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Abstract. Entropy weak solutions with bounded periodic initial data are considered for the
system of weakly nonlinear gas dynamics. Through a modified Glimm scheme, an approximate
solution sequence is constructed, and then a priori estimates are provided with the methods
of approximate characteristics and approximate conservation laws, which gives not only the
existence and uniqueness but also the uniform total variation bounds for the entropy solutions.

1. Introduction

Consider the following system of weakly nonlinear gas dynamics.
∂tσ1 +

α

2
∂x(σ2

1) +
β

2

∫ 1

−1

1

2
σ′2(

x+ y

2
)σ3(y, t) dy = 0,

∂tσ3 −
α

2
∂x(σ2

3)− β

2

∫ 1

−1

1

2
σ′2(

x+ y

2
)σ1(y, t) dy = 0,

t = 0 : σ1 = σ1,0(x), σ3 = σ3,0(x),

(1.1)

where σ1 = σ1(x, t) and σ3 = σ3(x, t) are unknown functions, with σ1,0 and σ3,0 as given initial
states satisfying

σ1,0(x+ 1) = σ1,0(x), σ3,0(x+ 1) = σ3,0(x), (1.2)∫ 1

0
σ1,0(x) dx = 0,

∫ 1

0
σ3,0(x) dx = 0. (1.3)

While, σ2 = σ2(x) is any given W 1,1
loc function with

σ2(x+
1

2
) = σ2(x), 1

∫ 1
2

0
|σ′2(x)|dx = ME ≤ ∞, (1.4)

and α, β are given positive constants.
This system is first derived by A. Majda and R. Rosales in [19] from the 1-dimensional full

Euler equations with periodic initial data through the method of weakly nonlinear geometric op-
tics approximation to study the behavior of the solutions especially for the cases with resonance
effects. Different from the Cauchy problem with initial data of small total variation, which has
a quite complete theory for existence [12], [24] and uniqueness [2], most aspects of the Cauchy
problem for quasilinear systems of hyperbolic conservation laws with small periodic initial data
are still open. One of the main difficulties may lie on the fact that the periodicity prevent the
waves from separation and thus the system does not possess a decreasing Glimm functional to
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control the nonlinear effects, and almost all the classical analysis methods fail in this case. The
celebrated work of J. Glimm–P.D. Lax [13] shows that for the isentropic Euler equations the
Cauchy problem with small periodic initial data admits a global entropy solution. The method
of their work is to use the cancellations occurring for genuinely nonlinear characteristics when
intrafamily shock-rarefaction waves coalesce. This cancellation is well analyzed with the method
of approximate characteristics and approximate conservation laws, which, combined with the
nature of the system that the isentropic Euler system has a complete set of Riemann invariant
coordinates and thus a relatively weak interfamily nonlinear interaction effects, provide a t−1

decay for the total variation per period of the solution, as well as the global existence. This
result is then further developed and generalized by many works, among them are [8], [9], [1].
On the other hand, for the 1-dimensional full Euler system, there is one more family of charac-
teristics which are linearly degenerate, and the system generally does not have a complete set of
Riemann invariant coordinates. It is believed that the process that the right sound waves would
be affected when the left sound waves interact with the entropy waves and vice vesa would cause
the effect of nonlinear resonance for space periodic data, and change completely many aspects
of the behavior of the solutions such as the time asymptotic. One may refer to [26], [27], [28],
[29] for B. Temple and R. Young’s ongoing project to construct non-trivial time periodic and
thus shock-free solutions. Meanwhile, the effect of resonance causes huge difficulties in analysis,
and one cannot expect the cancellation effect given in [13] originally for the isentropic case
dominates all the time and the system may not undergo a strong enough decay to guarantee the
global existence. Therefore, the problem of global existence for the solutions to the full Euler
system with small periodic initial data is still open. One may refer to [25], [22] for long time
existence of entropy solutions, [3] for global existence of entropy solution for special systems,
and [17], [18], [30] for the blowup result of classical solutions.

To get a better understanding of the resonance effects, [19] performs weakly nonlinear geo-
metric optics approximation for general systems of hyperbolic conservation laws and provides
a detailed analysis on the occurrence of the resonance, which shows that the Cauchy problems
with initial data of small total variation on R and the systems with a complete set of Riemann
invariant coordinates such as the isetropic Euler system, do not possess resonance. Meanwhile,
as one of the main objects of [19], the full Euler system with small periodic initial data gives
the system of weakly nonlinear gas dynamics (1.1), which does show the resonance feature of
the full Euler system through the nonlocal interaction terms. Later, in P.L. Pego’s remarkable
work [21], for the system (1.1) with periodic initial data, a series of non-trivial time periodic
solutions are constructed, which makes it clear that system (1.1) do possess strong resonance
and its solutions have complicated behavior. On the other hand, for general systems of weakly
nonlinear geometric optics, under the assumption of genuine nonlinearity and a structure re-
quirement on interactions, [6] proves global existence of entropy solutions. Unfortunately, the
most important resonant case, namely the system (1.1) of weakly nonlinear gas dynamics, is
not included due to the linear degeneracy of the entropy wave. See also [20] for detailed analysis
on the behavior of the solutions. One may also refer to [11], [15], [23], [7], [5] and the references
therein for the justification of the weakly nonlinear geometric optics approximation, and [14],
[4] for the related results of the multidimensional case.

Since the C1 classical solutions to (1.1) would generally blow up in finite time (see Appendix
A), it is natural to look for the entropy weak solution in this paper. The main purpose of
this paper is to get the global in time entropy weak solutions for any periodic initial data with
bounded total variation over each period

TV1
0σ1,0 + TV1

0σ3,0 = MS(0) < +∞, (1.5)

and obtain some uniform a priori estimates for the solutions, where TV1
0f denotes the total

variation of a spatially periodic function f , with period 1, over each of its period. Here a global
entropy solution means a solution in the sense of distribution∫ +∞

0

∫ 1

0

(
σ1∂tϕ1 +

α

2
σ2

1∂xϕ1 −
β

2
ϕ1

(∫ 1

−1

1

2
σ′2(

x+ y

2
)σ3(y, t) dy

)
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+ σ3∂tϕ3 −
α

2
σ2

3∂xϕ3 +
β

2
ϕ3

(∫ 1

−1

1

2
σ′2(

x+ y

2
)σ1(y, t) dy

))
dx dt

+

∫ 1

0

(
σ1,0(x)ϕ1(x, 0) + σ3,0(x)ϕ3(x, 0)

)
dx = 0, ∀ϕ1, ϕ3 ∈ C1

0 (S1 × R+), (1.6)

which is further requested to satisfy the entropy condition that for any convex entropy function
η = η(σ1, σ3) with entropy flux function ψ = ψ(σ1, σ3) satisfying{

ασ1∂σ1η = ∂σ1ψ,

−ασ3∂σ3η = ∂σ3ψ,
(1.7)

it holds that∫ +∞

0

∫ 1

0

(
η∂tϕ+ ψ∂xϕ

− β

2
ϕ
(
∂σ1η

∫ 1

−1

1

2
σ′2(

x+ y

2
)σ3(y, t) dy − ∂σ3η

∫ 1

−1

1

2
σ′2(

x+ y

2
)σ1(y, t) dy

))
dx dt

+

∫ 1

0
η(σ1,0, σ3,0)(x)ϕ(x, 0) dx ≥ 0, ∀ϕ ∈ C1

0 (S1 × R+). (1.8)

The main result in this paper is

Theorem 1. For any given initial data σ1,0 and σ3,0 satisfying (1.2)–(1.3) and (1.5), the Cauchy
problem (1.1) with (1.4) admits a global entropy weak solution σ = (σ1, σ3)T (x, t), which satisfies
further

MS(t)
def.
= TV1

0σ1(·, t) + TV1
0σ3(·, t) ≤M∗, a.e. t ∈ R+, (1.9)

where

M∗ = max

{
5

4
MS(0), 300

β

α
ME

}
.2 (1.10)

Moreover, for each T > 0 this solution is unique in the class of periodic C(0, T ;L1) entropy
solutions.

The main idea to prove this result can be summarized as follows. First, although, some
adaptions on an approximate scheme should be made to deal with the difficulty caused by their
nonlocal property, the interaction terms in the system (1.1) are linear, since the entropy wave
σ2 is a given function in this model. Thus, it is expected that in the worst scenario it can only
cause an exponential increase for some suitable norm of the solution, namely, the time span
required for the solution to double its norm can be bounded by σ2 and the parameters α, β,
which is independent of the solution itself. On the other hand, the quasilinear leading terms
in the system (1.1) are just two decoupled inviscid Burgers equations, for which one cannot
expect anything better to apply the methods in [13] to get a decay, with the property that the
solution would undergo a faster decay and require less time to halve its norm once its norm is
bigger. Therefore, to combine these two effects together, the decay effect would dominate once
the sound waves (σ1, σ3)T are relatively stronger than the entropy wave σ2, which can provide
the desired uniform a priori bounds for the solution.

Remark:. Using the above intuition that the cancellation effects can dominate an exponential
growth of the solution, one can apply a similar procedure as this paper to show the global existence
and the uniform a priori estimates for the entropy solutions to the system

∂tσ1 +
α

2
∂x(σ2

1) +
β

2

∫ 1

−1

1

2
σ′2(

x+ y

2
)σ3(y, t) dy = B11σ1 +B13σ3,

∂tσ3 −
α

2
∂x(σ2

3)− β

2

∫ 1

−1

1

2
σ′2(

x+ y

2
)σ1(y, t) dy = B31σ1 +B33σ3,

2Here the number 300 is far from being sharp and can be changed in to “large enough constants”. It is
specificaly given here, to simplyfy the naration in what follows.
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where B =

(
B11 B13

B31 B33

)
is any given constant matrix, which can be chosen to model the damping

or rotation effects to the system.

This paper is arranged as follows. In Section 2, the approximate scheme is introduced and
the corresponding consistence result is proved under some a priori assumptions on the uniform
bounds. In Section 3, the increase of the total variation is estimated for the approximate
solutions. Then in Section 4, the methods of approximate characteristics and approximate
conservation laws are applied to get the decay property for the solutions and complete the
proof of Theorem 1. Appendix A is devoted to the proof of the finite time blowup for the
classical solutions, and Appendices B–C provide some details of the proof.

2. An Approximate Scheme

In order to construct a sequence of approximate solutions, one may adapt J. Glimm’s cel-
ebrated approximate scheme originally derived in [12]. Moreover, one may use the fractional
step methods, such as the one developed in [10] for hyperbolic balance laws, and modify it to
deal with the nonlocal interaction terms in the system (1.1).

For each N � 1, set ∆xN = 1
2N

as the spatial mesh length, and ∆tN = Λ−1∆xN as the
corresponding time mesh length. Here Λ is set to satisfy the Courant–Friedrichs–Lewy (C.F.L.
for short) condition

Λ > αmax{‖σN1 ‖L∞ , ‖σN3 ‖L∞}.
In fact, for the system (1.1), it can be verified that if one chooses

Λ > 2α(M∗ + 2) (2.1)

a priori, then for large enough N , the C.F.L. condition holds.
Next, let ϑ = {ϑn}∞n=0 be a sequence of independent random variables, which is equidistribut-

ed over [−1, 1). Then one can set

σN1 (x, 0−) = σ1,0(x), σN3 (x, 0−) = σ3,0(x)

to initiate the construction.
Inductively, if the approximate solution (σN1 , σ

N
3 )T has been constructed for t < n∆tN (n ∈

N), one may use the random sampling

σ̂N1,m,n = σN1 ((m+ ϑn)∆xN, n∆tN−),

σ̂N3,m,n = σN3 ((m+ ϑn)∆xN, n∆tN−),
for (m+ n) odd, (2.2)

to get the corresponding piece-wise constant function

σ̂N1,n(x) = σ̂N1,m,n, ∀x ∈ [(m− 1)∆xN, (m+ 1)∆xN),

σ̂N3,n(x) = σ̂N3,m,n, ∀x ∈ [(m− 1)∆xN, (m+ 1)∆xN),
for (m+ n) odd.

Then set

gN1,m,n =

∫ 1

−1
K(m∆xN+ y)σ̂N3,n(y) dy =

∑
−2N<m̃≤2N

m̃+n odd

KN
m+m̃σ̂

N
3,m̃,n,

gN3,m,n = −
∫ 1

−1
K(m∆xN+ y)σ̂N1,n(y) dy = −

∑
−2N<m̃≤2N

m̃+n odd

KN
m+m̃σ̂

N
1,m̃,n,

for (m+ n)odd,

(2.3)
where

K(x) =
β

4
σ′2(

x

2
) (2.4)

with properties

K(x+ 1) = K(x),

∫ 1

0
K(y) dy = 0, ‖K(x)‖L1[0,1] =

β

4
ME (2.5)
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•

•

•

•

•

•

•

•

•

(m+ ϑn)∆xN

t = (n− 1)∆tN

t = n∆tN

t = (n+ 1)∆tN

(m− 2)∆xN m∆xN (m+ 2)∆xN

Figure 1. Modification of Glimm’s random choice scheme

and

KN
m =

∫ ∆xN

−∆xN
K(m∆xN+ y) dy (2.6)

with properties

KN
m+2N = KN

m ,
∑

1≤m≤2N

m+n odd

KN
m = 0,

∑
1≤m≤2N

m+n odd

|KN
m | =

β

4
ME . (2.7)

And one can define

σN1,m,n = σ̂N1,m,n − gN1,m,n∆tN,

σN3,m,n = σ̂N3,m,n − gN3,m,n∆tN,
for (m+ n) odd. (2.8)

Then, one can solve finitely many Riemann problems on each period for two decoupled Burgers
equations with (m∆xN, n∆tN) ((m+ n) even) as the centers:

∂tσ
N
1 +

α

2
∂x(σN1 )2 = 0,

∂tσ
N
3 −

α

2
∂x(σN3 )2 = 0,

t = n∆tN : σN1 = σN1,m,n, σ
N
3 = σN3,m,n, for x ∈ [(m− 1)∆xN, (m+ 1)∆xN), (m+ n) odd.

(2.9)
If the C.F.L. condition holds, no wave interacts for t ∈ [n∆tN, (n + 1)∆tN), and one may use
these Riemann solvers (σN1 , σ

N
3 )T as the approximate solution on t ∈ [n∆tN, (n + 1)∆tN) (See

Figure 1). Then one can repeat this procedure on t ∈ [(n+ 1)∆tN, (n+ 2)∆tN).
Apparently, the approximate solutions constructed above are spatially periodic

σN1 (x+ 1, t) = σN1 (x, t), σN3 (x+ 1, t) = σN3 (x, t). (2.10)

Since σNi (x, t) (i = 1, 3) are piece-wise smooth, one may define its value to be the up right limit
on the discontinuous points.

Now, the consistency of this scheme can be shown in the following

Proposition 2.1. Assume that on (x, t) ∈ [0, 1)× [0, T ], there exists a sequence of approximate
solutions (σN1 , σ

N
3 )T satisfying

‖σN1 ‖L∞ + ‖σN3 ‖L∞ ≤ C1 <
Λ

α
, (2.11)

MS(t) = sup
N
MN
S (t) = sup

N
{TV1

0σ
N
1 (·, t) + TV1

0σ
N
3 (·, t)} ≤ C2, (2.12)

‖σN1 (·, t1)− σN1 (·, t2)‖L1[0,1) + ‖σN3 (·, t1)− σN3 (·, t2)‖L1[0,1) ≤ C3(|t2 − t1|+ 2∆tN). (2.13)
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Then there exists a subsequence3, such that for almost all choice of ϑ, it holds

(σN1 , σ
N
3 )T

L1

−→ (σ1, σ3)T ,

where (σ1, σ3)T is an entropy weak solution to the Cauchy problem (1.1) which is periodic with
zero means, i.e.,

σ1(x+ 1, t) = σ1(x, t), σ3(x+ 1, t) = σ3(x, t), (2.14)∫ 1

0
σ1(x, t) dx =

∫ 1

0
σ3(x, t) dx = 0. (2.15)

Proof. The convergence is a direct application of Helly’s selection principle. Thus, it suffices to
prove the consistency.

Since σN1 and σN3 are local Riemann solvers to (2.9) on each time interval [n∆tN, (n+1)∆tN),
they satisfy (2.9) piece-wisely and the Rankine-Hugoniot condition holds on each shock discon-
tinuity. By multiplying the test functions ϕ1 and ϕ3 to (2.9) and integrating by parts, one can
get

0 =

∫ T

0

∫ 1

0

(
− σN1 ∂tϕ1 −

α

2
(σN1 )2∂xϕ1

)
dx dt+

∫ T

0

∫ 1

0

(
− σN3 ∂tϕ3 +

α

2
(σN3 )2∂xϕ3

)
dx dt

+
∞∑
n=0

∫ 1

0

(
− σN1 (x, n∆tN+) + σN1 (x, n∆tN−)

)
ϕ1(x, n∆tN) dx

+

∞∑
n=0

∫ 1

0

(
− σN3 (x, n∆tN+) + σN3 (x, n∆tN−)

)
ϕ3(x, n∆tN) dx

−
∫ 1

0

(
σ1,0(x)ϕ1(x, 0) + σ3,0(x)ϕ3(x, 0)

)
dx.

Thus, ∫ T

0

∫ 1

0

(
σN1 ∂tϕ1 +

α

2
(σN1 )2∂xϕ1 + σN3 ∂tϕ3 −

α

2
(σN3 )2∂xϕ3

− ϕ1

(∫ 1

−1
K(x+ y)σN3 (y, t) dy

)
+ ϕ3

(∫ 1

−1
K(x+ y)σN1 (y, t) dy

))
dx dt

+

∫ 1

0

(
σ1,0(x)ϕ1(x, 0) + σ3,0(x)ϕ3(x, 0)

)
dx

=−
∞∑
n=0

∫ 1

0

(
σN1 (x, n∆tN+)− σN1 (x, n∆tN−)

)
ϕ1(x, n∆tN) dx

−
∞∑
n=0

∫ 1

0

(
σN3 (x, n∆tN+)− σN3 (x, n∆tN−)

)
ϕ3(x, n∆tN) dx

−
∫ T

0

∫ 1

0
ϕ1

(∫ 1

−1
K(x+ y)σN3 (y, t) dy

)
dx dt

+

∫ T

0

∫ 1

0
ϕ3

(∫ 1

−1
K(x+ y)σN1 (y, t) dy

)
dx dt

Due to (2.2)–(2.9), it holds

σN1 (x, n∆tN+)− σN1 (x, n∆tN−)

=σN1,m,n − σN1 (x, n∆tN−)

=(σN1,m,n − σ̂N1,m,n) +
(
σ̂N1,m,n − σN1 (x, n∆tN−)

)
3For notation simplicity, we always use (σN

1 , σ
N
3 )T to denote the sequence of approximate solutions as well as

its subsequence.
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=− gN1,m,n∆tN+
(
σN1 ((m+ ϑn)∆xN, n∆tN−)− σN1 (x, n∆tN−)

)
∀x ∈ [(m− 1)∆xN, (m+ 1)∆xN) with m+ n odd.

Similar as in [12] and [24], using Glimm’s random choice method,

∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (m+1)∆xN

(m−1)∆xN
ϕ1(x, n∆tN)

(
σN1 ((m+ϑn)∆xN, n∆tN−)−σN1 (x, n∆tN−)

)
dx→ 0, a.s.

Meanwhile, By (2.13),∣∣∣∣∫ T

0

∫ 1

0
ϕ1(x, t)

(∫ 1

−1
K(x+ y)

(
σN3 (y, t)− σN3 (y, [

t

∆tN
]∆tN−)

)
dy
)

dx dt

∣∣∣∣
≤‖ϕ1(x, t)‖L1

tL
∞
x
‖K‖L1 max

t
‖σN3 (y, t)− σN3 (y, [

t

∆tN
]∆tN−)‖L1

y

N→∞−→ 0.

while, by the random sampling method,∣∣∣∣∫ T

0

∫ 1

0
ϕ1(x, t)

(∫ 1

−1
K(x+ y)

(
σN3 (y, [

t

∆tN
]∆tN−)− σ̂N

3,[ t

∆tN
]
(y)
)

dy
)

dx dt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫ 1

−1

(∫ 1

0
ϕ1(x, t)K(x+ y) dx

)(
σN3 (y, [

t

∆tN
]∆tN−)− σ̂N

3,[ t

∆tN
]
(y)
)

dy dt

∣∣∣∣
→0, a.s.

By a direct decomposition,∫ T

0

∫ 1

0
ϕ1(x, t)

(∫ 1

−1
K(x+ y)σ̂N

3,[ t

∆tN
]
(y) dy

)
dx dt

=
∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (n+1)∆tN

n∆tN

∫ (m+1)∆xN

(m−1)∆xN
ϕ1(x, t)

(∫ 1

−1
K(x+ y)σ̂N3,n(y) dy

)
dx dt.

then since K(m∆xN+ y) is a piece-wise constant approximation of K(x+ y) and due to (2.3)∣∣∣∣∣∣∣∣
∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (n+1)∆tN

n∆tN

∫ (m+1)∆xN

(m−1)∆xN
ϕ1(x, t)

(∫ 1

−1
K(x+ y)σ̂N3,n(y) dy − gN1,m,n

)
dx dt

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (n+1)∆tN

n∆tN

∫ (m+1)∆xN

(m−1)∆xN
ϕ1(x, t)

(∫ 1

−1

(
K(x+ y)−K(m∆xN+ y)

)
σ̂N3,n(y) dy

)
dx dt

∣∣∣∣∣∣∣∣
≤‖ϕ1‖L1

t,x
‖σN3 ‖L∞t,x max{‖K(·)−K(2[

·
2∆xN

]∆xN)‖L1 , ‖K(·)−K(2[
·+ ∆xN

2∆xN
]∆xN−∆xN)‖L1}

→0.

And by the continuity of ϕ1,
∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (n+1)∆tN

n∆tN

∫ (m+1)∆xN

(m−1)∆xN
(ϕ1(x, t)− ϕ1(x, n∆tN))gN1,m,n dx dt

≤‖ϕ1(x, t)− ϕ1(x, [
t

∆tN
]∆tN)‖L1

tL
∞
x

max
n

∑
m

|gN1,m,n|
N→∞−→ 0.

Thus, one has∫ T

0

∫ 1

0
ϕ1(x, t)

(∫ 1

−1
K(x+ y)σN3 (y, t) dy

)
dx dt
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−
∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (m+1)∆xN

(m−1)∆xN
ϕ1(x, n∆tN)∆tNgN1,m,n dx

=

∫ T

0

∫ 1

0
ϕ1(x, t)

(∫ 1

−1
K(x+ y)

(
σN3 (y, t)− σN3 (y, [

t

∆tN
]∆tN−)

)
dy
)

dx dt

+

∫ T

0

∫ 1

0
ϕ1(x, t)

(∫ 1

−1
K(x+ y)

(
σN3 (y, [

t

∆tN
]∆tN−)− σ̂N

3,[ t

∆tN
]
(y)
)

dy
)

dx dt

+

∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (n+1)∆tN

n∆tN

∫ (m+1)∆xN

(m−1)∆xN
ϕ1(x, t)

(∫ 1

−1
K(x+ y)σ̂N3,n(y) dy − gN1,m,n

)
dx dt

+

∞∑
n=0

∑
1≤m≤2N

m+n odd

∫ (n+1)∆tN

n∆tN

∫ (m+1)∆xN

(m−1)∆xN
(ϕ1(x, t)− ϕ1(x, n∆tN))gN1,m,n dx dt

→0, a.s. for ϑ; as N →∞.

Similar result holds for σ3. Thus, (σ1, σ3)T satisfies (1.1) in the sense of distribution.
Next, for each smooth convex entropy function η = η(σ1, σ3) and the corresponding entropy

flux function ψ = ψ(σ1, σ3), one may multiply ϕ∂σ1η and ϕ∂σ3η to (2.9) respectively, and
integrate by parts to get

0 ≥−
∫ T

0

∫ 1

−1
(η∂tϕ+ ψ∂xϕ) dx dt

+
∞∑
n=0

∫ 1

−1

(
− ϕη(x, n∆tN+) + ϕη(x, n∆tN−)

)
dx

−
∫ 1

−1
ϕ(x, 0)η(σ1,0(x), σ3,0(x)) dx.

By a similar argument as above, one can get that (σ1, σ3)T satisfies the entropy condition (1.8)
and thus is an entropy solution.

The periodicity of (σ1, σ3)T follows directly from that of (σN1 , σ
N
3 )T . Then by choosing a

sequence of test functions ϕk1 → χ[0,1)×[0,t] and taking ϕ3 = 0, by the zero mean property of
K(x) (2.5), one can get

0 =

∫ 1

0
σ1(x, t) dx−

∫ t

0

∫ 1

0

∫ 1

−1
K(x+ y)σ3(y, t) dy dx dt =

∫ 1

0
σ1(x, t) dx.

Similarly, the zero mean property holds for σ3. �

According to Proposition 2.1, at each t, as long as (2.11)–(2.13) hold, for almost all choice of
ϑ, one can always choose a subsequence, still denoted as (σN1 , σ

N
3 )T , satisfying∣∣∣∣∫ 1

0
σN1 (x, t) dx

∣∣∣∣+

∣∣∣∣∫ 1

0
σN3 (x, t) dx

∣∣∣∣ ≤ 1. (2.16)

3. Growth Estimate

In this section a rough estimate on the growth rate of the approximate solutions is given as
follows

Proposition 3.1. If there is a time T0 (for simplicity, assume T0 = n0∆tN∗+ for some N∗ ∈ N)
and a subsequence of approximate solutions (σN1 , σ

N
3 )T satisfying

MS(T0) = sup
N
{TV1

0σ
N
1 (·, T0) + TV1

0σ
N
3 (·, T0)} < +∞, (3.1)∣∣∣∣∫ 1

0
σN1 (x, T0) dx

∣∣∣∣+

∣∣∣∣∫ 1

0
σN3 (x, T0) dx

∣∣∣∣ ≤ 1, (3.2)



WEAKLY NONLINEAR GAS DYNAMICS 9

then for any T∗ satisfying, for C.F.L. condition,

α(1 +
1

2
MS(T0)) exp (βMET∗) < Λ, (3.3)

there exists a further subsequence such that (2.12) holds in the sense

MS(t) ≤MS(T0) exp (βME(t− T0)) , ∀ t ∈ [T0, T0 + T∗]. (3.4)

Moreover, it holds

TV1
0σ

N
1 (·, t) ≤TV1

0σ
N
1 (·, T0) + βME(t− T0) max

τ∈[T0,t]
TV1

0σ
N
3 (·, τ), ∀ t ∈ [T0, T0 + T∗], (3.5)

TV1
0σ

N
3 (·, t) ≤TV1

0σ
N
3 (·, T0) + βME(t− T0) max

τ∈[T0,t]
TV1

0σ
N
1 (·, τ), ∀ t ∈ [T0, T0 + T∗]. (3.6)

Meanwhile, for t ∈ [T0, T0 + T∗], (2.11) and (2.13) hold for

C1 = 1 +
MS(T0)

2
exp(βME(t− T0)), (3.7)

C3 =
(

4ΛMS(T0) + βMEMS(T0)
)

exp(βME(t− T0)) + βME . (3.8)

Proof. In each time span t ∈ ((n − 1)∆tN, n∆tN) ⊆ [T0, T0 + T∗] (n ∈ Z+), (σN1 , σ
N
3 )T is con-

structed by solving finitely many Riemann problems (2.9) of two decoupled Burgers equations
with piecewise constant initial data at t = (n− 1)∆tN+ on each period, thus the total variation
remains constant, i.e., for i = 1, 3

TV1
0σ

N
i (·, n∆tN−) = TV1

0σ
N
i (·, (n− 1)∆tN+).

While at the time t = n∆tN, during the random sampling (2.2), the total variation can decrease
only,

TV1
0σ̂

N
i,n ≤ TV1

0σ
N
i (·, n∆tN−) = TV1

0σ
N
i (·, (n− 1)∆tN+).

Therefore the only possibility that may increase the total variation is the effect of the nonlocal
inhomogeneous terms. Indeed, by (2.3), (2.7) and (2.8),

TV1
0σ

N
1 (·, n∆tN+)

=
∑

1≤m≤2N

m+n odd

|σN1,m,n − σN1,m−2,n|

≤
∑

1≤m≤2N

m+n odd

(
|σ̂N1,m,n − σ̂N1,m−2,n|+ |gN1,m,n − gN1,m−2,n|∆tN

)

=
∑

1≤m≤2N

m+n odd

(
|σ̂N1,m,n − σ̂N1,m−2,n|+

∣∣∣ ∑
−2N<m̃≤2N

m̃+n odd

(KN
m+m̃ −KN

m−2+m̃)σ̂N3,m̃,n

∣∣∣∆tN)

=
∑

1≤m≤2N

m+n odd

(
|σ̂N1,m,n − σ̂N1,m−2,n|+

∣∣∣ ∑
−2N<m̃≤2N

m̃+n odd

KN
m+m̃(σ̂N3,m̃,n − σ̂N3,m̃+2,n)

∣∣∣∆tN)

≤
∑

1≤m≤2N

m+n odd

|σ̂N1,m,n − σ̂N1,m−2,n|+
∣∣∣ ∑
−2N<m̃≤2N

m̃+n odd

( ∑
1≤m≤2N

m+n odd

|KN
m+m̃|

)
|σ̂N3,m̃,n − σ̂N3,m̃+2,n|

∣∣∣∆tN
≤TV1

0σ̂
N
1,n + 2TV1

0σ̂
N
3,n

∑
m

|KN
m |∆tN

≤TV1
0σ

N
1 (·, (n− 1)∆tN+) + TV1

0σ
N
3 (·, (n− 1)∆tN+) · βME∆tN. (3.9)

Similarly, one has

TV1
0σ

N
3 (·, n∆tN+) ≤ TV1

0σ
N
3 (·, (n− 1)∆tN+) + TV1

0σ
N
1 (·, (n− 1)∆tN+) · βME∆tN. (3.10)
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Now, (3.5) and (3.6) follow directly. Moreover, adding up (3.9)–(3.10) yields

TV1
0σ

N
1 (·, n∆tN+) + TV1

0σ
N
3 (·, n∆tN+)

≤
(
TV1

0σ
N
1 (·, (n− 1)∆tN+) + TV1

0σ
N
3 (·, (n− 1)∆tN+)

)
·
(
1 + βME∆tN

)
.

Thus, for N large,

TV1
0σ

N
1 (·, t) + TV1

0σ
N
3 (·, t)

=TV1
0σ

N
1 (·, [ t

∆tN
]∆tN+) + TV1

0σ
N
3 (·, [ t

∆tN
]∆tN+)

≤
(

TV1
0σ

N
1 (·, [ T0

∆tN
]∆tN+) + TV1

0σ
N
3 (·, [ T0

∆tN
]∆tN+)

)(
1 + βME∆tN

)[ t−T0
∆tN

]

≤MS(T0) exp (βME(t− T0)) ,

which proves (3.4).
On the other hand, during the construction of the approximate solutions, the process of

random sampling and solving Riemann problems for decoupled Burgers equations would not
increase the L∞ norm, namely for i = 1, 3

max
m
|σ̂Ni,m,n| ≤ ‖σNi (·, n∆tN−)‖L∞ = ‖σNi (·, (n− 1)∆tN+)‖L∞ .

Thus, only the inhomogeneous terms may increase the L∞ norm. In fact, by the construction
procedure (2.3) and (2.8),

‖σN1 (·, n∆tN+)‖L∞

= max
m
|σN1,m,n|

≤max
m
|σ̂N1,m,n|+ max

m
|gN1,m,n|∆tN

= max
m
|σ̂N1,m,n|+ max

m

∣∣∣∣∣∣∣∣
∑

−2N<m̃≤2N

m̃+n odd

KN
m+m̃σ̂

N
3,m̃,n

∣∣∣∣∣∣∣∣∆t
N

= max
m
|σ̂N1,m,n|+ max

m
|σ̂N3,m,n| ·

∑
m

|KN
m |∆tN

≤‖σN1 (·, (n− 1)∆tN+)‖L∞ + ‖σN3 (·, (n− 1)∆tN+)‖L∞βME∆tN.

Similar result holds for σN3 . Thus, adding them up leads to

‖σN1 (·, t)‖L∞ + ‖σN3 (·, t)‖L∞

≤
(
‖σN1 (·, T0)‖L∞ + ‖σN3 (·, T0)‖L∞

)
exp(βME(t− T0))

≤
(
1 +

1

2
MS(T0)

)
exp(βME(t− T0)).

Next, for n∆tN < t1 < t2 < (n + 1)∆tN, since the Riemann solvers are constants along the
straight characteristics,

‖σN1 (·, t1)− σN1 (·, t2)‖L1

=
∑

1≤m≤2N

m+n even

∫ (m+1)∆xN

(m−1)∆xN
|σN1 (·, t1)− σN1 (·, t2)|dx

≤
∑

1≤m≤2N

m+n even

2∆xNTV
(m+1)∆xN

(m−1)∆xN
σN1 (·, n∆tN+)

=2Λ∆tNTV1
0σ

N
1 (·, n∆tN+),



WEAKLY NONLINEAR GAS DYNAMICS 11

while on the line t = n∆tN,

‖σN1 (·, n∆tN+)− σN1 (·, n∆tN−)‖L1

≤
∑

1≤m≤2N

m+n odd

|σN1,m,n − σ̂N1,m,n|2∆xN+

∫ 1

0
|σ̂N1,n(x)− σN1 (x, n∆tN−)|dx

=
∑

1≤m≤2N

m+n odd

2|gN1,m,n|∆tN∆xN

+
∑

1≤m≤2N

m+n odd

∫ (m+1)∆xN

(m−1)∆xN
|σN1 ((m+ ϑn)∆xN, n∆tN−)− σN1 (x, n∆tN−)|dx

≤max
m

∣∣∣∣ ∑
−2N<m̃≤2N

m̃+n odd

KN
m̃+mσ̂

N
3,m̃,n

∣∣∣∣∆tN+
∑

1≤m≤2N

m+n odd

TV
(m+1)∆xN

(m−1)∆xN
σN1 (·, n∆tN−)2∆xN

≤βME max
m
|σ̂N3,m,n|∆tN+ 2TV1

0σ
N
1 (·, n∆tN−)∆xN

≤βME‖σN3 (·, n∆tN−)‖L∞∆tN+ 2ΛTV1
0σ

N
1 (·, n∆tN−)∆tN.

Thus, for t1 < t2, one can combine the above inequalities, and similar ones for σN3 , to get (2.13)
with

C3 =

(
4ΛMS(T0) + βME(1 +

1

2
MS(T0))

)
exp(βMET∗). (3.11)

It follows from the above estimates, as mentioned after Proposition 2.1, that (2.16) holds
for t ∈ [T0, T0 + T∗] for a subsequence of the approximate solutions. With this and (3.4), one
can improve the estimates of L∞ to obtain (2.11) with C1 given in (3.7), and then improve the
above estimates (3.11) to get (2.13) with C3 given in (3.8). �

It may be pointed out here that by this proposition, one can already get the global entropy
solution by modifying the scheme with enlarging Λ with time to avoid the violation of the
C.F.L. condition. Instead of doing this, we would like to give some much more detailed analysis
in the next section to get the uniform a priori bound for the solutions, which would not only
show the global existence but also describe the behavior of the solutions. Besides, a uniformly
bounded solution is much more meaningful for the system (1.1), since it is an approximate
system obtained through weakly nonlinear geometric optics approximation.

4. Decay analysis

In this section, it is shown that when the wave strengthes of σ1 and σ3 are much stronger
than that of σ2, the cancellation effect caused by genuine nonlinearity would dominate the effect
of nonlinear resonance and make the solution decay. In order to accomplish this analysis, the
methods of approximate characteristics and approximate conservation laws originally developed
in [13] for the isentropic Euler system would be adopted to the system (1.1).

The result of this part could be summarized as follows:

Proposition 4.1. If there exist a time T0 = n0∆tN∗+ and a subsequence of approximate
solutions (σN1 , σ

N
3 )T such that (2.16) holds at T0 and

MN
S (T0) ∈

[239

300
M∗,

4

5
M∗
]
, 4 (4.1)

then for

T∗ =
60

αM∗
, (4.2)

4Here, M∗ is defined in (1.10), and the constants 239
300

and 4
5

are chosen accordingly to simplify the naration

in the following proof.
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there exists a further subsequence, such that

MS(T0 + T∗) <
239

300
M∗ (4.3)

and
MS(t) < M∗, ∀ t ∈ [T0, T0 + T∗]. (4.4)

Remark:. Combining Propositions 2.1, 3.1 and 4.1, one can get easily the existence result of
Theorem 1.

Proof. First, according to (3.4) of Proposition 3.1 and noting the definition of M∗ (1.10), it
holds

MS(t) ≤MS(T0) exp(
1

5
) < M∗, ∀ t ∈ [T0, T0 + T∗],

which proves (4.4). Moreover, it is easy to see that the system has a symmetry with respect to
σ1 and σ3, thus without loss of generality, one may assume

TV1
0σ

N
1 (T0) ≥ 1

2
MS(T0) ≥ TV1

0σ
N
3 (T0)

at least for a subsequence. Then by (3.6) of Proposition 3.1, it holds

TV1
0σ

N
3 (·, t) < 1

2
MS(T0) + βMET∗M∗ ≤

3

5
M∗, ∀ t ∈ [T0, T0 + T∗]. (4.5)

Thus, it remains to provide a bound for TV1
0σ

N
1 (·, T0 + T∗), which needs a detailed analysis on

the decay of the solution.
The rest part of the proof is divided into 3 steps: first the approximate characteristics and

approximate conservation laws are introduced and the uniform bounds for some useful quantities
are given, then a suitable subsequence is chosen to pass to the limit, at last the decay is
established through analyzing the widening effects of the rarefaction waves.

4.1. Approximate characteristics and approximate conservation laws. One may define
the approximate characteristics as follows. An approximate 1-characteristic is a union of line
segments constructed according to the approximate solution σN1 , in which, each line segment
is either a classical 1-characteristic or a 1-shock of the corresponding Burgers equation, and its
continuation starts from the diamond center that contains its ending, meanwhile, for the choice
of this continuation under different cases, one may follow the discussion given in Page 30 of
[13]. Roughly speaking, the choice is made to prevent the 1-rarefaction wave from crossing the
approximate 1-characteristic. See Appendix C for the details. In a similar manner, one may
define the approximate 3-characteristics.

For each mesh diamond ♦Nm,n centering at (m∆xN, n∆tN) ((m+n) is even) in the construction

of (σN1 , σ
N
3 )T , we denote αNi,m,n, β

N
i,m,n as the i-waves entering ♦Nm,n from the southwest and

southeast mesh edges respectively, and γNi,m,n as the ones leaving from north edges, see Figure 2.
Here, we also use them to denote the signed wave strength of the corresponding waves, such as

αN1,m,n = σN1 (m∆xN, n∆tN−)− σN1 ((m− 1 + ϑn)∆xN, n∆tN−).

Remark: (To Be Deleted Before Submission). Precisely,

αN1,m,n =σN1 (m∆xN, n∆tN−)− σN1 ((m− 1 + ϑn)∆xN, n∆tN−),

βN1,m,n =σN1 ((m+ 1 + ϑn)∆xN, n∆tN−)− σN1 (m∆xN, n∆tN−),

γN1,m,n =σN1 ((m+ 1 + ϑn)∆xN, n∆tN+)− σN1 ((m− 1 + ϑn)∆xN, n∆tN+)

=σN1,m+1,n − σN1,m−1,n

and

αN3,m,n =σN3 ((m− 1 + ϑn)∆xN, n∆tN−)− σN3 (m∆xN, n∆tN−),

βN3,m,n =σN3 (m∆xN, n∆tN−)− σN3 ((m+ 1 + ϑn)∆xN, n∆tN−),

γN3,m,n =σN3,m−1,n − σN3,m+1,n.
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γN1,m,n γN3,m,n

αN1,m,n

αN3,m,n
βN1,m,n

n∆tN

(n− 1)∆tN

(n+ 1)∆tN

m∆xN(m− 1)∆xN (m+ 1)∆xN

♦m,n

Figure 2. Waves in one diamond

Then in the aforementioned approximate scheme, by (2.8),

γN1,m,n =σN1,m+1,n − σN1,m−1,n

=σ̂N1,m+1,n − σ̂N1,m−1,n − (gN1,m+1,n − gN1,m−1,n)∆tN

=αN1,m,n + βN1,m,n − (gN1,m+1,n − gN1,m−1,n)∆tN, (4.6)

γN3,m,n =σN3,m−1,n − σN3,m+1,n

=αN3,m,n + βN3,m,n − (gN3,m−1,n − gN3,m+1,n)∆tN. (4.7)

For i = 1, 3, denote

∆i(♦Nm,n) =
(
|gNi,m+1,n − gNi,m−1,n|

)
∆tN, (4.8)

Ci(♦Nm,n) =
1

2

(
|αNi,m,n|+ |βNi,m,n| − |αNi,m,n + βNi,m,n|

)
(4.9)

the interfamily wave influence and intrafamily wave cancellation, respectively. Then for i = 1, 3,

|γNi,m,n − (αNi,m,n + βNi,m,n)| = |gNi,m+1,n − gNi,m−1,n|∆tN = ∆i(♦Nm,n), (4.10)

|γNi,m,n| −
(
|αNi,m,n|+ |βNi,m,n|

)
≤ ∆i(♦Nm,n)− 2Ci(♦Nm,n) (4.11)

and by (2.3), (2.7), ∑
1≤m≤2N

m+n even

∆1(♦Nm,n) ≤
∑
m

|KN
m | · TV1

0σ̂
N
3,n∆tN

≤βME∆tN · TV1
0σ

N
3 (·, n∆tN−), (4.12)∑

1≤m≤2N

m+n even

∆3(♦Nm,n) ≤βME∆tN · TV1
0σ

N
1 (·, n∆tN−). (4.13)

If one denotes further the entering (E) and leaving (L) rarefaction (+) and shock (−) i-waves
(i = 1, 3) of ♦Nm,n respectively as

E+
i (♦Nm,n) = max{αNi,m,n, 0}+ max{βNi,m,n, 0},

E−i (♦Nm,n) = min{αNi,m,n, 0}+ min{βNi,m,n, 0},
L+
i (♦Nm,n) = max{γNi,m,n, 0},
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L−i (♦Nm,n) = min{γNi,m,n, 0},

then it holds approximate conservation laws for ♦Nm,n as

L±i (♦Nm,n) = E±i (♦Nm,n)∓ Ci(♦Nm,n) + δ∆i(♦Nm,n).

Here and hereafter, δ is a quantity taking values in [−1, 1], which may change its value from
line to line.

Similar approximate conservation laws hold for other kinds of domains. For instance, if ΛN

is a domain composed by finitely many mesh diamonds, one can denote Ei(Λ
N ) and Li(Λ

N )
as the waves entering ΛN from diamonds that not belonging to Λ and the waves leaving ΛN to
such diamonds respectively. Then by adding up the above equations one can get

L±i (ΛN ) = E±i (ΛN )∓ Ci(ΛN ) + δ∆i(Λ
N ),

where

Ci(Λ
N )

def.
=

∑
m,n:

♦N
m,n⊆ΛN

Ci(♦Nm,n),

∆i(Λ
N )

def.
=

∑
m,n:

♦N
m,n⊆ΛN

∆i(♦Nm,n).

Especially, let IN be a horizontal interval connecting two mesh points on the line t = n∆tN

and denote ΛN (IN ) as the union of the diamonds which contains the domain of determinacy of
IN (See Figure 3). Since L+

i (ΛN (IN )) ≥ 0, one has

Ci(Λ
N (IN )) ≤ E+

i (ΛN (IN )) + ∆i(Λ
N (IN )).

One may further denote X±i (IN ) as the total signed strength of i-rarefaction waves/i-shocks

passing through the horizontal interval IN , namely, entering from south into the mesh diamonds
that contains IN . Due to the C.F.L. condition, all waves entering ΛN (IN ) from outside pass
through IN , thus,

Ci(Λ
N (IN )) ≤ X+

i (IN ) + ∆i(Λ
N (IN )).

ΛN (IN )ΛN (IN )ΛN (IN )

INININ

(n− 1)∆tN

n∆tN

(n+ 1)∆tN

(n+ 2)∆tN

(n+ 3)∆tN

(n+ 4)∆tN

Figure 3. ΛN (IN )

Similarly, for a diamond ♦Nm,n that is cut through by an approximate 1-characteristic χN

into the left part ♦Nm,n,L and the right part ♦Nm,n,R (See Figure 4), one has the corresponding
approximate conservation laws as

L+
1 (♦N

m,n,L
R

) = E+
1 (♦N

m,n,L
R

)− C+
1 (♦N

m,n,L
R

) + δ∆1(♦N
m,n,L

R
), (4.14)
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where ∆1(♦
m,n,L

R
) ≥ 0 denotes the amount of 3-wave influence assigned to ♦

m,n,L
R

, respective-

ly, and for the 1-shocks leaving ♦N
m,n,L

R

to join the inner boundary χN , which is denoted as

S1(♦N
m,n,L

R

), it holds

S1(♦N
m,n,L

R
) = E−1 (♦N

m,n,L
R

) + C−1 (♦N
m,n,L

R
) + δ∆1(♦

m,n,L
R

). (4.15)

Here neither E−1 (♦Nm,n,L) nor E−1 (♦Nm,n,R) counts the 1-shock entering ♦Nm,n along the inner

boundary χN if any, and C±1 (♦
m,n,L

R
) denotes the 1-waves canceled in the corresponding dia-

mond halves, for which one can get,

C+
1 (♦Nm,n,L) + C+

1 (♦Nm,n,R) = C1(♦Nm,n), (4.16)

C−1 (♦Nm,n,L) + C−1 (♦Nm,n,R) ≤ C1(♦Nm,n) (4.17)

∆+
1 (♦Nm,n,L) + ∆+

1 (♦Nm,n,R) = ∆1(♦Nm,n), (4.18)

and
C+

1 (♦N
m,n,L

R
) ≤ E+

1 (♦N
m,n,L

R
) + ∆1(♦N

m,n,L
R

).

See Appendix C for the details.
Meanwhile, one can calculate the variation of σN1 on both sides of χN in ♦Nm,n as follows (see

Figure 4): for t1 ∈ (n∆tN, (n+ 1)∆tN) and t2 ∈ ((n− 1)∆tN, n∆tN), it holds that

|σN1 (χN (t1)+, t1)− σN1 (χN (t2)+, t2)|

=
∣∣∣(σN1 (χN (t1)+, t1)− σN1 ((m+ 1 + ϑn)∆xN, n∆tN+)

)
−
(
σN1 (χN (t2)+, t2)− σN1 ((m+ 1 + ϑn)∆xN, n∆tN−)

)∣∣∣
=| − L+

1 (♦Nm,n,R) + E+
1 (♦Nm,n,R) + E−1 (♦Nm,n,R)|

≤E+
1 (♦Nm,n,R) + |E−1 (♦Nm,n,R)|+ 2∆1(♦Nm,n,R).

Similarly,

|σN1 (χN (t1)−, t1)− σN1 (χN (t2)−, t2)| ≤ E+
1 (♦Nm,n,L) + |E−1 (♦Nm,n,L)|+ 2∆1(♦Nm,n,L).

(m− 1)∆xN m∆xN (m+ 1)∆xN
(n− 1)∆tN

n∆tN

(n+ 1)∆tN

χN

♦N
m,n,L

♦N
m,n,R

(m− 1)∆xN m∆xN (m+ 1)∆xN
(n− 1)∆tN

n∆tN

(n+ 1)∆tN

χN

♦N
m,n,L

♦N
m,n,R

Figure 4. A diamond ♦Nm,n cut by an approximate 1-characteristic χN

Adding up the above estimates, one can get the approximate conservation laws for the domain
on one side of an approximate 1-characteristic as follows. For the part of an approximate 1-
characteristic χN , that initiates from a diamond center pNi of ♦Nmi,ni

, and finishes at another

diamond center pNf of ♦Nmf ,nf
, one can denote φNR as the mesh curve composed of successive

northeast edges of mesh diamonds from ♦Nmf ,nf
downwards to ♦NmR,ni

for some mR, and denote

qNR as the ending points of φNR , namely the east mesh point of♦NmR,ni
, denote INR as the horizontal

interval connecting pNi and qNR , with ΛR(χN ) as the domain surrounded by χN , φNR and south
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edges corresponding to INR (See Figure 5). Then by adding up the approximate conservation
laws of whole diamonds and diamond halves in ΛR(χN ), and due to the C.F.L. condition, one
can get

L+
1 (ΛR(χN )) =X+

1 (INR )− C+
1 (ΛR(χN )) + δ∆1(ΛR(χN )),

S1(ΛR(χN )) + L−1 (ΛR(χN )) =X−1 (INR ) + C−1 (ΛR(χN )) + δ∆1(ΛR(χN )).

Then obviously,

L+
1 (ΛR(χN )) ≤X+

1 (INR ) + ∆1(ΛR(χN )),

|S1(ΛR(χN ))| ≤|X−1 (INR )|+ ∆1(ΛR(χN )).

Similarly, one can construct the left side domain ΛL(χN ) and get the corresponding approximate
conservation laws

L+
1 (ΛL(χN )) ≤X+

1 (INL ) + ∆1(ΛL(χN )),

|S1(ΛL(χN ))| ≤|X−1 (INL )|+ ∆1(ΛL(χN )).

Here E±1 (ΛL
R

(χN )), L±1 (ΛL
R

(χN )) denote the waves entering and leaving ΛL
R

(χN ), S1(ΛL
R

(χN )) de-

notes the waves entering the boundary at the approximate characteristic χN , C±1 (ΛL
R

(χN )),∆±1 (ΛL
R

(χN ))

are the total amount of the corresponding values.

ΛL(χN )

qNL

INL

φNRφ
N
Rφ
N
R

qNRq
N
Rq
N
R

χNχNχN ΛR(χN )ΛR(χN )ΛR(χN )

pNip
N
ip
N
i

INRI
N
RI
N
R

pNfp
N
fp
N
f

ni∆t
N

nf∆tN

Figure 5. ΛR(χN ) and ΛL(χN )

Meanwhile, the total variation of σN1 on the right side of χN can be estimated as

TVχN+σ
N
1 ≤ X+

1 (INR ) + |X−1 (INR )|+ 2|∆1(ΛR(χN ))|,
and for the left side

TVχN−σ
N
1 ≤ X+

1 (INL ) + |X−1 (INL )|+ 2|∆1(ΛL(χN ))|,

Then for the total variation of the speed of χN , it holds

TVχNχ̇N ≤
1

2

(
TVχN+σ

N
1 + TVχN−σ

N
1

)
≤1

2

(
X+

1 (INR ∪ INL ) + |X−1 (INR ∪ INL )|
)

+ |∆1(ΛR(χN ) ∪ ΛL(χN ))|.

Since the domain under study is covered by the diamonds centering in [T0, T0 + T∗] × [0, 1]
with T∗ ≤ 60/M∗, if one chooses κ = [2ΛT∗] + 2, where Λ is the one for C.F.L. condition, and

I∗ = {(x, T0) | x ∈ [−κ, κ)}
then each above domain locates in the determinacy domain of I∗, moreover,

|X±i (I∗)| = κTV1
0σ

N
i (T0),
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which is bounded. Meanwhile, by (4.12)–(4.13), and (4.4), (1.10), for each domain Ω locates in
the determinacy domain of I∗,

∆1(Ω) + ∆3(Ω) ≤ κ

5
M∗,

which is bounded. Using the approximate conservation laws given above, all listed quantities,
such as C1(Ω), S(χN ),TVχNσNi ,TVχNχ̇N , are bounded.

4.2. Estimates for the exact solution. With above estimates, one may pass to the limit to
the exact solution. And during this process, a subsequence of approximate solutions could be
selected to satisfy the properties as follows.

Lemma 4.2. For a sequence of approximate 1-characteristics {χN}, if there is a sequence of
time {tN} such that (χN (tN ), tN ) converges to some point (x0, t0), then it possess a convergent
subsequence

χN (t)→ χ(t)

uniformly in time t ∈ [T0, T0 + T∗]. Moreover, the limit χ(t) is Lipschitz continuous.

Lemma 4.3. For χ as above, if it holds

a ≤ χ̇N ≤ b,

for large enough N , then

a ≤ χ̇ ≤ b.

Moreover,

lim
N
χ̇N (t) = χ̇(t)

at all but a countable set of t for a further subsequence.

Lemma 4.4. For χ as above, there exists a further subsequence such that (σN1 , σ
N
3 )T are one-

sided equicontinuous on both sides of χN except for a countable set of t, and it holds that

lim
N
σN1 (χN (t)± 0, t) = σ1(χ(t)± 0, t).

Lemma 4.5. Except for a countable set of t, it holds that either

χ̇(t) =
α[1

2σ
2
1]

[σ1]

∣∣∣
(χ(t),t)

=
α

2

(
σ1(χ(t)+, t) + σ1(χ(t)−, t)

)
or

χ̇(t) = ασ1(χ(t), t).

The proof of the above lemmas is similar to the one given in [13]. See Appendix B for the
details.

Denote dCNi and d∆N
i as the measures corresponding to the approximate solution (σN1 , σ

N
3 )T

that assign its value in each diamond ♦Nm,n to the center (m∆xN, n∆tN). Due to the bounds of

CNi (Ω) and ∆N
i (Ω), one has

dCNi → dCi, d∆N
i → d∆i

in weak*-topology for a subsequence.
Similarly, one may define the absolute value of the wave strength Strχ(t) for the wave on

one characteristic χ(t) and prove the corresponding convergence for the approximate sequence.
And one may call two characteristics of the same family χ1 and χ2 as coalescing, if there are
infinitely many approximate ones coalesce.
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4.3. Widening effects of the rarefaction waves. Let us focus on the approximate solu-
tions on the domain between two approximate 1-characteristics (See Figure 6). For two 1-
characteristics χ1(t) = limχN1 (t) and χ2(t) = limχN2 (t) with 0 ≤ χ2(t)− χ1(t) ≤ 1, denote

I(t) = χ1(t)χ2(t), D(t) = |I(t)| = χ2(t)− χ1(t).

Then Ḋ(t) = χ̇2(t)− χ̇1(t) and

D(t) = D(T0) +

∫ t

T0

(
χ̇2(τ)− χ̇1(τ)

)
dτ.

χ1(t) χ2(t)

I(t)

I(T0)

Figure 6. Domain between two characteristics

For an approximate solution (σN1 , σ
N
3 )T ,

χ̇N2 (nN∗ ∆tN)− χ̇N1 (nN∗ ∆tN)

=
α

2

(
σN1 (χN2 (nN∗ ∆tN)+, nN∗ ∆tN) + σN1 (χN2 (nN∗ ∆tN)−, nN∗ ∆tN)

)
− α

2

(
σN1 (χN1 (nN∗ ∆tN)+, nN∗ ∆tN) + σN1 (χN1 (nN∗ ∆tN)−, nN∗ ∆tN)

)
=
α

2

(
2σN1 (χN2 (nN∗ ∆tN)−, nN∗ ∆tN)− StrχN2 (nN∗ ∆tN)

)
− α

2

(
2σN1 (χN1 (nN∗ ∆tN)+, nN∗ ∆tN) + StrχN1 (nN∗ ∆tN)

)
=α
(
σN1 (χN2 (nN∗ ∆tN)−, nN∗ ∆tN)− σN1 (χN1 (nN∗ ∆tN)+, nN∗ ∆tN)

− 1

2
StrχN2 (nN∗ ∆tN)− 1

2
StrχN1 (nN∗ ∆tN)

)
=αX+

1 (IN (nN∗ ∆tN)) + αX−1 (IN (nN∗ ∆tN))− α

2

(
StrχN2 (nN∗ ∆tN) + StrχN1 (nN∗ ∆tN)

)
.

Passing to the limit leads to

Ḋ(t) = χ̇2(t)− χ̇1(t) = αX+
1 (I(t)) + αX−1 (I(t))− α

2

(
Strχ2(t) + Strχ1(t)

)
,

then

D(t) = D(T0) + α

∫ t

T0

(
X+

1 (I(τ)) +X−1 (I(τ))
)

dτ − α

2

∫ t

T0

(
Strχ2(τ) + Strχ1(τ)

)
dτ.

On the other hand, by the approximate conservation laws on the domain ΛNt1,t2 surrounded by

χN1 , χ
N
2 , t = t1, t = t2 and passing to the limit, it holds

X+
1 (I(τ)) ≥X+

1 (I(t))−∆1(Λτ,t),

|X−1 (I(τ))| ≤|X−1 (I(T0))|+ ∆1(ΛT0,τ ).
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Thus,

D(t) ≥ α(t−T0)
(
X+

1 (I(t))−|X−1 (I(T0))|
)
−α(t−T0)∆1(ΛT0,t)−

α

2

∫ t

T0

(
Strχ2(τ)+Strχ1(τ)

)
dτ.

and

X+
1 (I(t)) ≤ D(t)

α(t− T0)
+ |X−1 (I(T0))|+ ∆1(ΛT0,t) +

1

2

1

t− T0

∫ t

T0

(
Strχ2(τ) + Strχ1(τ)

)
dτ.

Now one can get rid of Strχ1 and Strχ2 by the following procedure as in [13]. Divide I(T0)
into small pieces with ξl as the corresponding dividing points, such that for smooth data case,
at T0 the 1-rarefaction waves crossing each ξlξl+1 is not larger that 1

800 |I(T0)|M∗. Denote
ψl as a 1-characteristic originating from ξl and denote Λl,l+1 as the domain surrounded by
I(T0), I(T0 + T∗), ψl and ψl+1. Then one can find the first ψl∗ that does not coalesce with χ1

and the last ψl∗∗ that does not coalesce with χ2, where, without loss of generality, one may
assume χ2 does not coalesce with χ1. Repeat the above process to Λl∗,l∗∗ , noting that Strψl∗(t)

and Strψl∗∗(t) are parts of X−1 (I(t)), and by applying the approximate conservation laws to
Λl∗−1,l∗ and Λl∗∗,l∗∗+1, one has

X+
1 (I(t)) ≤ D(t)

α(t− T0)
−X−1 (I(T0)) + ∆1(ΛT0,t) +

1

400
|I(T0)|M∗. (4.19)

For the case that the data is not smooth at T0, one may take an approximate sequence.
At last, taking a sequence of approximate smooth data if necessary, one can divide the data

at t = T0 into pieces with the starting points ζj = (χj(T0), T0) of 1-characteristic curves χj ,
such that

X+
1 (ζjζj+1) ≤ δj , j is odd,∣∣X−1 (ζjζj+1)

∣∣ ≤ δj , j is even

with ∑
j

δj ≤
1

400
M∗.

Then, for ζ∗j = (χj(T0 + T∗), T0 + T∗), simply by approximate conservation laws on the domain
Λj,j+1 surrounded by χj , χj+1, t = T0 and t = T0 + T∗, it holds

X+
1 (ζ∗j ζ

∗
j+1) ≤ δj + ∆1(Λj,j+1), for j odd,

while by (4.19),

X+
1 (ζ∗j ζ

∗
j+1) ≤

|ζ∗j ζ∗j+1|
αT∗

+ δj + ∆1(Λj,j+1) +
1

400
|ζjζj+1|M∗, for j even.

Noting that ∑
j

|ζ∗j ζ∗j+1| = 1,
∑
j

|ζjζj+1| = 1,

adding these estimates, one has

X+
1 ([0, 1)× {T0 + T∗}) ≤

1

αT∗
+

1

200
M∗ +

∑
j

∆1(Λj,j+1).

Meanwhile, due to the periodicity, by (4.12), (4.5) and (1.10),∑
j

∆1(Λj,j+1) ≤ ∆1([0, 1)× [T0, T0 + T∗]) ≤
3

50
M∗.

Thus, one has

X+
1 ([0, 1)× {T0 + T∗}) ≤

49

600
M∗.
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By periodicity,

TV1
0σ1(T0 + T∗) ≤

49

300
M∗.

Combining this with (4.5), one can conclude the proof. �

At last, the proof for the uniqueness is remarked briefly here. Since the quasilinear part
of the system is two decoupled Burgers equations, while the interaction terms can be treated
linearly, one may perform the method of S.N. Kruzhkov [16] to show the uniqueness as follows.
Suppose (σ∗1, σ

∗
3)T and (σ∗∗1 , σ

∗∗
3 )T are both entropy solutions to the Cauchy problem (1.1) on

(x, t) ∈ [0, L]× [0, T ] with same periodic initial data (σ1,0, σ3,0)T and satisfy

σ1(x+ 1, t) = σ1(x, t), σ3(x+ 1, t) = σ3(x, t), ∀ (x, t) ∈ [0, L]× [0, T ],∫ 1

0
σ1(x, t) dx = 0,

∫ 1

0
σ3(x, t) dx = 0, ∀ t ∈ [0, T ],

‖σ1‖L∞x,t + ‖σ3‖L∞x,t ≤ C1

for some C1 > 0 and for (σ1, σ3)T = (σ∗1, σ
∗
3)T and (σ∗∗1 , σ

∗∗
3 )T . Then since η = |σi − ki|, q =

α
2 |σi − ki|(σi − ki), (i = 1, 3) are convex entropy-entropy flux pair for each k ∈ R, during the
same selection of test functions and the limit process as in [16], one can get∫ 1

0
|σ∗1(x, t)− σ∗∗1 (x, t)| dx

≤
∫ 1

0
|σ∗1(x, 0)− σ∗∗1 (x, 0)| dx+

β

4

∫ t

0

∫ 1

0

∫ 1

−1
|σ′2(

x+ y

2
)||σ∗3(y, τ)− σ∗∗3 (y, τ)| dy dx dτ

and ∫ 1

0
|σ∗3(x, t)− σ∗∗3 (x, t)|dx

≤
∫ 1

0
|σ∗3(x, 0)− σ∗∗3 (x, 0)| dx+

β

4

∫ t

0

∫ 1

0

∫ 1

−1
|σ′2(

x+ y

2
)||σ∗1(y, τ)− σ∗∗1 (y, τ)| dy dx dτ.

Adding up these results and using Gronwall’s inequality yields the desired uniqueness result

(σ∗1, σ
∗
3)T = (σ∗∗1 , σ

∗∗
3 )T , a.e. �

Appendix A. Finite Time Blowup of Classical Solutions

For the system (1.1), this appendix would provide a proof on the blowup behavior of the
classical solutions under the condition that the initial data of the sound waves σ1 and σ3 are
relatively stronger than the steady entropy wave σ2. Similar to the first section of [13], this
blowup is essentially caused by the widening effect of the rarefaction waves and can be treated
as a continuous version of Proposition 4.1.

Proposition A.1. For the Cauchy problem (1.1), under the assumption (1.2)–(1.4) and σ2 ∈
C1,

max
x∈[0, 1

2
)
|σ′2| = M̃E

with C1 initial data (σ1,0, σ3,0)T satisfying (1.5) with

MS(0)

M̃E

>
3

ln 13
12

β

α
(A.1)

the corresponding classical solution (σ1, σ3)T would blow up in finite time Tb ≤ 6
αMS(0) . Fur-

thermore, it must be the geometric blow-up.
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Proof. Set K(x) as (2.4), then (2.5) holds and∫ 1

0
|K(x)|dx ≤ β

4
M̃E . (A.2)

Without loss of generality, one may assume

TV1
0σ1,0 ≥

1

2
MS(0), TV1

0σ3,0 ≤
1

2
MS(0),

then by the property of periodicity, there exists a point z∗ ∈ [0, 1), such that

∂σ1,0

∂x
(z∗) = −1

4
MS(0). (A.3)

Set

w1 =∂xσ1, (A.4)

w3 =∂xσ3. (A.5)

Noting that

∂

∂x

∫ 1

−1
K(x+ y)σi(y, t) dy = −

∫ 1

−1
K(x+ y)wi(y, t) dy,

one can deduce from (1.1) that
∂tw1 + α∂x(σ1w1)−

∫ 1

−1
K(x+ y)w3(y, t) dy = 0,

∂tw3 − α∂x(σ3w3) +

∫ 1

−1
K(x+ y)w1(y, t) dy = 0.

(A.6)

Multiplying sgn(w1) and sgn(w3) on both sides of these two equations respectively and inte-
grating over [0, 1), noting (A.2), one can get

d

dt

(
‖w1(·, t)‖L1[0,1) + ‖w3(·, t)‖L1[0,1)

)
≤ β

2
M̃E

(
‖w1(·, t)‖L1[0,1) + ‖w3(·, t)‖L1[0,1)

)
.

Thus,

‖w1(·, t)‖L1[0,1) + ‖w3(·, t)‖L1[0,1) ≤MS(0) exp(
β

2
M̃Et), (A.7)

which is a continuous version of Proposition 3.1.
Denote the 1-characteristic passing through (z, 0) as x1(t; z), namely

dx1(t; z)

dt
= ασ1(x1(t; z), t),

x1(0; z) = z,

then 
d

dt

∂x1(t; z)

∂z
= α

∂σ1(x1(t; z), t)

∂z

def.
= ασ1,z(t; z),

∂x1(0; z)

∂z
= 1,

and
∂x1(t; z)

∂z
= 1 + α

∫ t

0
σ1,z(τ ; z) dτ. (A.8)

By the first equation of the original system (1.1),

d

dt
σ1(x1(t; z), t) = −

∫ 1

−1
K(x1(t; z) + y)σ3(y, t) dy = −

∫ 1

−1
K(y)σ3(y − x1(t; z), t) dy,

therefore it holds

d

dt
σ1,z(t; z) =

∫ 1

−1
K(y)w3(y − x1(t; z), t)

∂x1(t; z)

∂z
dy. (A.9)
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Now one may use a bootstrap argument to suppose

σ1,z(t; z
∗) ∈ [−1

3
MS(0),−1

6
MS(0)], ∀ t ∈ [0, T∗)

with

T∗ ≤ min{ 6

αMS(0)
, Tb},

which holds already at t = 0 by (A.3). Then due to (A.8)∣∣∣∣∂x1(t; z)

∂z
|z=z∗

∣∣∣∣ =

∣∣∣∣1 + α

∫ t

0
σ1,z(τ ; z∗) dτ

∣∣∣∣ ≤ 1, ∀ t ∈ [0, T∗).

Thus, integrating (A.9) with respect to t and using (2.5), (A.7) and (A.1), one may get∣∣∣∣σ1,z(t; z
∗)− ∂σ1(z, 0)

∂z
|z=z∗

∣∣∣∣ ≤2 max
x∈[0,1)

|K(x)|
∫ t

0
‖w3(·, t)‖L1[0,1) dt

≤β
2
M̃E

∫ t

0
MS(0) exp(

β

2
M̃Eτ) dτ

=MS(0)
(

exp(
β

2
M̃Et)− 1

)
<

1

12
MS(0), ∀ t ∈ [0, T∗).

Therefore, by (A.3), one has

σ1,z(t; z
∗) ∈ (−1

3
MS(0),−1

6
MS(0)), ∀ t ∈ [0, T∗),

which completes the bootstrap argument.
Now, suppose by contrary Tb >

6
αMS(0) , then by (A.8), there exists t∗ ≤ 6

αMS(0) < Tb such

that
∂x1(t; z)

∂z

∣∣∣∣
z=z∗,t=t∗

= 0. (A.10)

Set x∗ = x1(t∗; z∗), then ∂σ1
∂x (x∗, t∗) is finite since t∗ < Tb, and σ1,z(t

∗; z∗) is finite and negative
by the above bootstrap argument, but this contradicts with the chain rule

σ1,z(t; z) =
∂σ1

∂x
(x1(t; z), t)

∂x1(t; z)

∂z
.

In fact, (A.10) shows that the blow-up is of the geometric type. �

Appendix B. Proof of the lemmas in Section 4.2

In this appendix, the lemmas in Section 4.2 are proved in details. The methods used in this
part are slight modifications of the ones used in [13]. Since the details are quite tedious, and
the methods are not new, it can be deleted before publication.

Proof of Lemma 4.2. By the construction of χN , it holds that

|χN (t1)− χN (t2)| ≤ α‖σN1 ‖L∞ · |t2 − t1|, ∀ t1, t2 ∈ (n∆tN, (n+ 1)∆tN),

|χN (n∆tN+)− χN ((n+ 1)∆tN+)| = ∆xN.

Therefore,

|χN (t1)− χN (t2)| ≤ Λ|t2 − t1|+ ∆xN, ∀ t1, t2 ∈ [T0, T0 + T∗], (B.1)

where Λ is the one for C.F.L. condition. Now one may just use a diagonal selection method for
all the rational time points and take out the uniform convergence subsequence.

Meanwhile, (B.1) shows that Λ is the Lipschitz constant for χ.
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Proof of Lemma 4.3. For each nN1 , n
N
2 ∈ Z+ satisfying T0 ≤ nN1 ∆tN < nN2 ∆tN < T0 + T∗,

one can calculate χN (nN2 ∆tN) − χN (nN1 ∆tN) as follows. If χN (t) is a line segment for t ∈
((n− 1)∆tN, n∆tN) starting from (m∆xN, (n− 1)∆tN), namely,

χN ((n− 1)∆tN) = m∆xN,

then its continuation line segment starts from ((m+ 1)∆xN, n∆tN), namely,

χN (n∆tN+) = (m+ 1)∆xN,

if and only if the sampling point locates on the left of its end, i.e.,

(m+ ϑn)∆xN < χN (n∆tN−). (B.2)

Since

χN (n∆tN−) = χN ((n− 1)∆tN+) + χ̇N∆tN ≥ χN ((n− 1)∆tN) + a∆tN = m∆xN+ a∆tN,

at least for all the cases ϑn < a/Λ (B.2) holds and the continuation jumps to the right.
Set

SN (a) = ]{ϑn | nN1 ≤ n ≤ nN2 , ϑn < a/Λ}.
There are at least SN (a) times that χN jumps to the right and at most nN2 −nN1 −SN (a) times
to the left. Thus,

χN (nN2 ∆tN+)− χN (nN1 ∆tN+) ≥ SN (a)∆xN− (n2 − n1 − SN (a))∆xN

and
χN (nN2 ∆tN+)− χN (nN1 ∆tN+)

nN2 ∆tN− nN1 ∆tN
≥ ∆xN

∆tN
(

2SN (a)

nN2 − nN1
− 1). (B.3)

Choosing
nN2 ∆tN→ t2 and nN1 ∆tN→ t1, as N →∞,

such that T0 ≤ t1 ≤ t2 < T0 + T∗, and using the property that {ϑn} are independently equi-
distributed random variables, one gets that

lim
N→∞

2SN (a)

nN2 − nN1
=
a

Λ
+ 1, a.s..

Thus, taking N →∞ in (B.3) and using Lemma 4.2 yields

χ(t2)− χ(t1)

t2 − t1
≥ a, a.s.,

which implies that
χ̇N (t) ≥ a, a.s.

for all but countable t.
Through a similar process one can show the other side of the inequality. In fact, one has

Lemma B.1. For two 1-characteristics χ1 and χ2 obtained in the way of Lemma 4.2, if there
exists a constant c > 0 and a time span [t1, t2] ⊆ [T0, T0 + T∗), such that

χ̇N1 (t) ≤ χ̇N2 (t) + c, ∀ t ∈ [t1, t2],

for a subsequence, then
χ̇1(t) ≤ χ̇2(t) + c

for all t ∈ [t1, t2].

This lemma would be used several times in the proof of Lemma 4.4.
For the last part of Lemma 4.3, one can first use the result of Section 4.1 that TVχNχ̇N is

uniformly bounded. Noting that χ̇N is also uniformly bounded due to Proposition 3.1, one can
apply Helly’s selection principle to get a convergent subsequence such that

lim
N
χ̇N (t) = s(t),

lim
N

∫ t

T0

| dχ̇N | = s̄(t).
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Secondly, one can show that the desired result holds at each continuous point of s̄(t). In fact,
suppose that s̄(t) is continuous at t0 ∈ [T0, T0 + T∗), then for any given ε > 0, there exist θ > 0
and a subsequence such that ∫ t0+θ

t0−θ
|dχ̇N (t)| < ε

3
,

|χ̇N (t0)− s(t0)| < ε

3
,

|s(t)− s(t0)| < ε

3
, ∀ t ∈ [t0 − θ, t0 + θ].

Then for t ∈ [t0 − θ, t0 + θ], it holds that

s(t)− ε < χ̇N (t) < s(t) + ε.

It thus follows from the first part of Lemma 4.3 that

s(t)− ε < χ̇(t) < s(t) + ε.

Due to the arbitrariness of ε, the desired result

χ̇(t0) = s(t0) = lim
N
χ̇N (t0)

is proved.

Proof of Lemma 4.4. To this end, one can define

QN1 (♦Nm,n) = max{0,−α1,m,n} ·max{0,−β1,m,n}

for the 1-shock collision happened at ♦Nm,n in the approximate solution (σN1 , σ
N
3 )T . Since it

counts only the intrafamily wave collision, while each 1-wave pair ever enters the domain
of created in the domain can only collide once,

∑
m,nQ

N
1 (♦Nm,n) is uniformly bounded by

(TV1
0σ

N
1 (·, T0) +

∑
m,n ∆1(♦N1,m,n))2. Similar as CN1 (♦Nm,n), ∆N

1 (♦Nm,n) and SN (χN ), one may

denote dCN1 , d∆N
1 , dSN as well as dQN1 as measures assigned their values to the center of the

corresponding diamonds. 5

Then by their uniform bounds, one can get a subsequence of the approximate solutions that

dCN1 → dC1, d∆N
1 → d∆1, dSN (χN )→ dS(χ), dQN1 → dQ1,

in the w∗ topology of measures.
Now for all but countable t0 ∈ [T0, T0 +T∗], any of dC1, d∆1,dS(χ) and dQ1 has zero measure

at the point (χ(t0), t0). One can prove that the result of the lemma holds at each of such t0.
Without loss of generality, it is supposed that Λ > 1, for the Λ in the C.F.L. condition. For

a sufficiently small number γ > 0, one can choose a neighborhood

V (γ) = {(x, t) | x ∈ [χ(t0)− 20R,χ(t0) + 20R], t ∈ [t0 − 20R, t0 + 20R]},
where R = R(γ) is sufficiently small such that for all N large enough the following requirements
hold

(1) The amount of 1-waves canceled in V (γ) is less than γ3, namely,

CN1 (V (γ)) < γ3. (B.4)

(2) The amount of 1-shocks entering χN in V (γ) is less than γ3, namely,

SN (χN ) < γ3. (B.5)

(3) The amount of 1-shock collision happened in V (γ) is less than γ3, namely,

QN1 (V (γ)) < γ3. (B.6)

(4) The amount of influence from 3-waves to 1-wave in V (γ) is less than γ3, namely,

∆N
1 (V (γ)) < γ3. (B.7)

5Here the superscript N is added for the quantity corresponding to (σN
1 , σ

N
3 )T .
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First, for any 1-shock that is strong at some time, one can get an estimate for its strength in
the later time.

Fact 1. Let φN be an approximate characteristic located in V (γ) such that StrφN (t) > γ
3
2 with

(φN (t), t) ∈ V (γ), then for any t′ > t with (φN (t′), t) ∈ V (γ), it holds that

γ
3
2 − 2γ3 ≤ StrφN (t′) ≤ StrφN (t) + 3γ

3
2 ,

TVφN∩V (γ)φ̇
N ≤ 4γ

3
2 .

Proof of Fact 1. Due to (B.4) and (B.7), it is direct to get the lower bound. To get the other side
of the estimate, one may estimate the amount of 1-shocks entering φN , which are β1, β2, . . . , βk.

Due to the lower bound StrφN (t′) > 1
2γ

3
2 obtained already, the 1-shock collision happened on

φN is at least
1

2
γ

3
2 · (

∑
j

βj).

Thus, due to the upper bound of the total collision (B.6), one can get∑
j

βj < 2γ
3
2 ,

which, combined with (B.7), gives the upper bound in the desired estimate and completes the
proof for the first part of the Fact.

Since the change of φN can only be caused by 1-shock entering, 1-wave cancellation and
3-wave influence, one can use (B.4), (B.7) and the result of the first part to get the second
estimate in the Fact. �

Now one can divide the proof into two parts as follows

(A) For all N large enough, there is a 1-shock φN with StrφN (tN ) ≥ γ contained in σN1 and
located near (χN (t0), t0)

|φN (tN )− χN (t0)| < α

4
γR,

|tN − t0| <
α

4Λ
γR.

(B) R(γ) can be further shrunk that for all N large enough, all 1-shocks of σN1 located in
V (γ) have strength less than γ.

Proof of Case (A): In this case, one can prove that φN (tN ) locates actually on χN , and there is
a short space interval centered at χN (t0) such that the total strength of 1-waves passing through
it is small enough, which implies that the total variation and thus the oscillation of σN1 over
this interval is small. To prove this fact, the idea is that otherwise the 1-waves would coalesce
with φN and cause too strong cancellation at shock collisions.

First, one may show that all the approximate characteristics near φN would roughly point
towards it.

Fact 2. It holds that

ασN1 (x, t) +
α

4
γ ≤ φ̇N (t), ∀ (x, t) ∈ (φN (t), φN (t) +

α

4
γR)× (t0 −R/Λ, t0 +R/Λ), (B.8)

and

ασN1 (x, t)− α

4
γ ≥ φ̇N (t), ∀ (x, t) ∈ (φN (t)− α

4
γR, φN (t))× (t0 −R/Λ, t0 +R/Λ). (B.9)

Proof of Fact 2. Since StrφN (tN ) ≥ γ, by the previous result, it holds that

StrφN (t) > γ − 2γ3, ∀ t > tN .

Moreover,

φ̇N (tN ) =
α

2

(
σN1 (φN (tN )−, tN ) + σN1 (φN (tN )+, tN )

)
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=ασN1 (φN (tN )+, tN ) +
α

2
StrφN (tN )

>ασN1 (φN (tN )+, tN ) +
α

2
γ. (B.10)

Suppose that on the contrary, for infinitely many σN1 in Case (A), (B.8) is violated at t∗ ∈
(t0 − R, t0 + R). Since σN1 are piece-wise Riemann solutions to the Burgers equation, it is
constant along each straight characteristic line. Without loss of generality, one may suppose
t∗ = n∗∆tN

∗
+ for some N∗, then one can choose

x∗ = inf{x̃ ∈ (φN (t∗), φN (t∗) +
α

4
γR) | φ̇N (t∗) < ασN1 (x̃, t∗) +

α

4
γ}.

By this choice, x∗ = m∗∆xN
∗

for some m∗ and

ασN1 (x∗−, t∗) +
α

4
γ ≤ φ̇N (t∗) < ασN1 (x∗+, t∗) +

α

4
γ.

By the construction of (σN1 , σ
N
3 )T , σN1 on

(x, t) ∈ (x∗ −∆xN, x∗ + ∆xN)× (t∗, t∗ + ∆tN)

would be a centered rarefaction wave. Thus, there would be an approximate 1-characteristic
ψN issuing from (x∗, t∗) such that

ψ̇N (t∗) = φ̇N (t∗)− α

4
γ.

In what follows, it will be shown that ψN (t) and φN (t) would coalesce in V (γ). To this end,

one may focus on the estimate of ψ̇N in the later time t > t∗, during which, the key disturbing
factor is the 1-shocks coming from the domain between ψN and φN , and entering ψN . To deal
with this, one may first show that

Claim. All 1-shocks crossing (φN (t∗), ψN (t∗)) × {t∗} possess a strength less than γ
3
2 at least

for all the cases that N is large enough.

Proof of the Claim. Suppose that on the contrary, ηN (t) is an approximate 1-characteristic such
that

StrηN (t∗) ≥ γ
3
2 ,

ηN (t∗) ∈ (φN (t∗), ψN (t∗)).

Now it is hoped that ηN would coalesce with φN in V (γ). In fact, by the previous result

StrηN (t) ≥ γ
3
2 − 2γ3, ∀ t > t∗,

TVηN η̇
N ≤ γ

3
2 ,

while, by the definition of x∗ and ψN ,

η̇N (t∗) +
α

4
≤ φ̇N (t), ηN (t∗) ∈ (φN (t∗), φN (t∗) +

α

4
γR).

Therefore,

η̇N (t)− γ
3
2 +

α

4
γ ≤ φ̇N (t).

As in Lemma B.1, almost surely for ϑ, ηN would coalesce with φ̇N in V (γ) at least for large

enough N , which would cause a shock collision of size at least 1
2γ

5
2 . This contradicts with one

selection requirement of V (γ), (B.6), and completes the proof of the Claim. �

Furthermore, one has

Claim. The strength for any 1-shock crossing (φN (t), ψN (t))× {t} for t ≥ t∗ is less than 4γ
3
2 ,

at least for large enough N .



WEAKLY NONLINEAR GAS DYNAMICS 27

Proof of the Claim. Denote ξn as the strength of the 1-shock between φN (n∆tN+) and ψN (n∆tN+)
at n∆tN+, then

ξn ≤ ξn−1 + ∆N
1 (♦Nm,n) (B.11)

for some m. Suppose that by contrary, n′∆tN+ > t∗ is the first time such that

ξn′ > 4γ
3
2 .

Then due to the result of the last Claim and (B.1), (B.7) as well as (B.11), it holds that

ξn′ < 8γ
3
2 + 2γ3,

and there exists n′′, n′′′ with n∗ < n′′′ < n′′ < n′ such that

3γ
3
2 < ξn ≤ 4γ

3
2 , ∀n′′ ≤ n < n′, (B.12)

2γ
3
2 < ξn ≤ 3γ

3
2 , ∀n′′′ ≤ n < n′′. (B.13)

Then for each n′′′ ≤ n ≤ n′, there exists a diamond ♦Nm,n that produces the wave of strength
ξn, namely,

−ξn = αm,n + βm,n + δ∆N
1 (♦Nm,n)

with

QN1 (♦Nm,n) = max{0,−αm,n} ·max{0,−βm,n}
(1) For αm,n < 0, βm,n < 0, without loss of generality, one may assume that |αm,n| > |βm,n|,

then

ξn−1 ≥|αm,n| ≥
1

2
(|αm,n|+ |βm,n|) =

1

2
(ξn + δ∆N

1 (♦Nm,n))

≥1

2
(ξn −∆N

1 (♦Nm,n)).

Thus,

QN1 (♦Nm,n) = |αm,n||βm,n| ≥ |αm,n| · (ξn − |αm,n| −∆N
1 (♦Nm,n)).

By the property of the parabola and the above bounds of αm,n, it holds that

QN1 (♦Nm,n) ≥ ξn−1(ξn − ξn−1 −∆N
1 (♦Nm,n)).

Then (B.11) leads to

3ξn−1 ≥ ξn + ξn−1 −∆N
1 (♦Nm,n).

Thus,

3QN1 (♦Nm,n) ≥ (ξn + ξn−1 −∆N
1 (♦Nm,n))(ξn − ξn−1 −∆N

1 (♦Nm,n)) (B.14)

(2) For βm,n ≥ 0, due to the choice of n′′′, it holds that ξn > 15γ
3
2 . Then (B.7) implies that

−ξn−1 < αm,n < 0.

Therefore,

ξn −∆N
1 (♦Nm,n) ≤ −αm,n − βm,n ≤ −αm,n < ξn−1,

and

0 ≥ (ξn + ξn−1 −∆N
1 (♦Nm,n))(ξn − ξn−1 −∆N

1 (♦Nm,n)) (B.15)

Adding up (B.14)–(B.15) for all n′′′ < n ≤ n′ and noting that ξn′ is the largest one over ξn and
(B.7), one can get

3QN1 (V (γ)) ≥ξ2
n′ − ξ2

n′′′ − ξn′γ3

≥7γ3 − 8γ
9
2 > 4γ3,

which contradicts with (B.6) and completes the proof of the Claim. �
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Now one can calculate ψN (t) for t > t∗. Denote α1, . . . , αk as the sequence of 1-shocks
entering ψN from left before the possible coalesce of ψN and φN . Then at the time αj entering
ψN , the shock collision would be at lest

|αj |(
∑
p<j

|αp| − cj),

where cj denotes all the cancellation and 3-wave influence before the entering. Summing up
this estimate at each entering time gives

γ3 > QN1 (V (γ)) ≥ 1

2
(
∑
j

|αj |)2 − 1

2
(
∑
j

|αj |2)− 2γ3
∑
j

|αj |

By the previous result, max |αj | ≤ 4γ
3
2 , therefore

(
∑
j

|αj |)2 − (2γ
3
2 + 2γ3)(

∑
j

|αj |) < γ3,

which yields that ∑
j

|αj | < 2γ
3
2 .

Meanwhile, the only factors that can increase ψ̇N are the cancellation from right and 3-wave

influence on it and the 1-shocks entering from left, all of which are bounded by 2γ3 +2γ
3
2 . Thus,

ψ̇N (t) >φ̇N (t∗)− α

4
γ + 3γ

3
2

≥φ̇N (t)− α

4
γ + 4γ

3
2 , ∀ t > t∗.

Since
ψN (t∗) = x∗ ∈ (φN (t∗), φN (t∗) +

α

4
γR),

as in Lemma B.1, almost surely for ϑ, φN and ψN would coalesce in V (γ) at a time t̂N < 2RΛ
at least for large enough N .

For the 1-rarefaction waves passing through (φN (t∗), ψN (t∗)) × {t∗}, since no 1-rarefaction
wave can cross an approximate 1-characteristic, they would be demolished before t̂N by either
the cancellation or the 3-wave influence, which implies that their total strength is at most 2γ3.
Therefore,

ψ̇N (t∗) ≤ ασN1 (φN (t∗)+, t∗+) + 2γ3 < φ̇N (t∗)− α

2
γ + 2γ3,

which contradicts with the definition of ψN and completes the proof of the Fact. �

Due to this fact and our assumption in Case (A), φN and χN would coalesce in V (γ) almost
surely at least for large enough N which would cause a 1-shock entering of χN with strength at
least γ − 2γ3, which is forbidden by (B.5). The only possibility is that φN locates exactly on
χN at t∗.

Since the 1-shock entering χN , the 1-wave cancellation happening on χN and the 3-wave
influence acting on χN can be bounded together by 3γ3, it holds that

TVχNχ̇N < 3γ3

in V (γ).
Now one can apply (B.8)–(B.9) at t = t0 to get that all the 1-shocks passing through

(χN (t0) − α
4 γR, χ

N (t0) + α
4 γR) × {t0} would either be demolished by cancellation or 3-wave

influence, or enter χN in V (γ) almost surely at least for large enough N , and all 1-rarefaction
waves would be demolished by cancellation or 3-wave influence. Thus, the total variation of σN1
along this interval can be bounded by O(γ3) which gives the desired equicontinuity result.

Proof of Case (B): The main idea in this part of the proof is that as it has been assumed
that each 1-shock in V (γ) possesses a strength less than γ, while all the cancellation and 3-
wave influence are at most 2γ3, using the γ3 bound of the collision, one can show that the
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total variation of the speed of the approximate 1-characteristics can only be 4γ, thus for each
approximate 1-characteristic near χ̇N , if its speed is different from χN with a large order, it
would enter χN in the future, which gives a small bound for rarefaction waves to cause the
assumed speed difference, or in the past, which is forbidden by the construction process of the
approximate characteristics. Then one can estimate the oscillation of the characteristic speed
and thus the oscillation of the solution.

As the first ingredient of the proof, one may show that

Fact 3. For each approximate 1-characteristic φN , the total strength of 1-shocks entering it in
V (γ) is no more than 4γ.

Proof of Fact 3. The proof is quite similar to the one for Fact 1 given above.
Suppose, on the contrary, that the total strength is stronger than 4γ. Since the cancellation

and 3-wave influence can be bounded by 2γ3, while each 1-shock is weaker than γ, one can get
a time t∗ that

3

2
γ < StrφN (t∗) <

5

2
γ + γ3,

and there would be a sequence of 1-shocks α1, . . . , αk with total strength at least 3
2γ− 3γ3 that

enters φN in V (γ) later than t∗. Due to the previous result,

StrφN (t) >
3

2
γ − 2γ3, ∀ t > t∗.

Then the collision can be estimated from below as

QN1 (V (γ)) ≥ (
3

2
γ − 2γ3) · (

∑
j

|αj |) > 3γ2,

which contradicts with (B.7) and completes the proof of Fact 3. �

Using Fact 3 and the bounds of cancellation and 3-wave influence, one can conclude that

TVφN∩V (γ)φ̇
N < 4γ + 2γ3, (B.16)

for any approximate 1-characteristic φN .
As the second ingredient of the proof, one can prove that all approximate 1-characteristics

would roughly point away from each other.

Fact 4. For any given t′ ≤ t0 with t′ = n1∆tN+ for some n1, and x1, x2 with

χN (t′) ≤ x1 < x2 < χN (t′) + 24γR,

it holds that

φ̇Nx1,t′(t
′) ≤ φ̇Nx2,t′(t

′) + 13γ, (B.17)

where φNx,t is an arbitrary approximate 1-characteristic issuing from (x, t).

Proof of Fact 4. Suppose by contrary that (B.17) is violated, then by (B.16)

φ̇Nx1,t′(t) < φ̇Nx2,t′(t) + 4γ, ∀ t > t′.

Since the initial distance is less than 24γR, almost surely for large enough N , φNx1,t′
and φNx2,t′

would coalesce in V (γ).
All 1-shocks passing through [x1, x2]×{t′} would either be demolished by the cancellation or

3-wave influence, or entering φNx1,t′
or φNx2,t′

. Therefore due to Fact 3, their total strength can

be bounded by 8γ + 2γ3.
Meanwhile, φ̇Ny,t′ increases with y going from x1 to x2 only at the time when y passing a

1-shock. Thus,

φ̇Nx1,t′(t
′) < φ̇Nx2,t′(t

′) + 9γ,

which contradicts with the assumption at the beginning of the proof. �
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Using Fact 4, taking t′ = t0 and x1 = χN (t0), one can get

ασN1 (y, t0) = φ̇Ny,t0(t0) ≥ χ̇N (t0)− 13γ, ∀χN (t0) < y < χN (t0) + 24γR,

which provides a lower bound of σN1 on the right of χN .
To show the other side of the result, a rough idea is that if an approximate 1-characteristic

moves much faster than χN at t0, then due to (B.16), it always moves much faster and would
cross χN in the past which is forbidden by the construction of the approximate characteristics.
But in our method, it is not always plausible to find the previous part for one given approximate
characteristic. Thus one should change the strategy to an equivalent one that one may search
for one approximate characteristic issuing from a point earlier than t0 that reaches the interval
[1
2γR.10γR] at t0 with a desired speed, which in fact is to find the previous part for one of the

approximate characteristics at [1
2γR.10γR] × {t0}. Then the speed of this characteristic can

provide an upper bound for all others on its left due to (B.17).
To be more specific, one may look at one of the approximate 1-characteristic φNy,R/Λ passing

through (y, t0 −R/Λ) for

y ∈ [χN (t0 −R/Λ), χN (t0 −R/Λ) + 24γR]

and denote a straight line

ΦN
y (t) = φ̇Ny,t0−R/Λ(t− t0 +R/Λ).

Taking x1 = χN (t0 −R/Λ), x2 = y and t′ = t0 −R/Λ in (B.17), one can get

χ̇N (t0 −R/Λ) ≤ φ̇Ny,t0−R/Λ(t0 −R/Λ) + 13γ.

Due to (B.16) for φN = χN , it holds

χN (t0)− χN (t0 −R/Λ)− 5γR ≤ ΦN
y (t0)− y + 13γR.

Thus,

ΦN
y (t0) ≥ χN (t0)− 18γR+ (y − χN (t0 −R/Λ)).

Noting that

ΦN
χN (t0−R/Λ) ≤ χ

N (t0) + 4γR+ 2γ3R

and that as y increases continuously at the time crossing a 1-rarefaction wave, while decreases
sharply at the time crossing a 1-shock, there exists yN ∈ [χN (t0−R/Λ), χN (t0−R/Λ + 24γR)],
such that

ΦN
yN (t0) = χN (t0) + 5γR.

By (B.16) for φN
yN

and the definition of ΦN
yN

, one can get

|φNyN (t0)− ΦN
yN (t0)| < 4γR+ 2γ3R,

and

χN (t0) +
1

2
γR < φNyN (t0) < χN (t0) + 10γR. (B.18)

Then one may get an upper bound for φ̇N
yN

, for which one needs only to get an average speed

for t ∈ [t0−R/Λ, t0] and apply (B.16). In fact, by the second inequality of (B.18), and that φN

lies on the right of χN , it holds that

φN
yN

(t0)− φN
yN

(t0 −R/Λ)

R/Λ
<
χN (t0)− χN (t0 −R/Λ)

R/Λ
+ 10γ.

Thus,

φ̇NyN (t0) < χ̇N (t0) + 19γ.

Now for each approximate 1-characteristic ψN passing through [χN (t0), χN (t0) + 1
2γR], since it

lies on the left of φN
yN

, using (B.17) for x1 = ψN (t0), x2 = φN (t0) and t = t0 leads to

ψ̇N (t0) ≤ φ̇N (t0) + 13γ < χ̇N (t0) + 32γ,
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which yields an upper bound for the speed of all characteristics, and thus for σN1 , near χN .
Similar results can be proved on the left of χN . This completes the proof of Case (B) and the
lemma. �

Proof of Lemma 4.5: As a direct application of Lemma 4.4, one can get

Corollary. There exists a subsequence of approximate solutions such that for all but countable
t,

lim
N
σN1 (χN (t)± 0, t) = σ1(χ(t)± 0, t).

Proof of the Corollary: In Section 4.1, it is proved that TVχNσN1 (χN (·) ± 0, ·) is uniformly
bounded. Thus, by Helly’s selection principle, there exists a subsequence such that

lim
N
σN1 (χN (t)± 0, t) = U±(t),

for some BV function U±.
Now, one can complete the proof just by noting that

|U±(t)− σ1(χ(t)± y, t)|
≤|U±(t)− σN1 (χN (t)± 0, t)|

+ |σN1 (χN (t)± 0, t)− σN1 (χ(t)± y, t)|
+ |σN1 (χ(t)± y, t)− σ1(χ(t)± y, t)|,

where on the right hand side, for each ε > 0, the first term is bounded by ε/3 for all large
enough N in the subsequence, the second term is bounded by ε/3 for any small enough y due
to Lemma 4.4, while the third one is bounded by ε/3 for almost all y, since ‖σN1 − σ1‖L1 → 0
as N →∞. �

With this Corollary in hand, one can take N → ∞ for the Rankine-Hugoniot condition in
σN1 and completes the proof.

Appendix C. Approximate Characteristics

In this appendix, some details in the construction of the approximate characteristics are
explained. And based on these construction, some estimates, especially (4.14)–(4.18) for half
diamonds, are checked.

First, as in Page 30 of [13], there are roughly 16 cases, in each of which one should assign
the continuation of a line segment in an approximate 1-characteristic. See Figure 7 for eight of
them that the approximate 1-characteristic, which is marked by dashed lines, enters from the
southeast edges. The other eight cases can be analyzed similarly.

γN1,m,n

αN
1,m,n βN

1,m,n

Case I Case II

αN
1,m,n,L αN

1,m,n,R

Case III Case IV

Case V Case VI Case VII Case VIII

Figure 7. Eight cases of waves in one mesh diamond
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For Cases I–IV, where γN1,m,n < 0, one has no other choice but to choose the leaving 1-shock

as the continuation of the approximate 1-characteristic. Meanwhile, (4.14)–(4.18) can be shown
as follows.

Case I. (αN1,m,n < 0, βN1,m,n < 0, γN1,m,n < 0): In this case,

E+
1 (♦Nm,n) = 0, E−1 (♦Nm,n) = αN1,m,n + βN1,m,n,

L+
1 (♦Nm,n) = 0, L−1 (♦Nm,n) = γNm,n,

C1(♦Nm,n) = 0, ∆1(♦Nm,n) = |γN1,m,n − αN1,m,n − βN1,m,n|,
and

E±1 (♦N1,m,n,L) = L+
1 (♦N1,m,n,L) = S1(♦N1,m,n,L) = C±1 (♦N1,m,n,L) = ∆1(♦N1,m,n,L) = 0,

E+
1 (♦N1,m,n,R) = L+

1 (♦N1,m,n,R) = C+
1 (♦N1,m,n,R) = 0,

E−1 (♦N1,m,n,R) = βN1,m,n, S1(♦N1,m,n,R) = γN1,m,n − αN1,m,n,
C−1 (♦N1,m,n,R) = 0, ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n).

Then it is easy to check (4.14)–(4.18).

Case II. (αN1,m,n < 0, βN1,m,n > 0, γN1,m,n < 0): In this case,

E+
1 (♦N1,m,n) = βN1,m,n, E−1 (♦N1,m,n) = αN1,m,n,

L+
1 (♦N1,m,n) = 0, L−1 (♦N1,m,n) = γN1,m,n,

C1(♦N1,m,n) = min{−αN1,m,n, βN1,m,n}, ∆1(♦N1,m,n) =
∣∣|γN1,m,n| − |αN1,m,n|+ |βN1,m,n|∣∣,

and

E±1 (♦N1,m,n,L) = L+
1 (♦N1,m,n,L) = S1(♦N1,m,n,L) = C±1 (♦N1,m,n,L) = 0,

E−1 (♦N1,m,n,R) = C−1 (♦N1,m,n,R) = 0,

E+
1 (♦N1,m,n,R) = βN1,m,n, L+

1 (♦N1,m,n,R) = 0,

C+
1 (♦N1,m,n,R) = C1(♦N1,m,n), ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n),

S1(♦N1,m,n,R) = min{0, γN1,m,n − αN1,m,n}
Now (4.14)–(4.18) follow easily.

Case III. (αN1,m,n = αN1,m,n,L + αN1,m,n,R > 0, βN1,m,n < 0, γN1,m,n < 0): In this case,

E+
1 (♦N1,m,n) = αN1,m,n, E−1 (♦N1,m,n) = βN1,m,n,

L+
1 (♦N1,m,n) = 0, L−1 (♦N1,m,n) = γN1,m,n,

C1(♦N1,m,n) = min{αN1,m,n,−βN1,m,n}, ∆1(♦N1,m,n) =
∣∣γN1,m,n + αN1,m,n − βN1,m,n

∣∣,
and

E+
1 (♦N1,m,n,L) = αN1,m,n,L, E−1 (♦N1,m,n,L) = 0,

L+
1 (♦N1,m,n,L) = 0, S1(♦N1,m,n,L) = 0, C−1 (♦N1,m,n,L) = 0,

E − 1+(♦N1,m,n,R) = αN1,m,n,R, E−1 (♦N1,m,n,R) = βN1,m,n,

L+
1 (♦N1,m,n,R) = 0, S1(♦N1,m,n,R) = γN1,m,n.

Subcase III.I. (−βN1,m,n > αN1,m,n):

C1(♦N1,m,n) = αN1,m,n

C+
1 (♦N1,m,n,L) = αN1,m,n,L, ∆1(♦N1,m,n,L) = 0,

C+
1 (♦N1,m,n,R) = αN1,m,n,R, C−1 (♦N1,m,n,R) = αN1,m,n, ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n).

Now (4.14)–(4.18) can be easily checked.
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Subcase III.II. (αN1,m,n ≥ −βN1,m,n > αN1,m,n,R):

C1(♦N1,m,n) = −βN1,m,n,
C+

1 (♦N1,m,n,L) = −βN1,m,n − αN1,m,n,R, ∆1(♦N1,m,n,L) = αN1,m,n + βN1,m,n,

C+
1 (♦N1,m,n,R) = αN1,m,n,R, C−1 (♦N1,m,n,R) = −βN1,m,n, ∆1(♦N1,m,n,R) = −γN1,m,n,

and (4.14)–(4.18) are easy to be checked.

Subcase III.III. (αN1,m,n,R ≥ −βN1,m,n):

C1(♦N1,m,n) = −βN1,m,n,
C+

1 (♦N1,m,n,L) = 0, ∆1(♦N1,m,n,L) = αN1,m,n,L,

C − 1±(♦N1,m,n,R) = −βN1,m,n, ∆1(♦N1,m,n,L) = −γN1,m,n + αN1,m,n,R − βN1,m,n
and (4.14)–(4.18) can be easily checked.

Case IV. (αN1,m,n = αN1,m,n,L + αN1,m,n,R > 0, βN1,m,n > 0, γN1,m,n < 0): In this case,

E+
1 (♦N1,m,n) = αN1,m,n + βN1,m,n, E−1 (♦N1,m,n) = 0,

L+
1 (♦N1,m,n) = 0, L−1 (♦N1,m,n) = γN1,m,n,

C1(♦N1,m,n) = 0, ∆1(♦N1,m,n) = −γN1,m,n + αN1,m,n + βN1,m,n,

and

E+
1 (♦N1,m,n,L) = αN1,m,n,L, L+

1 (♦N1,m,n,L) = 0,

E−1 (♦N1,m,n,L) = 0, S1(♦N1,m,n,L) = 0,

C±1 (♦N1,m,n,L) = 0, ∆1(♦N1,m,n,L) = αN1,m,n,L,

E+
1 (♦N1,m,n,R) = αN1,m,n,R + βN1,m,n, L+

1 (♦N1,m,n,R) = 0,

E−1 (♦N1,m,n,R) = 0, S1(♦N1,m,n,R) = γN1,m,n,

C±1 (♦N1,m,n,R) = 0, ∆1(♦N1,m,n,R) = −γN1,m,n + αN1,m,n,R + βN1,m,n.

Then it is easy to check (4.14)–(4.18).

For Cases V–VIII, one needs to be careful to assign the continuation line segment to ensure
(4.14)–(4.18) as well as the requirement that any two approximate 1-characteristics cannot cross
each other.

Case V. (αN1,m,n < 0, βN1,m,n < 0, γN1,m,n > 0): In this case

E+
1 (♦N1,m,n) = 0, E−1 (♦N1,m,n) = αN1,m,n + βN1,m,n,

L+
1 (♦N1,m,n) = γN1,m,n, L−1 (♦N1,m,n) = 0,

C1(♦N1,m,n) = 0, ∆1(♦N1,m,n) = γN1,m,n + |αN1,m,n|+ |βN1,m,n|.

One may choose the continuation line segment as the leftmost characteristic of γN1,m,n, then

E±1 (♦N1,m,n,L) = 0, L+
1 (♦N1,m,n,L) = 0, S1(♦N1,m,n,L) = 0,

C±1 (♦N1,m,n,L) = 0, ∆1(♦N1,m,n,L) = 0

and

E+
1 (♦N1,m,n,R) = 0, E−1 (♦N1,m,n,R) = βN1,m,n,

L+
1 (♦N1,m,n,R) = γN1,m,n, S1(♦N1,m,n,R) = 0,

C±1 (♦N1,m,n,R) = 0, ∆1(♦N1,m,n,R) = γN1,m,n + |βN1,m,n|.
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Now it is direct to check (4.14)–(4.18). Moreover, combining the selection in this case with its
symmetric counterpart, one can check that any two approximate 1-characteristics would not
cross each other in this case.

Case VI. (αN1,m,n < 0, βN1,m,n > 0, γN1,m,n > 0): In this case

E+
1 (♦N1,m,n) = βN1,m,n, E−1 (♦N1,m,n) = αN1,m,n,

L+
1 (♦N1,m,n) = γN1,m,n, L−1 (♦N1,m,n) = 0,

C1(♦N1,m,n) = min{−αN1,m,n, βN1,m,n}, ∆1(♦N1,m,n) =
∣∣γN1,m,n + |αN1,m,n| − βN1,m,n

∣∣.
One may choose the continuation line segment as the leftmost characteristic line of γN1,m,n, then

E±1 (♦N1,m,n,L) = 0, L+
1 (♦N1,m,n,L) = S1(♦N1,m,n,L) = 0,

C±1 (♦N1,m,n,L) = 0, ∆1(♦N1,m,n,L) = 0,

and

E+
1 (♦N1,m,n,R) = βN1,m,n, E−1 (♦N1,m,n,R) = 0,

L+
1 (♦N1,m,n,R) = γN1,m,n, S1(♦N1,m,n,R) = 0,

C+
1 (♦N1,m,n,R) = C1(♦N1,m,n), C−1 (♦N1,m,n,R) = 0, ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n).

So that (4.14)–(4.18) hold.

Case VII. (αN1,m,n = αN1,m,n,L + αN1,m,n,R > 0, βN1,m,n < 0, γN1,m,n > 0): In this case

E+
1 (♦N1,m,n) = αN1,m,n, E−1 (♦N1,m,n) = βN1,m,n,

L+
1 (♦N1,m,n) = γN1,m,n, L−1 (♦N1,m,n) = 0,

C1(♦N1,m,n) = min{αN1,m,n,−βN1,m,n}, ∆1(♦N1,m,n) =
∣∣γN1,m,n − αN1,m,n + |βN1,m,n|

∣∣
and

E+
1 (♦N1,m,n,L) = αN1,m,n,L, E−1 (♦N1,m,n,L) = 0,

E+
1 (♦N1,m,n,R) = αN1,m,n,R, E−1 (♦N1,m,n,R) = βN1,m,n.

Subcase VII.I. (|βN1,m,n| > αN1,m,n): One my choose the continuation line segment as the leftmost

characteristic line of γN1,m,n, then

L+
1 (♦N1,m,n,L) = S1(♦N1,m,n,L) = 0, C+

1 (♦N1,m,n,L) = αN1,m,n,L,

C−1 (♦N1,m,n,L) = 0, ∆1(♦N1,m,n,L) = 0,

and

L+
1 (♦N1,m,n,R) = γN1,m,n, S1(♦N1,m,n,R) = 0,

C+
1 (♦N1,m,n,R) = αN1,m,n,R, C−1 (♦N1,m,n,R) = αN1,m,n, ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n).

Due to the fact C1(♦N1,m,n) = αN1,m,n,∆1(♦N1,m,n) > γN1,m,n in this situation, it is easy to check

(4.14)–(4.18).

Subcase VII.II. (αN1,m,n ≥ |βN1,m,n| > αN1,m,n,R): The continuation line segment can be chosen as

the rightmost characteristic line of γN1,m,n if γN1,m,n < αN1,m,n − |βN1,m,n| and as the characteristic

line that the leaving 1-rarefaction wave on its left is of strength αN1,m,n − |βN1,m,n| if γN1,m,n ≥
αN1,m,n − |βN1,m,n|. Then

L+
1 (♦N1,m,n,L) = min{γN1,m,n, αN1,m,n − |βN1,m,n|}, S1(♦N1,m,n,L) = 0,

C+
1 (♦N1,m,n,L) = |βN1,m,n| − αN1,m,n,R, C−1 (♦N1,m,n,L) = 0,

∆1(♦N1,m,n,L) = max{0, αN1,m,n − |βN1,m,n| − γN1,m,n}



WEAKLY NONLINEAR GAS DYNAMICS 35

and

L+
1 (♦N1,m,n,R) = max{γN1,m,n − αN1,m,n + |βN1,m,n|, 0}, S1(♦N1,m,n,R) = 0,

C+
1 (♦N1,m,n,R) = αN1,m,n,R, C−1 (♦N1,m,n,R) = |βN1,m,n|,
∆1(♦N1,m,n,R) = max{0, γN1,m,n − αN1,m,n + |βN1,m,n|}

Noting that in this situation, C1(♦N1,m,n) = |βN1,m,n|, one can show (4.14)–(4.18) easily.

Subcase VII.III. (αN1,m,n,R ≥ |βN1,m,n|): One may choose the continuation line segment as the

right most characteristic line of γN1,m,n if γN1,m,n ≤ αN1,m,n,L and the characteristic line that the

leaving 1-rarefaction wave on its left is of strength αN1,m,n,L if γN1,m,n > αN1,m,n,L. Then

L+
1 (♦N1,m,n,L) = min{γN1,m,n, αN1,m,n,L}, S1(♦N1,m,n,L) = 0,

C±1 (♦N1,m,n,L) = 0, ∆1(♦N1,m,n,L) = max{0, αN1,m,n,L − γN1,m,n}

and

L+
1 (♦N1,m,n,R) = max{γN1,m,n − αN1,m,n,L, 0}, S1(♦N1,m,n,R) = 0,

C±1 (♦N1,m,n,R) = |βN1,m,n|, ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n)−∆1(♦N1,m,n,L).

Noting that in this situation, C1(♦N1,m,n) = |βN1,m,n| and when γN1,m,n ≤ αN1,m,n,L, it holds that

∆1(♦N1,m,n,R) = αN1,m,n,R − |βN1,m,n|, so (4.14)–(4.18) are valid.
Moreover, combining Cases VI–VII and their symmetric counterparts, one can show that any

two approximate 1-characteristics would not cross in this case.

Case VIII. (αN1,m,n = αN1,m,n,L + αN1,m,n,R > 0, βN1,m,n > 0, γN1,m,n > 0): In this case

E+
1 (♦N1,m,n) = αN1,m,n + βN1,m,n, E−1 (♦N1,m,n) = 0,

L+
1 (♦N1,m,n) = γN1,m,n, L−1 (♦N1,m,n) = 0,

C1(♦N1,m,n) = 0, ∆1(♦N1,m,n) = |γN1,m,n − αN1,m,n − βN1,m,n|

and

E+
1 (♦N1,m,n,L) = αN1,m,n,L, E−1 (♦N1,m,n,L) = 0,

S1(♦N1,m,n,L) = 0, C±1 (♦N1,m,n,L) = 0,

E+
1 (♦N1,m,n,R) = αN1,m,n,R + βN1,m,n, E−1 (♦N1,m,n,R) = 0,

S1(♦N1,m,n,R) = 0, C±1 (♦N1,m,n,R) = 0.

When ∆1(♦N1,m,n) strengthens the 1-rarefaction waves, one may locate its effect at the center

part of γN1,m,n, and when it weakens them, one may divide it into two parts whose effects on

αN1,m,n and βN1,m,n are proportional to its original strength. The continuation line segment can
be chosen accordingly as what follows.

Subcase VIII.I. (γN1,m,n > αN1,m,n,L +
αN

1,m,n,L

αN
1,m,n

βN1,m,n): The continuation line segment is chosen as

the 1-characteristics line that the strength of 1-rarefaction waves on its left is αN1,m,n,L. Then

L+
1 (♦N1,m,n,L) = αN1,m,n,L, ∆1(♦N1,m,n,L) = 0,

L+
1 (♦N1,m,n,R) = γN1,m,n − αN1,m,n,L, ∆1(♦N1,m,n,R) = ∆1(♦N1,m,n).
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Subcase VIII.II. (γN1,m,n ≤ αN1,m,n,L +
αN

1,m,n,L

αN
1,m,n

βN1,m,n): The continuation line segment is chosen

as the 1-characteristic line that the strength of the leaving 1-rarefaction wave on its left is
αN

1,m,n

αN
1,m,n+βN

1,m,n
γN1,m,n, and

L+
1 (♦N1,m,n,L) =

αN1,m,n

αN1,m,n + βN1,m,n
γN1,m,n, ∆1(♦N1,m,n,L) = αN1,m,n,L −

αN1,m,n

αN1,m,n + βN1,m,n
γN1,m,n,

L+
1 (♦N1,m,n,R) =

βN1,m,n

αN1,m,n + βN1,m,n
γN1,m,n, ∆1(♦N1,m,n,R) = αN1,m,n,R + βN1,m,n −

βN1,m,n

αN1,m,n + βN1,m,n
γN1,m,n.

Now one can check directly that (4.14)–(4.18) hold and any two approximate 1-characteristics
would not cross each other in this case.
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