ENTROPY-BOUNDED SOLUTIONS TO THE ONE-DIMENSIONAL
HEAT CONDUCTIVE COMPRESSIBLE NAVIER-STOKES
EQUATIONS WITH FAR FIELD VACUUM

JINKAI LI AND ZHOUPING XIN

ABSTRACT. In the presence of vacuum, the physical entropy for polytropic gases
behaves singularly and it is thus a challenge to study its dynamics. It is shown in
this paper that the boundedness of the entropy can be propagated up to any finite
time provided that the initial vacuum presents only at far fields with sufficiently
slow decay of the initial density. More precisely, for the Cauchy problem of the
onedimensional heat conductive compressible Navier—Stokes equations, the global
well-posedness of strong solutions and uniform boundedness of the corresponding
entropy are established, as long as the initial density vanishes only at far fields with
a rate no more than 0(1—12) The main tools of proving the uniform boundedness
of the entropy are some singularly weighted energy estimates carefully designed
for the heat conductive compressible Navier—Stokes equations and an elaborate De
Giorgi type iteration technique for some classes of degenerate parabolic equations.
The De Giorgi type iterations are carried out to different equations in establishing
the lower and upper bounds of the entropy.

1. INTRODUCTION

1.1. The compressible Navier—Stokes equations. The one dimensional heat
conductive compressible Navier—Stokes equations for the polytropic gases are:

pr + (pu), = 0, (1.1)
p(ut + uuz) — Py + Pz =0, (12>
p(et + uew) + puy — Kb = ﬂ|uwl27 (13)

where the density p > 0, the velocity u € R, and the absolute temperature # > 0 are
the unknowns, and the specific internal energy e and the pressure p are expressed as

e=1cyH, p= Rpb,

with R and ¢, being positive constants, p and « are the viscous and heat conductive
coefficients, respectively, which are assumed to be positive constants.
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In terms of 1, the energy equation becomes
Cop(0; + uby) + puy — Kbpy = pt|ug|?. (1.4)

The entropy s is defined by the Gibb’s equation #Ds = De + pD(%). The following
equations of state hold:

p=Aewp’, s=c, (10g§+10g0—(7—1)10gp>, (1.5)

where vy — 1 = g and v > 1. The entropy s satisfies

0 1 9 0.,
k=) =2 il 1.
p(sy +usy) — K < 7 )x 7 (u!ux\ + K 0 (1.6)

at the place where both p and 6 are positive.

The compressible Navier—Stokes equations have been studied extensively. In the
absence of vacuum, that is, the density is uniformly positive, local well-posedness of
classic or strong solutions was first proved by Nash in [32] long time ago, and later
by many mathematicians, see, e.g., [17, 29, 35, 36, 38]. However, the global existence
of classic or strong solutions with arbitrary large initial data is not known generally.
Only the one-dimensional theory is quite satisfactory: global well-posedness of strong
solutions was proved by Kazhikhov—Shelukhin [21] and Kazhikhov [20]; global well-
posedness in the framework of weak solutions can be also proved, see, e.g., [1, 19,
42, 43]; large time behavior of solutions with large initial data was recently proved
in [25]. Compared with the one-dimensional case, the multidimensional case is much
more complicated, and up to now, essentially only for the cases that the initial data is
around some non-vacuum equilibrium, the global well-posedness is well understood.
The results along this direction were first obtained by Matsumura-Nishida [30, 31],
and later developed by many mathematicians, see, e.g., [2, 3, 7-10, 13, 22, 33, 37].

One major difference between the one-dimensional and multidimensional cases for
the compressible Navier—Stokes equations is the possible formation of vacuum. As
shown by Hoff-Smoller [14], for the 1D compressible Navier—Stokes equations, if there
is no vacuum initially, then no vacuum will be formed later in finite time, while such
a result is still open for the multidimensional case. The possible formation of vacuum
is one of the main challenges.

In the presence of vacuum, the study of the compressible Navier—Stokes equations
becomes much more difficult than the non-vacuum case due to the degeneracy of
the system. Global existence of weak solutions to the isentropic fluids with possible
vacuum was first initiated by Lions [28], and later improved by Feireisl-Novotny—
Petzeltova [11] and further by Jiang-Zhang [18]. For the full case, global existence of
variational weak solutions was proved by Feireisl [12] for special equations of state.
Local well-posedness of strong solutions was proved in [4-6, 34]. Global existence
of strong solutions, of small energy but allowing large oscillations and vacuum, was
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first proved by Huang-Li-Xin [16] for the isentropic case, and generalized later by
the authors in [15, 24, 39] for the full case.

There are some substantial differences in the mathematical theories for the com-
pressible Navier—Stokes equations between the vacuum and non-vacuum cases. First,
in the absence of vacuum, the well-posedness holds in both the homogeneous and
inhomogeneous spaces, but it is not necessarily true if the vacuum appears. In fact,
if the density is compactly supported, then the well-posedness holds in the homoge-
neous spaces, see, e.g., [4-6, 15, 16, 39], but not in the inhomogeneous spaces, see
Li-Wang—Xin [23], while if the density tends to zero sufficiently slowly at the far field,
then the well-posedness holds in both the homogeneous and inhomogeneous spaces,
see the recent work by the authors [26]. Second, the solution spaces guarantee the
uniform boundedness of the entropy for the non-vacuum case, but may fail for the
vacuum case. In fact, it follows from the blowup results of Xin [40] and Xin—Yan [41]
that the corresponding entropy in [15, 39] must be unbounded, if initially there is an
isolated mass group surrounded by the vacuum region.

Due to the lack of the expression of the entropy in the vacuum region and the
high singularity and degeneracy of the entropy equation close to the vacuum region,
in spite of its importance, the mathematical analysis of the entropy for the viscous
compressible fluids in the presence of vacuum was rarely carried out before. In this
paper, we continue our studies, initiated in [26], on the uniform boundedness of the
entropy for the full compressible Navier—Stokes equations in the presence of vacuum.
Different from the non heat conductive case in [26], for the heat conductive case, one
may only need to deal with the the far field vacuum, as the heat conductivity will
make the temperature strictly positive everywhere after the initial time, which implies
that the entropy becomes unbounded instantaneously if the interior vacuum occurs
initially. However, positive heat conductivity leads to both increase and decrease of
the entropy and thus creates substantial difficulties in the analysis compared with
[26].

The results of this paper are stated and proved in the Lagrangian coordinates, see
Section 1.2; however, since the solutions being established are Lipschitz continuous,
all results can be transformed accordingly in the Euler coordinates.

1.2. Main results and key ideas of the analysis. Let y be the Lagrangian coor-
dinate and define the coordinate transform between y and the Euler coordinate x as
x =n(y,t) with n(y,t) satisfying
{ atn(y7 t) = U(U(yy t)u t)7
n(y,0) =y.
Denote
o(y,t) == p(n(y, 1), 1), vy, 1) :==uln(y,t),t), Iy,t):=0(n(y,t),1),

and

J = J(y,t) =ny(y,t).
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Then,
Se=vy, J=o=1, Jo= oo
Thus, in the Lagrangian coordinates, the system (1.1), (1.2), and (1.4) becomes

Jt = Uy, (17)
2y =
00V — (J> ( > =0, (1.8)
19 2
CuO0Ut — K ( Jy> +R?19 M‘U;| . (1.9)

The initial date will be taken as
(4, v,9)]i=0 = (Jo, vo, Vo), (1.10)

where Jy has uniform positive lower and upper bounds.

It should be emphasized that here .J is deliberately chosen to replace ¢ as one of
the unknowns of the system, which is one of the main technical differences between
the current paper and the classic works [20, 21]. Note that, by the definition of J,
the initial Jy should be identically one; however, for the aim of extending a local
solution (J,v,7) to be a global one, one needs the local well-posedness of solutions
to the system (1.7)—(1.9) with initial Jy not being identically one.

In the Lagrangian coordinates, the entropy can be expressed as

R
S = ¢ (logz +(y—1)log J + log®¥ — (v — 1) log QO) . (1.11)
The effective viscous flux GG, defined as
v 00V

G:=p~ - R—, 1.12
h 7 (1.12)

is useful for proving the global existence of solutions, which satisfies

po( Gy K(y —1) (J, Yy

G—E(Zy) =2 () 2 1.13
t J(Qo)y (%) 5 (1.13)

The following conventions will be used throughout this paper. For 1 < ¢ < oo and
positive integer m, LY = L4(R) and W4 = W™4(R) denote the standard Lebesgue
and Sobolev spaces, respectively, and H™ = W™?2. For simplicity, LY and H™ denote
also their N product spaces (L7)Y and (H™)", respectively. |Jul|, is the L7 norm of u,

1
and ||(f1, fo, -+, fn)|lx is the sum Ef\il || fillx or the equivalent norm (Zfil ||fz||§(> ’
The definition of the solutions being considered in this paper is given as follows:

Definition 1.1. Given a positive time T and assume that
{0 <00 € WH(R), J<Jy€L®R), >0,

s (HO)
\/@UO» \/%U?w \/%7907 \/%J(;’ Ué]? 902 1% S LQ(R)v
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where J is a positive constant. A triple (J,v,9) is called a solution to the system
(1.7)-(1.9), subject to (1.10), in R x (0,T), if it has the reqularities

0<JeL®Rx(0,T), 0<deL>Rx(0,7T))
oo ATy /B35 B0V Vg STV, 029y € L0, T; L2(R)),
V00 gt VUys /00, A/Q0Vyys Vs 00( 2 )y, 039: € L2(0, T LA(R)),
satisfies (1.7)-(1.9) a.e.in R x (0,T), and fulfills the initial condition (1.10).
Remark 1.1. It can be checked easily that (J,v,v) in Definition 1.1 has the reqular-
itres
JeO(0, T, H' (R, R))), Jy€ L*0,T; H'((—R, R))),
v,9 € O([0,T]; H'((—R, R))) N L*(0, T; H*((—R, R))),
v, 9, € L*(0,T; L*((—R, R))),
for any R > 0 and, in particular, (J,v,9)|=0 is well-defined.

9

The main results of this paper are summarized in the following theorems, whose
precise statements will be given in the subsequent sections, and the major ideas of
the proofs are sketched here.

First, the following well-posedness results hold.

Theorem 1.1. (i) Assume that (HO) holds. Then there is a local solution (J,v,1)
to the system (1.7)-(1.9) with initial data (1.10).
(i1) Under the additional assumption that

(\/%) € L®[R), oo € L'(R), ooV, € L*(R) (H1)

the solution (J,v,1) established in (i) is unique and exists globally in time.

The local existence part of Theorem 1.1 can be proven in the standard way. For the
global existence, one may try to follow the arguments for the non-vacuum case in [21].
Unfortunately, it does not work directly here. Indeed, one of the key observations
used in [21] is the following inequality (see (3.11) there)

my(t) > C [H/Ot Mﬁ(r)dfr, (1.14)

where m, and My are the lower bound of ¢ and upper bound of ¥, respectively,
which is employed to obtain the L*°(0,T; L?) type a priori estimates (see (4.7) in
[21]) and consequently the high order estimates. However, (1.14) fails in the presence
of vacuum where m, = 0 and My is finite.

The key step of proving the global existence here is to get the a priori L>(0,T; L?)
estimate of (\/@112, v/00¥) and upper bound of J. These are achieved by the L? type

energy estimate for £ := % + ¢,¥ and the observation that J = B(Jy + % fot %dT)
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for some function B having positive lower and upper bounds (see Proposition 4.2,
below), which, in particular, implies

t
1l < C (1 + / ||9019||de) |
0

It is noted that this inequality holds for both the vacuum and non-vacuum cases, and
it reduces to (1.14) for the non-vacuum case.

Now, we turn to the major issue of this paper: the uniform boundedness of the
entropy. For the lower bound, we need the following key assumption:

1 "
(—) € L=(R). (H2)
Qo

Theorem 1.2. Under the assumptions (H0)-(H2), the entropy of the solution in
Theorem 1.1 is uniformly bounded from below, up to any finite time, as long as it
holds initially.

Note that the entropy s satisfies

5y> o Jy Cy ( 2 K 2>

C00St — k|l— ] =kR|——-——=] + — O i . 1.15
s = (%), (JQO p)y (o + 519, (1.15)
So in the non-heat conductive case, k = 0, the entropy can only increase in time and
thus is bounded from below trivially, while the upper bound of the entropy is achieved
by carrying a certain class of singular type energy estimates in [26]. However, in the

general case Kk > 0, the term /iR(JQ—go — %)y may cause both the increasing and

decreasing of s and gives some major technical difficulties to get the uniform bounds
on s. In particular, though the idea of estimating the entropy by singularly weighted
energy estimates may still be useful here, yet it is not enough to yield the uniform
bounds for the entropy. Some additional ideas are needed for the heat conductive
case. Indeed, here are some new key observations:

For the uniform lower bound of s, it suffices to estimate a new quantity S :=
logd — (7 — 1) log 09, which can be shown to satisfy

S,
Cp005t — K (7y) = Fyq+ For, + Fa, (1.16)
)

where Fyq = 00 fga and For, = 0o for for some f,q € L*°(0,T; L?) and f,, € L*(0,T; L™),
while Fpq4 is given by

H R 2 |19y‘2
Fog = — (U - — 79) K.

i = g\ T 9t T
The uniform lower bound of S is achieved by applying some modified De Giorgi type
iterations to (1.16). Note that F},; is nonnegative and thus causes no difficulty in
proving the uniform lower bound of S. The contributions due to the source term F,;, =

00.f.r are dealt with by introducing an auxiliary function S := S+Mt, with a sufficient

(1.17)
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large M, which satisfies a similar equation as S, but with the term corresponding
to F,; having desired sign. To deal with the source term Fj4, one notes that Q—}; €
L>=(0,T; L?) is sufficient to get the lower bound of the solution to the model equation
ooV: =V, = F, by applying a modified De Giorgi type iteration. Thus, since % €
L>=(0,T; L?), the contributions due to the term F,4 can also be handled.

Technically, due to the degeneracy of equation (1.16), different from the classic
De Giorgi iteration for uniform parabolic equations, the testing function used in our
iteration is % instead of (S — ¢)_. In other words, our energy estimates needed
in the De Giorgi iteration should be of singular type, to which our idea of singular
energy estimates in [26] will be useful here. Moreover, due to the unboundedness
of the domain and the lack of integrability of S, some suitable cut-off and delicate
approximations will be used to justify rigorously the arguments, see Proposition 5.1
in Section 5.

For the upper bound of the entropy, we need also the following compatibility con-

dition:
1—oy

it S 1-2 X

27 V0,0 V0,0 *Go € L*(R). (HS)
Theorem 1.3. Under the conditions (H0)-(H2) and (HS), the entropy of the unique
solution in Theorem 1.1 is uniformly bounded from above, up to any finite time, as
long as it holds wnitially.

As J is uniformly positive, a necessary and sufficient condition for the uniform
boundedness of the entropy is that ¢ tends to zero at the same rate as ngl at the
far field, which unfortunately is not guaranteed by the solution spaces used in [4—
6, 11, 12, 16, 18, 23, 28, 34, 39]. Indeed, the solutions established in these papers
have the L? integrability of V/00v, but not of ¥ itself, which allows ¥ not to decay to
zero or even to grow to infinity at the far field.

Due to the singular term <5 (p]vy|* 4 %[9,|?) in (1.15), performing the same type of
De Giorgi iteration to (1.15) as before will not lead to the desired upper bound for the
entropy. In fact, for this case, instead of working on the entropy equation ((1.15)or
(1.16)) directly, we will apply a modified De Giorgi iteration to the temperature
equation, with some elaborate singular type energy estimates. The main steps can
be sketched as follows. Note that the entropy has uniform upper bound iff

Vg =10 — Lol 'eM <0, orequivalently (d). =0,
for some positive numbers ¢ and M. v, satisfies

0,0
1?} z) = v,G + “other terms”.

Cp 00040 — KOy (
Testing the above equation with Q(l)_2’y(19g)+ yields

Co d . q_ 1_
5@\\@5 ")+ |15+ wllog 70, (0e) 113
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< C/(|Q(;;G’2 + ‘Q(l)_%ﬁp)géﬂﬁgdy + “other terms”,
R

see Proposition 6.3, below. It should be noted here that the choice of the singular-
ly weighted test function g(l)*Q"’(z?g)Jr is crucial. The above inequality indicates the

necessity of carrying out the energy estimates for Qé_%f} and g, %G; these estimates,
thanks to the assumption (H1), can be achieved by testing (1.8), (1.9), and (1.13)
with o7, o5 "9, and J, "G, respectively, see Propositions 6.1 and 6.2, below. With
these estimates in hand, one can proceed the iteration to get finally (¢,)+ = 0 for
some positive ¢, which yields the desired upper bound of the entropy.
Some remarks are in order.

Remark 1.2. (i) Conditions (\/%To),’ (Qio)” € L*(R) in (H1)-(H2) are essentially slow
decay assumptions on gg at the far field. In fact, for oo(y) = o with (y) = (1—|—y2)%

(y)fe”
and positive constants K, and {,, it holds that

1 / 1 "
<—> €EL”<0</(,<2 and (—) eL”<0</(,<2.
v Q0 00

(11) All results in the above theorems still hold true if replacing the assumptions

(\/%)’, (g—lo)” € L*(R) in (H1) and (H2) by the following weaker one:

K
— S QO(y) S 2 ) vy € R,
(y)te (y)*e
for some constants 0 < K, < I_(Q and 0 < ﬁg < Zg < 2.

Remark 1.3. Let K, and %Y < L, < 2 be positive constants. Choose

K S0
QO(y) - <y>§ga JO = 1a Vo € CSO(R), So e Wl’oo(R), 190 —= —Ec QP)/ 1.

Then, one can verify easily that (HO)-(H2) and (HS) hold. Therefore, the set of the

wnitial data that fulfills the conditions in the above theorems is not empty.

Remark 1.4. Both the assumptions that there is no interior vacuum and that the
initial density decays slowly at the far field are necessary conditions for gquaranteeing
the uniform boundedness of the entropy. In fact, if either there is an interior point
vacuum or the density decays to vacuum sufficient fast at the far field, then the
entropy will become unbounded immediately after the initial time, see Li-Xin [27].

Remark 1.5. It should be emphasized that though we deal with only the one dimen-
sional case here, the main ideas of combining singularly weighted energy estimates
with some deliberately modified De Giorgi iterations can be used to derive the uniform
boundedness of the entropy for the multi-dimensional case at least locally in time. In-
deed, by adapting these ideas with some more involved and complicated calculations,
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one can obtain that the boundedness of the entropy can be propagated by the multi-
dimensional compressible Navier-Stokes system up to the maximal existing time of the
strong solution under similar conditions on the initial density. However, the global
in time existence of strong solutions for general initial data is still unknown.

The rest of this paper is arranged as follows: in Section 2, we consider the sys-
tem with the initial density uniformly away from zero, prove the local existence of
solutions, and carry out some a priori estimates independent of the positive lower
bound of the initial density; Section 3 is devoted to the proof of the local existence
of solutions in the presence of far field vacuum; while the global existence and u-
niqueness of solutions are shown in Section 4; and finally in Section 5 and Section
6, we establish the uniform lower and upper bounds of the entropy, respectively, by
performing the singular type energy estimates and using some suitably modified De
Giorgi type iterations.

Throughout this paper, C' will denote a genetic positive constant, which may vary
from line to line. For simplicity of presentations, the quantities, on which the constant
C' depends, will be emphasized only in the statements, but not in the proofs, of the
theorems, propositions, and corollaries.

2. LOCAL EXISTENCE AND A PRIORI ESTIMATES IN THE ABSENCE OF VACUUM

Let g, 0,J, and J be positive constants. Assume that

/ ! 2 1 1 (2'1>
op € L°(R), J)eL*(R), wvye H'R), 0<ve H(R).

The following local existence result holds.

{0<g§go(y)§§<oo, 0<J<Jo(y) <J<o0, VyeR,

Proposition 2.1. Under the assumption (2.1), there is a positive time Ty depend-
ing only on 0,0,J,J,||0b]lscs [T ll2; [|vollr, and (|6l 1, such that the problem (1.7)-
(1.10) with the following far field condition

(v,9) =0, asy— oo, (2.2)
has a unique solution (J,v,0), on R x (0,Tp), satisfying
J _
5<J<2J, onRx 0,T0]), J—Jo€C([0,Tp); HY),
ve 00, Tp]; HY N L*(0,Ty; H?), 0<9 € C([0,Ty); H') N L*(0, Ty; H?),
J, € L=(0,Ty; L*) N L*(0,Ty; HY), v, € L*(0,Ty; L?), 9, € L*(0,Ty; L?).

Proof. This can be proved in the standard way by using the fixed point argument
based on the following linearized system

Jp =V, (2.3)
o= (1), == (0),. e



10 JINKAI LI AND ZHOUPING XIN

9 WY W pogy (2.5)
CyOoVt — K N y_NJ_ J Y :

subject to (1.10) and (2.2), for given (V, ©). Indeed, the classic theory for uniformly
parabolic equations yields a unique global solution (v,9) to the system (2.4)—(2.5),
subject to (1.10) and (2.2). Thus, one can define a solution mapping (V,0) — (v, ?).
Then, by carrying out the energy estimates, similar to (actually easier than) those we
will derive in the rest of this section, one can see that this solution mapping fulfills all
the conditions of the Banach’s contracting fixed point theorem, and thus has a unique
fixed point in the corresponding Banach space, which yields the unique solution to
the system (1.7)-(1.9), subject to (1.10) and (2.2). O

By applying Proposition 2.1 iteratively, one can extend the local solution (J,v, )
uniquely to the maximal time 7T,., of existence, which is characterized as

lim sup ((inf I+ sup J + || Jyll2 + |lollg + ||19||H1) = 0. (2.6)
T—Timax \ YR yeR
In the rest of this section, it is always assumed that the unique solution (p, v, ) has
already been extended uniquely to the maximal time of existence Ty, ..
One aim of this section is to show T,,. is independent of 0. To this end, we set
J _

T, := max {T € (0, Thax) ? <J<3JonRx [O,T]} . (2.7)
In the rest of this section, we will focus on the solutions in the time interval (0, 7)),
so that J has the positive lower and upper bounds stated in (2.7).

2.1. A priori L? estimates.

Proposition 2.2. There is a positive time Toq. depending only on c,, R, j1, &, || 00|l ,
J, and J, such that

T:de
prW@%V@@@+/ (loodl1Z + Il vy, vvy, B,)lI3)dt < Eo,
0

0<t<Tr,.
where B = % +c,0, T, = min{ Ty, Toqe, 1}, and & is a positive constant depending
OTLZy on Cy, R7 122 K’?la J7 HQOHWLO‘H H V QOUOH27 and H V QOEOHQ'
Proof. Tt follows from (1.8) and the Cauchy inequality that

RQ

2 2
<
2 K

20

= (2.8)

d )
4 Jal +uH—y .
dt 2 \ﬁ 2
Set B =Y + ¢,0. Then,

00E: — K <19_Jy>y = ((,uv—; — RQ—J()19> v)y. (2.9)
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Testing (2.9) with £ yields

1d 0 )
~— E|? LB dy = — Y _ Ry E,d
AN Hzm/RJ Jdy /R( R vBydy.

Direct estimates show that

vy 3e, || U 21 o, ||?
Dy > 2| S| - =2l
/R J ! 4 VIlly e IVl
—/(ﬁ—R@@vEd < Gl ﬁZ_i_C ﬂ2+/9_3192@2dy
L\ ) = TV, Vil e T /
and, consequently,
4 JaE|2 + 9 |° < o va / % 2,24 (2.10)
— Koy || —=| < = :
dt QO 2 ﬂ ) y
Test (1.8) with v* and apply the Cauchy-Schwaz inequality to get
d 912 VU > 9R? / A
— vi5 +8u||—=|| < dy. 2.11
ZlIVeovllz + 8 LS kT (2.11)

By (2.8), (2.10), and (2.11), one can choose A; sufficiently large such that

2

+ A YOy

d 2
%(II\/%UII%L Voo Ell + Axll @ov2||§)+/~t —yJ
2
vy 9(2)192 9319202
—Z — < C + dy. (2.12)
VTl VT lly / < J J
Due to the definition of T, one has

2192 21921]2
4 (Q‘} 47 )dy < O+ [loodl)llvao Bl

+KCy

Note that
el <2 (ol + 3019,y
R
U
< C(H\/_QOEH2+H\/_QOEH2 Dy ) (2.13)
2 NailB
Thus,

EE:
— > Voo Ell;
Sl

202 2022

05V 05U v 3
/(?] + OJ )dy < C’<1+||\/QOEH2+||\/QOEH2
R

9, |I”

+C.(1+ E|2)?,
7, (1+ [[vooEll3)
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for any t € [0, 7], and for any £ > 0.
Choosing ¢ sufficient small, one obtains from this and (2.12) that

d
—(IVeorllz + Ve Ell; + Aillveor12) + 1 | =5

2

+ A1
2

KCy || Uy

2 V7

for any ¢t € [0,7,]. This and solving an ordinary differential inequality of the type
f' < Cf? yield that there is a positive time 7,4, such that

T;de
sup ||(@v,\@E>||§+/ (g, w0y, ) 2 dt < €1,
0

0<t<Ty,,

VU

2
< C(L+ Ve EllR)*,

2

where T, := min{T, Tyqe, 1 }. Then, it follows from (2.13) that fOnge | 00?||2.dt < &
This proves the conclusion. OJ

2.2. A priori H' estimates.

Proposition 2.3. Let T, be as in Proposition 2.2 and G be given by (1.12). Set
Gy = JLO(/wg — Roo¥o). Then, there is a positive constant &, depending only on

_ 3 2
1y K, Coy R, 0, J, T, [|aollwee, [[\/@ovoll2, [\/00 Eoll2, [|Goll2, 5 U5 g such that

e [ (] vioe ) < ¢

sup +/ + s |dt < ;

0<t<T*,. 2 0 Voo, '
* 2

S0+ [ (ol % 2 it < €

sup g+ [ (1ezonz+ eo(22) | + etz )ae < e
0<t<Ty, 2 Jo ,

Proof. We start with the estimate on G. Testing (1.13) with JG yields

2
v, G,

= (2y-1) / vGGydy — K(y — 1)/ L dy

2 R R J

2
w | Gy 201 112 2
=21 +C (IVeorlBIGIZ + 119,113) -
A ‘\/% , (H o0v|3[| G| | y||2)

It follows from Proposition 2.2 and the inequality above that

d 5 Sl
£||\/7G||2+7

o ol

|
V0

2
< C (IG5 + 19,12) - (2.14)
2

Note that

IG1E < [ lo,cldy < Clcl | LOIVIGl (2
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for any positive . Choosing ¢ sufficient small, one gets from (2.14) and (2.15) that

d
SIVIGIE+

Gy ’ 2 2
pll—%| <c ( VIG|2+ |9 ) :
H \/@ ) || H2 H yH2
Consequently, Proposition 2.2 and the Gronwall inequality show that

T* 2
oup G5+ [ HG— el ) de < el (2.16)
0<t<Ty,, 0 Vool

Next we estimate . It follows from (1.9) that

2
¥
X <cvgm9t -5 (%) ) - [ eicay (217)
R y R

Using (1.7), one deduces

i d
<) v
0N T ), dt

3
QOﬁ

7 y

2
3 9,9
+/ <vy%z9§ + 693@6%) dy
, Jm
2

2
d oy Coy 242 ||V 0y 185 || o0, ||I”
> S L, || — 0o - |2 Qg | - QY|
T odt Jy22f<;”Q0t”2 T oo || VT8 e LTl
This, together with (2.16) and (2.17), yields
dll [&. | e AN
4 Gy
gy [ 50|+ Slabontg o oo (%)
2 Yll2
v 3 2 /9 2
< cm‘ - @ﬂy 11842 || 2%y +/Q§U2G2dy
J oo T, s Jr 7
=2
Y
< O+ ]lvl) H\/joﬁy +E | 1D, 5] - (2.18)
2

Since v, = 1 (JG 4 Roy?), by Proposition 2.2 and (2.16), one has
L

T;de T(:de
[l < 0 [TUAUGI + el < Ol + €.
0 0

This, together with (2.18) and Proposition 2.2, yields

p 2
Yy
Q0<J>y

2

2

sup
0SE<Ty,,

dt

‘ Q%ﬁy

Tc;kde 9 9
o (A
0

2
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2

| 3
< CU+E+E] (Q]_ZQ% v & | =e

2
The conclusion follows by setting & = max{&{, &'} O

Proposition 2.4. Let T}, be as in Proposition 2.2. Then, there is a positive con-
stant & depending only on u, k,c,, R, 0,J, J, ||ool|w1.ee, ||\/_v0||2, II\/00Eo||2, [|Gollz,

3 2
0204 5 and ||\/0oJy|3, such that
2

T:de
sup oyl + / (/@02 + | auw|2)dt < &

0<t<T
T*
sup (Va1 + 141+ [ IVl < .
0<t<Ty, 0
Proof. Since J; = v, and J,; = v,,, it suffices to prove the ﬁrst conclusion and
the estimate supg<,<q= |\/00J,||3. Besides, since ,/ogv; = f’ the estimate for
fOT;de |/ 0ov:||3dt follows from Proposition 2.3 directly.

Note that
V0
N TO(JGy + J,G + Rol0 + Rog?,).

Multiplying the equation before by /00J, yields

Gl IVl
salvanlt < b=y NOE g6, + ey + Redoy

(HGHio Dlveodylls + CUIG 15 + [Vaod |3 + (19,115,

which, together with Propositions 2.2-2.3, yields

s IVEAIE < ROy gz o [ va o)

0<t<Tyy,

IN

< Ce(|IVa |3 + CE + C&) =: &, (2.19)
It follows from direct calculations, (2.19), and Propositions 2.2-2.3 that

ngc
sup Iyl + / /@0y, |3t
0

0<t<T
1 2 Tc;kdc 2

= sup ‘—(JG + Rog?)|| + / @(JGy + J,G + Royd + Root,)|| dt
0<t<Tr. || 2 0 K 2

IA

T(;kde
C sup II(G,@??)||§+C/O (I(Gy, veod, 9y)llz + Iveo Ty I3 GI)dt

0<t<T,,
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< Cl&+aE+&E&)=¢&.
Setting & = &5 + &) gives the desired conclusion. O

2.3. Estimate on the life span and a summary of a priori estimates.

Proposition 2.5. Let T4, and 17, be as in Proposition 2.2, and & in Proposition
2.3. Then, T, = min {Tode, 1, %} .

Proof. Note that g9 > ¢ > 0. Propositions 2.2-2.4 imply
sup  ([[Jyll2 + [[vllzr + 19| 1) < oo
0<t<T*

—"ode

It follows from the definition of T, and T7%,, = min{7\, Toqe, 1} that

sup ((mf J)” +supJ) < 0

0<t<Tyy, \ VER YER

Thus, T, < Thax.

Then (1.7) and Proposition 2.3 imply

% 1 1
J=do+ fyvgdr = 2= (Jy oy ldr) ¢ = J - &ith = 4,
1

_ - 1 a7
IS T+ th ([ lylikdr)® < T+ itt < ¥,

for all t < T, where

: J2 T2 : J?
T, = min {Tode, 1 451} = min {T*, Tode, 1, E} ,
with T 4e given in Pr posit10n 2 2.

Note that £ < 2 < J < ¥ <3Jon R x [0,T.], H(R) — C[R), J — Jy €
C([0, Thax); H(R)), and Too < T2, < Tmax- There is a positive constant T}, €
(Tex, Tinax ), such that = < J <3Jon R x [0,T]. Thanks to this and the definition
of T, in (2.7), one has

2

J
in T, Tode, 1, o p = Thw < T < T,
mln{ d 451} <

which implies T} > min {Tode, 1,< i } Thus,

2
Tre = min{Toge, 1, T} = min § Thge, 1, i ,
4&,
which yields the desired conclusion. 0

As a consequence of Propositions 2.1-2.5, we have the following:
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Theorem 2.1. Under the assumption (2.1), there are two positive constants T and
€ depending only on cy, B, 1, 5, 0, 1, J, [|0olloo | v/@ovoll2, Iv/eovill2 [Iv/eodoll2 llvgllz.
|\/20J5 13, and Hgé%’ ) but independent of o, such that the problem (1.7)-(1.10) has
a unique solution (J,v,9) on R x [0,T], satisfying

%<J§2J, 9>0, onRx[0,7],

;
VI [ IVETlEd < €,
0

sup ||
0<t<T

-
sup H(\/%v,\/@ﬁvy)\\%/ 1(vey, voore, Veov)3)dt < &,
0

0<t<T
9 2
9, 020 -
< y7lQO thO(J)y>

2

dt

IA
™

3 T
(a0, 089, |2 + /

sup ||
0<t<T

3. LOCAL EXISTENCE IN THE PRESENCE OF FAR FIELD VACUUM

The aim of this section is to establish the local existence of solutions to the problem
(1.7)—(1.10), with vacuum at the far field only.

Theorem 3.1. Let p,J, and J be positive constants. Assume that
0<oo(y) <o, J<Joly) <J, doly) >0, VyeR,
dh € L=(R),  (Vaulh, v/asvo, yautd, vh v/aobo, 03 %) € L*(R).
Then, there is a positive time T depending only on c,, R, i, k, and

0,1, 7, [|hlle: lIv/@ovolla: [lv/2005 2,
Iv/2odoll2; [[vg]l2, lv/2o oIz, [l 25 F6l2;

such that the problem (1.7)-(1.10), on R x [0,T], has a solution (J,v,0), satisfying
%SJSQJ_ and 9 >0 on R x [0,T], and

(3.1)

3
Jis v/ 00y, /00U, /000, vy, \/00V, 03Dy € (0, T; L*(R)),
\/@Jyta vaa \/%Uta \/@Uyz,n 193/7 QO(%)Zp Qgﬁt € L2(Oa 7-; L2(R>)

Proof. We first construct a sequence { (0on, Jon, Yon, Yon) }o2; approximating (0o, Jo, vo, Vo),
so that Theorem 2.1 applies.
For each integer n > 1, choose 0 < ¢,, < % sufficiently small such that

b 0 {10022z, 10001730 190 31 106 31y} < 1, (3.2)
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where Iy, = (—2n,2n). Choose ¢ € C§°((—2,2)), with p =1on (-1,1),0<p <1

on (—2,2), and |¢’| < 2. Since v}, ¥, € L*(R), it is clear vy, Yy € C(R), and

o)l < Teo(0)] + [lvpllzv/Tyl < Aov/T+1yl, (3.3)

where Ay = max {|vo(0)], [|v)]]2}-
Define 0o, Jon, Von, and vy, as

Oon = On + 00, Jon=1Jo, Von=1¢ <E> vo, Yon=¢ <ﬁ> y.

Then
0<dn<om<0+1L [l =ltlloo- (3.4)
(3.2) and (3.3) imply that
Iawmvonld < el + 6alvolaq ansm) < Vel +1, (35
Ivoonvaalls < Iveovslls + dllvollzs(—2n2ay < lVe0V3113 + 1,
lvgall3 < 2llwpll3 + 6445, (3.6)
IVomPonll3 < llveodolls + 1. 3.7)

Due to (3.2) and 0 < §,, < %, one can get

—2n

3 2n 4
lestinly < 8 [ (a2 (10 + 2502 ) dy

3
2

< 8 (llod 24l13 + 330053 + 42% /2000113 + 453100 3 _am )

IN

3
8 (lleg 96113 + 5+ 42l Vaotll3) . (3.5)

Since (0on, Jon, Von, Yon) fulfills the assumption (2.1), with ¢ and p replaced by 4,
and g + 1, respectively, by (3.4)(3.8) and Theorem 2.1, there is a positive time T~
depending only on the quantities stated in Theorem 2.1, which in particular is inde-
pendent of n, such that the problem (1.7)—(1.10), has a unique solution (J,, v,, J,),

satisfying
J _
ESJ,LSZJ, ¥, >0, onRx]|0,7], (3.9)
T
02157_ (BT, v Q‘Jnay]n)Hg + / v QOngytJandt <é, (3.10)
NS 0

0<t<T

3 2 T
sup H (\/ QOnrﬁn’ Q(?nayﬁn) ‘2 + /0 dt S 57

0<t<T

2
Oy,
(ay’ﬁnv@()n ( yJ ) ;Q%naﬂgn>
n/y

2

1 1 T 1 1
sup (05, 0n, 06,0, Oyvn) I3 + / 1(0nyvn, €5,00vm 0 Dyyvn) 3t < €, (3.11)
0

(3.12)
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for a positive constant £ independent of n.
Since ¢ € L*(R) and go(y) > 0 for all y € R, so min,<g oo > 0 for any R € R.
Thus, it follows from (3.9)—(3.12) that

gka

(s i ) | oo 0,750 (1)) 1onll 220,721y <
HatJnHLQ(O,T;Hl(Ik))a||(atvn7atﬁn)HLQ(O’T?LZ(Ik)) < &

for any positive integer k, where I, = (—k, k) and & is a positive constant inde-
pendent of n. Then, by the Cantor’s diagonal argument in both n and k, there is a
subsequence, denoted still by {(J,,, v, V) }o2, and (J, v,9), such that

(Jp, Uny Up) —* (Jy0,9)  in L=(0,T; H (IR)), (3.13)
v, = v in L*(0,T; H*(IR)), (3.14)

Opdy, —* 0y J in L>=(0,T; L*(IR)), (3.15)

Oy Sy, — O, in L0, T; H' (IRg)), (3.16)
(Opvn, 040,) — (Oyv, 0p9) in L2*(0,T; L*(IR)), (3.17)

for any R € (0,00), where — and —* denote the weak and weak-* convergence,
respectively, in the corresponding spaces, and I = (—R, R). Moreover, noticing
that H'(Ig) <= C(Ig), by the Aubin-Lions lemma, and using the Cantor’s diag-
onal argument again (in both n and k), one can get a subsequence of the previous
subsequence, denoted still by {(J,,, vp, ¥,) 52, such that

(Jny Uny ) = (J,0,9) in C([0,T]; C(IR)), (3.18)
v, — v in L0, T; HY(Ig)), (3.19)
for any R € (0,00). These and (3.9) imply that
%SJSQJ_, ¥ >0, onRx]I0,T]. (3.20)
It follows from (3.9), (3.12), (3.13), (3.18), and (3.20) that for any R € (0, 00)
v v
ayj T~ in L2(0,T; HY(IR)). (3.21)

Thanks to the convergences (3.13)—(3.19), and (3.21), as well as the a priori es-
timates (3.10)—(3.12), one can obtain by the weakly lower semi-continuity of norms
that (J,v,9) has the regularities stated in the proposition. Besides, by (3.13)—(3.19)
and (3.21), one can take the limit, as n — oo, to conclude that (J,v,d) satisfies
equations (1.7)—(1.9), in the sense of distribution. However, due to the regularities of
(J,v,7) and the positivity of gy on R, one can show that the equations are satisfied
a.e. in R x (0,7). While the initial condition (1.10) is guaranteed by (3.18) and
(3.19). Therefore, (J,v,v) is the desired solution to the problem (1.7)-(1.10). This
completes the proof. O
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4. GLOBAL WELL-POSEDNESS IN THE PRESENCE OF FAR FIELD VACUUM

This section is devoted to proving the global existence and uniqueness of solutions
in the presence of far field vacuum via establishing a series of a priori estimates, which
are finite up to any finite time. Throughout this section, we will suppose, in addition
to the assumption (3.1), that

Jo
Voo

and, for some given positive constant K7,

3
l06(y)] < K103 (y), yeR. (4.2)

Remark 4.1. [t should be noticed that though (4.2) is assumed throughout this sec-
tion, yet it is not needed for some results (say, Propositions 4.1-4.2 and Corollary
4.1), while for some others (Proposition 4.3 and Proposition 4.4), one needs only the
following weaker assumption

0 € L'(R), Voo, € L*(R), (4.1)

loh| < K100, on R, for some positive constant K.

Note that the above weaker assumption can be satisfied even if the initial density
decays very fast. It is an interesting problem to see if all the results in this section
(and thus the well-posedness) still hold without (4.2) or under the weaker assumption.

In the rest of this section, we always assume that (J,v,d) is a solution to the
problem (1.7)—(1.10), in R x (0,7), for some positive time 7', satisfying

0<.J,J1el>0,T;L*R)), ¥>0,

3
It /00y, /00, /0007, vy, 00V, 050y € LF(0, T; LA(R)),
\/@be 'U'Uy, \/@Uh \/%Uygn ﬁyu Qgﬁt € L2(07 T7 L2(R>>

4.1. Basic estimates and the control of J. The basic energy estimates, uniform
positive lower bound of J, and a control on the upper bound of J are derived in this
subsection. We start with the conservation of the energy.

Proposition 4.1. Set & := fR 00 (% + cm%) dy. Then

{/R 00 <%2 + cvﬂ) dy] (t) = &.

Proof. Let ¢ be the cut-off function given in the proof of Theorem 3.1, and set
¢ (-) = ¢ (%) . Testing (2.9) by ¢, yields

t /
/ ooEp,dy = / ooEop,dy — / / % (k¥y + povy, — Rogdv) dydr. (4.3)
R R 0o Jr
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Direct calculations show that

t /
/0 /]R % (k¥ + povy, — Rogdv) dydr

IN

Cr t
© / / (19,1 + [ollvy| + eo9]o]) dydr
" Jo Jr<lyl<or

Cr t
< 7/0 [(19yll2 + vy l2) vV + [IVeod 2l v/eovllo] dr

C
< % (1 + H (ﬁy, VUy, \/@Ua \/%79) H%2(R><(O,t))> )

for any r > 1, where C' is a positive constant independent of  but may depend on t.
Then, taking r — oo in (4.3) gives the desired identity. O

The equality for J in the next proposition is in the spirit of Kazhikov-Shelukin [21],
where the mass Lagrangian coordinate, rather than the flow map, was considered.

Proposition 4.2. [t holds that for any (y,t) € R x (0,7
R (" 0o(y)d(y. 7)
J(y,t) = B(y,t (J Y +—/ —dr),
W= Bl (AW ) B
where B(y,t) = exp {l% f_yoo oo(v — Uo)d@/} )

Proof. It follows from (1.7) and (1.8) that

/ oy
oo = anto — l(og ), ~ g 2]+ 1 [ (47) dr =0
0 y

Integrating the above equation in the spatial variable over (z,y) yields
Y t Iy, T
[ (o= vl i tog 7(0.0) —tog ) + e [ 2L
—00 0 J(ya 7-)
z

N /_ (00v — 00vo)dy — i (log J(2,t) — log Jo(2)) + R/O %dr

Therefore, there is a function f(¢) independent of y such that

y " o0V
/ (00v — 00v0)dy’ — p(log J —log Jo) + R QOTdT = f(1). (4.4)
—00 0

We claim that f = 0. Set 0 := inf,yerx0,r) J(y,t) > 0. It follows from (1.7)

and v, € L*(R x (0,7)) that
—k t
Uy
= —dey‘
‘/(kJrl)/O J

< 551\/7_5”%’|L2((—(k+1),_k)x(o,t)) — 0, ask — oc.

—k
/ (log J —log Jy)dy
~(k+1)
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While oot € L*(0,T; L*(R)) yields

—k t
20V _
/ / OTdey < 6T1HQ0ﬁ||L1((f(k+1),fk)><(0,t)) — 0, as k — oo.
—(k+1) Jo

Since gy € L'(R) and /gov € L>(0,T; L*(R)), one has

—k y —k 3 —k 3
‘/ / Qovdy'dy’ < (/ gody) </ 9002) — 0, ask — oco.
—(k+1) J —o0 —o0 —0o0

Hence, f(t) = 0, and, consequently, (4.4) gives

Y t 00V Y
/ oovdy’ — plog J + R/ TdT = / oovody’ — plog Jy.
0

—00 —0o0

Dividing both sides by p and taking the exponential yield

1 R [ 0oV } {1/y }1
—expl — | —dry=exp{ — v — v)dy' » —. 4.5
7 p{ﬂ/o 7 p Py _OOQO(O )y T ( )

Multiplying (4.5) by %é)gﬁ and integrating in ¢ yield

R " ooV ! I
exp {_ / QLdT} =1+ @ exp {— / QD(UO — U)dy/} IdT.
Wty J o Jo HJ -

Substituting the above into (4.5) gives

1 RQO t lfy ( _ )d ’ ) 1 ry —v)dy' 1
1 222 e SR b0 g ) — o2 o)y
J ( pdo Jo Jo

which yields the desired expression for J. 0

As a corollary of Propositions 4.1 and 4.2, one can obtain the uniform positive
lower bound of J and the upper control of J stated as follows.

Corollary 4.1. [t holds that

-22, flleol1&
)

Je and

J J

N - R [t
() < eViahs (J+; / ||goﬁ|roodf).
0

Proof. Proposition 4.1 implies
2
+ ( / Q()Uody)
R

[ e = (o) ([

< 2v/2||0ol160-

Vv

-

[N
[NIES

|
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Therefore, it follows from the definition of B in Proposition 4.2 that

exp {—¥\/ug‘oul_&} < Bly.t) < exp {%ﬁ\/HQoHW@O} .

Due to this and 9 > 0, the conclusions follow easily from Proposition 4.2.

4.2. L* estimates. We now turn to derive the L°°(0,T; L?(R)) a priori estimates on

(J,v,79). We need an elementary lemma.

Lemma 4.1. Let w and n be nonnegative and bounded on R, satisfying |w'| < K|w|
and n > 0 on R, for some positive constant K. Assume that f is a nonnegative

measurable function on R such that \/wf, L= 7€ L*(R), and wf € L*(R). Then,

Eak

Vi

Proof. By assumptions and elementary calculations, one deduces

Wafls < / (/112 + 20 f|f)dz

2
[17l]%-
2

IVafIZ < 2KV + 8wl lwf

f/
SK\/_f +2\/_foowoowf 7700
IV FI2 + 20 Va il o]l w2 WA KE
< 5 fulbllosl |- 7\|n|r% LVEsIR - KIVErI
— 1 \/ﬁ 2 00 29

2
which yields the desired conclusion.

Now we are ready to derive the L>(0,T; L?) estimates.

Proposition 4.3. It holds that

T
sup (VGBI + 1120 + [ eyl + el + 19,15 + 1 v/@ol)as
sSts 0
< OO+ VBl

for a positive constant C' depending only on p, k, ¢y, R, K1, 0,J, J, ||ooll1, T, and .

Proof. Let ¢, be given as in the proof of Proposition 4.1. Testing (1.8) with vp?

yields
1d
2dt

Qo
= —2u/7yvsor<pidy+R/7(vy¢§+2wr¢i)dy
R R

00V w?dy+u/—y
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C
< ¢ ( [ g+ ||\rgov||2||f@m9||2)
r<ly|<2r

r

+“ JsO?dy+C/QoE2 2dy,

where Corollary 4.1 has been used. Therefore, recalling Proposition 4.1, we have

| oo *prdy + u/ prdy

dt
C 2 2

< — lvvy|dy + [[v/eoV||2 ) + C | 00E*p;dy. (4.6)
N Jr<ly|<ar R

Rewrite equation (2.9) as ooy — = (%) = <[L — Cﬁ) (%)y - R (Qo—‘fl’)y and test
v y v

it with Ep? to get

1d
E2 2
oW Qo 2dy + — / 7 —pldy

E,
= / {Rgm% + (i — ,u) vvy} L o2dy
R Cy J

E
—|—2/ [—iEy + Rogtv + <£ - u) vvy} —prpldy
R Cy J

(

2
/ {2@ E? +C (v + Q3192U2)] &dy

IN

J

C

+— E(|Ey| + 000v] + |v]|v,])dy
T Jr<lyl<2r

K E2 0202

< v Yy 2d C ,192 2 Qd

C 5

= (19, + ollu)) + 003 | dy,

T Jr<ly|<or

where Corollary 4.1 has been used. Therefore,

d
E*p?d

2 2
C 5
< c / (552 + g ) oy + < [E(10,1 + olluy)) + 0023 dyfa.7)

T Jr<lyl<or

Similarly, taking the inner product of (1.8) with v3p? leads to

d
dt

2

v
| oo Yoldy + 8u/ Ly

2
prdy
e J
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C
< (B + Elollu, Dy + € [ i sidy. (4.8)
R

" Jr<lyl<ar
Multiplying (4.8) with a sufficiently large positive number M and adding the re-
sultant with (4.6) and (4.7), one obtains

d 1 K
n Rgo(vz + E? + Mu*)ldy + /R 5 (/ﬂ{i B+ qu%j) prdy

C
<cf <QOE2+9302U2>¢3dy+—( / |v||vy|dy+u\rgoﬁu2)
R r r<|y|<2r

C 5
+ — [0 B2 + (Jv][vy| + [0,]) E] dy.

" Jr<lyl<2r

Integrating the above inequality in t yields

¢ 2
(/ QOEQQO?dy) (t) + / / % (v2 + E; + v*v) + 02) dydr
R o Jr
¢
< c(1eivanli+ [ [ @r+ goar)
o Jr

C [t 5
+ ¢ / / (0B + ([v]|v,| + 0, ]) E] dydr
" Jo Jr<pyl<or

O t
L2 ( / |v||vy|dy+||fgm9||2) . (1.9)
rJo r<|y|<2r

We claim that the last two terms on the right-hand side of (4.9) tend to zero, as
r — co. Since v, € L*(0,T; L?) and /oo € L>(0,T; L?), one deduces

C t
L= G ( / Ivllvyldy+||x/_got9llz> dr
T Jo r<|y|<2r

1
Ctz ([ > Ot
< </ / vidydr | 4+ — sup ||\/ood|l = 0, asr — oc.
0 Jr<|y|<2r T 0<r<t

1
rz

1 2 P
For t € (0,T), choose £(t) € (—1,1) such that E?(£(t),t) < ”ﬁ%. Then,
1 z

Y

By, )] = ‘E(S(t%t) ¥ /5 E,(=,0)d:

(®)

3 1
< CllVeoElla + 1Eyll2 (fyl +1)2, vy € R.

Hence, for any r > 1, it holds that

By )] < € (IVaoBll+ 1B, I3r) . ¥r <yl <2 (4.10)
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It follows from (4.10), \/aoE € L®(0,T; L*(R)), E, € L*(0,T; L*(R)), and

I, = / / QOE2dydT
<|y|<L2r

1 1,
ST (Waslh + 1Bl eoBayar
T Jo Jr<jyl<or

IN

7

Ct ts ! s
< % sw IVEBI + 57 s WVaEE ([ 15,5dr)"
0<s< 0

that I — 0, as r — oo. Similarly, it follows from (4.10), (/oo E,vvy, 9y, E,) €
L*(0,T; L*(R)), and

1 t
Bom o [ el + o) Bayar
T Jo Jr<yl<or

c L
< ST bl + 0 (1Bl + 15, dydr
r r<l|y|<2r
< <11 @%umy] %t (IWEE I+ 15,1 dr
r<|y|<2r
< S([wme) [ [ wimmer]
T2 r<|y|<2r

1 : :
+C'ts [/ / (vzvz + ﬁz)dydT} (/ ||Ey||§d7) ,
0 Jr<yl<er 0

that I3 — 0, as r — oc.
Thus, taking the limit as r 1 oo in (4.9) gives

(/ oo F dy) / / v, +E2+v21}2+192) dydt

<C (1 + |Iv/20Eol|3 + / / (00 FE* + 059*v 2)dyd7> : (4.11)

By Proposition 4.1, one has

t t t
/ / R dydr < / |aol3llad|Ldr < C / |ao|%dr.
0 R 0 0

Therefore, it follows from (4.11) that

v/ E|l5(t // vl + B3 + 0] + 07 dydr
< 0(1+H@Eo||§+ / H\/%E|!§d7)+Az / IVaodlidr,  (4.12)
0 0
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with a positive constant As.
It remains to estimate ||,/009]|%, in (4.12). Note that (4.2) implies |gp| < /2K 00.
One can apply Lemma 4.1, with w = gy, f = ¢, and n = J, to obtain

IVedIl. < 2V | Vel + Slleol| & llaod | "k (4.13)

2

\/7

It follows from (4.13), Proposition 4.1, and Corollary 4.1 that

9, |15, 2
Vel I2(t) < CII@EHngC —Z [RAIES
2

< +C (1% + Ve El3)
< L ﬁ +C(1+||\/_E||2+/t||\/_19||2 dT)
= 1A, VT , Qo L2 ; 00V || )
and, thus,
t 1 [t 2 t T
to [aniar < [ |5 arvce [ (lvaei+ [ ivaolas) ax
0 2 Jo IV Tl 0 0
(4.14)
Summing (4.14) with (4.12) yields
t 1
VGBI + [ | [ 03 B ot + ) dy+ VGO dr
o L/r
t T
cu+ivaaly+c [ (IVaek+ [ Ivaolkds) dr
0 0
Thus the Gronwall inequality yields
rr1
sup |VGEN+ [ Uj(v;wgﬂ%;wg) dy—|—||\/@19||zo} i
0<t<T o L/r
< C(L+[1VeoEo|3)- (4.15)
This and Corollary 4.1 show that
sup || I3 < C(1+ [[VeoEoll3)- (4.16)
0<t<T
Then the conclusion follows from (4.15) and (4.16). O

4.3. H' estimates. In this subsection, we establish the L>(0,T; H') type a priori
estimates for (J, v, v).
We start with the H! estimate of J.
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Proposition 4.4. [t holds that

Vol <o

for a positive constant C' depending only on p, k,c,, R, T, K, 0,.J,J, | 0oll1, and &.

sup
0<t<T

-+ H@Eouz) ,

Proof. Recalling Proposition 4.2 and the following estimate on B obtained in the
proof of Corollary 4.1

GXP{ —/lloollh 50} < B<exp {Q\M/_\/ [l 20 ||1 50} (4.17)

one can get from

R [*(oyd+ 009, By, R 00V
Jy:B[J(l)—i—;/o (T B2Q0?9 dr +By JO+E/0 Bd

(4.17), and (4.2) that

H\/_ﬁHerIW l2 =+ 11 Byll2 H\/_ﬂHoo)dT}
2

(||Jo||oo + [ Ivalr)

L V@I + 19,1+ 1B — vl a0 ]

7l = ol

|5,
< of| &

V(o — o) (HJolloo ¥ / V&t )

Then the desired conclusion follows by Proposition 4.1 and Proposition 4.3. ([l

Next, we carry out the estimate on the effective viscous flux GG, which is the key
to get the corresponding L>(0,T; H') estimates of v and .

For simplicity of presentations, the proofs of Proposition 4.5 and Proposition 4.7
in this subsection, as well as the uniqueness part of Theorem 4.1 in the next one, will
be given “formally”. However, similar to the proof of Proposition 4.3, one can easily
adopt the cut-off procedure there to justify the arguments rigorously.

2
dr < C,

2

Proposition 4.5. It holds that
y

T
sup ||G 2—|—/
OgthH 12 v

for a positive constant C depending only on u,k,c,, R, T,Ky,0,J, J, |lool1, o,

Iv/00Eo|l2, and ||Gol|2, where G is defined by (1.12), and Gy = Jio(v(’) — Rooy).
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Proof. Taking the inner product of (1.13) with JG yields

th/JG2dy+,u/—ydy< /—yd +C/ (Jvy|G* + 00?3 dy, (4.18)

where Corollary 4.1 has been used. By the Gagliardo-Nirenberg inequality,

[NIE

/R!vy!szy < vl GIIE < Clloyll21 G113 (G2 + 11Gy 12)

2

+ Ce(1+ [l [D)IG3,

2

Gy

V00

for any ¢ > 0. Thanks to this and choosing e suitably small, one obtains from
Corollary 4.1, Proposition 4.3, and (4.18) that

T 2
2

sup ||G —|—/

OStSTH 12 N vz

dr < CGCIOT(HHvyII%)dT(l +1Go|?) < C
This proves the conclusion. O
Proposition 4.6. It holds that

2

T v 2
prM+/ @ﬂﬂ%+wﬂ—>ﬁga
0<t<T 0 \/_ )

for a positive constant C depending only on ¢,, R pu,5,T,0,K1,J,J,||00||1,€0. ||\/00oEo|l2,
1Goll2,

€

Y

Then, we derive the L>(0,T; H') estimate on v.

Proof. Since v, = i(JG + RooY) and gov; = G, it follows from Corollary 4.1,
Proposition 4.3, and Proposition 4.5 that
2

Gy

—|| dt
Vool

T T

1
sup I\vyH§+/ IVoou|l3dt = — sup. 1JG + Roo?|)5 + /
0<t<T 0 0

Hoo<t<

2
Y

Vaoll,

IA

T
cwwumm+MM@+/ it < C.
0<t<T 0

Since

(%

1
yy = ;(‘]Gy + JyG + Rop?d + Roody),
it follows from (4.2), the Sobolev inequality, and Propositions 4.3-4.5 that

/OT Zdt (H( 00, \/—19) z+ oo)dt

Uyy

V0o
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L ()l )=

which yields the conclusion. 0

Finally, we give the corresponding weighted L>(0,T; H') estimates on 9.

Proposition 4.7. The following estimate holds

().

2

T
sup [[v/@dy 2 + / oDl + 9,03 | dt < c.
0<t<T 0

for a positive constant C depending only on ju, k, c,, R, T, K1, 0, J, J, || 0oll1, o, Iv/@Eollz,
Gollz, ly/@thll2, and || Z

Proof. Rewrite (1.9) as ¢,000; — k (%) = v,G. Then,
y

2
% Y
—QCvm/gol‘}t (7y) dy—l—/ o207 + k (7y>
R y R y

By direct calculations, one can get that

dy:/szzdy. (4.19)
R

2

d 9
CyR— 192dy+/ 2027 + K? (—y) dy

dt Jg J Y N J ),

Uy
— —Cvli/ <J2 y192+29019tj>dy+/”0§@2dy
R
2
< %”/QgﬁfderC/(Qo\vylﬁiJrQoﬁfﬁerGZ)dy, (4.20)
R R

where (4.2) and Corollary 4.1 have been used. Then, Propositions 4.3 and 4.5 imply

1
/ ol iy = / 00l JG + Rogd|02dy < C(ICll + lla0dloe) /@00y 2.
R R
and
1
/ v GPdy = — / (JG + Rog?)*G*dy
R 1 JRr

CHIGIIG2 + Gy l12) + lleo? 2 I1G13]
CL+[1Gyllz + oo?I2)-

IA A
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Substituting the above two estimates into (4.20) gives

2
d 2 1 2 002 2|y
cvﬁzdt Jﬁyd Y+ 2/]R c,00U; + K 7),

< C(1+ [leod|l3 + IGllan ) (1 + [Iv/2ody [12).

dy

which, together with Corollary 4.1 and Propositions 4.3 and 4.5, implies

2
T
0,
sup a3+ [ (o] (%) | ] a
0<t<T 0 ||y
< eCfO (1410?12, HIG 1) dt( + H\/—ﬁ/ H ) (421)

It remains to estimate 1J,,. Direct calculations show that

ﬁyy—J(”) Jy VB,

Joo J
L (=(3))
C (H\/Wyﬂ% Iv/eo?y 2

().1)
J ull, ’
2
< 1
Joo_o<+

H\@% (%)y 2>, (4.22)

where one has used Corollary 4.1, (4.2), and (4.21). It follows from (4.21), (4.22),

and PI'OpOSitiOIl 4.4 that
C / < y>

T
/ 10,124t
0
T
c / 4 (19_)

Combining this with (4.21) yields the desired conclusion. O

and

IN

02 9, (9
dy—/ 00— + 200—~ (—y) dy
J2 J\J),

IA

which gives

2

Qo

IN

dt

[ee]

IN

+

2 2
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4.4. Global existence and uniqueness. Based on the a priori estimates in the
previous subsections, we are now ready to prove the following global well-posedness.

Theorem 4.1. Assume that (3.1), (4.1), and (4.2) hold. Then, there is a unique
global solution (J,v,0) to the problem (1.7)-(1.10), such that, for any finite T,

0<J,J e L>0,T;L>), ¥>0,
v 9

Jyt, VU, L@y, V00, Uy, <7y> gy, 009; € L*(0,T; L*(R)), (4.23)
Vv £0 y

J,
Jt7 \/%,\/%v,\/@vz,vy,\/%ﬁ, \/%7931 € LOO(O7T7 L2<R))7 (424)
J = Jo, v/oov, eo¥ € C([0,T; L?). (4.25)

Proof. We start with the uniqueness. Let (J1,v1,11) and (J3, v9,192) be two solutions
to problem (1.7)—(1.10), satisfying the regularities in the theorem. Set

(J,v,@) = (Jl — JQ,Ul — ’U2,191 — 192)

Then, straightforward calculations yield

v
o0 —p | =) = (W + w2000), , (4.27)
B/,
Uy
Cvgoﬁt — K 7 = (le)y + WUy + ’W3J + ’W4Q019, (428)
Ly
where
Wy = W) Wy = _%7
wy = — ?’iis wy = Jil(,uﬁy(vl + vy) — Roopty),
w3 1= ?;’32 (RooV2 — 10yv2), Wy 1= —Raf’]?.
Taking the inner product of (4.26) with J yields
d 2 y 2
7 J dy = [ v,Jdy <e —dy + C. JlJ dy, (4.29)
R
for any positive ¢ > 0. Taking the inner product of (4.27) with v leads to
1d vy
[ty [ Sy < € [ Quallg)+ loalooloDloyay
2dt r J1 R

2
< H/&dy—l—C/(wfﬁ—l—wgggﬁQ).
2 Jr N1 R
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Therefore,

d
pr gov dy + u/ Ly < C’/R(wl + w3) (J? + 059*)dy. (4.30)

Taking the inner product of (4.28) with gy?) and using (4.2), one can get

Cy d 9 v
5% ﬁdy—i—ﬁ/@ozdy

3 3
<cf %@mmdwc [ 1=l 1101+ eulo,
R 1 R
+C/(|W2Hvy! + [@sl[J] + |4l o] 9]) 00|V dy
K v, 292 2 72 2
< /QOTdwaC/(Qoﬁ + |1 P00 " )dy + € 7 —dy
1 1

+C. / w5 000 dy + C’/(\wﬂ + 4] ) (J? + 050%)dy,
R R

which yields

d 2 95 v 2 2
Co— ﬁdy+/<;/go dy < 25/—dy—|—C’a/(1+Qow1+w2
dt Jp r J1

+|ws| + | ) (J? + 059?)dy. (4.31)
It follows from (4.29)—(4.31) and choosing ¢ sufficiently small that

d
y (J2 + 00v” + ¢, 050%) dy +/ 7 ( 24 590192> dy

< c + (w1, wa, /0w, @) |2 + [(3, @4)[|oo) | (T /200, 009)|I5.
Thanks to this and that
w1, Wa, /001, @2 € L*(0,T; L®(R)) and w3, @, € L'(0,T; L®(R)),

which can be easily verified by the regularities of (J;,v;,9;), ¢ = 1,2, the uniqueness
follows by the Gronwall inequality.

Next we prove the global existence. The local existence of solutions in the class
stated in the theorem follows from Theorem 3.1 and Propositions 4.4, 4.6, and 4.7.
Note that the regularities J; € L>(0,T;L?) and J, € L*(0,T; L?) follow directly
from Proposition 4.6 and equation (1.7), while the regularities in (4.25) follow from
those in (4.23)—(4.24). The global existence is then the corollary of the local existence
and uniqueness and the a priori estimates obtained in Propositions 4.1-4.7. This
completes the proof of Theorem 4.1. O
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5. UNIFORM LOWER BOUND OF THE ENTROPY

In this section, we establish the uniform lower bound for the entropy. This is
proved by a De Giorgi type iteration which will be carried out for a suitably modified
entropy equation. To this end, we assume that (3.1), (4.1), and (4.2) hold, and the
initial entropy is bounded from below. Furthermore, we require that

’Qg’ S KQQ%? on R? (51)

with any given positive constant K. Let (p,v,9) be the unique global solution
guaranteed by Theorem 4.1 (for this section and the next one).
Set

min{l,%e%}
£0 = IOg W s (52)

Jr = infy perxor S, 1),  Jr = supyperxor) J (U 1), (5.3)

2
2/1) = supoecr o, + Ivzols), (5.0

_1
Qo 2Jy

where s, := inf eg so(y).
Due to (1.11) and that J is uniformly positive, to get a uniform lower bound for
s, it suffices to obtain that for logd — (v — 1) log go. For € € (0, 1), set

S.:=logd. — (v — 1)logd., with". =0 +e and 6. = oy +7-1.

Then, by direct calculations,

d,S: 1 (o) ! 04 Jy R? g29?
000,S. — S Y B (CCI R E R H. (5.
s000hS may( : ) "ly >(J(&) e R L A

A R
where H. = J5- (vy — ﬁgoﬁ> + k=5, Define

J2
Se =S+ Mt (5.6)
with
My = “(Z—J_Tl) (K7 + K,) . (5.7)

Then, it follows from (5.5) that

/ 2 202
8y35) — oy — 1)Q0Jy R

e — - Hav .
Cp0001S: — KOy ( 7 6.2 i . + (5.8)
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~ N ~
where H. = H. 4+ ¢,M o0 + k(7 — 1)% (%) > 0. The nonnegativity of H. can be
verified easily. Indeed, since g. > gy, it follows from (4.2) and (5.1) that

/ /
F(E)]=2
J \ 0- Jr
/ / ~
Thus, k(y — 1)% (%) + c,M oo > 0. This and H. > 0 imply that H. > 0.
Now, we are going to derive an uniform lower bound for s., independent of e, which

will be achieved by using a De Giorgi type iteration. To this end, as a preparation,
we state the following iterative lemma whose proof is given in the Appendix.

12

9

-
5

)

/!
%

2

M
D (K24 Ky) = =T
5

" =1 w(y—1)%

Lemma 5.1. Let mg € [0,00) be given and f be a nonnegative non-increasing func-
tion on [mg, 00) satisfying

My(f+ 1)~
fl) < Hf’(m), Yl > m > my,
for some nonnegative constants My, o, B, and o, with 0 < a <  and o > 1. Then,
f(mo + d) =0,

where
2042641 |

d= 2f”(m0)(m0 -+ MO -+ 2) o—1

(o— 1)2

+2a+5+1] /3 o ey

5.1. L? estimate on s.. The following L? energy inequality holds for s..

Proposition 5.1. Let s. be defined as (5.6). Then, it holds that
2

To,(s. — 0)_
su 2 / T dt
sl =01+ [ A==
/ / ( 93192) dyt,
{se<t}

for any £ < Ly, where £ is given by (5.2), and C is a positive constant depending
only on R, v, Kk, , Jp, Jp, T, and K;.

Proof. For § > 0, set gs = 0o + d. Testing (5.8) with —5—8(35 — 0)_? and recalling
~ §
H_. > 0, one obtains

CU d Qo 2 92 / <ay36) Qo
s —0)_PPdy +r [ 0 D (s — 0)_2d

00y R2 207\ 0o 9
< —1 —(8c = £)_p;dy. 5.9
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Integration by parts and using the Cauchy inequality yield

ayse Qo 2
—— ) S(s. —0)_pid

0 0 )
= ATSg'aﬂ( ) !sozdy+2/J02 y(se — O)—(sc — O)—pripdy

Oy(se — 0)— 000} (1 2) 5
+ Y — —— | (se = ¥)_prd
/IR J 05 \o 05 ( ) erdy

3 [ o 0
z/ S Outoe = 0Pty - € / 2l = O-Ploildy
R 95

2

—C [ By(s. —0)_ P2y, (5.10)
R 95

v

where (4.2) has been used. Note that g. > gy and - - < 1. It follows from (4.2) that

o0y  R?00%\ oo >
@l 17 D (s, —0)_2d
/R(m VD ) B )y

2
< 0/ V|4 ﬁ)@sg—é_fd
sl o Qg( )-prdy
2 2
) Y 2 92 2| 2
< q/— | g s = 0P| Py, (5.01)
R 05 [(\/% ’ >{ss<€}

Substituting (5.10) and (5.11) into (5.9) and applying the Gronwall inequality yield

02
</ =% (s. — €)-|? 2dy) // 0)_[Pgldy
R Of
ct Qg 2 2 Qo0 2 112
< ce( [ Bys - 0-Peay +/ /—2|<ss—e>_| ¢, Pdydr
R 95 =0 0o JR @5
tr g2
CeCt/ /_(2) — +Q0792
0o JR @5

Due to the definition of s., it holds that

2dydr. (5.12)
{s:<t}

s. 2 loge — (7~ 1)1og (lloollee +77) |

and, thus,

0 < (se —¥)- <max {O,E —loge+ (y—1)log <||Q0||OO + 5ﬁ>} = Ay..
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t
/ / D5, — 0)_PlgPdydr < CA2.67 / 2 4y
o JRrR 95 ’ r<ly|<2r r

< CA; 6 oolotr™ — 0, asr — oco. (5.13)

Therefore,

Thanks to (5.13), one can take the limits 1 oo first and then § | 0 in (5.12) to get

(e -ovaor [ 2000
M( )

where the monotone convergence theorem has been used.
Using the elementary inequalities that for any a,b > 0, (a + b)7 < 2771 (a 4+ 7),
if o >1,and (a+0)7 < (a” +b%),if 0 < 0 < 1, one can deduce easily

dydr +/ |(se — 6)_|2dy
{se<t} R

. (5.14)

t=0

v—1
(Qo—l-&ﬁ) < max {1,277} (o' +e).
On the other hand,

A s _ A s . A s _
190+€:§ecggg l—f—ezﬁecggg 1+€Zm1n{1,}—%602}(93 1+5).

Therefore, recalling (5.2), one has

: 4 S0
Se = log dote — | > log - {1, Eei” } = £y,
= =\ (wre) o (1.7
and, consequently,
(se —0)_ = 0, V<U,. (5.15)
Combining (5.14) with (5.15) yields the conclusion. O

As a straightforward corollary of Proposition 5.1, we have the following:

Corollary 5.1. Let £y, Z; and s. be defined by (5.2), (5.4), and (5.6), respectively.
Then, for any £ < £, it holds that
Oy(se — 1)

T
su s—€_2+/
B B

where C' is a positive constant depending only on R,v, k, i, Jp, Jr, T, and K.

2
dt < CZ,(T),

2
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5.2. The De Giorgi iteration for s.. The De Giorgi iteration for s. is stated in
the following proposition.

Proposition 5.2. Let {y, Z; and s. be defined by (5.2), (5.4), and (5.6), respectively,
and denote
2

dt.

2

Oy(se — 1)
V00

T
o = suw (5= OB+ [
0<t<T 0
Then, it holds that

CZ,T) ,

mqm, for any —oo <l <m </,

Ge <

with a positive constant C depending only on R,~v, K, i, 0, Jr, J7, T, and K;.
Proof. For any ¢ < {,,, Corollary 5.1 implies that

(s —€)_ € L=(0,T; L*(R)) N L*(0, T; H'(R)),
and Proposition 5.1 shows that

T J 2
Qe < C/ / ‘—y + 02?
‘ 0 JR Vv 00 0

Let —oo < < m < {,. Then, it is clear that

(Sf(ya t) — m)*
m—/{

dydt. (5.16)
{se<t}

1<

,  for any (y,t) such that s.(y,t) < {.

It follows from this, (5.4), and the Gagliardo-Nirenberg inequality that

//( )
A

<m(je_)4/0 ( + ||\/®9||§) (s —m)_||5dt

< C%F)) / (5 — m)_ 2118y (se — m)_ |2t

dydt
{se<t}

2
+ 9(2)192> |(se — m)_|4 dydt

IN

(m
CZ/(T) o [Tyl = m) |
< 2 s (s —m)- / Rl | (5.17)

Combining (5.16) and (5.17) yields the conclusion. O
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5.3. Lower bound of the entropy. As a corollary of Proposition 5.2 and Lemma
5.1, we have the following uniform lower bound of the entropy.

Theorem 5.1. Assume that (3.1), (4.1), (4.2), and (5.1) hold, and that the initial
entropy is bonded from below. Let £y, Jp, Z;(T), and My be given by (5.2), (5.3),
(5.4), and (5.7), respectively. Then, the unique global solution obtained in Theorem
4.1 satisfies

5
inf s > e log%—|—£O—|—(V—1)10giT—MTT—C<ZJ(T)+1—£0)],

(y,£)eRx(0,T")

Jor any positive time T', with a positive constant C' depending only on R, v, K, p, Jr,
Jr, T, and K.

Proof. Set mg = —£, > 0, and define f(¢) := q_4, for £ > myg, with ¢, given in

Proposition 5.2. Then, f is nonnegative and non-increasing on [mg, 00). It follows
from Proposition 5.2 that

CZ,(T)

mfz(m), Yl > m > my.

fll)=q <

Applying Lemma 5.1, with My = CZ;(T),a =0, = 4, and ¢ = 2, one can get

f(mo +do) = q—(mo+do) = Gty—do = 0, (5.18)
where dy = [quo( —ly+ CZ,(T) + 2) 18] ! + 2. Thus,

(se = (y —dp))- =0, onRx(0,7),
which, due to the definition of s., implies that
1 7—-1
Y9+ e > elomdo—MT (go + eﬁ) .

bo—do—M T 1

This, passing limit € — 0, shows that ¢ > e oy - Therefore,

R
s = ¢ <logz+log19—(7—1)1oggo+(7—1)logJ)
R
> G <IOgZ + by —do— MyT + (v — 1)10giT) ’ (5.19)

for any (y,t) € R x (0, 7). Corollary 5.1 and the expression of dy imply that dy <
C(Z;(T) + 1 — £y)°, which, together with (5.19), leads to the conclusion. O
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6. UNIFORM UPPER BOUND OF THE ENTROPY

This section is devoted to deriving the uniform upper bound for the entropy. Due to
the degeneracy of equations (1.8)—(1.9) at the far fields, some singular type estimates
on (v, v, @) will be needed, which require some additional compatibility conditions on
the initial data. Indeed, in addition to (3.1), (4.1), (4.2), and (5.1), used in Theorem
5.1, we assume further that the initial entropy is bounded from above, and

1—y 1—-2

QOQ UO?QO 21907@[;56;10 € LQ(R)a (61)

where Gy = ,u% - Rf}—gﬂo.
All the notations in Section 5 will be adopted in this section. Furthermore, set

— A 30
by := —eev,
7R
where 8¢ := sup,cg So(y), and, for any positive time 7',
1=3 9112 T 2
2(T) = s oy O+ [ llog” ol (6.2
0<t<T 0
=3 2 g L e
Z6(T) = sw oy G+ [y ¥ Gl (63
0<t<T 0

The following lemma holds.

Lemma 6.1. Let 0 # 0 and (4.2) hold. Then, it holds that

11 1.1 1 11
165 flla < Cloollos ™ (H@Sfllz + a5 fllz lleo 20,z > , 2<¢< oo,

for any f with of f € H'(R), where positive constant C' depends only on o, q, and K;.
Proof. 1t follows from the Gagliardo-Nirenberg inequality that

o o 3t3 o o— 3
legflls < Cllegfllz * (legdyfll + o5~ cofl2)?

1

o %—’—q o 0'+%
< Cllaif15" (lgkouflls + lleg 2 /1)

4 () T PR
< Clleollss ™ { g fllz +lleg fllz "lleo *ufllz ")

which yields the conclusion. O

1
q

1
q

N

As mentioned already in the Introduction, the uniform upper bound for s is
achieved by applying a modified De Giorgi iteration to the temperature equation
rather than to the entropy equation itself. As preparations, a series of singular ener-
gy estimates will be carried out in the following three subsections. These estimates
will be proven in a brief way to make the ideas clear. However, as indicated in the
proof of Proposition 5.1, one can adopt similar cut-off and approximations there to
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justify the arguments rigorously. In particular, one can choose 7+1"U(,0T and 7+119<pr,

w+1 JGp?, and 20 () 102, respectively, as testing functions in Proposmons 6 1, 6.2,

and 6.3, and pass the limits r 7 oo and § | 0 to give the rigorous proofs.

6.1. Singular weighted estimates on (v, 7).

Proposition 6.1. It holds that

11—y _a T _a 1—
s (ool + ek 1012 + [ (el + o o))

0<t<T
< ([leo™ volly + lles#dolly) e It
for a positive constant C' depending only on u, k,v, R, 0, K1, T, Jy, and Jr.
Proof. Taking the inner product of (1.8) with leads to

1d, =2 v 00V v
sl vllz +u/ Q_g) dy = R/R%ay (Zg) dy. (6.4)
Y

20
J (
Direct estimates give
2 2
Uy v 3 v v
Y (—)d >3 [ gy [
/IR{ J " \og 4Je Jog Jog

0oV v e 2 92 2
— 0, | = |dy < C 0,
/]R J y(@&) SR J@o W / (QO "

It follows from (4.2) and (6.4)—(6.5) that

Qo
0o

and

HQO “llg + HQO oy l3 < Clllan™ vll3 + o *912). (6.7)

Next, taking the inner product of (1.9)
get from (4.2) that

92 v, |92 2
2y = 9,112 < / < e )d . 6.8
||Qo ||2 ||Qo ||2 Jggfz Jggfz Jggfl Y (6.8)

(6.5), one can

Summing (6.7) with (6.8) leads to

1—-2

(HQo ol + cullen P9IE) + T(MHQQ Sy l13 4 lleo® 0,3)

Clllog™ vl + oy P918)+C [ (o010 +a5 e30) dy. (69)
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It follows from Lemma 6.1 that
_ 1-%
/R |y < o, lalleb 292
c||vy||2(||go O3+ oy 0l llee® 0y3)

2 1_%
oo™ 0,13+ Cy (lloglla + 1oy l3) lloy #9013, (6.10)

IN

IN

and

1— 2,19d < _% 1_%19
o0 oy < eyllallen Fellalleo *Vllee

_
< C|\vy|!2||002vy||2(|!@o 0l + lloy *0l3llee* 0y13)

< nll(ao *ope 20 I+ Colliog I3+ w1926 2913 (6.11)
Substituting (6.10) and (6.11) into (6.9) and choosing 1 sufficiently small yield

d 1
(”Qo “ol3 4 collan 201 + (oo o I3+ wlleo® 9y )

Jr
< C(L+ o) (llao™ ol3 + llob *I13),
from which, by the Gronwall inequality, the conclusion follows. O

6.2. A singular weighted estimate on (. Based on Proposition 6.1, one can
derive the corresponding weighted a priori estimates on G.

Proposition 6.2. It holds that
sup oo 2G5t / oo = Gy |2t < Cedi IoulBet]| (007" vy, gt~ 20, 05 2 G|,
0<t<T

for a positive constant C' depending only on u, k,v, K1, T, Jy, and Jr.
Proof. Taking the inner product of (1.13) with ‘é—? and using (4.2), one deduces
0

JG? y+1
53 L o+ uley Gl
< o [ [0 (7161 + 2 7IG1) + Il "G + 0 IGIG, ] dy
< —HQJQGHﬁc[H@o o+ [ <1+rvy|>g0”c:2dy].

Similar to (6.10), one can get

_ _atl 4 _a
[ wleGdyir < alley ™ Gyl +C (Il + ) oo "G
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_ o+l _a
< nlleg * Gyl + Cy (L4 Nluyl3) lleo > Gll5-

Combining the two inequalities above and choosing 7 sufficiently small yield

d JG2 —%Ll 2 PTW 2 2 -3 2
P RTdy_'_MHQO Gyls <C |:||Q0 Uyll3 + (1 + HvyH2) e GH?] )
0

which leads to the conclusion by the Gronwall inequality and Proposition 6.1. 0

6.3. Higher singular weighted estimates on 9. In this subsection, we derive
some estimates of ¥ with weights which are more singular than those in Section 6.1.
Denote

Oy =0 — Lol Mt 0> 0, (6.12)
where .
CviT
Then,
,19 J—
Co 00010y — KOy <%) = 0,G — lr(y — )Mt o) 2 o) T2, + Ny, (6.14)

where Ng = ﬁeMTt(g(ngl)” — ¢,M70]). Note that N, < 0. Indeed, since 2—6; < Ko
0

and |29 § K2, it follows from (6.13) and direct calculations that
Qo
[ 2
wre | L[ 2 | | » 2
Ne = tr(y =1 |2 | 5+ (v=2) || | e — (|7—2|K +K3) 0
J\ o 0d I

< lr(y —1)eMrt

1 1
S (o 1y = 21K2) 0} = (17— 20KE + K)a}

- I —J
= LMTR(y = 1) (Ko + |y — 2|K7) 0y =75 < 0.
Ty

The main singularly weighted estimates on 1, are stated as follows:

Proposition 6.3. There exists a positive constant C depending only on c,, k,7, 0, K1, Ko, T,
Jp, and Jr, such that, for any { > {y,

s et 3+ [ b 7000

0<t<T

= C/ /(‘QggGFJF|9(1)_;79|2+15!@52Jy|)98”(19e)+dydt
0 R
and
sw et 00+ [ Nl 000 < 0@+ 23+ 28),

0<t<T
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Proof. Testing (6.14) with g5 >" ()4 and recalling N; < 0, one obtains

0,9 _
a0+ [ 200, (b 00 dy

< / (0 — il — DGy 212, ) o (D) sy = .
R

Similar to (6.5), one can get by using (4.2) that

Ve o (Vo) |0y (V) |2 (¥
/]R zj]ay(ggw—l dy = 4 R J271 _C/ 27—

S _
> g 0,00+ 13~ Cllet 7(19e)+|\§-
4Jr

Due to (4.2) and |v,| < C(|G| + 00?9),
1< 0 [ 061+ iG]+ tai ] o0 sdy

< C/(G2+93192+€Q Q\J Nop 2" (9) dy.
R

43

(6.15)

(6.16)

(6.17)

Substituting (6.16) and (6.17) into (6.15) and noticing that (Jo — 0oy ™M) 4 = 0 for any

¢ > {y, one obtains the first conclusion by the Gronwall inequality.

By the Cauchy inequality, one can derive easily from the first conclusion that

sup [l "+ [ ad 0000

0<t<T
1-2 |14
QO 219H dt>
4

< CezzJ(THO/OT (HQOW

for any ¢ > ¢y. Next, it follows from Lemma 6.1 that

o Eal EES1
[l < e[ (Jaieli+ el o el,)
< (s oot + [ e T aulin) = czam
0<t<T 0

Similarly,
T
/)

Therefore, the second conclusion holds.

0<t<T

2
1-2 |14 1-2
oL < e (s 1o Fo+ [ e o) = czim
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6.4. The De Giorgi iteration. In this subsection, we derive the estimates for ¥,
by the De Giorgi iteration.

Proposition 6.4. Set

T
Qc:= sup H@é”(ﬁeﬁH%*/ log "0y (Do)~ II3dt.
0<t<T 0
Then, it holds that

C(1+0)*
QZ S m

where C' is a positive constant depending only on k,~, ¢y, 0, K1, Ko, T, J, and Jp.

(Z2(T) + Z5(T) + Za(T)Q% Ve >m >,

Proof. By Proposition 6.3, one has that, for any ¢ > £,

G

For any (y,t) € {(y,t)|[V, > 0} and m < ¢, it is clear that

O)+ (. t) = (C—m)ey " ()eM™ > (¢ —m)oy ™ (y),

_
2

J )gg—V(ﬁz)mydt. (6.18)

2
Y

2 1
+’Qo

and, thus,

1=y
1< EQO —(0n)s. o {09 >0} Vm <l (6.19)
Using (6.19) and noticing that (195) < (Um)+, for m < £, one can get

/ / ‘QO “(0) dydt

1— 3
2 Q ﬁm
/ /‘Qo G Qo (D) + M

IN

dydt
{—m 4

< ([ Heazauzdtf</f>>eé-wm>+uidt>§- =

Lemma 6.1 implies that

T . .6
[ Nlaefa<e [ (el

and, similarly,

’Y+1

* Gy

2
) dt <C2%, (6.21)
2

T
_ 6
/ 00" (Um)+ || dt < CQY.. (6.22)
0
Substituting (6.21)—(6.22) into (6.20) yields

(6.22)
T v 2 Z 2 _
/ / 007 G| 0} () sy < C2cQn o s (6.23)
0o Jr (¢ —m)
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Similarly, one can show that

CZyQ;,
(6—=m)*
Next, it follows from (6.19) and the fact that (9,), < (9,,), for £ > m, that

_ 3
Q(l) V(ﬂm)+
{—m

_x |2 _
: 2§’ggﬁoﬁy4@dtg (>m>0.  (6.24)

QO_W Vo), dydt )+ dydt

T
< ——— sup ||—& / L709,)) || At
< o || [ o
< 2 [ e o (629
— (t=m)® Jo
By Lemma 6.1, it holds that
T
PR
< 0 [ (1 018+ 1) 1 Ned 70,0013

T, 2
< c(osup lop™" (Om) 4115 + / log ”8y<a9m>+||§dt) = CQ},.  (6.26)
0

Combining (6.25) with (6. 26) leads to

1
025Q2
T(e)pdydt < L 6.27
Z)Jr Y (6 _ m)3 ( )
Substituting (6.23) (6 24) and (6 27) into (6.18) yields the conclusion. O

6.5. Upper bound of the entropy. We are now ready to establish the uniform
upper bound for the entropy.

Theorem 6.1. Assume that (3.1), (4.1), (4.2), (5.1), and (6.1) hold, and the initial
entropy is bounded from above. Then, the unique global solution obtained in Theorem
4.1 satisfies

sup s < Clog(2+ 4+ Z(T)),
(y,£)ERX (0,T))
for any positive time T, where Z(T) = Z3(T) + Zy(T) + Zaq(T') and C is a positive
constant depending only on c,, K, v, 0, K1, Ko, T', Jp, and Jp.

Proof. 1t follows from Proposition 6.4 that
C(1+0)?

(E_m)?)Z(T) 2 Yl >m > .

m?

Qe <
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One can check easily that ), is non-increasing in ¢. Therefore, Lemma 5.1 implies
Qiyra =0, with d =2+2(24 4y + CZ(T))”Q%O. Hence, (97, ,4)+ = 0, which gives

0 < (lo+d) o Mt < (Ly + d) g eMTT,

and, consequently,

R
s = ¢ <logz+(fy—1)10gJ+10g19—(7—1)10ng)

R - _ —
< ¢ <log i (v — 1)log Jr + log(ly + d) + MTT) : (6.28)

Proposition 6.3 shows that Qg, < C(1+£3)2*(T), and, thus, d < C(2+6+Z(T))*.
This and (6.28) give the desired conclusion. O
7. APPENDIX

In this appendix, we prove Lemma 5.1.
Proof of Lemma 5.1. 1t follows from the assumption that

F0) < 2% Mot~

Let dy > 1 be a positive number to be determined later, and set

1
fk:mo‘f‘l‘f‘(l—?)dg, k’:O,l,Q,'--.

Then, choosing ¢ = {1 and m = £, in (7.1), and noticing that 1 < mg + 1 + do,
one deduces that

J(rg1) M2y (Cir — )P 7 (k)

Mo2%(mg + 1+ do)*(2~* D dy) P £ (4)

— M2 ( St e ) ()
0 0

VARVAN

from which, recalling that dy > 1 and noticing that g > 1, one obtains
f(lysr) < MFOF2OAEHL PO (0 | =0,1,2,-- -,
with M = My + mg + 2, which can be written equivalently as
MOEEDT £ ) < MR F)7, k=0,1,2,--, (7.2)

where a = % and b = 2a;_51+1 + (U_BI)Q. It follows from (7.2) that

Ma(k+1)+bf<€k+1) < (M(H_bf(fl))ak,
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which implies, due to M > 2,a > 0, and b > 0, that

k

f(gk'f'l) S (Ma+bf(£1>>a ) k= ]-727 . (73>
Choosing ¢ = ¢; and m = {; in (7.1) leads to

2a+B N T N
e (o +2)" f7(mo 1),
0

It follows from this and the monotonicity of f that

Fl) < 2°Mol (b — L) P f7 (L) <

M2a+,8+1 .
fll) < Wf (myg).
0
Therefore,
2a+28+1 8 2a4+28+1 8 o g 1
Ma+bf(£1) _ M o—1 +7<071)2 f(g]_) S M P +(071)2+2 +8+1 fdgrn;?) S 57
0

2042841 B oo =
provided that dy = <2f5’M T Tzt +B+1> ’ + 1.
It follows from (7.3) that

k

1 e
o+ 14 do) < flban) < O5(00)" < (3) 1 k=012
Passing k& — oo in the above yields f(mg+ 14 dy) = 0, so the conclusion follows. [
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