al ) - (7.38)

Additional care is needed to estimate HC}% , since 0,5y can not be controlled. By expanding
the commutator and using (3.11), one sees clearly that it suffices to estimate terms of the form

HZﬁvz 3

with |B| + |y] <m —2, |y| < m — 3. Since

ZPv,0,778y, = VAL AYAI

1
z2(z+0b)

which can be further rewritten as a sum of terms of the form

5 1
A .| 23278y, .
5 <2(2+b)v ) 3278, (7.39)
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where ¢ are harmless bounded functions and | B| < |B|. Indeed, this comes from the fact that

Z3 (m) = —224b If B =, since (3.22) implies that v, = 0 on the boundary, then

" 2(z+b)"

N ”@UZHLOO HSnHXm*2 .

. ¥
ﬁ ( (z+0) )Z3ZS

If 3 # 0, one can use (A.1) to obtain that

CBZ < ) Z3Z75n
<|z 1 ZsSallgn s + |12 12350l
—_ m— v m—
~ z(z+b) v 37n]xm-3 2(z+0) ") |lgm-s 3omllym2
Observe that by again that v, = 0 on the boundary,
1
Z|— 0,
On the other hand, since
1 1 1
A v Zv + v ,
(z(z—i—b) z) xm-3 || 2(z+b) z xm—3 z(z+b) z xm—3
it suffices to estimate
1 1
ZPz z° <m—3.
z(z+b) v z2(z+b) va||» Bl = m
Indeed, since v, = 0 on the boundary, it follows from the Hardy inequality that
1
zPz d zP
z(z+0) vz o z(z+0) vz
We have thus proven that
HCA%'?)H < Hazvzny% HSn”Xm*2 + HSnHYL"; H({)ZUZHX"HZ‘

By Lemma B.2, it holds that

10:0:lly g < Ao and 0:0sllm-2 < Aoo ([[Wllm-2 + [8sllgm—2 + Al y )

Hence,
Iekall < Aco (ellgm—s + 10:0lm—2 + Bls g + Sallgn-2)
This together with (7.38) yields

| €4+ 27V < A (Iolbn-a + 10:0lmws + [l sy + [Sallzn-s) [Sallons-

(7.40)

(7.41)

Next, we shall estimate the term involving C%. As mentioned in the beginning of this section,
we need to employ a different argument from Proposition 8.3 in [33]. Due to (3.11) to handle

the term involving C%,, it suffices to estimate
£ /Q ZP0,(EVSn) - Z%Sn dydz
with |8 < m — 3, which can be reduced to the estimate of
e /Q (Zﬁ’azEzﬁ”vsn + Zﬁ’EZﬁ”azvsn) 7S dydz
with 8’ + " = 5. Tt follows from (A.1), (7.1) and (7.2) with k = m — 3 that
|27 0.827"VSu|| S 110-El 5 & 1V Sallzn-s + 10 Ellgn-s & [V Sall s

< Aso (6 10:0]lxm-s.1 + 10:0[lem—3 + [Vl xm—2 + [2] 2,3

(7.42)

 + 1V allgm—s + Bl oy )
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and (7.3) with £ = m — 2 implies that

c||2¥ B2 9.V 50| S 1N mgs € 110:9Sullgnms + | Ellgnos e |0:VSull mzs  (7.43)

< Moo (= (IV0llm22 + Bl g ) + [lcay
+ 10:0llm-2 + [0lm-2.1 + [ Vall -1 + 10: Vallzm-s )
Thus,

2 «
| €3 2 Suavi < (= (I90llnos + Il ) + hlay (7.4

+ 1020l gm—2 + [[0llgm-21 + IVllxm-s.1 + 0:Vllxm—s )

By expanding the second commutator CgQ, one sees that it suffices to estimate terms of the
form

e /Q v (ZBEZ‘YVSH) - 298 dydz

with 8+~ =a, 8 # 0. If v = 0 and hence 8 = a, since Z*S,, = 0 on the boundary, one can
then integrate by parts to get

5/ V- (ZYEVSy) - Z%Sn dydz
Q

5/ Z*EN Sy - VZ%Sy dydz (7.45)
Q

1
< e[| Z%E [V Snll oo IVZ%Snll < Aco [hl 2,3 €2 [VZ¥Sall,

where in the last inequality one has used the fact that A involves /€ ||0,,v|| . If ¥ # 0 and
hence 1 < |3| < m — 3, then one can expand V-, by (A.1) and Lemma 7.1, to estimate

e / (25VEZ7VSH + ZfBEZVVQSn) L 298, dydz.
Q
It follows from (A.1), (7.1) and (7.2) with K = m — 3 that

£ HZBVEZ”VSH SNZVE|| mza |12V Salligm-1 + |12V Ellgm-1 € |2V Sn]|  mza (7.46)

< N (£10:0gmmss -+ 10:0lhs + [0l + oy + [ Valgics + g )
and (7.3) with & = m — 2 that
e |27 EZ72s,

SIZE| mzs ]| 29 Sullgms + 1 ZEllxm-s€ | 2V°Sn| mzs  (7.47)
< oo (£ (190 llgn-s + 1l sy ) + 1Bl nay
+ (|00 gxm—2 + ||V||gm—2.1 + | V@]l gxm=3.1 + |02V q|lxm—3 )
Hence,

/ Cly - Z°Sn Vi < Aoc (& (IIV0lgm-s + Blna g ) + Blogna g + 10:0lmos + [0]m-2s
Q

1
+ IV alm-s + 10-94lm-s ) Snllzom-2 + Aoo [Bly—ay £ V2750
(7.48)

To handle the term involving C%;, due to (3.11), one needs to estimate
e / v (Ezﬁazsn) - 298 dydz
Q

with |3] < m — 3, which can be bounded easily by using (7.2) with £ = m — 3 and (7.3) with
k =m — 2 so that

[ €5 228udve < Ao (= (I90lgmos + [blycsg) + [blyny + J0ulne (749)
Q

1
Xm_Q’Q
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ol 2+ [V algn-sa + 10- Vg s ) Sl
In view of (7.44), (7.48), (7.49), one has actually proven that

[ €3 2280t < e (= (I90lgmon + (bl + (bl + 102 Tns + olnns
Q

1
+ 1 Vallsm-s.1 + II@VqHXm—s) [Snllxm-2 + Aco Al 23 €2 [VZ¥Snll -

(7.50)
Consequently, by (7.37), (7.41) and (7.50), one deduces from (7.36) that
1d
/ |28 |? th—l—s/ (V¥ Z2Sn|* dV, (7.51)

< Moo (& (IV0llgm-2s + lgnong ) + ISnlln-s + 19:0]5m2 + [0llm-s
1
Bl sy + [ Valln-2s + 10:Valln-s ) [Sallgn-z + Ao Bl s y € V2 Sall.

To conclude, one can use Lemma C.1 to replace [|[V?Sy|/xm—2 by [[VSnl/xm-2 in the left hand
side and then use Cauchy’s inequality to absorb the last term. On the other hand, one can
follow the derivation of (6.5) to get that

lalln-21 + [Valn-21 + 10-alm—2
<Aoo (IPlygor g + 0 Vhlgm-zs + [Vllgm-11 + [ V0llm-21 + & [ V0llgm-22 + & |l sy )

which reduces the order of time derivatives to the spatial derivatives. Finally, we integrate the
resulting inequality in time to obtain (7.26). O

7.2. Estimate of ||0,v|ym-1. Note that Proposition 7.3 only provides the control of ||0,v||xm-2,
and this is due to the appearance of (V¥)?q in the source term in the equation of S,. To get
around this, a natural way is to use the vorticity instead of Sy,.

Set w = V¥ x v. Then

wXn=

(V¥on — (V¥v)'n) = S¥vn — (V¥0)'n, (7.52)

| =

and hence by (3.35),
1 g
wXxXn= 30nu— g¥ (8jv . n)ayi.

Consequently, as in Lemma 7.2 one can get that

10:0lgm+ < Aco (I0lgms +hl s g + s (759
To estimate ||w||xm—1, one notes that the first equation in (1.9) implies
Ofw+v-Viw—w- VP =ecAw. (7.54)
As in the previous subsection, applying ﬁZQ(ach-) for |a] < m —1 to (7.54) yields
7 + (v- V%) Z% — eAZ%w = F. (7.55)
Here F' is given by
F =Z7%w-V¥v) +Cg, (7.56)
where Cg is given, as in (7.33), by
Cs =Ct+C2 (7.57)
with
Cy = (9,2190 (Z%,0,¢] (0r + vy - Vy)w+ [Z%, vy - Vyw + [Z,v,] Ow (7.58)

= Cg1 + Cgp + C3
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and

c2 = _Eaip[za’v] . (EVw) - eazl(pv. ([Za,E} Vw) - Eazlgo

= C%1 + C3y + C33.

V- (E[Z*,V]w) (7.59)

The main difficulty lies in that the vorticity does not vanish on the boundary. Thus, set
Z% = wyy, + wy (7.60)
where w; sloves
ofwy + (v VO)w?, —eAw? =F in
woy, =0 on {z =0, —b} (7.61)
wiple=0 = w(0)
and wy solves
Of w4+ (v- V9w — eA%wy =0 in Q
wi = Z% on {z =0,-b} (7.62)
wie=o0 = 0.
The estimate of wy);, is given as follows.

Proposition 7.4. For |a| < m — 1, the solution wS;, of (7.61) satisfies the estimate

Xm—?, 3

t t
s @I +e /0 Vel <Ao 1w(0) -1 + /0 Aooe? (IV0 o2z + B2, og)  (7.63)

t
2 2 2 2
+ /0 Boo (B2 o1y + 10:015mo1 + oW1 + ) -

Proof. Since w, = 0 on the boundary, it follows from (7.61) that

1d
th/ ‘wg‘h‘Q th +€/ ’wagh‘z th = / F(A}Sh th (764)
Q Q Q

We now estimate the right hand side of (7.64). (A.1) implies that

12 (w - VZ0)|| < Moo (|lwllzom-1 + [VF0llxm-1) <Aoo (HWHmel + IVollgma + !h\xmflg :
(7.65)
To estimate the part involving Cg, one first can change Sy, into w and m into m + 1 in (7.50) to
get

| €3t @ < e (= (190 lmn + 1Ml ag) + 1hl (7.66)
Q
1
+[10:0]lxm-1 + HUHXm—m> loonll + Ao (Bl a3 €2 [Vl -
For the part involving C&, one can change Sy into w and m into m + 1 in (7.38) to obtain
lekall + [1C3 1 < Ace (Illgn-s + eollgms + Al g ) - (7.67)

The commutator C§3 requires much more care. Indeed, one can not change m into m + 1 in
(7.40) since it would involve |h]Xm7 1~ Asin (7.39), this commutator can be expanded into a sum

1
7P L) 2527
“ (z(z+b)”> e

such that |8| 4+ |y <m —1, |y| < m — 2. As the arguments in previous sections, by (A.1) and
v, = 0 on the boundary that, one deduces

1 1
ZB z ZZ’Y <Aoo m— A T\ Y=z
() 27 <2 (1o |2 ()

of terms of the form

W) (7.68)
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< Aco (lgnoaa + || o+
W||sm— — .
=~ oe] X 2,1 Z(Z + b) z —
It follows from v, = 0 on the boundary and the Hardy inequality that, since v, = v - N — 0O,
1
_— < |0 m— 7.69
Z(Z+b)vz gm-1 ~ H ZUZHX 1 ( )
<Aoo (110:0llmos + [Wllgmos + Blay )+ D0 v+ 0:2°N = 0.2%0]
|a|l=m—1

where the last term requires furthermore analysis. Due to (1.6), it holds that
|Zsi| S 1X(1€]2)h|
where x has a slightly bigger support than x. Hence Z3 acts as a zero order operator:
IVZsn|| < (A1 (7.70)
This yields that if ag # 0, one gains at least one derivative, and thus,
v+ 0.2°N = 0. 2°0ml| < Aos (Pl g2y + 100l 2y ) < Moo IRl y - (7.71)

Hence it suffices to estimate this term for the case with |a] = m — 1 and ag = 0. Note that

(1.6) implies that
= 05) B (e (149 o

where %, stands for the convolution in the y variable and 1 is in L!(R?). Then
1
v-0,Z°N —0,Z%0m = — 3 (Vy = s xy VyZOh 4 1), xy OLZ%h) (7.73)

B (1 + %) 0z (Uy Yz >y VyZUh +1pz 5y O ZN) := To = Taa + Tae-
It is clear that

el < Moo (1hlnsy + 10 sy ) < Ao By - (7.74)
For the second term, one can separate it into two cases. For —b < z < —5, then
1
Ta2 = —523 (Uy -, *y VyZah + 1, *y BtZah) .
It then follows from (7.70) that
1Tl o neee—sy) < Ao (Ialgosy + 10chls g ) € A lhly oy (7.75)
For —2 < z < 0, Ta2 can be written as
Tor=— (14 2) ((t,,0) - 0. (6w Vy 2°0) 4+ 0. (4 %y Z°R) + R, (7.76)
where
IR| < Aso|2(2+b)[10; (V. x ZOVh)| < Ao | Z3 (0, x Z¥Vh)| .
By using (7.70) again, one can get that
||R||L2(Qm{_ggz<0}) < Ac>o ’h‘xm—l,% . (777)

To estimate the first term in (7.76), one notes that
vy (t,y,0) - 0z (V2 *y VyZ@h) + 0. (Y2 5y 0 Z%h) = 0 (Y2 Ky (vy(t,y,0) - VyZ*h + 8,Z2%h))
+ 82 (/RQ (Uy(tv Y, 0) - ’Uy(t, yla 0)) : ¢Z(y - y/>vyzah(t7 y/)) .

For the second term in the right hand side of the above, one can employ the Taylor formula for
vy to get that

(0 (1:2,0) 3y 1.4/.0))00(y — /)| < Ao (y y ) ,

z
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where 1 is still an L' function. This yields that

0 </IR{2 (Uy(t’ ¥:0) = Uy(ta y/’ O)) Py — y')VyZah(t, y,)>

sup
zE(—f 0)

< Ao |h] g1 (7.78)
0 £

For the first term, one shall use (3.47) to get
Uy - VyZh+ 0y Z%h = —=0fv-NZ*h +C*(h) + V- N
which implies, since |a| =m — 1,
[vy - VyZ°h + 0, 2°h]s < Ao (mxm,l% + |h|Xm,L%) .
It thus holds that
102 (2 %y (vy(t,y,0) - VyZh — 0. Z%h))|| S vy - VyZ%h — atZO‘h\% (7.79)

< Ao (ol gy + 1Pl g )

Collecting all the estimates (7.77)—(7.79), one deduces from (7.76) that

1Tal2(ngesty) < Moo (I0lgns g + lnosy ) (7.80)

In view of the estimates (7.68), (7.69), (7.71), (7.74), (7.75) and (7.80), by the trace estimates,
one finally gets

leksll < Aco (I0-vllgn-s + [Wllgm-va + hlyr g ) - (7.81)
As a consequence of (7.65), (7.66), (7.67), (7.81) and Lemma C.1, we deduce from (7.64) that

¢ t
O+ [ 1901 < Aol @lnms + [ Ao (= (IV0lgnone +1blng) (782
1
+ [l g1y + 1020l xm + IIUIIXm—m) [wnnll + Moo |hl 3 [[Vepl
We then conlude the proposition by using Cauchy’s inequality. O

It remains to estimate wj of (7.62). Note that Lemma 3.4 and the trace estimate imply that
VE / 2o} < V2 / (S — (7.89)

< Ve / (190 g1 el + ol s+ ol 1)

Thus the main difficulty will be to handle the non-homogeneous boundary value problem, (7.62),
whose boundary value is at a low level of regularity (it is LtQ,y and no more) due to (7.83). This
creates two difficulties: the first is that one cannot lift the boundary condition easily and
perform a standard energy estimate; the second one is that due to the lower boundary estimate,
one cannot expect an estimate of [jwj|| in L°°(0,7) independent of e, as was well explained
in Section 10.2 of [33]: in using the model of the heat equation, one may expect a control in

Hi(0,T) C L40,T).

Proposition 7.5. Assume that Ax(t) + f(f 102201 oo < M for M > 0. Then for |af <m —1,
the solution wj of (7.62) satisfies the estimate

T T
oy e < AOD) [ (Il + bass) +e [ 190 (789

Proof. Since the situation here is similar to Section 10.2 in [33], thus this proposition is a
restatement of Proposition 10.4 in [33]. However, for completeness, we will sketch the main idea
and some steps of the proof and state our estimates with a slight modification.
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First, it is convenient to eliminate the convection term in (7.62) by considering Lagrangian
coordinates. Define a parametrization of Q(t), X (t,-) : Q — Q(t), by

X (t,x) =u(t,X(t,x)) =v(t,®(t,-) o X)
X(0,z2) = ®(0,x),

where the map ®(t,) is defined by (1.4). Denote J(t,x) = |det VX (¢,z)| for the Jacobian of
the change of coordinates. Then J(¢,x) = Jo(x) by the divergence free condition. Define

(7.85)

QY = e MW (t, 7 o X), (7.86)
where v > 0 is a large parameter to be chosen. Then Q% solves
ao (8tQa + ’)/Qa) — 582' (ai]ﬁjﬂa) =0 in Q. (787)

Here ag = | Jo|? and the matrix (a;;) is defined by
(agj) = |Jo|2P~ ! with Py = 9,X - 9, X.

Due to the assumption A (t) + f(f 10220]l1 oo < M, Lemma 10.5 in [33] holds. Then the
following estimates hold:

1,00 + HJ_lel,oo < Ao, (7.88)
IVX || oo + 10V X oo < A(M)etr ), (7.89)
IVX |} oo + 10V X} oo < AN, (7.90)
VE|[V2X |, o + Ve[ 0V X[ oo < AM)(1+ £)e A (7.91)
Indeed, the estimate (7.88) follows directly by J(¢,x) = Jo(x). Next, (7.85) implies that
HVX = VovVe vy (7.92)

and hence
t t
IVX| e < [VX(0)]]p + Ao /0 V0] e VX | e < Ao+ A(M) / VX

This yields the first part of (7.89) by the Gronwall inequality. Next, applying one spatial
conormal derivative to (7.92), one can get

t ¢
VX[ o < VX100 +Ao/0 V0l o0 VX o0 < AoJrA(M)/O VX oo -

and hence the first part of (7.90) follows from the Gronwall inequality. The estimates hold also
for the time derivative in (7.89) and (7.90) by using again the equation (7.92). To prove (7.91),
one applies 1/0;, to (7.92) to find that

0v/20:,VX =\ (0, VoV 'VX + Vi, VO VX + VoVe 19, VX). (7.93)
It follows from (7.90) that

t t
VE IV, < AGD+0)+ A0 [ VE VX, + A0 e v,
and hence, by using the assumption fot 102201 oo < M,

VIV, < AQD( + 0+ A) [ VEITX o

and so the first part of (7.91) follows from the Gronwall inequality. For the second part of (7.91),

it follows by using again (7.93) and the fact that A involves the control of /e HVQUH oo
As consequences of the estimates (7.88)—(7.91), one gets
aq 2 m, CL373 2 m, (aij) Z C()Id (794)

by a suitable choice of m and ¢y depending on M for ¢ € [0, 1] and that
(a0, aij)| oo + VE10:(a0, aij)l| oo < A(M), (7.95)
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10r,y (a0, i) oo + VE |01,y Vaijl| oo < AM). (7.96)

Note that these coefficients are lack of uniform regularity with respect to normal variables. To
get the estimates for solutions of (7.87), the authors in [33] use the paradifferential calculous to
prove Theorem 10.6 in [33], which yields that there exists vy depending only on M such that
for 4 > g, the solution of (7.87) satisfies the estimate

T
90y | < vEAQ) [ 1a0. (7.97)
HAL? 0
By the Minkowski inequality and the one-dimensional Sobolev embedding H ic L4,
a2 < |2 < a2 _ a2
191312 5 19 ozy, SN0, g = 19%1
one then has .
Iy < VERG) [ j0. (7.98)

This and (7.86) show that

T
Iy e < AGOVE [ 120,
Thus (7.84) follows from (7.83) and Cauchy’s inequality. O

8. L*° ESTIMATES

In order to close the a priori estimates, we shall now estimate the L norms contained in Ao,
100y +2 and /€ |0:.v|| o, and fg VE [|0z2v]]; o, that was used in Proposition 7.5. We will
prove that they can be bounded in terms of the quantities in the left hand side of the estimates
of Propositions 7.3 and 6.2, which will then be shown to be in L* in time.

The key point is to use again the quantity Sp, and one has the following:

Lemma 8.1. For any k € N:

1
00l < A (o Bluees ) (ISalkos + olnes) (8.1)
Also,
VE 1020l 0 < Ao (VE [10:Sull o + a0 + 101l (8.2)
and
V10220l oo < Ao (VE19:Sully g + 1Sally 0 + [0]1500) (.3)
Proof. This follows again from (7.14) and (7.16). O

As a consequence of Lemma 8.1, it suffices to estimate Sy,. Before proceeding further, one
has the following observation.

Lemma 8.2. For any smooth cut-off function x such that x = 0 in a vicinity of 0Q = {z =
0,—b}, we have for m >k + 3/2:

Il S MW F Ml - (8.4)

Proof. Tt follows directly by the Sobolev embedding H*(Q) c L>*(Q) for k& > 3/2 and the
fact that away from the boundary 9 the conormal Sobolev norm |-||, is equivalent to the H*
norm. (]

Hence, one needs only to estimate xSy for x(z) compactly supported and such that y = 1 in
a vicinity of 9€2. In this step, as in [32, 33], it is convenient to use a coordinate system where
the Laplacian has the simplest expression. We shall thus use a normal geodesic coordinate
system in the vicinity of 0. Note that this coordinate system has not been used before since
it requires more regularity for the boundary: to get an H™ (or C™) coordinate system, the
boundary needs to be H™*! (or C"™*1). Nevertheless, at this step, this is not a problem since
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one needs only to estimate a low number of derivatives of the velocity, say %5 + 2, while the
boundary is H™ and m can be as large as needed. We shall choose the cut-off function y in
order to get a well defined coordinate system in the vicinity of 02. For sake of brevity, we
consider only the estimates near {z = 0}, and the estimates near {z = —b} may follow in the
same way and a bit simpler.

Define a different parametrization of the vicinity of {z = 0} by

T(t,-): Q=R?x (—00,0) = Qt)
(8.5)
(y,Z) = ( %(t,y) > +an(t7 y),

where n® = N®/|N?| is the unit exterior normal with N® = (—0;h, —02h, 1). Note that W(t,-)
is a diffeomorphism from R? x (—§,0) to a vicinity of 9Q(t) for some & which depends only on
co, and for every t € [0,7%7] thanks to (6.1). By this parametrization, the induced Riemannian
metric has the block structure

g(t,y,z) 0O
g(t,y, 2) = < 9 e : 1 ) (86)
Hence, the Laplacian in this coordinate system reads:
1
Agfzazzf+§az(ln\g|)8zf—i—A§f, (8.7)
where |g| denotes the determinant of the matrix g and Aj is defined by
1 i~ 1
Ngf=—5 > 0,(313170,: ). (8.8)
g]2 1<i, j<2

To use this coordinate system, one shall first localize the equation for S¥v in a vicinity of
{z =0}. Set
SX = x(z)S%v, (8.9)
where x(z) € [0,1] is smooth compactly supported near {z = 0} and takes the value 1 in a
vicinity of {z = 0}. (7.19) yields that

OFSX + (v V#)SX — eAPSX = Fgy in Q, (8.10)
where
Fex = FX+ F, (8.11)
with
FX = (Vzazx) Sy — eVPy - V¥S¥0 — eA¥x S¥v, (8.12)
Fy = =x(D?)%q = 3 ((V#0)* + (V¥0))?). (8.13)

Next, define implicitly S in Q(t) by S(t, ®(t,y, 2)) = SX(t,y,z). Then (8.10) yields
S +u-VS —eAS = Fo(t,®(t,)™") in Q(t). (8.14)

Finally, define S¥ in Q by SY(t,y,2) = S(t,¥(t,y,z)) = SX(t,®(t,-)"! o ¥). It then follows
from (8.14) and (8.7) that

S +w-VSY —£(9,.57 + %@(hl 19))0.8Y + AgSY) = Fox(t,® 1o W(t,-)) inQ, (8.15)
where the vector field w is given by
w=x(VY) " (ut,¥) — 8,¥) = x(VE) " (v(t, 2 0 T) — 5, 0). (8.16)

Note that SY is compactly supported in z in a vicinity of {z = 0}. The function Y(z) is a
function with a slightly larger support such that ¥S¥ = SY. The introduction of this function
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allows to have w also supported in a vicinity of {z = 0}. Note that on {z = 0}, w3 = 0. Indeed,
since

1 0 n}
VU(t,y,00=| 0 1 nb |, (8.17)
81}1 82h ng
thus for any Y € R3,
(V¥(t,y,0)" V)3 =Y -n’. (8.18)
Hence, (8.16) implies that on {z = 0},
w3 =v-n® — §;hnf = W(U-Nb—ath) =0 (8.19)
thanks to the kinematic boundary condition.
Now, set
Sn (t.y.2) = I(t,y)S™ (t.y, 2)n’(t,y) (8.20)

with IT* = Id —n® ®n’. Note that II® and n® are independent of z. Moreover, since the equation
(8.15) is compactly supported in z in a vicinity of {z = 0}, this yields that Sy solves

0S¥+ VY — (0 + 30.(Inlgl)0)SY = FY i {= <0}, (3:21)
where
FY =°Foxn® + Y1 + FY2 (8.22)
with
Fyt = (0 + wy, - vy)Hb) S¥n’ 4+ 11°5Y (0 +wy - Vy)nb7 (8.23)
Fy? = —ell’(A;8Y)n’. (8.24)

On {z = 0}, SY = S, = 0. Furthermore, it is convenient to eliminate the term 9, In|g|d, in
the equation (8.21). Set

p=1lgl18Y, (8.25)
then
Op+w-Vp—e0,,p=H in {z <0}, (8.26)
where
H=|g|7 (FY + F,) with F, = plg| "2 (9 +w -V — £0..) |g|7. (8.27)

Trivially, on {z = 0}, p = 0.

8.1. Estimate of [|0,v||, 2. We now establish the first L>® estimate. Note that it is equivalent

to estimate Sy or Sy or p. Indeed, by the definition (8.20), using the chain rule and the fact
that Z is tangent to {z = 0}, one has

1
1S3 |y < A <CO, !hlka) |mweseont
Since |IT — II°| 4+ |n — n®| = O(2) in the vicinity of {z = 0}, thus
1
[ Sn ||y < A (c()’ Ihlw+1) (ISnllyx + lvllyrr) - (8.28)
Similar arguments show that
1
ISk <& (Al ) (15 s + o). (5:29

On the other hand, it is easy to see that it is equivalent to estimate p or Sy. By (8.1), it thus
suffices to estimate p.
Set

~ 1
Roclt) = & (Wb or 4 I90lyn & Dollggor + [Volggae) . (830)



48 YANJIN WANG AND ZHOUPING XIN

Proposition 8.3. For m > 14, it holds that

t
lp()llyg+2 < p(0) ]|y 542 +/0 Roo (L+ €|V Sallgm-2) (8.31)
Proof. Apply Z*, for a € N'*3 with |a| = k < 3 + 2, to (8.26) to obtain
WZ%p+w-VZ% —e0,. 2% = Z°H +Cs in {z < 0}, (8.32)
where
Cs =Ct +C2 (8.33)
with
Cs = [Z%wy) - Vyp+ [Z% w3] - 0.p := Csy + Cs, and Cz = —¢ [Z%,0.:] p. (8.34)

The maximum principle on (8.32) yields that, since Z% = 0 on {z = 0},

t
12%pll e < 12%p(0)]] oo +/0 IZ°Hl[ oo + ICsl e ) - (8.35)

The right hand side of (8.35) can be estimated as follows. For the commutator C§, the direct
estimates yield

ICsyllpoe S llwyllyk llollys - (8.36)
To estimate Cg,, by expanding the commutator and using (3.11), one needs to estimate terms
of the form

—
with 8+ v < a and |y| < |a| — 1. Since w3 =0 on {z = 0}, so
ZBws
2ouwsd.Z0p|| = |z S o . .
|7 wsd. 20|, = || 7770 S 0wl ol (8.37)
For the commutator C2, using (3.11) repeatedly leads to
— 29,0 p=0.(]2%,0,] p) + [Z%,0,] O.p (8.38)
- Y o (cBaz(zﬂp)) + Y cs0.(Z0.p)
|B|<k—1 |BI<k—1
= Z Cﬂ/Zﬁlazp + Z ég/ZBlazzp.
|8'1<k—1 |8/ |<k—1
Hence,
IC5]| 1o S €llOzpllyas + € [10z2pllyis - (8.39)
Note that using the equation (8.26) implies
e 10-epllyis < 1940 +w- T — Hllgaos < lollye + - Tpllgacs + [Hllgecs . (8.40)
Recall from (7.1) that
1
e 0apllyes < 2A (CO, |h|w+1> 192 s < Ave. (8.41)
As (8.36) and (8.37),
lw - Vollye-r S (lwyllyr + 18:wsllyx) llollys - (8.42)
Thus,
ICE]| oo S (L + llwyllye + 10:0sllye ) ol + [[Hllyi-1 + Aco. (8.43)

Consequently, in light of the estimates (8.36), (8.37) and (8.43) into (8.35), one obtains

t
lollye S 12(0) ]Iy +/0 [Hllyr + (1 + llwyllyx + 10zws]lyx) lollyr + Ao (8.44)

Now we estimate H. Note first that

1 1
sl <& (ol + wlhs + ks )
0
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Next, it follows from (8.23) and (8.24) that

1 1
o 22 <& (5 bl + ol + 1900
Yk Co
and
1. g2 1
lgrimy?|  <eA <CO, |h|w+3) IV0llygre -

Using (8.12) and (8.13), the fact that F'X is supported away from {z = 0} and Lemma 8.2, one
gets

o rat], < a (i lalses + follaes
and

1 1
lgri e <A (CO, [Blyera + ||W||w> (1+ V2] ) -
Recalling (8.27), (8.22) and (8.11), and collecting these estimates, one arrives at
1
[Hlyr < A (Cov |hlyrrs + l[vllgna + ||Vvllxyk> (1 +e I Vollyree + [|Val|y) - (8.45)
Recall from (4.15) that

1
200 < A (o il b Bl + 1700 + g + 1900 e

1
<A (CO, Blyes + Bl por + V0l g + ol e + ||VUHX*;+6> (8.46)

if m > 10. Hence, (8.44) implies
b1
lollyon S Ionllyon + [ A (2 blyg oo + 190l + lolggon + 190l ) ©47)

x (1+elVollype)-
Then the desired estimates (8.29) follows for m > 14 so that § +4+1 <m — 2. O

8.2. Estimate of /¢ ||0,.v|| ;. The next L™ estimate is the only place where one needs to
use the compatibility condition on the initial data. As in the previous subsection, by (8.2), one
can reduce the problem to the estimate of v/ ||0,p|| ;s -

Proposition 8.4. Assume that the initial data satisfies the compatibility condition Sp(0) = 0
on {z =0,—b}. Then it holds that for m > 6,

VeI e < VE [B=p0ll e + / (3.48)

Ve
Proof. The proof follows the spirit of the proof of Proposition 9.8 in [33]. Recall that p satisfies
(8.26) in {z < 0} with p = 0 on {z = 0}. Note that one can not apply /€0, to (8.26) and then
use the maximum principle due to boundary condition. We shall use a precise description of
the solution of (8.26). Indeed, one can use the one-dimensional heat kernel of {z < 0}:

Gt 2, 2) = — <e—‘z4i)2 e (“Z“Z>2> (8.49)
o Vamet '
to write that
+oo
VeEdp(t,y, z) = VEd,G(t, z, 2 ) po(y, 2')d2’ (8.50)
0

t
+ / VED.G(t — 7,2,2") (H(r,y,7') —w - Vp) dz'dr.
0
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Since pg = 0 on {z = 0}, thanks to the compatibility condition, one can integrate by parts the
first term to obtain

t
1
az t oo S az 0 e S -V o) - 8.51
VE[0:p(t)]l oo < VEIO:polly, +/0 m(”H“L +w- Vol L) (8.51)
Next, it follows from (8.45) with k = 0 that
Hll e < Ao (14 |V2] ) < A (8.52)

On the other hand, as (8.42),
- Foll e < (gl + 10150 ) ol oo < Aco (3.53)
Consequently, plugging (8.52) and (8.53) into (8.51) yields that

t
Ve8] e S VE [0l + /

which completes the proof. O

A

t—T1

, (8.54)

8.3. Estimate of \/z|0..v||; o,- The last L estimate is the one that was used in Proposition
7.5. By (8.3), one can again reduce the problem to the estimate of /¢ [|0.p]|;

Proposition 8.5. For m > 6, it holds that:

t t A
c|lo <Vt —|—t/ > .
[ e e

Proof. We will use a different argument from the proof of Lemma 9.9 in [33]. A direct use of
the Duhamel formula (8.50) yields

(8.55)

1 |
VEIOple S Mol + | < (It 0 ilh) . (350
Next, it follows as the previous arguments that
1] 00 <Aoo (1 + HVZqHLOO) < A (8.57)
and
w0Vl e < Ao (045,00 + 10:105115. ) 130 <Aoo (8.58)
Consequently,
o1 b A
VEldepl e S ool + | 2= (8.59)
Integration in time yields
t t Aoo
| VE10.plh S Vil [ (5.60)
which completes the proof of the proposition. O

9. PROOF OF THEOREM 2.1

Collecting the estimates obtained in Sections 6-8, one can prove Theorem 2.1 in the similar
way as that for Theorem 1.1 of [33] with slight modifications.
Recall N(T') and Q(T). For two parameters R and ¢y to be chosen 1/¢y < R, define

70 —sup {T € 0.1 [N < R 10 < 1 0002 G (01)
T>0 ’ €0

and g — 97q(t) > %0 on {z=0}, Vt e [O,T].} :
Proposition 8.5 yields

T
/0 10-20]y o < A(R). 9.2)
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This allows one to use Proposition 7.5, which together with Propositions 6.2, 6.3, 7.3, 8.3 and
8.4 implies that, by a suitable linear combination,

N

N(t) <A (1,/\/(0)) + A(R) (T% + W(T) + W(T)

€o

). (9.3)
where -
W) i= [ 197hlE + o A+ 10l + oo
It follows from the Cauchy-Schwarz inequality that
W(T) < N(T)Tz < RT:. (9.4)

Hence, one deduces from (9.3) that

NS,
—~~
©
(@)
~

N(t) < A <1,N(0)) + A(R)TH.

€o

On the other hand, since N (T) involves time derivatives, one gets easily that

2(t)]2,00 < 1h(0)]5 00 + A(R)T, (9.6)
dz¢(t) = 0:40(0) — A(R)T (9.7)
and

9 —0%q(t) = g — 07¢(0) — A(R)T. (9-8)
Consequently, one can choose cg so that |h(0)[, ,, < ﬁ and then R = 2A <%,N(O)>, then

there exists T, which depends only on R so that for T < Min (T}, Tx ’6),

Nty <2 o) > 30 h(t)]y < - and g — 0%q(t) > °2 on {z = 0}, Vi € [0,T].
4 4 = 4o 4

This yields T5° > T, by the definition (9.1) and also the estimate (2.6). The proof of Theorem
2.1 is thus completed. U

APPENDIX A. SOBOLEV CONORMAL SPACES
We recall the Sobolev conormal spaces X™ and Y™ from (2.1).

Lemma A.1. The following product and commutator estimates hold.
(1) For |a| + 8] =k > 0:

|222%|| S 1710 Nl + 115 Dl (A1)
(ii) For |a| =k > 1:
112 F19l S N2 Fllsce—a llgll jrga U2 A1 kg llgllsen (A.2)
(tit) For |a| = k > 2, define the symmetric commutator
2%, f,91 = 2°(f9) = 2°f 9= 2% g. (A-3)
Then
112 £, 9l S 12 Fllsen—2 129 g2 + 21 a2 (|29l s - (A.4)

Proof. The product estimate (A.1) follows by controlling the product with the lower order
derivative term in L> and the higher order derivative term in L?. To prove the commutator
estimate (A.2), one uses the Leibnitz formula to expand

2% flg= Y Cs:2° 779
Bty=a
B#0

Since § # 0, one can write Z% = Z5~' Z#" with |#'| = 1. Then (A.1) yields
|27 2" 120 < |27 1] Voo + 275

h1 it 19ll5e-1 -
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This proves (A.2). The commutator estimate (A.4) can be proved in the same way. O

We shall also use the Sobolev tangential spaces defined by
oo @) = { £ € LX(Q), |flly, = I1A°Fllz <0}, s€R,
where A® is the tangential Fourier multiplier by (1 + \§|2)%, ¢ € R2. Note that
Flg, S Ifll fors <k, keN.

Lemma A.2. The following anisotropic Sobolev embedding and trace estimates hold.
(1) For s1+ sy > 2, s3+ 54 > 2:

1 1 1 1
e S 1002 1712 + 062y 161, (A5)
(ii) For s1 + so = s3+ 84 = 2s:
1 1 1 1
71y S 00 1 Rn 4 1y 111 (A6)

Proof. We need to modify the proof of Proposition 2.2 in [33] since our domain here is of finite
depth. To get the anisotropic Sobolev embedding estimate (A.5), one first notes that

1
o " Z o ~ 2
e <[] + ([ 2foufic.on|fean)] daa )
Integrating the inequality above with respect to 2z’ € (—b,0) yields

fea)|s [ Ob [F(e.2)]d + ( / Z 0. f(&.23)] | £, 3) d@,)%.

Hence, it follows from the Cauchy-Schwarz inequality and the fact that sq +s9 > 2, s3+s4 > 2
that

1/l < sup /
z€(—b,0) Rg

f(&.2)| de

dgaz +o [ ([ [o.de.ra)||fig.a0)] ars) i

S/Rg /_i‘f(&,z') (/.
([ fesretes) (s

1ol PR B
S A (A 2 + [[0-A f[2 [[A%= |

To prove the trace estimate (A.6), since s + so = 2s, one may write

0
GO = |6 + | z [ 20801 A1y (A7)

-

2

0:£(,2)| | f(&.) dzdé)

0
£t [ [ 2005 ) A% ey
R2 J 2/
Integrating the equality above with respect to 2’ € (—b,0) and using the Cauchy-Schwarz
inequality give the desired estimate. O

Following similar arguments, we also have the following Poincaré inequality.

Lemma A.3. It holds that
1A [flo + 10=£1]- (A.8)

Proof. The proof of the estimate (A.6) with s; = so = s = 0 also leads to

1 1
IS 1Flo + 0712 11£1]2 -
Then the Poincaré inequality (A.8) follows by Cauchy’s inequality. O
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We also recall the classical product and commutator estimates in R?:

Lemma A.4. The followings hold.

|As(f9)|L2 < |f’L°° ‘Asg‘fﬂ + |9|L<>o ’Asf‘LQ Jor s >0, (A.Q)
HASaf] vyg’LZ N |vyf‘Loo |A89|L2 + |vyg|Loo |A8f|L2 for s >0, (A.10)
Fols S flieololy and |Fgl s S Flinclol s - (A11)

Proof. These estimates (A.9) and (A.10) are classical, see [28] for example. Note that
|f9lo S | fle lglo and |fgly S [fl1 0 l9ly -
the estimate (A.11) follows by the theory of interpolation and duality. O

Note that Lemma A.1 also holds on R?, while we also need the following for half regularities.

Lemma A.5. For |a|+ || =k >0:
11

|25 2%| S 11wl r + 1 Vol s 5= =505 (A12)
Proof. The estimate (A.12) follows by using (A.11) to control the product with the higher order
derivative term in H*® and the lower order derivative term in W1h. U

APPENDIX B. POISSON EXTENSION

We recall the extension n of h onto {z < 0} defined by (1.6) with parameter A > 0 in the
following form

z L -
ny.2) = (1+7) ¢y 2) with (€, 2) = exp (Alg]2)h(E). (B.1)
We first verify that ¢ defined by (1.5) is a diffeomorphism.

Proposition B.1. Assume that ho € H*({z = 0}),s > 5/2 and hy > —b. Then there exists
sufficiently small A > 0 such that

1 1
0,00 > 3 <1 + bh0> > 0 in Q. (B.2)

65| <[oncie ) +/:

Integrating the inequality above with respect to 2z’ € (—b,0), one can deduce

b0l < b sup /R d§<// dH//

z€[—b,0]
For s > 1, it then follows from the Cauchy-Schwarz 1nequahty and the deﬁmtlon (B.1) that

/_i,/Rg 0.L1¢.2)|dz 5 </_i/Rg<1+ € az6<g,z>)2dz>2
=4 ( /]R [+l |he)| / Z exp (2A\§|z)dz>
3 —

4 ( [ a+iepmee | =2 (2‘4‘5’%) < al|
R

241
86, 2)| dz < (/Ob/wmm%
- 13

Proof. Note that

92 (¢, a;g)‘ das. (B.3)

((& 2

=

h

1
s+5

~ 2 %
0:L(¢.2)] dz)

and
0
/b /Rg
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= 47 (/( 1kl \/exp (241¢l2) ) <A |nl, g

10:¢) o S A2 [hlgys - (B.4)

~

We thus deduce

Now we prove (B.2). It follows from the definitions (1.5) and (B.1) that
1 1
O:p0 =14 G0+ <1 + b) 0:Co- (B.5)

By (B.4), this yields that for s > 3,

1 1
0.0 > 1+ bho + - (Co — ho) + < b) 0.Co

1 1 1 1 1 1
> 14+ ~ho— (24 =) 18:C0llree > 1+ ~ho— A2 (24 = > (1+-
> 1+ bho < + b) ||(9 CQHL > 1+ bho 2 < + b> ‘h0|g Z 5 < + bh0>
if A has been chosen sufficiently small. O

We also have the following well-known estimates for 7.

Lemma B.2. For s € R:
Ml s < 1Pls—1 - (B.6)
For k e N:
[l S 1Pk 00 - (B.7)
Proof. One deduces in the same way as Proposition 3.1 in [33] that
IVCllgs S 1Ploy1s s € Rand [[nllyprce S [Py 000 k€N

Then the estimates (B.6)—(B.7) follow by noting that n = (1 + 7)¢ for z € [-b,0]. O

APPENDIX C. SOME GEOMETRIC ESTIMATES

We recall that the control of quantities like [, [V¥ f |2dV; yields a control of the standard H'!
norm of f.

Lemma C.1. Assume that 0.¢ > co and |Vo| o < = for some co > 0, then

V51 < Ao [ (92 5P v (1)
Proof. We refer to Lemma 2.8 in [33]. O

We also need the Korn type inequality to control the energy dissipation term.

Lemma C.2. Assume that 0, > ¢y and ||Vl + HV2<,0HLOO < % for some ¢y > 0, then

|Vo]]* < Ao (/ |SPv|? dV; + ]v||2> . (C.2)
Q
Proof. We refer to Proposition 2.9 in [33]. O

Finally, we will also need the following H~'/2 boundary estimates for functions satisfying
v€L?and V¥ -v € L2,

Lemma C.3. If [Vl ;0 < Ci for some co > 0, then
o= N[_1 < Ao ([Joff +[[VZ-l]) (C.3)
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Proof. We adapt the proof of Lemma 3.3 in [19]. We will only prove the result on {z = 0}. Let
Y € H'Y/? and let ¢ € H'(Q) be a bounded extension. Then

/Zzowv.N:/Qw.(zzv)dvt:/Q(v%.vﬂngm)dw

< o (||| 192 - vll + ||| el ) < Ao fly (el + 197 -]

Then the estimate (C.3) follows from this inequality above by taking the supremum over all v
so that |¢|1 < 1. O
2
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