
BASIC LOCI OF COXETER TYPE

WITH ARBITRARY PARAHORIC LEVEL
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Abstract. Motivated by the desire to understand the geometry of the basic loci in the re-

duction of Shimura varieties, we study their “group-theoretic models” — generalized affine

Deligne–Lusztig varieties — in cases where they have a particularly nice description. Continu-
ing the work of [8] and [9] we single out the class of cases of Coxeter type, give a characterization

in terms of the dimension, and obtain a complete classification. We also discuss known, new

and open cases from the point of view of Shimura varieties/Rapoport–Zink spaces.
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1. Introduction

1.1. One way to understand arithmetic information encoded in Shimura varieties is to study
the geometry and cohomology of the special fiber of a suitable integral model. This method
has been applied with great success for example in the work of Harris and Taylor on the local
Langlands correspondence for GLn. The moduli description which is available at least in the
case of Shimura varieties of Hodge type, together with the particular structure obtained (ul-
timately) from the Frobenius morphism, allows to define certain stratifications of the special
fiber whose strata can be studied one by one. In particular, there is the Newton stratification
which is defined, roughly speaking, by grouping those points into one stratum whose corre-
sponding abelian varieties have isogenous p-divisible groups. Another important stratification
is the EKOR stratification defined in [19], a stratification which simultaneously generalizes the
Ekedahl–Oort stratification for hyperspecial level and the Kottwitz–Rapoport stratification for
Iwahori level.

It has been observed, over the past few decades, that in certain cases the unique closed
Newton stratum, the so-called basic locus, has a simple description. More precisely, it has a
stratification as a union of Deligne–Lusztig varieties, where the index set of the union and the
combinatorics of the closure relations can be described in terms of a certain Bruhat–Tits building
attached to the situation at hand. While for the Siegel moduli space of principally polarized
g-dimensional abelian varieties this works only when g 6 2, there are several infinite families
where such a description is possible; the cases studied in most detail so far arise from unitary
Shimura varieties for unitary groups of signature (1, n− 1). See the paper [44] by Vollaard and
Wedhorn for a prototypical example, and Section 6 for a more detailed discussion of individual
cases and further references. Results of this type have found applications of different kinds:

• Explicit descriptions of the basic locus have been used to compute intersection numbers of
special cycles on the special fiber of a Shimura variety, in order to prove results predicted by
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the Kudla–Rapoport program which relates such intersection numbers to Fourier coefficients
of modular forms (in a general sense). As examples, we mention [26], [40], [27].

• Similar intersection numbers on Rapoport–Zink spaces play a role in the arithmetic funda-
mental lemma and in arithmetic transfer conjectures. See for instance [51], [33].

• In a different direction, a good understanding of the basic locus has been of high importance
for some recent results around the Tate conjecture for the special fiber of certain Shimura
varieties. See for example [20], [42], [49].

In this paper, we give a group-theoretic view on this phenomenon, extending previous work
(see [8], [9]) in this direction.

1.2. Let us explain the main results of this paper. We fix a connected reductive group G over
a non-archimedean local field F and a conjugacy class of cocharacters µ of G over a (fixed)
algebraic closure of F . Let τ ∈ B(G, µ) be the unique basic element. Fix a rational level
structure K. See Section 2.1 for the notation used here and for more details.

The central object of this paper is the generalized affine Deligne–Lusztig variety X(µ, τ)K ,
which can be viewed as a group-theoretic model of the basic locus mentioned above, in those
cases where G and µ come from a Shimura datum.

The following definition (which originates from [8]) singles out a class of particularly well-
behaved cases. The idea behind it is to express the condition that X(µ, τ)K is a union of classical
Deligne–Lusztig varieties attached to a twisted Coxeter element (in some finite Weyl group).

We define (cf. Definition 2.4 for further details and equivalent formulations)

Definition 1.1. The datum (G, µ,K) is said to be of Coxeter type if every EKOR stratum that
occurs in X(µ, τ)K is the EKOR stratum of a Weyl group element w that is a twisted Coxeter

element in a finite standard parabolic subgroup of the Iwahori-Weyl group W̃ .

The notion of EKOR strata that we use here is the local version of the EKOR strata introduced
in [19], an interpolation between Ekedahl–Oort and Kottwitz–Rapoport strata. See Sections 2.3
and 2.4 for further details.

The main novelty in this paper are new characterizations of the cases of Coxeter type, on the
one hand by a simple dimension condition, on the other hand, equivalently, by an explicit group-
theoretic condition which involves neither affine Deligne–Lusztig varieties nor the µ-admissible
set. As a consequence, we obtain a classification of all Coxeter cases.

We start by establishing the following general lower bound

Theorem 1.2. (Theorem 3.5) Let Jτ denote the σ-centralizer of τ . Suppose that µ is non-central
in every simple factor of the adjoint group Gad over F . We have that

dimX(µ, τ)K > rankss
F (Jτ ).

We can characterize the cases that are of Coxeter type as precisely those cases where equality
holds in the previous theorem:

Theorem 1.3. (Theorem 4.6) Suppose that µ is non-central in every simple factor of the adjoint
group Gad over F . The following conditions are equivalent:

(1) The triple (G, µ,K) is of Coxeter type;

(2) We have that dimX(µ, τ)K = rankss
F (Jτ );

(3) For any admissible triple (ξ, J,K ′) with K ′ ⊇ K, we have that

〈µ, 2ρ〉 6 ]{σ-orbits of K ′ξ}+ rankss
F (Jτ ).

We list Condition (3) in this theorem to indicate that we have a simple group-theoretic
characterization of these cases which involves neither the dimension of X(µ, τ)K , nor the more
subtle combinatorics of the admissible set. For the notation used here, we refer to Section 4.
This condition allows us to classify all cases of Coxeter type (without using the classification
results of [8], [9]).
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Theorem 1.4 (Theorem 4.6, Table 1). Assume that G is quasi-simple over F and µ is non-
central. Denote by Wa the corresponding affine Weyl group, by µ the image of a dominant
representative of µ in the translation lattice of the Iwahori–Weyl group, and by σ the automor-
phism of Wa induced by Frobenius.

The property whether (G, µ,K) is of Coxeter type depends only on the tuple (Wa, σ, µ,K).
The quadruples (Wa, σ, µ,K) of Coxeter type with K minimal are classified as follows (up to

isomorphism, see Section 2.2.1 for the notation):

(i) (Ãn−1, id, ω
∨
1 , ∅),

(ii) (Ãn−1, %n−1, ω
∨
1 , ∅),

(iii) (Ã2m, ς0, ω
∨
1 , S̃− {s0}),

(Ã2m+1, ς0, ω
∨
1 , S̃− {s0, sm+1}),

(iv) (Ãn−1, id, ω
∨
1 + ω∨n−1, S̃− {s0}), n > 3,

(Ãn−1 × Ãn−1,
1ς0, (ω

∨
1 , ω

∨
n−1),t2

i=1(S̃i − {0})),

(v) (B̃n, id, ω
∨
1 , S̃− {s0, sn}),

(B̃n,Ad(τ1), ω∨1 , S̃− {sn}),

(vi) (C̃n, id, ω
∨
1 , S̃− {s0, sn}),

(vii) (D̃n, id, ω
∨
1 , S̃− {s0, sn}),

(D̃n, ς0, ω
∨
1 , S̃− {s0}),

(viii) Exceptional cases:

(Ã1, id, 2ω
∨
1 , ∅), (Ã3, id, ω

∨
2 , {s1, s2}), (Ã3, ς0, ω

∨
2 , S̃− {s0}),

(C̃2, id, ω
∨
2 , {s0}), (C̃2,Ad(τ2), ω∨2 , {s0, s2}).

It is easy to see (Remark 2.5) that whenever (Wa, σ, µ,K) is of Coxeter type and K ⊆ K ′,
then (Wa, σ, µ,K

′) is of Coxeter type. From the classification, we also obtain the following, quite
surprising result, which does not seem to follow directly from the characterization above: In all
cases, there is a unique (up to isomorphism) minimal set K ⊂ S̃ such that (Wa, σ, µ,K) is of
Coxeter type. Note however that the situation is quite subtle: Starting with a datum (G, µ),
the corresponding statement is not true (see the C-BC2 cases in Table 3) because isomorphisms
of the Dynkin diagram might not be automorphisms of the oriented local Dynkin diagram.

In Section 5, we discuss consequences of our results for Rapoport–Zink spaces. For many
of the pairs (G, µ) in our list, a stratification of the reduced special fiber by classical Deligne–
Lusztig varieties has already been established. In most cases, these results deal with maximal
parahoric level structure. The stratification is called the “Bruhat–Tits stratification” because
its index set is related to a Bruhat–Tits building.

It is expected — and known in many cases — that one can identify the perfection of the special
fiber with a generalized affine Deligne–Lusztig variety of the form X(µ, b)K (see Section 5, in
particular Property (♦)). This makes the connection with the group-theoretic results, and the
Bruhat–Tits stratification on that side of the story, see Section 2.4.

Proposition 5.8 below allows us to establish a stratification of the special fiber for many non-
maximal level structures in cases of Coxeter type, before passing to the perfection. Note that to
prove this result, we need to know a priori that X(µ, τ)K has a Bruhat–Tits stratification.

1.3. Comparison with previous results. This article can be seen as a continuation of [8]
where a classification of all cases of Coxeter type was obtained under the following additional
(and, a priori, quite restrictive) assumption: K = S̃−{v} is the complement of a single element

of S̃ (and, as above, is assumed to be preserved by σ, i.e., v is a fix point of σ).
In this paper we remove this restriction on K, and obtain different more conceptual charac-

terizations of the cases of Coxeter type.
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In [9] we introduced and studied the notion of fully Hodge–Newton decomposable pairs (G, µ)
(see Section 2.3), and gave a classification of those cases. We will see below (Corollary 4.7)
that (G, µ) is fully Hodge–Newton decomposable whenever it is of Coxeter type. Note however
that the classification results in the paper at hand do not make use of the classification of
fully Hodge–Newton decomposable cases in [9]. While in all fully Hodge–Newton decomposable
cases, the space X(µ, b)K (for basic b) has a stratification into classical Deligne–Lusztig varieties
(called the weak Bruhat–Tits stratification in Section 2.4), this stratification has additional nice
properties in the cases of Coxeter type.

1.4. Outline of the paper. We recall some preliminary notions and explain the general setting
in Section 2. After recalling the method of Deligne–Lusztig reduction in Section 3.1, we prove the
dimension formula characterizing Coxeter type cases in Section 3, and prove the classification in
Section 4. In Section 5 we discuss consequences for Rapoport–Zink spaces and relate our results
to previous work on the side of Shimura varieties and Rapoport–Zink spaces. See Table 3 in
Section 6.1 for a summary.

1.5. Acknowledgments. We would like to thank George Pappas for answering questions on
parahoric subgroups.

2. Coxeter type

2.1. Setup. Let F be a non-archimedean local field, fix an algebraic closure F , denote by F̆ the
completion of its maximal unramified extension F un ⊂ F , and by σ the Frobenius automorphism
of F̆ over F . We usually think of F being of mixed characteristic, i.e., F is a finite extension
of Qp. Everything has an equal-characteristic counterpart, however, where F is of the form
Fq((t)), the Laurent series field over a finite field Fq. In either case, we denote by p the residue
characteristic of F .

We fix a connected reductive group G over F . Write Ğ = G(F̆ ). Let Ĭ ⊆ Ğ be a σ-invariant
Iwahori subgroup, our standard Iwahori subgroup, and let T be a maximal torus of G such that
the alcove a corresponding to Ĭ, the standard alcove in the Bruhat-Tits building of G over F̆ ,
lies in the apartment attached to TF̆ . Attached to this data, we have the extended affine Weyl

group W̃ and the (relative) finite Weyl group W0. We fix a special vertex of the base alcove

and obtain a splitting W̃ = X∗ oW0, where X∗ := X∗(T )Γ0
denotes the coinvariants of the

cocharacter lattice of T with respect to Γ0 = Gal(F/F un). See [43], [10, §2].

We denote by S̃ the set of simple affine reflections (defined by our base alcove) inside the

affine Weyl group Wa ⊆ W̃ . The Frobenius σ acts on S̃ (since by assumption the base alcove

is fixed by σ). Likewise, if τ ∈ W̃ has length 0, then it fixes the base alcove and thus acts

by conjugation on S̃; we denote this action by Ad(τ). For an element w = w′τ ∈ Waτ , the

σ-support suppσ(w) is the smallest subset of S̃ which is Ad(τ) ◦ σ-stable and contains all simple
affine reflections that occur in a reduced expression for w′. The final condition can also be
rephrased as w′ ∈ Wsuppσ(w), where for a subset K ⊆ S̃ we write WK for the subgroup of Wa

generated by the elements of K. We denote by KW̃ the set of minimal length representatives of
the cosets in WK\W̃ .

For b ∈ Ğ, we denote by Jb the σ-centralizer of b, i.e.,

Jb(F ) = {g ∈ Ğ; g−1bσ(g) = b}.
If b is understood, we just write J instead of Jb.

Below we always work with the unique reduced root system Φ underlying the relative root
system of G over F̆ (the échelonnage root system).

2.2. (Enhanced) Tits data and Coxeter data. To specify the classification results below,
two types of data typically arise. On the one hand, we will refer to affine Weyl groups together
with an automorphism and a coweight; this kind of data we will call Coxeter data. On the other
hand, we will refer to algebraic groups over F together with a conjugacy class of cocharacters;
this is what we will call Tits data below (using Tits’s translation between isomorphism classes of
such data with local Dynkin diagrams). In both cases, we often enhance these data by including

a “level structure”, i.e., a subset K ⊂ S̃ with WK finite, of the set of simple affine reflections. In
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the group case, this gives rise to a standard parahoric subgroup. Our level structure will always
be assumed to be rational, i.e., K is fixed by the automorphism σ (the automorphism induced
by the Frobenius over F in the group case).

We hope that no confusion will arise between the notions of Coxeter datum and of being of
Coxeter type, the latter being a property that certain Coxeter data have, and others do not —
similarly as some elements of a Coxeter group are Coxeter elements.

Definition 2.1 (cf. [18], [10, §2.6]). (1) A Coxeter datum (over F ) is a tuple ((Wa, S̃), σ, λ)
consisting of an affine Coxeter system, a length-preserving automorphism σ and a W0-
conjugacy class λ in X∗, the coweight lattice. Here W0 denotes the finite Weyl group of
the given affine Coxeter system. An enhanced Coxeter datum is a tuple ((Wa, S̃), σ, λ,K)

whose first three entries constitute a Coxeter datum and where K ( S̃ is a subset with
σ(K) = K. Below, we often just write Wa instead of (Wa, S̃), or we replace this item by the
corresponding affine Dynkin type.

(2) A Tits datum (over F ) is a tuple (∆̃, σ, λ) consisting of an absolute local Dynkin diagram
(cf. [43]), a diagram automorphism and a W0-conjugacy class λ in the coweight lattice X∗.

An enhanced Tits datum is a tuple (∆̃, σ, λ,K) whose first three entries constitute a Tits
datum and where K is a type of rational parahoric subgroups in the corresponding group.

2.2.1. Notation for automorphisms of Dynkin diagrams. We use the same labeling of the Coxeter
graph as in Bourbaki [2, Plate I–X]. As in [10], we use the following notation for automorphisms
of affine Dynkin diagrams. In case the fundamental coweight ω∨i is minuscule, we denote the

corresponding length 0 element τ(tω
∨
i ) by τi; conjugation by τi is a length preserving automor-

phism of W̃ which we denote by Ad(τi). For type An, the automorphism Ad(τi) is the rotation
of the affine Dynkin diagram by i steps (i.e., s0 is mapped to si, s1 is mapped to si+1, and so
on), and we also denote it by %i. We write ς0 for the automorphism which fixes the vertex 0,
and is the unique nontrivial diagram automorphism of the finite Dynkin diagram, if W0 is of
type An, Dn (with n > 5) or E6. For type D4, we also denote by ς0 the diagram automorphism
which interchanges α3 and α4.

For the product Ãn−1 × Ãn−1, we denote by 1ς0 the automorphism which switches the two
factors.

2.3. Fully Hodge–Newton decomposable pairs (G, µ). We now fix a conjugacy class µ of
cocharacters Gm,F → GF over the algebraic closure F of F . We denote by µ+ ∈ X∗(T ) the
dominant representative of this conjugacy class, and by µ the image of µ+ in the coweight lattice
X∗ = X∗(T )Γ0 , i.e., the translation lattice of the Iwahori–Weyl group. Cf. [10, §2.2].

We also fix a (representative in Ğ of a) length 0 element τ ∈ W̃ whose σ-conjugacy class is
the unique basic element in B(G, µ).

Denote by Xw(b) the affine Deligne–Lusztig variety for w ∈ W̃ and b ∈ Ğ, a subvariety of the

affine flag variety for G, Xw(b) = {gĬ ∈ Ğ/Ĭ; g−1bσ(g) ∈ ĬwĬ}.
Let π = πK : Ğ/Ĭ → Ğ/K̆ denote the projection from the affine flag variety to the partial

affine flag variety of level K (K̆ denotes the standard parahoric subgroup of type K). Recall
that

Adm(µ) = {w ∈ W̃ ; w 6 tx(µ) for some x ∈W0}
denotes the µ-admissible set. By definition,

X(µ, τ)K = {gK̆ ∈ Ğ/K̆; g−1τσ(g) ∈ K̆Adm(µ)K̆}.

We write KAdm(µ) = Adm(µ)∩KW̃ for the subset of Adm(µ) consisting of all elements which
are of minimal length in their right WK-coset. Below, we sometimes write XK,w(τ) = π(Xw(τ)).

It is shown in [16], [8] that

X(µ, τ)K =
⊔

w∈KAdm(µ)

π(Xw(τ)).

The subsets π(Xw(τ)) are called the EKOR strata of X(µ, τ)K .
Let us recall the following characterization of fully Hodge–Newton decomposable pairs (G, µ)

(see [9, Def. 3.1]).
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Theorem 2.2. ([9, Thm. B]) The pair (G, µ) is fully Hodge–Newton decomposable, if the
following equivalent conditions are satisfied:

(1) The coweight µ is minute ([9, Def. 3.2]).

(2) For every w ∈ KAdm(µ) with Xw(τ) 6= ∅, we have that Wsuppσ(w) is finite.

Note that this property, as shown by condition (1), is independent of K, and depends only
on the Coxeter datum (Wa, σ, µ). Set

KAdm(µ)0 = {w ∈ Adm(µ) ∩ KW̃ ;Wsuppσ(w) is finite}.

Then we can rewrite condition (2) as

X(µ, τ)K =
⊔

w∈KAdm(µ)0

π(Xw(τ)).

Definition 2.3. We say an element w ∈ Waτ is a σ-Coxeter element (or is a twisted Coxeter

element) if from each Ad(τ) ◦ σ-orbit on S̃ at most one simple reflection appears in some (or
equivalently, any) reduced expression of wτ−1.

We denote by K Cox(µ) ⊂ KAdm(µ)0 the subset of KAdm(µ)0 consisting of σ-Coxeter ele-
ments.∗ If K = ∅, then we may simply omit the superscript and write Adm(µ)0 and Cox(µ).
We define

Definition 2.4. We say that the triple (G, µ,K) or the corresponding quadruple (Wa, µ, σ,K)
is of Coxeter type if (Wa, σ, µ) is fully Hodge-Newton decomposable and K Cox(µ) = KAdm(µ)0.

Note that this is the same definition as given in the introduction. Furthermore, this definition
is equivalent to the one in [8, §5.1]. In fact, the definition in loc. cit. is easily seen to be equivalent
to saying that

X(µ, b)K =
⊔

w∈K Cox(µ)

π(Xw(b)).

The equivalence of the two definitions then follows from (2) in Theorem 2.2.

Remark 2.5. Let K ⊂ K ′ be proper σ-stable subsets of S̃. If (Wa, σ, µ,K) is of Coxeter type,
then K Cox(µ) = KAdm(µ)0 and

K′ Cox(µ) = K Cox(µ) ∩ K
′
W̃ = KAdm(µ)0 ∩ K

′
W̃ = K′Adm(µ)0.

Hence (Wa, σ, µ,K
′) is of Coxeter type.

2.4. The Bruhat–Tits stratification. Let (G, µ) be fully Hodge–Newton decomposable. As
pointed out above, we have

X(µ, τ)K =
⊔

w∈KAdm(µ)0

π(Xw(τ)),

where as before π : Ğ/Ĭ → Ğ/K̆ denotes the projection from the full affine flag variety to the
partial affine flag variety of type K.

For each w ∈ KAdm(µ)0, we have

π(Xw(τ)) =
⊔

j∈J(F )/(J(F )∩Pw)

jY (w),

where Y (w) is a classical Deligne-Lusztig variety in a (finite-dimensional) flag variety and Pw is

an Ad(τ) ◦ σ-stable parahoric subgroup of Ğ attached to w by an explicit recipe.
More precisely, denote by P[w the standard parahoric subgroup generated by suppσ(w), and by

K̆ ⊂ Ğ the standard parahoric subgroup of type K. The projection π restricts to an isomorphism
from {gĬ; g ∈ P[w, g−1τσ(g) ∈ ĬwĬ} onto its image Y (w). So Y (w) is isomorphic to the classical

Deligne–Lusztig variety attached to wτ−1 in the (finite-dimensional) flag variety P[w/Ĭ, for the
Frobenius given by Ad(τ) ◦ σ.

∗This set was denoted EOKσ,cox in [8].
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The parahoric subgroup Pw is the standard parahoric generated by suppσ(w) and I(K,w, σ).
Here I(K,w, σ) is the maximal Ad(w) ◦ σ-stable subset of K. Then [9, Prop. 5.7] shows that
Wsuppσ(w)∪I(K,w,σ) is finite. Furthermore, we have the following simple description:

Lemma 2.6. Suppose that w is a σ-Coxeter element in Wsuppσ(w). Then I(K,w, σ) is the set

of all s ∈ S̃− suppσ(w) with the following two properties:

(a) s commutes with every element of suppσ(w), and

(b) the Ad(τ) ◦ σ-orbit of s is contained in K.

Proof. It is shown in [8, Lemma 4.6.1] that every element s ∈ I(K,w, σ) commutes with all
elements of suppσ(w), and that I(K,w, σ) ∩ suppσ(w) = ∅. It remains to show that I(K,w, σ)

is Ad(τ) ◦ σ-stable, and that every element of S̃ − suppσ(w) which satisfies (a) and (b) lies in
I(K,w, σ).

By definition, I(K,w, σ) is Ad(w) ◦ σ-stable. It is also Ad(wτ−1)-stable by property (a). It
follows that I(K,w, σ) is Ad(τ) ◦ σ-stable.

Now let s ∈ S̃−suppσ(w) such that (a) and (b) hold. We need to show that (Ad(w)◦σ)i(s) ∈ K
for all i > 1. But (a) ensures that Ad(wτ−1)−1(s) = s, so Ad(w) ◦ σ(s) = Ad(τ) ◦ σ(s), and this
is an element of K by (b). Since Ad(τ)◦σ(s) again satisfies (a) and (b), we can apply induction,
and the lemma follows. �

In terms of the Dynkin diagram we can express this as saying that I(K,w, σ) is the union of
those Ad(τ) ◦ σ-orbits in K in which no element is connected to any vertex in suppσ(w).

See also [8, Cor. 4.6.2, Section 7.2], cf. also [9, Section 5.10] for further details.
Putting together these stratifications for all the different w, we obtain the decomposition

of X(µ, τ)K as a union of classical Deligne–Lusztig varieties “in a natural way”. We call this
stratification the weak Bruhat–Tits stratification.

The closure relations between strata are given as follows (cf. [8, Sections 3.3 and 7]). The
closure of a stratum jY (w) contains a stratum j′Y (w′) if and only if

(1) w′ 6K,σ w which means by definition that there exists u ∈ WK such that u−1w′σ(u) 6 w,
and

(2) j′(J(F ) ∩ Pw′) ∩ j(J(F ) ∩ Pw) 6= ∅.
We can express the second condition in an equivalent way in terms of the building, as follows
(see [8, Erratum, Prop. 7.2.2]). We identify the set

{h ∈ J(F )/J(F ) ∩ Pw; κ̆(h) = κ̆(j)}
with the set of simplices of type Pw in the rational building of J, and similarly for w′. Then (2)
above is equivalent to requiring that κ̆(j′) = κ̆(j) and that the simplices attached to j and j′

via the above identification are contained in the closure of some alcove.
If moreover (G, µ,K) is of Coxeter type, then this stratification has further nice properties.

Proposition 2.7. Let (G, µ,K) be of Coxeter type. Let w,w′ ∈ KAdm(µ)0. The following are
equivalent:

(1) w′ 6 w (where 6 denotes the Bruhat order),

(2) w′ 6K,σ w (where 6K,σ is the partial order arising in the above description of the closure
relations between strata),

(3) the inclusion supp(w′τ−1) ⊆ supp(wτ−1) holds,

(4) the inclusion suppσ(w′) ⊆ suppσ(w) holds.

In particular, for w,w′ ∈ K Cox(µ) with w 6= w′ we have suppσ(w′) 6= suppσ(w).

Note that by definition, we automatically have (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4). The
nontrivial part is (4) ⇒ (1), which follows by analyzing all Coxeter type cases in Section 4
and the explicit description of Cox(µ)K . See Section 6.1.2 for some detailed discussion for the
Drinfeld case.

We have the following consequence.

Corollary 2.8. Let (G, µ,K) be of Coxeter type. The set suppσ(w)∪ I(K,w, σ) determines the
element w ∈ Cox(µ). Hence for w,w′ ∈ K Cox(µ) with w 6= w′ we have J(F )∩Pw 6= J(F )∩Pw′ .
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Proof. By the proposition above, w is determined by suppσ(w). So it is enough to show that we

can recover suppσ(w) from the union suppσ(w) ∪ I(K,w, σ). Since w ∈ KW̃ , every connected

component of suppσ(w) must meet S̃−K. On the other hand, by definition we have I(K,w, σ) ⊆
K. Therefore the σ-support of w consists exactly of those connected components of the union
suppσ(w) ∪ I(K,w, σ) which intersect S̃−K. �

By Corollary 2.8, if (G, µ,K) is of Coxeter type, then the index set
⊔
w J(F )/(J(F )∩Pw) of

the weak BT stratification can be seen as a subset of the set of all simplices in the Bruhat–Tits
building of J over F (up to fixing the connected component, i.e., the image under κ̆). In view
of these particularly favorable properties, we call the resulting stratification the Bruhat–Tits
stratification of X(µ, τ)K .

3. Some dimension formulas

We first prove (in Section 3.2) the following inequality on the dimension of affine Deligne-

Lusztig varieties. As before, τ is a fixed representative of a length 0 element in W̃ whose
σ-conjugacy class is the basic element in B(G, µ).

Proposition 3.1. Let w ∈Waω with ω ∈ Ω such that Xw(τ) 6= ∅. Then

dimXw(τ) > ]{(Ad(ω) ◦ σ)-orbits on suppσ(w)}.

3.1. Deligne-Lusztig reduction. We first recall the Deligne-Lusztig reduction method.

Let x, x′ ∈ W̃ and s ∈ S̃. We write x
s−→σ x′ if x′ = sxσ(s) and `(x′) 6 `(x). We write

x →σ x
′ if there exists a sequence x0, x1, . . . , xr in W̃ and a sequence s1, s2, . . . , sr in S̃ such

that x = x0
s1−→σ x1

s2−→σ · · ·
sr−→σ xr = x′. We write x ≈σ x′ if x→σ x

′ and x′ →σ x.
Theorem 3.2. [17] For each x ∈ W̃ there exists an element y ∈ W̃ which is of minimal length
inside its σ-conjugacy class such that x→σ y;

The following theorem, which is referred to as the reduction á la Deligne and Lusztig, is proved
in [4, proof of Theorem 1.6] (parts (i) and (ii)) and [15, Theorem 4.8], see also [7, Corollary 2.5.3].

Theorem 3.3. Let b ∈ Ğ. Let x, x′ ∈ W̃ such that x
s−→σ x

′ for some s ∈ S̃.

(i) if `(x) = `(x′), then dimXx(b) = dimXx′(b);

(ii) if `(x) > `(x′), then dimXx(b) = 1 + max{dimXx′(b),dimXsx(b)};
(iii) if x is of minimal length in its σ-conjugacy class, then Xx(b) 6= ∅ if and only if ẋ ∈ [b], in

which case, dimXx(b) = `(x)− 〈ν̄b, 2ρ〉, where ν̄b denotes the Newton vector of b.

3.2. Proof of Proposition 3.1. We argue by induction on the length of w. If w is of minimal
length in its σ-conjugacy class, by Theorem 3.3, dimXw(τ) = `(w) and the statement follows.

Otherwise, by Theorem 3.2, there exist u ∈ W̃ and s ∈ S̃ such that w ≈σ u and suσ(s) < u.
Thus, suppσ(u) = suppσ(w) and

suppσ(u)− {(Ad(ω) ◦ σ)i(s); i ∈ Z} ⊆ suppσ(suσ(s)).

Moreover, dimXw(τ) = dimXu(τ) and either Xsuσ(s)(τ) 6= ∅ or Xsu(τ) 6= ∅. Let us assume
that the former case occurs; the proof in the other case is basically the same. By induction
hypothesis,

dimXw(τ) = dimXu(τ) > 1 + dimXsuσ(s)(τ)

> 1 + ]{(Ad(ω) ◦ σ)-orbits on suppσ(suσ(s))}
> 1 + ]{(Ad(ω) ◦ σ)-orbits on suppσ(u)} − 1

= ]{(Ad(ω) ◦ σ)-orbits on suppσ(u)}
= ]{(Ad(ω) ◦ σ)-orbits on suppσ(w)}.
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3.3. A general dimension bound. For any reductive group H over F , we denote by rankss
F (H)

the semi-simple F -rank of H. By [25, §1.9], if our group G is quasi-simple over F , then

rankss
F (Jτ ) = ]{(Ad(τ) ◦ σ)-orbits on S̃} − 1.

Corollary 3.4. Let w ∈ W̃ with suppσ(w) = S̃ and Xw(τ) 6= ∅. Then dimXw(τ) > rankss
F (Jτ ).

Proof. Let ω ∈ Ω such that w ∈Waω. As Xw(τ) 6= ∅, there exists ε ∈ Ω such that ε−1ωσ(ε) = τ .
This implies that rankss

F (Jω) = rankss
F (Jτ ). The result thus follows from Proposition 3.1. �

Now we prove the main result of this section.

Theorem 3.5. Suppose that µ is non-central in every simple factor of the adjoint group Gad

over F . Then
dimX(µ, τ)K > rankss

F (Jτ ).

If moreover the equality holds, then (G, µ) is fully Hodge-Newton decomposable.

Proof. We may reduce to the case where G is quasi-simple over F and that it is semisimple of
adjoint type. Under this assumption, we have

GF̆ = G1 × · · · ×Gr, (3.1)

where each Gi is a simple reductive group over F̆ , and σ(Gj) = Gj+1 for all j. Here we set

Gr+1 = G1. Write S̃ = S̃1 t · · · t S̃r and µ = (µ
1
, . . . , µ

r
) with respect to the decomposition

above. For J ⊆ S̃ we set Jj = J ∩ S̃j . We may write ρ as ρ = ρ1 + . . . + ρl, where ρi is the

half sum of positive roots corresponding to the root system associated to S̃i. We also have that
Ω = Ω1 × . . .× Ωl. We write τ = (τ1, . . . , τl), where τi ∈ Ωi.

It is easy to see that `(tµ1) = 〈µ1, 2ρ1〉 > ]S̃1 > rankss
F (Jτ ). Let ξ = (ξ1, . . . , ξl) ∈ W0 · µ

such that tξ ∈ KW̃ . We choose a reduced expression tξ = τsi1 · · · sik of tξ. Let w = τsi1 · · · sim ,

where m = rankss
F (Jτ ). Then w 6 tξ and w ∈ KW̃ . Hence w ∈ KAdm(µ). Since `(w) =

m < ]{(Ad(τ) ◦ σ)-orbits on S̃}, the Weyl group Wsuppσ(w) is finite and hence dimXK,w(τ) =
dimXw(τ) = `(w). Thus dimX(µ, τ)K > `(w) = m.

Now we assume that dimX(µ, τ)K = rankss
F (Jτ ). Let w ∈ KAdm(µ) such that K ·σ IwI∩[τ ] 6=

∅, that is, IwI ∩ [τ ] 6= ∅ or in other words, Xw(τ) 6= ∅. Then dimXw(τ) = dimXK,w(τ) 6
dimX(µ, τ)K = rankss

F (Jτ ). By Corollary 3.4, we have suppσ(w) ( S̃ and hence K ·σ IwI ⊆ [τ ].
Noticing that

K Adm(µ)K = tw∈KAdm(µ)K ·σ IwI,
we deduce that

K Adm(µ)K ∩ [τ ] =
⊔

w∈KAdm(µ),]Wsuppσ(w)<∞

K ·σ IwI. (3.2)

By Section 2.3, (G, µ) is fully Hodge-Newton decomposable. �

4. Classification

Note that the fully Hodge-Newton decomposable cases are classified in [9]. By further study-
ing these cases via a case-by-case analysis, one may get a classification of the Coxeter types.
However, there is a more direct approach (without using the classification of the Hodge-Newton
decomposable cases). This approach classifies the cases where dimX(µ, τ)K = rankss

F (Jτ ), and
in particular, by analyzing all these cases, we show that this equality implies that (G, µ,K) is
of Coxeter type and thus we obtain a classification of the Coxeter types. This is what we will
do in this section.

We may assume that G is quasi-simple over F , and that it is semisimple of adjoint type (cf. [9,
Section 3.3]). Under this assumption, we have

GF̆ = G1 × · · · ×Gr, (4.1)

where each Gi is a simple reductive group over F̆ , and σ(Gj) = Gj+1 for all j. Here we set

Gr+1 = G1. Write S̃ = S̃1 t · · · t S̃r and µ = (µ
1
, . . . , µ

r
) with respect to the decomposition

above. For J ⊆ S̃ we set Jj = J ∩ S̃j .
We assume further each factor µ

j
is non-central.
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Recall that Φ denotes the unique reduced root system underlying the relative root system of
G over F̆ (the échelonnage root system).

4.1. Admissible triples. Let s ∈ S̃. If s ∈ W0, set αs to be the simple root corresponding
to s. Otherwise, set αs = −θ, where θ ∈ Φ+ is the highest root of the j-component of the
decomposition (4.1), where s ∈ S̃j ; then s = tθ

∨
sθ. Let J ⊆ S̃ such that WJ is finite. We denote

by ΦJ the root system spanned by αs for s ∈ J .
Let p : W̃ o 〈σ〉 → GL(X∗ ⊗ R) be the natural projection.

Lemma 4.1. For λ ∈ X∗ we have tλ ∈ KW̃ if and only if 〈λ, αs〉 > 0 for all s ∈ K. In

particular, there exists ξ ∈W0 · µ such that tξ ∈ KW̃ .

Proof. The first statement follows immediately from the definitions. For the second one, notice
that {αs; s ∈ K} is the set of simple roots for ΦK whose Weyl group is p(WK) ⊆ W0. Thus,
each p(WK)-orbit in W0 ·µ contains a unique cocharacter ξ such that 〈ξ, αs〉 > 0 for s ∈ K, that

is, tξ ∈ KW̃ as desired. �

Let ξ ∈ W0 · µ and let J ( S̃ be a maximal proper σ-stable subset. Let ξJ ∈ RΦ∨J be such
that 〈ξJ , α〉 = 〈ξ, α〉 for α ∈ ΦJ . We denote by ξ�J the p(σ)-average of ξJ .

Definition 4.2. We say the triple (ξ, J,K) with K = σ(K) ⊆ J is admissible if tξ ∈ KW̃ and
ξ�J ∈ RΦ∨K .

In this case, we define

Kξ = ∪C ∪i∈Z σi(C) ⊆ K,
where C ranges over the connected components C of K on which the p(σ)-average ξ� is nonzero.
In other words, Kξ is the minimal σ-stable subset of K such that ξ�J ∈ RΦ∨Kξ .

Lemma 4.3. Let (ξ, J,K) be an admissible triple. Then there exists some σ-Coxeter element
c ∈WKξ such that

`(tξc) = `(tξ)− `(c) = 〈µ, 2ρ〉 − ]{σ-orbits of Kξ}.

In particular, tξc ∈ KW̃ ∩Adm(λ) and the Newton point of tξc is central.

Proof. The existence of c such that `(tξc) = `(tξ)− `(c) and hence tξc ∈ KW̃ ∩Adm(λ) follows
exactly along the same lines as [9, Lemma 6.4, Proposition 6.7]. It remains to show that the
Newton point of tξc is central. By the proof of [9, Lemma 6.4], it suffices to show that the
p(cσ)-average ν of ξJ is zero. Write ξJ = v′ + v′′ such that v′′ ∈ RΦ∨Kξ and v′ is orthogonal

to RΦ∨Kξ . As c is a σ-Coxeter element of WKξ , we see that p(cσ) − id is invertible on RΦ∨Kξ ,

which means that ν equals the p(σ)-average of v′. In particular, ν is orthogonal to RΦ∨Kξ . On

the other hand, ν − ξ�J ∈ RΦ∨Kξ . By assumption, ξ�J ∈ RΦ∨Kξ , which means ν ∈ RΦ∨Kξ and ν = 0

as desired. �

Lemma 4.4. Suppose that dimX(µ, τ)K = rankss
F (Jτ ) and that (ξ, J,K ′) is an admissible triple

such that K ′ ⊇ K. Then

〈µ, 2ρ〉 6 ]{σ-orbits of K ′ξ}+ rankss
F (Jτ ). (a)

Proof. Let c be as in Lemma 4.3. Then we need to show that `(tξc) 6 rankss
F (Jτ ). But our

assumption implies, by Theorem 3.5, that (G, µ) is fully Hodge–Newton decomposable, and
hence we have `(tξc) = dimXtξc(τ) (note that this is an easy consequence of (3.2) and does not
require the use of classification results).

Altogether we obtain

`(tξc) = dimXtξc(τ) 6 dimX(µ, τ)K = rankss
F (Jτ ),

as desired. �

Given a σ-stable subset K ⊆ S̃ with WK finite, it follows from Lemma 4.1 that there always
exists some admissible triple (ξ, J,K).
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Corollary 4.5. If dimX(µ, τ)K = rankss
F (Jτ ), then

〈µ, 2ρ〉 6 rankss
F (G) + rankss

F (Jτ ). (b)

In particular,
〈µ, 2ρ〉 6 2 rankss

F
(G). (c)

We can now state the following equivalent characterizations of being of Coxeter type. Note
that there is an obvious notion of product of Coxeter data. We call a Coxeter datum irreducible,
if it cannot be decomposed as a product in a non-trivial way.

Theorem 4.6. Consider an enhanced Tits datum (G, µ,K) with corresponding enhanced Cox-
eter datum (Wa, σ, µ,K). Assume that all components of µ as in (4.1) are non-central. The
following conditions are equivalent:

(1) The enhanced Tits datum (G, µ,K) is of Coxeter type;

(2) We have that dimX(µ, τ)K = rankss
F (Jτ );

(3) For any admissible triple (ξ, J,K ′) with K ′ ⊇ K, we have that

〈µ, 2ρ〉 6 ]{σ-orbits of K ′ξ}+ rankss
F (Jτ ).

(4) The enhanced Coxeter datum (Wa, σ, µ,K) is a product of irreducible enhanced Coxeter
data, where for each factor the Coxeter datum is one of those listed in Table 1, and the level
structure K contains the minimal one listed in that table. See Section 2.2.1 for the notation.

From Theorem 3.5 we immediately get:

Corollary 4.7. If (G, µ,K) is of Coxeter type, then (G, µ) is fully Hodge–Newton decomposable.

4.2. Strategy. In Table 1, we list the minimal irreducible enhanced Coxeter data (up to isomor-
phism) satisfying condition (3) of Theorem 4.6 together with the set KAdm(µ)0. It is easy to see

that in all these cases, KAdm(µ)0 = K Cox(µ). Therefore, we also have K′Adm(µ)0 = K′ Cox(µ)
for all K ′ ⊃ K. This shows (4) ⇒ (1). Note that (1) ⇒ (2) is obvious and (2) ⇒ (3) follows
from Lemma 4.4. It remains to show that (3)⇒ (1).

Note that the condition (3), although a bit technical, is the most elementary one among the
three conditions and only involves the root system. In the rest of the section, we will analyze
the condition (3), and give a classification of the irreducible enhanced Coxeter data that satisfy
this condition, and finally show that those cases are of Coxeter type. This finishes the direction
(3)⇒ (1).

Our strategy is as follows.
In step (I), we show that the condition (3) implies that the Coxeter datum (Wa, σ, µ) is one

of those listed in Table 2. This is done by the inequalities (b) and (c) in Corollary 4.5 in most of
the cases. The only exception is in Type D, where in some cases we have to use the full strength
of condition (3).

Note that the cases in this table are the fully Hodge-Newton decomposable cases. We will
then further analyze these cases and give a complete classification.

In step (II), we show that the condition (3) implies that for the Coxeter datum in the Table
above, the parahoric subgroup K must be as specified in Theorem 4.6/Table 1.

4.3. Step (I): The Coxeter datum (W̃ , σ, µ). Recall the decomposition (4.1). We will argue

on the type of the irreducible affine Dynkin diagram S̃j , which does not depend on j. For i ∈ S̃j
we denote by ω∨i,j the corresponding fundamental coweight in Gj . If r = 1, we write ω∨i = ω∨i,1
for simplicity.

4.3.1. Exceptional types. We use the inequality (c) to exclude all the exceptional types.

Type Ẽ6: 〈µ, 2ρ〉 > 〈ω∨1,j , 2ρ〉 = 16 > 2× 6.

Type Ẽ7: 〈µ, 2ρ〉 > 〈ω∨7,j , 2ρ〉 = 27 > 2× 7.

Type Ẽ8: 〈µ, 2ρ〉 > 〈ω∨8,j , 2ρ〉 = 58 > 2× 8.

Type F̃4: 〈µ, 2ρ〉 > 〈ω∨4,j , 2ρ〉 = 16 > 2× 4.

Type G̃2: 〈µ, 2ρ〉 > 〈ω∨2,j , 2ρ〉 = 6 > 2× 2.
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Enhanced Coxeter datum

(W̃ , σ, µ,K)

KAdm(µ)0

(Ãn−1, id, ω
∨
1 , ∅) {τ}

(Ãn−1, %n−1, ω
∨
1 , ∅) Adm(µ)

(Ã2m, ς0, ω
∨
1 , S̃− {0}) {s−1

[2m+1,i]τ ; m+ 2 6 i 6 2m+ 2}

(Ã2m+1, ς0, ω
∨
1 , S̃− {0,m+ 1}) {s[2m+2,2m+2−i]s[m+1,m+1−j]τ ;

i, j > −1 with i+ j 6 m− 2}

(Ã1, id, 2ω
∨
1 , ∅) {1, s0, s1}

(Ãn−1, id, ω
∨
1 + ω∨n−1, S̃− {0}) for n > 3 {1} t {s[n,i]s

−1
[j+1,1]; 0 6 j + 1 < i 6 n}

(Ãn−1 × Ãn−1,
1ς0, (ω

∨
1 , ω

∨
n−1),t2

i=1(S̃i − {0})) {(s[n,i], s
−1
[j,0])τ ; 0 6 j + 1 < i 6 n+ 1}

(Ã3, id, ω
∨
2 , {1, 2}) {τ, s0τ, s3τ}

(Ã3, ς0, ω
∨
2 , S̃− {0}) {τ, s0τ, s0s1τ, s0s3τ}

(B̃n, id, ω
∨
1 , S̃− {0, n}) {τs−1

[i,1]s[n,j]; 0 6 i 6 j − 2 6 n− 1}

(B̃n,Ad(τ1), ω∨1 , S̃− {n}) {τ, snτ, . . . , snsn−1 · · · s2τ,

snsn−1 · · · s2s1τ, snsn−1 · · · s2s0τ}

(C̃n, id, ω
∨
1 , S̃− {0, n}) {s−1

[i,0]s[n,j]; −1 6 i 6 j − 2 6 n− 1}

(C̃2, id, ω
∨
2 , {0}) {τ, s1τ, s2τ}

(C̃2,Ad(τ2), ω∨2 , {0, 2}) {τ, s1τ, s1s2τ, s1s0τ}

(D̃n, id, ω
∨
1 , S̃− {0, n}) {τs−1

[i,1]s[n−1,j]; 0 6 i 6 j − 2 6 n− 2}

(D̃n, ς0, ω
∨
1 , S̃− {0}) {τ, τs1, · · · , τs1s2 · · · sn−2,

τs1s2 · · · sn−2sn−1, τs1s2 · · · sn−2sn}

Table 1. The irreducible enhanced Coxeter data of Coxeter type (with the
minimal level structure), up to isomorphism.

Notation: In type Ãn−1, by convention we set sn = s0. We use the labeling
of the affine Dynkin diagram as in [2]. Set s[a,b] = sasa−1 · · · sb if a > b, and
s[a,b] = 1 otherwise.

Now we come to the classical groups.

4.3.2. Type Ãn−1. By applying a suitable automorphism, we may assume that Ki ⊂ S̃i − {0}.
By (b) we deduce that (up to isomorphism) one of following cases occurs:

(1) r = 1 and µ ∈ {ω∨k ; 1 6 k 6 n− 1};
(2) r = 1 and µ ∈ {2ω∨1 , ω∨1 + ω∨n−1, 2ω

∨
n−1};

(3) r = 2 and µ = ω∨1,1 + ω∨n−1,2.
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In the last two cases, we have by (b) that rankss
F (G) = rankss

F (Jτ ) = n− 1, which means that
µ = ω∨1 + ω∨n−1 (which equals 2ω∨1 if n = 2) and σ = id or µ = ω∨1,1 + ω∨n−1,2 and σ = 1ς0.

Now we assume r = 1. Suppose µ = ω∨i for some 1 6 i 6 n− 1. Notice that rankss
F (J1) 6 n

2

(resp. rankss
F (Jτ ) 6 n

2 ) if σ 6= id (resp. Ad(τ) ◦ σ 6= id). So either µ ∈ {ω∨1 , ω∨n−1} or µ = ω∨2
with n = 4.

Suppose µ = ω∨1 and σ = Ad(τk) for 0 6 k 6= n− 1. Then by (b) we have

n− 1 = 〈µ, 2ρ〉 6 rankss
F (G) + rankss

F (Jτ ) = gcd(n, k)− 1 + gcd(n, k + 1)− 1,

which implies k = n− 1 or k = 0. Otherwise, we deduce that (up to isomorphism) σ = ς0.
Suppose µ = ω∨2 and n = 4. We have (up to isomorphism) σ = id, or σ = ς0, or σ = Ad(τ1),

or σ = Ad(τ1) ◦ σ0. The last case does not occur since (b) fails.

4.3.3. Type B̃n for n > 3. Here 〈ω∨i,j , 2ρ〉 = i(2n− i). Therefore 〈µ, 2ρ〉 6 2n implies that r = 1
and µ = ω∨1 . In this case σ = id or σ = Ad(τ1).

4.3.4. Type C̃n for n > 2. Here

〈ω∨i,j , 2ρ〉 =

{
i(2n− i+ 1), if i 6 n− 1;
n(n+1)

2 , if i = n.

Therefore 〈µ, 2ρ〉 6 2n implies that r = 1 and either µ = ω∨1 or µ = ω∨n with n 6 3.
If µ = ω∨1 , then 〈µ, 2ρ〉 = 2n and hence rankss

F (Jτ ) = n. Therefore σ = id.
For n = 2 and µ = ω∨2 , we have σ = id or σ = Ad(τ2).
For n = 3 and µ = ω∨3 , we have 〈µ, 2ρ〉 = 6 and hence rankss

F (Jτ ) = 3. Therefore, σ = Ad(τ3)
and 〈µ, 2ρ〉 = 6 > 4 = rankss

F (G) + rankss
F (Jτ ), contradicting (b).

4.3.5. Type D̃n for n > 4. Here

〈ω∨i,j , 2ρ〉 =

{
i(2n− i− 1), if i 6 n− 2;
n(n−1)

2 , if i = n− 1 or n.

Therefore 〈µ, 2ρ〉 6 2n implies that r = 1 and (up to isomorphism) either µ = ω∨1 or µ = ω∨n
with n = 5.

If n = 5 and µ = ω∨5 , we have 〈µ, 2ρ〉 = 10 and hence rankss
F (Jτ ) = 5. Therefore σ = Ad(τ4).

But 〈µ, 2ρ〉 = 10 > 6 = rankss
F (G) + rankss

F (Jτ ), contradicting (b).
If µ = ω∨1 , then 〈µ, 2ρ〉 = 2(n − 1) and rankss

F (Jτ ) > n − 2. Thus we have σ = id, σ = σ0

or σ = Ad(τ1). Suppose σ = Ad(τ1) and i /∈ K for some 1 6 i 6 n − 1. Let J = S̃ − {i, σ(i)}.
Let ξ = µ if i = 1 and ξ = si · · · s2s1(µ) if 2 6 i 6 n − 1. Then Jξ = ∅ if i ∈ {1, n − 1} and
Jξ = {i+ 1, . . . , n− 1, n} otherwise. Hence (a) fails for the admissible triple (ξ, J, J).

In Table 2 we list the remaining cases together with the σ-orbits and the Ad(τ) ◦ σ-orbits on

S̃. This information will be used in the case-by-case analysis in the remainder of this section.

4.4. Step (II): Exclude certain K.

4.4.1. (Wa, σ, µ) = (Ã2m, ς0, ω
∨
1 ). If K 6= S̃ − {0}, then K ⊆ J = S̃ − {i, 2m + 1 − i} for some

1 6 i 6 m. Let ξ = sisi−1 · · · s1(µ) = (0, · · · , 0, 1, 0, · · · , 0) with the (i + 1)-th entry equal to
1. Then Jξ = {i + 1, i + 2, . . . , 2m − i}. Hence the inequality (a) fails for the admissible triple
(ξ, J, J).

4.4.2. (Wa, σ, µ) = (Ã2m+1, ς0, ω
∨
1 ). If S̃−{0,m+ 1} * K, then K ⊂ J = S̃−{i, 2m+ 2− i} for

some 1 6 i 6 m. Let ξ = sisi−1 · · · s1(µ) = (0, · · · , 0, 1, 0, · · · , 0) with the (i+ 1)-th entry equal
to 1. Then Jξ = {i+ 1, i+ 2, . . . , 2m+ 1− i}. Hence the inequality (a) fails for the admissible
triple (ξ, J, J).
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Types σ-orbits Ad(τ) ◦ σ-orbits

(Ãn−1, id, ω
∨
1 ) {i}, 0 6 i 6 n− 1 S̃

(Ãn−1, %n−1, ω
∨
1 ) S̃ {i}, 0 6 i 6 n− 1

(Ã2m, ς0, ω
∨
1 ) {0}, {i, 2m+ 1− i},

1 6 i 6 m
{m+ 1}, {i, 2m+ 2− i}
1 6 i 6 m
(We set s2m+1 = s0.)

(Ã2m+1, ς0, ω
∨
1 ) {0}, {m+ 1},

{i, 2m+ 2− i}
1 6 i 6 m

{i, 2m+ 3− i},
1 6 i 6 m+ 1
(We set s2m+2 = s0.)

(Ã2m+1, %n−1 ◦ ς0, ω∨1 ) {i, 2m+ 3− i},
1 6 i 6 m
(We set s2m+2 = s0.)

{0}, {m+ 1},
{i, 2m+ 2− i}
1 6 i 6 m

(Ãn−1, id, ω
∨
1 + ω∨n−1)

for n > 3
{i}, 0 6 i 6 n− 1 {i}, 0 6 i 6 n− 1

(Ãn−1 × Ãn−1,
1ς0, (ω

∨
1 , ω

∨
n−1)) {i} t {i} ⊆ S̃1 t S̃2

for 0 6 i 6 n− 1
{i} t {i− 1} ⊆ S̃1 t S̃2

for 0 6 i 6 n− 1

(Ã1, id, 2ω
∨
1 ) {0}, {1} {0}, {1}

(Ã3, id, ω
∨
2 ) {i}, 0 6 i 6 3 {0, 2}, {1, 3}

(Ã3, ς0, ω
∨
2 ) {0}, {2}, {1, 3} {0, 2}, {1}, {3}

(Ã3, %1, ω
∨
2 ) S̃ S̃

(B̃n, id, ω
∨
1 ) {i}, 0 6 i 6 n {0, 1}, {i}, 2 6 i 6 n

(B̃n,Ad(τ1), ω∨1 ) {0, 1}, {i}
2 6 i 6 n

{i}, 0 6 i 6 n

(C̃n, id, ω
∨
1 ) {i}, 0 6 i 6 n {i}, 0 6 i 6 n

(C̃2, id, ω
∨
2 ) {0}, {1}, {2} {0, 2}, {1}

(C̃2,Ad(τ2), ω∨2 ) {0, 2}, {1} {0}, {1}, {2}

(D̃n, id, ω
∨
1 ) {i}, 0 6 i 6 n {0, 1}, {n− 1, n},

{i}, 2 6 i 6 n− 2

(D̃n, ς0, ω
∨
1 ) {n− 1, n}, {i}

0 6 i 6 n− 2
{0, 1}, {i}, 2 6 i 6 n

Table 2

4.4.3. (Wa, σ, µ) = (Ã2m+1, %n−1 ◦ ς0, ω∨1 ). After applying a suitable inner diagram automor-

phism, we may assume that K ⊆ J = S̃ − {i, 2m + 1 − i} for some 1 6 i 6 m. Let
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ξ = sisi−1 · · · s1(µ) = (0, . . . , 0, 1, 0 . . . , 0) otherwise, where the (i + 1)-th entry equals 1. Then
Jξ = {i+ 1, i+ 2, · · · , 2m− i} otherwise. Hence the inequality (a) fails for the admissible triple
(ξ, J, J).

4.4.4. (Wa, σ, µ) = (Ãn−1, id, ω
∨
1 + ω∨n−1) for n > 3. If |K| < n − 1, then after applying the

diagram automorphism ς0, we may assume that K ⊆ K ′ := S̃ − {0, i} for some 1 6 i 6 n − 2.

Let J = S̃ − {0} and ξ = sisi−1 · · · s1(µ) = (0, · · · , 0, 1, 0, · · · , 0,−1) with the (i + 1)-th entry
equal to 1 and the n-th entry equal to −1. Then K ′ξ = {i + 1, i + 2, . . . , n − 1}. Hence the

inequality (a) fails for the admissible triple (ξ, J,K ′).

4.4.5. (Wa, σ, µ) = (Ãn−1 × Ãn−1,
1ς0, ω

∨
1,1 + ω∨n−1,2). If |K1| < n − 1, then after applying a

suitable inner diagram automorphism, we may assume that K1 ⊆ S̃1 − {0, i} for some 1 6 i 6
n − 1. Let J = σ(J) such that J1 = S̃1 − {0} and ξ = (ξ1, ξ2), where ξ2 = (0, . . . , 0,−1) and
ξ2 = (0, · · · , 0, 1, 0, · · · , 0) with the (i+1)-th entry equal to 1. Then Jξ = {i+1, i+2, . . . , n−1}.
Hence the inequality (a) fails for the admissible triple (ξ, J, J).

4.4.6. (Wa, σ, µ) = (Ã3, id, ω
∨
2 ). Suppose K does not contain two consecutive vertices in the

affine Dynkin diagram. Then up to a suitable inner diagram automorphism, we may assume
that K ⊂ K ′ := {1, 3}. Let J = S̃ − {0} and ξ = s2(µ) = (1, 0, 1, 0). Then the inequality (a)
fails for the admissible triple (ξ, J,K ′).

4.4.7. (Wa, σ, µ) = (Ã3, ς0, ω
∨
2 ). Suppose K ⊆ K ′ := {1, 3}. Let J = S̃ − {0} and ξ = s2(µ) =

(1, 0, 1, 0). Then the inequality (a) fails for the admissible triple (ξ, J,K ′).
Suppose K ⊆ J := {0, 2}. Let ξ = s1s2(µ) = (0, 1, 1, 0). Then Jξ = ∅ and hence the inequality

(a) fails for the admissible triple (ξ, J, J).

4.4.8. (Wa, σ, µ) = (Ã3,Ad(τ1), ω∨2 ). The semisimple rank of Jτ is zero and the inequality (b)
fails.

4.4.9. (Wa, σ, µ) = (B̃n, id, ω
∨
1 ). Suppose K ⊆ J := S̃ − {i} with 2 6 i 6 n − 1. Let ξ =

sisi−1 . . . s1(µ) = (0, . . . , 0, 1, 0, . . . , 0) with the (i + 1)-th entry being 1. Then Jξ = {i + 1, i +
2, . . . , n} and hence the inequality (a) fails for the admissible triple (ξ, J, J).

4.4.10. (Wa, σ, µ) = (B̃n,Ad(τ1), ω∨1 ). Suppose K ⊆ J := S̃ − {i} with 2 6 i 6 n − 1. Let
ξ = sisi−1 . . . s1(µ) = (0, . . . , 0, 1, 0, . . . , 0) with the (i + 1)-th entry being 1. Then Jξ = {i +
1, i+ 2, . . . , n} and hence the inequality (a) fails for the admissible triple (ξ, J, J).

Suppose K ⊆ J := S̃−{0, 1}. Then Jµ = ∅ and hence the inequality (a) fails for the admissible

triple (µ, J, J).

4.4.11. (Wa, σ, µ) = (C̃n, id, ω
∨
1 ). If K ⊆ J := S̃−{i} for 1 6 i 6 n−1. Let ξ = sisi−1 . . . s1(µ) =

(0, . . . , 0, 1, 0, . . . , 0) with the (i+ 1)-th entry being 1. Then Jξ = {i+ 1, i+ 2, . . . , n} and hence
the inequality (a) fails for the admissible triple (ξ, J, J).

4.4.12. (Wa, σ, µ) = (C̃2, id, ω
∨
2 ). Suppose K ⊆ K ′ := {1}. Let J = {1, 2} and ξ = s2(µ). Then

the inequality (a) fails for the admissible triple (ξ, J,K ′).

4.4.13. (Wa, σ, µ) = (C̃2,Ad(τ2), ω∨2 ). Suppose K ⊆ J := {1}. Then Jµ = ∅ and hence the

inequality (a) fails for the admissible triple (µ, J, J).

4.4.14. (Wa, σ, µ) = (D̃n, id, ω
∨
1 ). Suppose K ⊆ J := S̃ − {i} for 2 6 i 6 n − 1. Let ξ =

sisi−1 . . . s1(µ) = (0, . . . , 0, 1, 0, . . . , 0) with the (i + 1)-th entry being 1. Then Jξ = {i + 1, i +
2, . . . , n} and hence the inequality (a) fails for the admissible triple (µ, J, J).

Suppose K ⊆ K ′ := S̃− {0, 1}. Let J = S̃− {0} and ξ = s1(µ). Then the inequality (a) fails
for the admissible triple (µ, J,K ′).
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4.4.15. (Wa, σ, µ) = (D̃n, ς0, ω
∨
1 ). Suppose K ⊆ J := S̃ − {i} for 2 6 i 6 n − 2. Let ξ =

sisi−1 . . . s1(µ) = (0, . . . , 0, 1, 0, . . . , 0) with the (i + 1)-th entry being 1. Then Jξ = {i + 1, i +
2, . . . , n} and hence the inequality (a) fails for the admissible triple (µ, J, J).

Suppose K ⊆ K ′ := S̃− {0, 1}. Let J = S̃− {0} and ξ = s1(µ). Then the inequality (a) fails
for the admissible triple (µ, J,K ′).

Suppose K ⊆ J := S̃ − {n − 1, n}. Let ξ = (sn−1 · · · s1(µ) = (0, . . . , 0, 1). Then Jξ = ∅ and
hence the inequality (a) fails for the admissible triple (ξ, J, J).

4.5. Step (III): Final verification. To finish the proof of Theorem 4.6, it only remains to
check in each case that the set KAdm(µ)0 is the set given in Table 1. From the explicit description,
we see that these cases are of Coxeter type. We omit the explicit computations.

5. Consequences for RZ spaces

In this section, we explain consequences of our results for Rapoport–Zink spaces. Also compare
the paper [47] by H. Wang for applications to Shimura varieties.

5.1. Definitions. We consider the situation where F = Qp, and where the pair (G, µ) corre-
sponds to a Rapoport–Zink space. As before, we consider the basic case, i.e., we denote by b the
basic σ-conjugacy class in B(G, µ).

Since there are different constructions of RZ spaces in the PEL case and the more general
case of Hodge type, we will axiomatize the properties that we require, rather than fixing one of
the constructions.

In all cases, the RZ space M(G, µ, b)K is a formal scheme over Ŏ, the ring of integers of F̆ .

We denote by k the residue class field of F̆ , and by a subscript −k indicate the base change to
k.

Note that the results in the previous sections are group-theoretic in nature and hence concern
parahoric level structures, but the known constructions of RZ spaces work for stabilizers of facets
in the Bruhat–Tits building. See the discussion in Section 5.5. To take this possible difference
into account right from the beginning, we change notation as follows: We denote by P the
stabilizers of facets of the base alcove, and by P ◦ the corresponding parahoric.

The setup of the theory entails that P and P ◦ are always defined over F , i.e., fixed by σ.
We denote by GrP◦ the partial affine flag variety for P ◦ (i.e., with k-valued points Ğ/P ◦),

and similarly by GrP the “partial affine flag variety” for P with k-valued points Ğ/P . Let
π : GrP◦ → GrP denote the projection.

Since P ◦ ⊆ P is a normal subgroup, the (finite) quotient group P/P ◦ acts on GrP◦ on the right

by gP ◦ · p = gpP ◦, p ∈ P/P ◦, and GrP is the quotient by this action. Let κ̆ : Ğ→ π0(GrP◦) =
π1(G)Γ0

be the Kottwitz homomorphism. Since P ◦ is the kernel of κ̆|P , and correspondingly,
the parahoric group scheme corresponding to P ◦ is the connected component of the “stabilizer
group scheme” corresponding to P , the restriction of π to any connected component of GrP◦ is
an isomorphism onto a connected component of GrP ; cf. [29, Thm. 1.4, App. Prop. 3]. In other
words, π identifies those connected components which are mapped to each other by P .

In this way, we obtain a perfect scheme GrP with k-valued points Ğ/P and such that the
projection π : GrP◦ → GrP is an isomorphism when restricted to a connected component of
GrP◦ .

We write

XP := X(µ, b)P = {g ∈ GrP ; g−1bσ(g) ∈ P Adm(µ)P},
which also inherits the structure of a perfect scheme.

Similarly as in [9], we consider the following condition:

(♦) For facet stabilizers P ⊂ P ′, we have a projection M(G, µ, b)P → M(G, µ, b)P ′ , and
there are isomorphisms

M(G, µ, b)p
−∞

P,k
∼= X(µ, b)P

of perfect schemes, compatible with the projections for inclusions P ⊂ P ′.



BASIC LOCI 17

The second condition that we need to impose is the following compatibility between the RZ
spaces for levels Pi and the RZ space attached to the intersection P :=

⋂
i Pi. It follows from

property (♦) that the morphismM(G, µ, b)red
K,k →

∏
iM(G, µ, b)red

Ki,k
is a homeomorphism onto

a closed subscheme of its target. We will impose the following stronger statement as our second
axiom:

(♣) The natural morphism M(G, µ, b)red
P,k →

∏
iM(G, µ, b)red

Pi,k
is a closed immersion of k-

schemes.

5.2. The PEL case. For most RZ spaces of PEL type, it is known that the assumptions (♦)
and (♣) are satisfied.

Consider an RZ space attached to a PEL datum as in [35, Ch. 3], see also [14] and [34] for
summaries and further discussions. Let G and µ be the group and cocharacter attached to it.
In this context, the level structure is given by a polarized chain of lattices (i.e., we use a lattice

model for the relevant Bruhat–Tits building). Denote by P ⊂ Ğ the stabilizer of this fixed
standard chain.

Denote by Mnaive
P the corresponding RZ space ([35, Def. 3.21]) over OĔ , the ring of integers

of the completion of the maximal unramified extension of the local reflex field E. It depends on
the choice of a “framing object” X (a p-divisible group with additional structure corresponding
to the group G) and parameterizes pairs ((XΛ), (ρΛ)), where (XΛ) is a chain of isogenies of
p-divisible groups (over a scheme S on which p is locally nilpotent) indexed by the fixed lattice
chain, and ρΛ is a quasi-isogeny between XΛ and X over the closed subscheme V (p) ⊆ S. These
data are required to satisfy certain compatibilities, see [35, Def. 3.12].

It is clear that property (♦) cannot in general be expected to hold for the “naive” RZ spaces,
because their special fiber in general comprises strata not reflected in the set Adm(µ). Therefore
we pass to the corresponding “flat RZ space”.

As shown in [35], the space Mnaive
P admits a local model diagram

Mnaive
P ←− M̃naive

P −→Mnaive,∧
P ,

where Mnaive
P denotes the local model of [35, Def. 3.27] and −∧ denotes the p-adic completion.

See [35, Ch. 3], in particular Sections 3.26–3.35. Denote by Mflat
P the flat closure inside Mnaive

P

of its generic fiber.
ThenMP is defined by pulling back and pushing forward the inclusion Mflat

P ⊆Mnaive
P along

the local model diagram (after passing to the completion along the special fiber), i.e., we have a
diagram

MP

��

M̃P
oo //

��

M loc,∧
P

��

Mnaive
P M̃naive

P
oo // Mnaive,∧

P

where the vertical arrows are closed immersions and both squares are cartesian. Then MP is
flat over OĔ .

Forgetting the endomorphism and polarization structure, we obtain a closed embedding into
the corresponding RZ space for the general linear group and the same lattice chain, now con-
sidered without additional structure. We will denote this space byM′P ′ (imitating the notation
of [12]), in particular P ′ is the stabilizer of our lattice chain inside the general linear group

G′ = GL(N)(Q̆p) of automorphisms of the rational Dieudonné module N of X.
By Dieudonné theory, we obtain a commutative diagram of inclusions

MP (k) //Mnaive
P (k) //

��

M′P ′(k)

��

Ğ/P // G′/P ′

(5.1)
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Here the right vertical map maps a point (X•, ρ) ∈ M′P ′ , where X• is a chain of isogenies of
p-divisible groups indexed by the fixed periodic lattice chain, and ρ is a quasi-isogeny with the
framing object X, to gP ′ where g maps the fixed (partial) standard lattice chain to the chain of
Dieudonné modules of X• (considered inside the rational Dieudonné module of X via ρ). Since
in the GLn case the vertical map is induced by an isomorphism of perfect schemes onto its image
(cf. [52, Prop. 3.11] which easily generalizes to general parahoric level structure in that case),
the same is true for this map.

The mapMnaive
P (k)→M′P ′(k) which forgets the additional structure is an inclusion, because

the additional structure is uniquely determined (by that structure on X and the quasi-isogenies
ρΛ), if it exists. Cf. [35, Proof of Thm. 3.25].

The Frobenius morphism on N is given by bσ for some b ∈ Ğ.
Consider a point (FΛ)Λ ∈ Mnaive(k). By definition, each FΛ is a subspace of Λ ⊗Zp k (with

further properties which we do not state here; in comparison to [35, Def. 3.27] we switch from

quotients to subspaces). Equivalently, we can record this data as a lattice F̃ lying between Λ

and pΛ. This defines an inclusion Mnaive(k) → Ğ/P , and the action of P on Ğ/P on the left
preserves the subset Mnaive(k).

By the definition of the local model diagram we obtain a commutative diagram

Mnaive
P (k) //

��

P\Mnaive(k)

��

Ğ/P // P\Ğ/P

where the lower horizontal map maps gP to the double coset of g−1bσ(g). Likewise, P acts on
M loc
P (k) ⊆ Mnaive(k) since this action comes from an action of the (smooth) stabilizer group

scheme associated with P on the OĔ-scheme Mnaive. We write A(µ)P = P\M loc(k) ⊂ P\Ğ/P .
Similarly, we write Adm(µ)P = P\P Adm(µ)P/P .

Proposition 5.1. If A(µ)P = Adm(µ)P , then assumption (♦) is satisfied. More precisely, the

inclusion MP (k) ⊂ Ğ/P is induced by an isomorphism

Mp−∞

P,k
∼= X(µ, b)P

of perfect schemes, and these isomorphisms are compatible with the projections for passing to
sub-lattice chains.

Proof. Since we know (from the embedding into a GL situation) that the map is induced from
a morphism of perfect schemes, it is enough to check the claim on k-valued points.

The above discussion shows, together with our assumption A(µ)P = Adm(µ)P and the defi-
nition of M loc

P , that we have a diagram

MP (k) //

��

P\M loc(k)
= //

��

Adm(µ)P

��

Mnaive
P (k) // P\Mnaive(k) // P\Ğ/P

in which both squares are cartesian. Viewing Mnaive
P (k) ⊂ Ğ/P as before, the lower horizontal

map is given by gP 7→ Pg−1bσ(g)P . So we see that MP (k) ⊆ X(µ, b)P , and that it is enough
to show that X(µ, b)P ⊆Mnaive

P (k) in order to complete the proof.
For this inclusion, note that the square in the diagram (5.1), while not cartesian in general, is

close to being cartesian. More precisely, Mnaive
P (k) is defined inside the intersection M′P ′(k) ∩

Ğ/P by imposing the Kottwitz determinant condition. Since this condition can be checked on
the local model, and since it is satisfied by definition on Mnaive, and a fortiori on M loc, it is
enough to show that X(µ, b)P ⊆M′P ′ .

Denote by µ′ the composition of µ with the inclusion G → GL(N). Since the identification
of M′P ′(k) with the corresponding generalized affine Deligne-Lusztig variety XGL(µ′, b)P ′ for
the general linear group is easy to check, we see that is is enough to show that XP embeds into
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XGL(µ′, b)P ′ under the embedding Ğ/P ⊆ G′/P ′. This follows once we can prove that Adm(µ)P
embeds into the admissible set Adm(µ′)P ′ ⊂ P ′\G′/P ′.

This compatibility of admissible sets follows from the inclusions M loc
P (k) ⊆ Mnaive

P (k) ⊆
MGL
P ′ (k), where MGL

P ′ denotes the local model for the general linear group, using once more the
assumption A(µ)P = Adm(µ)P and the fact that for the general linear group the corresponding
equality is known, as well.

It is clear that everything above is compatible with the projections arising from forgetting
some of the lattices in our chain. �

Remark 5.2. The condition A(µ)P = Adm(µ)P is known to hold in many cases. Note that
almost the same condition is posed as Axiom 3.2 in [19]; the only difference is that in our setting
we can (and need to) be a little bit more precise as to how this identification arises.

(1) Assume that p is odd, G/Qp is connected and splits over a tamely ramified extension and
that the stabilizer P of our lattice chain is a parahoric subgroup. Then by the work of
Pappas and Zhu [31, Thm. 1.1, Thm. 1.2], in many individual cases, its predecessors), the
special fiber of Mflat

P is the union of Schubert varieties (in an equal characteristic affine
Grassmannian) indexed by the admissible set Adm(µ)P . See also loc. cit., Section 8.2.

(2) The condition has been checked in many individual cases, including cases where the stabilizer
P is not parahoric. Specifically, see Smithling’s papers [36], [38] for ramified unitary groups,
and [37] for split even orthogonal groups.

Proposition 5.3. For RZ spaces MP of PEL type the projections in condition (♦) exist and
condition (♣) is satisfied.

Proof. It is clear that for P ⊆ P ′ there is a projection morphism between the corresponding
RZ spaces. Now, for the “naive” versions the definition in terms of chains of p-divisible groups
shows immediately that the morphism in question is a monomorphism. Since the irreducible
components of the source are proper, cf. [35, Prop. 2.32], and the source is locally of finite type
over k ([35, Thm. 3.25]), it follows that the morphism is a closed immersion. The “flat” RZ
spaces are closed formal subschemes of the naive RZ spaces, so the above property continues to
hold. �

5.3. RZ spaces of Hodge type. In the work of Kim [24] and Hamacher and Kim [12] where
RZ spaces for data of Hodge type are constructed, the bijection M(G, µ, b)P (k) ∼= X(µ, b)P (k)
on k-valued points is an essential feature of the construction, see [12, Prop. 4.3.5]. Zhu ([52,
Prop. 3.11]) proved that this set-theoretical equality implies the above isomorphism of perfect
schemes, using results of Gabber and Lau on Dieudonné theory over perfect rings to handle the
case G = GLn, and then embedding the general situation into a suitable GLn-situation. While
in [52] it was assumed that K is hyperspecial, the only reason for this assumption is that at the
time of writing RZ spaces of Hodge type had been constructed only in this special situation; the
paper [12] appeared only later.

Note however that the previous paragraph concerns only the situation for a fixed level P .
Because of the way RZ spaces are defined in the Hodge type situation, it is not clear that these
bijections are compatible with the projection maps attached to a pair P ⊂ P ′ of parahoric
subgroups. In fact, the definition relies on embedding the situation into an RZ space of Siegel
type (i.e., associated with a group of symplectic similitudes and hyperspecial level structure).
However, it is not evident whether the result is independent of the choice of embedding, and it
does not seem clear whether such embeddings can be chosen in a compatible way given P ⊂ P ′.

5.4. The weak Bruhat-Tits stratification. Next we discuss the question of defining a (weak)
Bruhat–Tits stratification on Rapoport–Zink spaces. Hence, we now restrict to the fully Hodge–
Newton decomposable case. Then we have the weak Bruhat–Tits stratification on X(µ, b)P◦

(Section 2.4).
Since property (♦) involves P instead of P ◦, we first need to discuss the question of defining a

weak BT stratification on X(µ, b)P . To this end, we impose the following additional assumption:

(♥) The projection XP◦ → XP is surjective.
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See Section 5.5 for two sufficient criteria for this assumption. Of course, it is trivially satisfied
if P = P ◦. It is also satisfied in those cases that have been studied in detail on the Shimura
variety side (attached to ramified unitary groups). We do not know of an example where this
property fails.

Let us denote by XP◦,c the “component” indexed by c ∈ π0(GrP◦), i.e., XP◦,c = XP◦∩κ̆−1(c).
As explained in Section 5.5, XP◦,c = ∅ unless c ∈ π0(GrP◦)

σ.
For each c ∈ π0(GrP◦)

σ, the projection XP◦ → XP restricts to an isomorphism

γc : XP◦,c
∼−→ XP,π(c).

Here we denote by π(c) the connected component of GrP which is the image of c, and by
XP,π(c) its intersection with XP . Then π−1(XP,π(c)) is the union of the XP◦,c′ where c′ ranges
over the P/P ◦-orbit of c in π0(GrP◦).

To establish that γc above is an isomorphism, recall that each connected component of GrP◦

maps isomorphically onto a connected component of GrP . Therefore the only question is the
surjectivity, which follows from (♥).

Since all BT strata in XP◦ are connected, each stratum lies in one of the components XP◦,c.
Using the isomorphisms γc, we obtain a Bruhat–Tits stratification on XP which is independent
of the choice of c, as the following lemma shows:

Lemma 5.4. Let c, c′ ∈ π0(GrP◦)
σ such that c′c−1 ∈ P/P ◦. Let jY (w) ⊆ XP◦,c′ be a BT

stratum. Then
γ−1
c (γc′(jY (w))) ⊆ XP◦,c

is a BT stratum.

Proof. The map γ−1
c ◦ γc′ is given by gP ◦ 7→ g(c′)−1cP ◦. We may represent (c′)−1c by (a

representative of) a length 0 element in W̃ which comes from P . To simplify the notation, we

change notation and denote this element by c. Then we have σ(c) = c inside W̃ (passing to a
different representative, if necessary we could achieve the same property on the level of elements
of Ğ).

If g ∈ jY (w), then g−1τσ(g) ∈ P ◦ ·σ (Ĭwτ Ĭ). But then

c−1g−1τσ(g)σ(c) ∈ c−1P ◦ ·σ (Ĭwτ Ĭ)σ(c) = P ◦ ·σ (Ĭc−1wτσ(c)Ĭ).

Now c−1wτσ(c) = c−1wτc is again an EKOR element for P ◦ (i.e., it lies in KW̃ ∩Adm(µ), where

K ⊂ S̃ denotes the set of simple affine reflections generating P ◦).
Since the element c−1wτc is independent of g, the lemma follows. �

We hence get a well-defined “Bruhat–Tits stratification” on XP and the projection XP◦ → XP

is compatible with the stratifications:

Corollary 5.5. In the fully Hodge–Newton decomposable case, the isomorphisms Xc → π(Xc),
for a connected component c of GrP◦ , define a weak Bruhat–Tits stratification on XP (i.e., the
stratification is independent of the choices of c).

Consider an inclusion P ⊂ P ′ of facet stabilizers and the corresponding inclusion P ◦ ⊂ P ′
◦
.

We obtain a commutative diagram

XP◦
//

��

XP ′◦

��

XP
// XP ′ .

The sets of connected components of GrP◦ and GrP ′◦ coincide. Fixing a connected component
c of GrP◦ and denoting by c′ its image in GrP ′◦ , we can restrict the above diagram to c and c′,
and obtain a diagram

XP◦,c
//

��

XP ′◦,c′

��

XP,π(c)
// XP ′,π′(c′)
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(with π′ : GrP ′◦ → GrP ′ the projection) where the vertical morphisms are isomorphisms. Since
the upper horizontal map maps each BT stratum in Xc isomorphically onto a BT stratum in
Xc′ , the same holds true for the lower horizontal map.

We also record the following easy lemma:

Lemma 5.6. Let f , fi, i ∈ I, be facets of the base alcove (viewed as simplices, i.e., as subsets of
the set of vertices of the base alcove). Denote by P , Pi the facet stabilizers, and by P ◦, P ◦i the
corresponding parahoric subgroups. The following are equivalent:

(1) f =
⋃
i fi,

(2) P =
⋂
i Pi,

(3) P ◦ =
⋂
i P
◦
i .

Proof. Clearly, (1) and (2) are equivalent. Furthermore, (3) and (1) are equivalent since a
parahoric subgroup is determined by the set of affine simple reflections which it contains. �

Now we can invoke property (♦) and obtain that in the fully Hodge–Newton decomposable

case and under the above assumptions, the spacesM(G, µ, b)p
−∞

P,k carry a weak BT stratification

which is compatible with the weak BT stratification on XP via (♦). For an inclusion P ⊂ P ′,
the corresponding map of RZ spaces maps each BT stratum in the source isomorphically (in the
sense of perfect schemes) onto a BT stratum in the target.

Since the morphism M(G, µ, b)p
−∞

K,k →M(G, µ, b)red
K,k is a homeomorphism, we likewise get

Corollary 5.7. In the fully Hodge–Newton decomposable case and under the above assumptions,
the spaces M(G, µ, b)P,k carry a weak Bruhat–Tits stratification into locally closed reduced
subschemes which is compatible with the weak BT stratification on XP via passing to perfections
and the isomorphism (♦). For an inclusion P ⊂ P ′, the corresponding map of RZ spaces maps
each BT stratum in the source homeomorphically onto a BT stratum in the target.

The perfection of each stratum is isomorphic to the perfection of a classical Deligne–Lusztig
variety.

The goal of this section is to investigate the following property (under the assumption of full
Hodge–Newton decomposability):

Property BTP : In the (weak) Bruhat–Tits stratification of M(G, µ, b)red
P,k, each stratum

is isomorphic to the corresponding classical Deligne–Lusztig variety, without passing to the
perfection.

Our result will be that if (BTPi) holds for all i, then (BTP ) also holds for P = ∩iPi. Note that
we need to use in the proof that we already know the result after perfection for level P .

For most maximal parahoric level structures P , the property (BTP ) has been established
by now, and this result will allow us to deduce the same property for many non-maximal level
structures, and in particular for most level structures of Coxeter type. See Section 6 for a
discussion of the individual cases.

Proposition 5.8. Let (G, µ) be fully Hodge–Newton decomposable. Assume that properties (♦),
(♣) and (♥) hold. As above, let Pi be facet stabilizers (of facets of the base alcove which are
fixed by σ) such that BTPi holds for all i. Then BTP holds for P :=

⋂
i Pi.

Proof. To shorten the notation, we write MP for M(G, µ, b)red
P,k. The assumption implies that

MP has a Bruhat–Tits stratification as explained above. Consider a BT stratum S ⊂ Mp−∞

P

(i.e., S is isomorphic to the perfection of a classical Deligne–Lusztig variety X). We denote by
Y the reduced locally closed subscheme inside MP corresponding to S.

For each i, S maps isomorphically onto a BT stratum Si ⊂Mp−∞

P . So Si is the perfection of
the same DL variety X. By the assumption BTPi , the stratum Yi ⊂ MPi corresponding to Si
is isomorphic to X.

Now consider the closed embedding MP →
∏
iMPi given by Property (♣). Restricting to

Y , we obtain a closed embedding Y →
∏
i Yi. Passing to perfections we obtain an embedding

S →
∏
i Si.



22 ULRICH GÖRTZ, XUHUA HE, AND SIAN NIE

Then the reduced closed subscheme of
∏
i Yi with underlying space S is isomorphic to the

Deligne–Lusztig variety X: Both are reduced locally closed subschemes, so it is enough to check
that they have the same underlying topological space. But this can be checked on the perfections,
where we know the result from the group-theoretic situation.

This implies that the reduced subscheme Y of MP with same topological space as S is
isomorphic to X, as desired. �

5.5. Stabilizers versus parahoric subgroups. It remains to discuss in more detail in which
cases the assumption (♥) is satisfied, i.e., when the map XP◦ → XP is surjective. Let us briefly
recall the setup.

Let P ⊂ Ğ be the stabilizer of a (poly-)simplex in the Bruhat–Tits building. The intersection

P ◦ of P with the kernel of the Kottwitz homomorphism κ̆ : Ğ→ π0(LĞ) = π1(G)Γ0
is a parahoric

subgroup (and all parahoric subgroups arise in this way), but in general, P ◦ ⊂ P is a proper
normal subgroup.

Remark 5.9. This phenomenon occurs in several cases:

(i) The case of ramified unitary groups has been discussed in detail by Pappas and Rapoport
in [29] Section 4 and [30, §§1.2, 1.3].

(ii) For even special orthogonal groups (with hyperspecial level structure), see Yu’s notes [50,
Example 2.2.3.1].

(iii) Applying restriction of scalars along an unramified extension to the above examples, one
can construct further examples, and in particular obtains examples where the action of σ on
P/P ◦ is not trivial.

If G is semi-simple and simply connected, or more generally if π0(LĞ) is torsion-free, then the

finite subgroup P/P ◦ ⊆ π0(LĞ) must be trivial, so that we have P ◦ = P .

In the sequel, we assume that P ◦ is a standard parahoric subgroup, or in other words, that
P is the stabilizer of a face of the base alcove. As mentioned above, the group-theoretic results
obtained in this paper concern a priori the “parahoric setting”, but RZ spaces have been defined,
so far, in the “stabilizer setting”. See also Remark 5.4 in the paper [12] by Hamacher and Kim.

Throughout the following discussion, we fix µ and b ∈ B(G, µ), and we write XP◦ =
X(µ, b)P◦ , and similarly write

XP := X(µ, b)P = {g ∈ GrP ; g−1bσ(g) ∈ P Adm(µ)P}.

We have

XP◦ ⊆ π−1(XP ).

Lemma 5.10 (cf. [12, Rmk. 5.4]). (i) If v ∈ Wa, ω ∈ Ω with vω ∈ P , then ω ∈ P . (Here we

do not distinguish between elements of W̃ and representatives of these elements in Ğ.)

(ii) For ω ∈ Ω, we have ωAdm(µ)ω−1 = Adm(µ).

(iii) We have P Adm(µ)P = P ◦Adm(µ)P .

Proof. To prove part (1), say that P is the stabilizer of the face f of the base alcove. Under
the assumption that vω stabilizes f , we need to show that the same is true for ω. Assume that
ωf 6= f . Since ω preserves the base alcove, this means that ωf is a face of a type different from
the type of f . Because the action of Wa preserves the type of faces, it is then impossible that
vωf = f .

For (2), note that conjugation preserves the orbit W0(µ) and conjugation by length 0 elements
preserves the Bruhat order.

Now we prove part (3). By part (1), we can write P =
⋃
p P
◦p, where p runs through a

system of representatives of P/P ◦ given by (representatives of) length 0 elements in W̃ . Since
P ◦ ⊂ P is normal, the claimed statement follows from (2). �

Now for gP ◦ ∈ GrP◦ , we have

gP ◦ ∈ XP◦ ⇐⇒ g−1bσ(g) ∈ P ◦Adm(µ)P ◦,
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and

gP ◦ ∈ π−1(XP ) ⇐⇒ g−1bσ(g) ∈ P Adm(µ)P.

The lemma shows that P Adm(µ)P = P ◦Adm(µ)P , and denoting by Ğ1 the kernel of the
Kottwitz homomorphism κ̆, we obtain that

P ◦Adm(µ)P ◦ = P Adm(µ)P ∩ bĞ1.

Hence an element gP ◦ ∈ π−1(XP ) lies in XP◦ if and only if κ̆(g−1bσ(g)) = κ̆(b), or equivalently
κ̆(g) = σ(κ̆(g)) (since π0(GrP◦) is abelian). In other words,

XP◦ = π−1(XP ) ∩ κ̆−1(π0(GrP◦)
σ).

Choosing a (set-theoretic) section of the projection π0(GrP◦)→ π0(GrP ) = π0(GrP◦)/(P/P
◦),

we obtain a section ι : GrP → GrP◦ of π, and then can identify

GrP◦ =
⊔

p∈P/P◦
ι(GrP )p,

i.e., GrP◦ is isomorphic to a disjoint union of copies of GrP .

Proposition 5.11. Assume that we can decompose π0(GrP◦) as a product P/P ◦ ×C for some
subgroup C, such that σ preserves this product decomposition, and fix such an identification
π0(GrP◦) = P/P ◦ × C.

This choice defines a section ι : GrP → GrP◦ of π, and an identification

GrP◦ =
⊔

p∈P/P◦
ι(GrP )p.

With respect to this decomposition, the space XP◦ is a disjoint union of copies of XP . More
precisely,

XP◦ =
⊔

p∈(P/P◦)σ

ι(XP )p.

In particular, in this situation assumption (♥) is satisfied.

Proof. Fix a decomposition π0(GrP◦) = P/P ◦ × C. This gives us a section π0(GrP ) ∼= C →
π0(GrP◦) to which we apply the above discussion. We then have an isomorphism

⊔
c∈C(GrP◦)c →

GrP . Here (GrP◦)c = κ̆−1(c) denotes the connected component corresponding to c. We obtain
a section ι : GrP → GrP◦ of π, which in turn gives us the identification

GrP◦ =
⊔

p∈P/P◦
ι(GrP )p.

Now fix p ∈ P/P ◦ and let gP ◦ ∈ π−1(XP ) ∩ ι(GrP )p. We have κ̆(g) = (p, c) ∈ P/P ◦ × C
for some c ∈ C. Then gP ◦ ∈ π−1(XP ) gives us κ̆(g−1σ(g)) ∈ P/P ◦, i.e., c = σ(c). Thus the
condition κ̆(g) = σ(κ̆(g)) is equivalent to p = σ(p). �

Let us also investigate when we have equality XP◦ = π−1(XP ).

Lemma 5.12. The following conditions are equivalent:

(1) For all x ∈ π0(GrP◦) with x− σ(x) ∈ P/P ◦, we have x = σ(x).

(2) We have that σ fixes all elements of P/P ◦, and that the sequence

0 −→ P/P ◦ −→ (π0(GrP◦))
σ −→ Cσ −→ 0

is exact, where C denotes the quotient of π0(GrP◦) by P/P ◦.

Proof. This is a purely group-theoretic reformulation which uses only that P/P ◦ is a σ-invariant
subgroup of the abelian group π0(GrP◦). �

Note that the conditions in the lemma are satisfied for example in the following cases:

(a) The group π0(GrP◦) is a direct product π0(GrP◦) = C × P/P ◦ for some subgroup C, the
operation of σ preserves this product decomposition, and all elements of P/P ◦ are fixed by
σ.
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(b) The action of σ on π0(GrP◦) is trivial. (For instance, this holds if G splits over a totally
ramified extension of F .)

Proposition 5.13. If the equivalent conditions of the previous lemma are satisfied, then the
diagram

XP◦
//

��

GrP◦

π

��

XP
// GrP

is cartesian, i.e., XP◦ = π−1(XP ). In particular, in this situation assumption (♥) is satisfied.

Proof. As the above discussion shows, we need to show that κ̆(g) = σ(κ̆(g)) for all gP ◦ ∈
π−1(XP ). But those g satisfy κ̆(g) − σ(κ̆(g)) ∈ P/P ◦, so this claim follows immediately from
(1) in the above lemma. �

6. Known results, new results and open cases

As in the previous section, we assume that (G, µ) comes from a Rapoport–Zink space.

6.1. Discussion of individual cases.

Table 3 lists the cases that come from Shimura varieties and where µ is non-central in each F -
factor of G. As we stated before, it has been checked in many cases that the strata of the Bruhat–
Tits stratification are classical Deligne–Lusztig varieties (also before passing to perfections). The
strategy in the papers cited below consists of the following steps: Define a set-theoretic bijection
in terms of Dieudonné theory, extend it to a morphism of schemes using Zink’s display theory,
and check that one obtains an identification of schemes using Zariski’s main theorem and the
normality of Deligne–Lusztig varieties. In all cases, the stratification is given by viewing the
Bruhat–Tits building of the group J in terms of lattices (“vertex lattices”), and defining the
strata by considering relative positions of Dieudonné modules and such vertex lattices. This
means that Dieudonné theory gives a suitable way to set up the identifications (♦), and that
then the BT stratification as defined in this paper coincides with the stratifications defined in
the papers mentioned below.

The meaning of the symbols used in the table is as follows:

X a known case,

? an open case,

N a case newly settled by this paper (Prop. 5.8),

N∗ a case newly settled by this paper (Prop. 5.8), up to the verification of the
assumptions (♦), (♣), (♥) for the involved RZ spaces.

Below we give further remarks on some of the cases.

6.1.1. (Ãn−1, id, ω
∨
1 , ∅) — Harris–Taylor type. The automorphism τ acts by rotation

0 7−→ 1 7−→ 2 7−→ . . . 7−→ n− 1 7−→ 0

on the affine Dynkin diagram. We have dimX(µ, τ)K = 0 for all K ( S̃, so the set-theoretic
bijection defining the Bruhat–Tits stratification is automatically an isomorphism before passing
to the perfection. This case arises from unitary Shimura varieties attached to groups that split
over Qp. Cf. the book [13] by Harris and Taylor.
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(G, µ) maximal case(s) minimal case

Linear, unitary groups (families)

(An, ω
∨
1 , ∅) X all cases: dimX(µ, τ)K = 0

(dAd−1, ω
∨
1 , ∅) X all cases: [5], [35, Thm. 3.72]

(2A′2m, ω
∨
1 ,S) X [44] (= maximal)

(2A′2m+1, ω
∨
1 , S̃− {s0, sm+1}) X [44] N , see 6.1.4

(An−1 ×An−1, (ω
∨
1 , ω

∨
n−1), 1ς0,S t S)

for n > 2
X [39], [20], [41], [42] (= maximal)

(ResE/F (An−1), (ω∨1 , ω
∨
n−1),S)

for n > 3, E/F ramified quadratic
? (= maximal)

(B-Cn, ω
∨
1 , S̃− {s0, sn}) X S̃− {sn}: [32], S̃− {s0}: [48] N , see 6.1.6

(C-BCn, ω
∨
1 , S̃− {s0, sn}) X S̃− {sn}: [32], S̃− {s0}: [48] N , see 6.1.7

(2B-Cn, ω
∨
1 , S̃− {sn}) X [32] (= maximal)

Orthogonal groups (families)

(Bn, ω
∨
1 , S̃− {s0, sn}) X S̃− {s0}: [22], ? S̃− {sn} ?

(2Bn, ω
∨
1 , S̃− {sn}) ? ?

(C-Bn, ω
∨
1 , S̃− {s0, sn}) ? ?

(Dn, ω
∨
1 , S̃− {s0, sn}) X [22] N∗ , see 6.1.9

(2Dn, ω
∨
1 , S̃− {sn}) ? ?

Exceptional cases

(ResE/F (A1), (ω∨1 , ω
∨
1 ), ∅)

E/F ramified quadratic
X [1] ?

(A3, ω
∨
2 , {s1, s2}) X [6] N , see 6.1.5

(2A′3, ω
∨
2 ,S) X [21] (= maximal)

(C2, ω
∨
2 , {s0}) X [23] X [11]

(C-B2, ω
∨
2 , {s0}) ? ?

(C-BC2, ω
∨
2 , {s0}) ? ?

(C-BC2, ω
∨
2 , {s2}) ? ?

(2C2, ω
∨
2 , {s0, s2}) X [28], [45] (= maximal)

(2C-B2, ω
∨
2 , {s0, s2}) ? ?

(ResE/F (C-BC1), (ω∨1 , ω
∨
1 ), ∅)

E/F ramified quadratic
? ?

Cases not arising from a Shimura variety

(Cn, ω
∨
1 , S̃− {s0, sn})

Table 3
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6.1.2. (Ãn−1, %n−1, ω
∨
1 , ∅) — Drinfeld case. The automorphism τ is the same as in Section 6.1.1,

so the composition Ad(τ)◦σ is the identity. The only rational level structure is K = ∅. We have
dimX(µ, τ) = n − 1, and in this case, the set B(G, µ) has only one element: The basic locus
equals the whole Shimura variety. The description given by Drinfeld ([5], see also [35, Thm. 3.72]
and the subsequent discussion) of the RZ space as a formal scheme (that can be constructed
by gluing pieces indexed by simplices in the Bruhat–Tits building of the corresponding group J
(split of type An−1)) shows in particular that property BT∅ holds.

The maximal elements in Adm(µ) are

τsn−1sn−2 · · · s1, τsn−2sn−3 · · · s0, . . . , τs0s−1 · · · s−(n−2).

The automorphism Ad(τ) ◦ σ is the identity map on S̃, and in particular the σ-support of
an element is simply the support of wτ−1. From this description one sees that each element
w ∈ Adm(µ) is determined by its σ-support suppσ(w), and that for all K the order 6K,σ (see

Section 2.4) coincides with the Bruhat order on KW̃ .
The individual strata of the BT stratification are isomorphic to classical Deligne–Lusztig

varieties in products of general linear groups. In fact, for each w the ambient group is the
reductive group with Dynkin diagram given by suppσ(w) (i.e., all other vertices and all edges
that involve one of those are discarded) with Frobenius action given by Ad(τ) ◦ σ = id.

For each w, the index set for the strata of type w is given by J(F )/(J(F )∩Pw), where Pw is
the standard parahoric subgroup generated by suppσ(w)tI(K,w, σ), and where I(K,w, σ) is the
subset of K comprising all those vertices which are not connected to suppσ(w), cf. Lemma 2.6.

6.1.3. (Ã2m, ς0, ω
∨
1 , S̃−{s0}) — odd unramified unitary group case. The automorphism τ is the

same as in Section 6.1.1, so the composition Ad(τ) ◦ σ acts as the reflection

1↔ 0, 2↔ 2m, . . .

The only level structure of Coxeter type, K = S̃−{s0}, is hyperspecial, and it was shown in [44]
that property BTK holds.

6.1.4. (Ã2m+1, ς0, ω
∨
1 , S̃ − {s0, sm}) — even unramified unitary group case. The automorphism

τ is the same as in Section 6.1.1, so the composition Ad(τ) ◦ σ acts as the reflection

1↔ 0, 2↔ 2m+ 1, . . .

In this case, σ fixes two vertices in the affine Dynkin diagram, namely 0 and m. Both level
structures S̃−{s0} and S̃−{sm} are hyperspecial, and we can again apply the results of [44] to
see that property BTK holds for K hyperspecial. It then follows from Proposition 5.8 that the
same is true for K = S̃− {s0, sm}. Note that Propositions 5.1 and 5.3 ensure that (♦) and (♣)
hold in this case. The sets A(µ)P and Adm(µ)P consist only of the double coset of tµ. Since P
is a parahoric subgroup, (♥) is satisfied trivially.

Let us make the case of level structure S̃ − {s0, sm}) more explicit: As listed in Table 1, we
have

KAdm0 = {s[2m+2,2m+2−i]s[m+1,m+1−j]τ ; i, j > −1, i+ j 6 m− 2},
so this index set depends on two parameters i, j and in particular an element of KAdm0 is not
determined by its length in general. (As before we set s2m+2 := s0.)

For w = s[2m+2,2m+2−i]s[m+1,m+1−j]τ , we have

suppσ(w) = {0, 1, 2, . . . , i+ 1, 2m+ 2− i, . . . , 2m+ 2− 1}t {m+ 1− j,m+ 2− j, . . . ,m+ j+ 1}.

Note that the condition i + j 6 m − 2 ensures that this is a proper subset of S̃. We see that
each element is determined by its σ-support. We write the σ-support as a disjoint union of two
intervals (possibly empty, depending on the choice of i and j) which are disconnected in the
Dynkin diagram. The individual strata of the BT stratification are classical Deligne–Lusztig
varieties in the group (over the finite residue class field of F ) specified by the Dynkin diagram
suppσ(w), i.e., a product of two unitary groups (or just one if one of the intervals is empty).

For each w, the index set for the strata of type w is given by J(F )/(J(F )∩Pw), where Pw is
the standard parahoric subgroup generated by suppσ(w)t I(K,w, σ), and where I(K,w, σ) can
be described as in Lemma 2.6.
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Remark 6.1. Cho [3] studied the unramified unitary group case for non-hyperspecial maximal
parahoric level structure. This case is fully HN decomposable, but not Coxeter type.

6.1.5. (Ã3, id, ω
∨
2 , S̃ − {s0, s3}). This case corresponds to a “split U(2, 2)”. Note that for each

i ∈ Z/4Z, (Ã3, id, ω
∨
2 , S̃ − {si, si+1}) is isomorphic to the above datum. For every i, the level

structure S̃−{si} is hyperspecial and for those cases it was shown by Fox [6] that the Bruhat–Tits
strata are isomorphic to Deligne–Lusztig varieties before perfection.

Note that Propositions 5.1 and 5.3 ensure that (♦) and (♣) hold in this case. It is well-known
that the sets A(µ)P and Adm(µ)P coincide in this case. Since P is a parahoric subgroup, (♥)
is satisfied trivially. Hence Proposition 5.8 can be applied.

6.1.6. (B-Cn, ω
∨
1 , S̃−{s0, sn}) — even ramified unitary group case. To apply Proposition 5.8, we

need to check that the assumptions (♦), (♣) and (♥) are satisfied. For the first two, we can use
Propositions 5.1 and 5.3. In fact, it follows from Smithling’s paper [38] that A(µ)P = Adm(µ)P .
It follows from Proposition 5.11 that (♥) is satisfied.

6.1.7. (C-BCn, ω
∨
1 , S̃−{s0, sn}) — odd ramified unitary group case. To apply Proposition 5.8, we

need to check that the assumptions (♦), (♣) and (♥) are satisfied. For the first two, we can use
Propositions 5.1 and 5.3. In fact, it follows from Smithling’s paper [36] that A(µ)P = Adm(µ)P .
In this case, P is a parahoric subgroup, hence (♥) is satisfied.

6.1.8. (C-BC2, ω
∨
2 , {s0}). In terms of the affine Weyl group, this is the case (C̃2, id, ω

∨
2 ). Let

K = {s0}, one of the two minimal level structures of Coxeter type (the other one being {s2} –
while the two enhanced Coxeter data are isomorphic, this is not true for the enhanced Tits data,
because for them we must take the orientation of the local Dynkin diagram into account). We
have

KAdm(µ)0 = {τ, s1τ, s2τ}.
The automorphism Ad(τ) = Ad(τ) ◦ σ is given by interchanging s0 and s2, and fixing s1. The
strata are points (for w = τ), and classical Deligne–Lusztig varieties in SL2 (for w = s1τ , which
has suppσ(w) = {s1}) and in the restriction of scalars of SL2 along a quadratic extension (for
w = s2τ , which has suppσ(w) = {s0, s2}), respectively.

For each w, the index set for the strata of type w is given by J(F )/(J(F )∩Pw), where Pw is
the standard parahoric subgroup generated by suppσ(w), since in this case, I(K,w, σ) = ∅ for
all w ∈ KAdm(µ)0 (cf. Lemma 2.6).

Remark 6.2. In [46], Wang studied the 2C2 case with Iwahori level structure.

6.1.9. (Dn, ω
∨
1 , S̃ − {s0, sn}). Since this case is not of PEL type, it is less clear that the RZ

spaces for the different level structures (as defined by Kim [24], Howard and Pappas [22] in
the hyperspecial case, and by Hamacher and Kim [12] in general) are compatible in the sense
of assumption (♣) above. Once this has been established, the result of Howard and Pappas

together with Proposition 5.8 implies the result for level structure S̃− {s0, sn}.
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