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Abstract. We established the existence, uniqueness and stability of sub-
sonic flows past an airfoil with a vortex line at the trailing edge. Such a
flow pattern is governed by the two dimensional steady compressible Euler
equations. The vortex line attached to the trailing edge is a contact discon-
tinuity for the Euler system and is treated as a free boundary. The problem
is formulated and solved by using the implicit function theorem. The main
difficulties are due to the fitting of the vortex line with the profile at the
trailing edge and the possible subtle instability of the vortex line at the far
field. Suitable choices of the weights and elaborate barrier functions are
found to deal with such difficulties.

1. Introduction

A century ago, Prandtl developed the celebrated lifting line theory in [24],
where he depicted the picture of a subsonic flow past an airfoil with a vortex
line attached to the trailing edge (see Figure.1). Although his theory has been
widely applied in the industry of aircraft designs, there is no mathematical
justification of such solutions yet. The purpose of this paper is to provide a
rigorous proof of the existence and uniqueness of the solutions to the airfoil
problem with vortex lines.

In 1950’s, Bers [3, 4], Finn and Gilbarg [17, 18] studied airfoil problems
for the potential flows. Since potential flows are rotation-free, the vortex
lines do not appear in such type of flows. In order to study vortex lines,
the full compressible Euler equations are needed (see equations (2.1)–(2.3)).
In the theory of conservation laws, vortex lines belong to a class of contact
discontinuities.

There are many studies related to steady subsonic flows in various phys-
ically important situations, such as flows past a solid body and in nozzles,
see [3–10, 14, 16–18, 21, 26–28] and the references therein. However the liter-
atures on steady compressible subsonic flows with contact discontinuities are
limited, even for the case when airfoils do not appear in the flows, with sev-
eral notable exceptions: the contact discontinuities in Mach configurations are
studied in [15] by using the theory for elliptic equations with discontinuous
data developed in [22]; the contact discontinuities in subsonic flows in noz-
zles have been analyzed in [1] by making use of the theory in [22] and in [2]
with a Helmholtz decomposition; while the authors in [11] employed the the-
ory of compensated compactness to obtain the contact discontinuities with

1



2 JUN CHEN ZHOUPING XIN AIBIN ZANG

large vorticity in arbitrary infinite long nozzles. We also refer to [12, 13] for
studies on contact discontinuities in transonic flows, [25] in supersonic flows
and [5–10, 14, 16–18, 21, 26–28] for other related problems which involve sub-
sonic Euler flows. However, all these works concerning contact discontinuities
[1,2,11,15,25] do not involve the presence of airfoils, which causes some new
difficulties in the study of contact discontinuities.

In this paper, we will give a rigorous analysis for Prandtl’s problem on sub-
sonic flows past a finite thin airfoil with a vortex line. The key points lie
in understanding the fitting of the trailing edge with the vortex line and the
asymptotic behavior of the vortex line at the downstream. The problem will
be formulated and proved as the global structural stability (or instability) of
a straight contact line under the perturbation of finite thin profiles. More pre-
cisely, we take the straight contact line as the horizontal axis and the vertical
line at the leading edge of the airfoil as the entrance of the flow (see Figure 1).
By prescribing piecewise smooth data corresponding background contact dis-
continuity on the entrance, and assuming that the airfoil is suitably thin with
the trailing edge being a cusp point (where the upper and lower boundaries
of the airfoil meet at zero angle), we will find the unique subsonic solution
with a vortex line attached to the trailing edge of the airfoil, which is Hölder
continuous up to the edges of the airfoil. Furthermore, the vortex line is shown
to fit smoothly (C1,α) with the trailing edge of the profile and grows at most
sublinearly at infinity. This implies in particular the structural stability of
the background contact discontinuity. It is noted that the assumption of the
trailing edge being a cusp is crucial here to guarantee the smooth fitting of
the vortex line at the trailing edge and the continuity of the flow up to the
trailing edge.

Note that since the vortex line is part of the solution and an unknown,
so this is a free boundary value problem for the full Euler system with slip
boundary condition on the airfoil and suitable boundary conditions on the
entrance. There are several new difficulties for treating such a problem. Since
the full compressible Euler equations are a coupled elliptic-hyperbolic system
for subsonic flows, the regularities of the unknowns become crucial issues in
analyzing such flows, even the formulation of boundary data becomes a subtle
issue. Such difficulties are more pronounced for our problem here due to the
presence of the airfoil and the vortex line. Indeed, there are some essential
new difficulties in analyzing the subsonic flow past an airfoil with a vortex line
at the trailing edge. The first one is about the smoothness of the fitting of
the vortex line with the profile at the trailing edge. The second one is that
the flow is defined on the unbounded domain and the possible weak stability
of the vortex line at far field. The other difficulty is related to the application
of implicit function theorem as the framework of solving this problem.

The fitting of the trailing edge with the vortex line raises the issue about
corner regularities, causing major difficulties in studying steady flows involving
subsonic regions for the steady full Euler system due to the hyperbolic modes
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for subsonic flows ([5-10, 14, 21, 28]). Thus, handling the regularities at the
edges becomes an important issue. It should be noted that “corner regulari-
ties” are also key issues in the studying of transonic shocks in general curved
nozzles (due to the intersection of the shock curve with the nozzles walls) as
shown in [28]. Yet, in this case, an Euler-Lagrangian type coordinates trans-
formation can be introduced to decompose effectively the hyperbolic modes
from the elliptic modes in the subsonic region after the shock and this reduces
the Euler system into a nonlocal elliptic system for the pressure and the flow
angle, so that one can obtain Cα-regularity of the physical states in the sub-
sonic region after the shock uniformly up to the corner (the intersection of
the shock with the nozzle wall), see [7, 21]. These Cα-regularities are the key
to design some iteration schemes to solve the transonic shock problem in a
generic 2-dimensional nozzles in [7, 21]. Motivated by such studies, we will
look for solutions to the Prandtl’s problem on subsonic flows past a thin fi-
nite profile with a vortex line, which is Cα-regular uniformly up to the profile
including edges. To derive the Cα uniform regularity, we will decompose the
Euler system for subsonic flows into hyperbolic system for the specific entropy
and the Bernoulli function and an elliptic system for the flow angle and re-
ciprocal of the horizontal momentum. Under the crucial assumption that the
trailing edge of the profile is a cusp, we can obtain the uniform Cα estimate
up to the edges by constructing proper and elaborate barrier functions. Note
that these crucial estimates involve also the second difficulty that the flow
domain is unbounded and the background contact discontinuity may not be
asymptotically stable in the far field. The matching of the decay of physical
states and the possible derivation of the vortex line from the background con-
tact discontinuity at far field has to be carefully checked. Indeed, we will show
that the vortex line may grow sublinearly away from the background contact
discontinuity, but their unit normals approach each other in L∞-norm at far
fields. These will be achieved by weighted Hölder estimates.

The other difficulty comes from the application of the implicit function
theorem which we use as the framework to solve the problem of subsonic flows
past an airfoil with a vortex line. Note that in many studies of transonic
shocks [7-10,21,28], since the upstream supersonic flow can be obtained in
advance, and the downstream subsonic flow and the position of the transonic
shock have to be solved simultaneously by some elaborate iteration schemes
with the position of the shocks as the solvability condition for the subsonic
flow, thus the framework of either contraction mapping theorem or Schauder
fixed point theorem can be used to find the desired transonic shock solutions.
However, for the problem of subsonic flows past an airfoil with a vortex line
at the trailing edge, the flows on both sides of the airfoil and the vortex line
are unknown and may grow asymptotically. This and the less regularity of the
flows at the edges make it difficult to design an iteration scheme to apply the
framework of the fixed point theorem as in the transonic shock problem. On
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the other hand, in suitable Euler-Lagrangian coordinate systems (see (3.2)-
(3.3) in §3), both the upper and lower boundary of the airfoil and the vortex
line become a stream line, thus one may try to use the approach in [1] to
study our problem. Unfortunately, this does not work since the piecewise
smooth subsonic solution do not form a weak solution across the segment of
the particle line representing the airfoil. Thus, in this paper, we will use the
implicit function theorem as the framework for solving the problem of subsonic
flows past a thin airfoil with a vortex line attached at the trailing edge. This
will require a suitable choice of weighted Hölder space, a proper design of a
map T (see §5), and detailed analysis, especially for the isomorphism of the
differential of the operator T .

It is also interesting to compare the problem studied in this paper with the
transonic wedge problems in [8]. For the transonic wedge problem in [8], the
regularity at the corner and the asymptotic behavior of the shock at far field
are closely related through the oblique condition on the shock and the shock
is asymptotically stable. However, for the problem of subsonic flows past an
airfoil with a vortex line attached at the trailing edge, the upper and lower do-
mains are separated by the airfoil and the vortex line. Since the conditions on
the airfoil and the vortex line are different, which causes not only less regular-
ity at the edges, but also gives rise to different phenomena from the transonic
wedge problem in [8]. In fact, here the lower order regularities at edges can be
localized so that they do not affect the asymptotic behavior of the vortex line
at the far field, and contact discontinuities are weakly stable in the sense that
the perturbed vortex line may grow at most sublinearly away from the back-
ground contact discontinuity and their unit normals converge to each other
in L∞-norm at far field (see Remark 2.2). This reveals significant differences
between the structural stability of shocks and contact discontinuities.

The rest of the paper is organized as follows. In §2, we set up the problem
and state the main result. In §3, we reformulate the the problem by intro-
ducing the Euler-Lagrange type coordinate transformations and reducing the
Euler equations into an elliptic system of two equations on upper and lower
domains respectively. §4 is about linearizations of the elliptic systems and
related elliptic estimates. In §5, we define a map T and show the properties
of the differential of T . By using the implicit function theorem, we can solve
an equation defined by T and locate the contact discontinuity.

2. Statement of the problem and the main result

Consider the following two-dimensional steady Euler equations:

div (ρu) = 0, (2.1)

div (ρu⊗ u) +∇p = 0, (2.2)

div

Ç
ρu

Ç
E +

p

ρ

åå
= 0, (2.3)
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where ∇ is the gradient in x = (x1, x2) ∈ R2, u = (u1, u2)> is the velocity
field, ρ is the density, p is the pressure, and

E =
1

2
|u|2 +

p

(γ − 1)ρ

is the energy with adiabatic exponent γ > 1. The sonic speed of the flow is

c =
»
γp/ρ

and the Mach number is

M =
|u|
c
.

For a subsonic flow, the Mach number M < 1 at any point of the flow.
Conditions on contact discontinuity curves. Suppose that a domain
D in R2 is divided by a C1 curve C into subdomains D+ and D−. Assume
that U = (ρ,u, p)> is a piecewise C1 solution of Euler equations (2.1)–(2.3)
in each domain D+ and D− and is continuous up to the boundary C in each
subdomain. We denote the restriction of U on D+ ∪ C by U+ and on D− ∪ C
by U−. If U is a weak solution for the Euler equations in the whole domain
D, using integration by parts gives rise to the following so called Rankine-
Hugoniot conditions on the curve C:

[ρu] · n = 0, (2.4)

[ρu⊗ u + pI] n = 0, (2.5)ñ
ρu(E +

p

ρ
)

ô
· n = 0, (2.6)

where n is the unit normal vector on C and the bracket [ ] denotes the jump of
the dependent variable from one subdomain to the other, i.e., for any smooth
function f : R4 → R, [f(U)] = f(U+) − f(U−). Condition (2.5), taken dot
product with n and with a unit tangential vector τ respectively, leads to

[ρ(u · n)2 + p] = 0, (2.7)

[ρ(u · n)(u · τ )] = 0, . (2.8)

When the flow moves across C, i.e., u ·n 6= 0 on C, with the entropy condition,
the curve C is called a shock; if the flow moves along both sides of C so that
u · n ≡ 0 on C, then C is said to be a contact discontinuity or a characteristic
discontinuity. In the latter case, condition (2.7) with

u± · n = 0 (2.9)

gives

p+ = p− (2.10)

along the contact discontinuity C. It is obvious that conditions (2.9) and (2.10)
together ensure the Rankine-Hugoniot conditions (2.4)–(2.7) and will be used
later as the conditions for a contact discontinuity.
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Figure 1. Domain in x-coordinates.

The profile is bounded above by P+ and below by P−, while P+ and P−
meet at the leading edge, fixed as the origin O, and trailing edge T (see Figure.
1).

A contact discontinuity curve ΓT emanates from T , and stretches to infinity.
Denote H+, H− as the positive and negative x2-axis, respectively, and

Γ± := P± ∪ ΓT .

Let Ω± be the open domains bounded by the curves H± and Γ±, respectively.

Definition 2.1. A triple (U+, U−,ΓT ) is called a subsonic profile solution
to the problem of a steady subsonic flow past a file with a vortex line at the
trailing edge, if the following conditions are satisfied:

(1) ΓT is C1-curve connecting T to infinity;
(2) U± are C1 solutions to Euler equations (2.1)–(2.3) in Ω±, continuous

up to Γ±, respectively, possibly except at the edge points O and T ;
(3) U± satisfy the contact discontinuity conditions (2.7) and (2.8) on ΓT ,

the slip condition (2.9) on P±, and suitable boundary conditions on
H± and far field respectively;

(4) M±(x) < 1 for all x ∈ Ω± .

Since the full Euler system is coupled elliptic-hyperbolic for subsonic flows,
thus it is a subtle problem to formulate the suitable boundary conditions [27].
To study the well-posedness of the problem for a subsonic profile solution, we
need to formulate appropriate boundary conditions at both upstream and the
far field.

Let the background contact discontinuity be given by some uniform states
(U+

0 , U
−
0 ) with a straight line as the corresponding contact continuity curve.

By choosing a proper coordinate system, we may assume that the background
contact discontinuity line is the horizontal axis. Then it follows from the



SUBSONIC FLOWS PAST A PROFILE WITH A VORTEX LINE AT THE TRAILING EDGE7

definition of a contact discontinuity that

U±0 = (ρ±0 , q
±
0 , 0, p0)> (2.11)

which are assumed to satisfy

q±0 > 0, M±
0 < 1, (2.12)

where the last condition means that both U+
0 and U−0 are subsonic. Take

the origin, O, at the leading edge of the profile and the vertical axis as the
upstream entrance of the flow, denoted as H±, see Figure 1. At the upstream
entrance H±, we prescribe boundary data for the entropy function A, the
Bernoulli quantity B, and the horizontal mass flux distribution m · ν = m1,
where

A :=
p

ργ
, B :=

1

2
|u|2 +

γp

(γ − 1)ρ
, m = (m1,m2) := ρu, (2.13)

and ν = (1, 0) is the unit normal on the H±. Precisely, we set

(A±, B±,m±1 ) = (A±0 , B
±
0 ,m

±
10) on H± (2.14)

with

(A±, B±,m±1 ) =

Ç
p±

(ρ±)γ
,
1

2
|u±|2 +

γp±

(γ − 1)ρ±
, ρ±u±1

å
(A±0 , B

±
0 ,m

±
10) =

Ç
p0

(ρ±0 )γ
,
1

2
(q±0 )2 +

γp0

(γ − 1)ρ±0
, ρ±0 q

±
0

å
.

At the downstream, we require that the unit normal of ΓT approaches (0,1)
as x1 → +∞, and at the far field, the corresponding flow converges asymptoti-
cally to U±0 on Ω± respectively. More precisely, the unit normal of ΓT → (0, 1)
as x1 → +∞,

U±(x)→ U±0 as x ∈ Ω± and |x| → +∞. (2.15)

Obviously, (U+
0 , U

−
0 ) is a trivial profile solution for a degenerate profile where

P+ = P− are horizontal segments and the corresponding connected contact
discontinuity line is also horizontal.

The main aim of this paper is to find a profile solution close to the back-
ground contact discontinuity for a thin airfoil. We define P± by the graphs of
functions εζ± on [0, 1], where ε represents the thickness of the profile and ζ±

are given functions with

ζ−(t) ≤ ζ+(t), 0 ≤ t ≤ 1, (2.16)

ζ+(0) = ζ−(0) = 0, (2.17)

ζ+(1) = ζ−(1) = h0, (2.18)

(ζ+)′(1) = (ζ−)′(1) = k∗, (2.19)

where ζ± are fixed, h0 and k∗ are constants and so the trailing edge is T =
(1, εh0), a cusp point where the slopes of both tangents of P+ and P− are εk∗.
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Suppose that the contact discontinuity curve ΓT can be defined by the graph
of gT (t), t ≥ 1, which is continuously connected to the profile at the trailing
edge, i.e.

gT (1) = εh0.

Define the boundary functions g± piecewisely as follows:

g±(t) =

εζ±(t) if 0 ≤ t ≤ 1,

gT (t) if t > 1.
(2.20)

Main Problem. Given U±0 by (2.11) satisfying (2.12) and a profile bounded
by P±, find a subsonic profile solution(U+, U−,ΓT ) satisfying the upper stream
boundary conditions (2.14) and the downstream far field conditions (2.15).

To state the precise results in this paper, we need to define some weighted
Hölder spaces and corresponding norms. Let D be a 2-dimensional domain
and P be a given set in R2. For any x, x′ ∈ D, define

δx := min {dist(x, P ), 1} , δx,x′ := min{δx, δx′},
∆x := |x|+ 1, ∆x,x′ := min{|x|+ 1, |x′|+ 1}.

Let α ∈ (0, 1), σ, τ ∈ R, k a nonnegative integer, k = (k1, k2) an integer-valued
vector with k1, k2 ≥ 0, |k| = k1+k2, and Dk = ∂k1x1∂

k2
x2

. For a function f defined
on D, we set

[f ]
(σ;P )
k,0;(τ);D := sup

x ∈ D
|k| = k

δmax{k+σ,0}
x ∆τ+k

x |Dkf(x)|, (2.21)

[f ]
(σ;P )
k,α;(τ);D := sup

x,x′ ∈ D
x 6= x′, |k| = k

δ
max{k+α+σ,0}
x,x′ ∆τ+k+α

x,x′
|Dkf(x)−Dkf(x′)|

|x− x′|α , (2.22)

‖f‖(σ;P )
k,α;(τ);D :=

k∑
i=0

[f ]
(σ;P )
i,0;(τ);D + [f ]

(σ;P )
k,α;(τ);D. (2.23)

Define the weighted Hölder spaces as:

C
k,α;(τ)
(σ;P ) (D) := {f : ‖f‖(σ;P )

k,α;(τ);D <∞}. (2.24)

For a vector-valued function f = (f1, f2, · · · , fn)>, we define

‖f‖(σ;P )
k,α;(τ);D :=

n∑
i=1

‖fi‖(σ;P )
k,α;(τ);D.

If f is a function of one variable defined on an open set L ⊂ R and P is a set

of some boundary or interior points of L, the Hölder norms ‖f‖(σ;P )
k,α;(τ);L can be

defined similarly. Furthermore, if there is no need to consider decay or growth

rate at far field, we will drop the index τ , written as ‖f‖(σ;P )
k,α;D. In this case, the

factors ∆τ+k
x and ∆τ+k+α

x,x′ in the definitions (2.21) and (2.22), respectively, do
not appear. Similarly, when the index (σ;P ) does not appear in the norm, it
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means that δmax{k+σ,0}
x and δ

max{k+α+σ,0}
x,x′ in the definitions (2.21) and (2.22),

respectively, do not appear.
Denote

E := {O, T}.
Then the main results in this paper can be stated as follows.

Main Theorem. Given α ∈ (0, 1
2
), β ∈ (0, 1), ζ± ∈ C3,α

((−α−1);{0,1})((0, 1))

satisfying conditions (2.16)–(2.19), there exist positive constants ε0 and C,
depending on U±0 , ζ

±, α, β, so that for any ε ∈ [0, ε0], there exists a subsonic
profile solution (U+, U−,ΓT ) with the related contact discontinuity curve ΓT
defined by the graph of gT to the Main Problem, satisfying

gT (1) = εh0, g′T (1) = εk∗,

‖U± − U±0 ‖(−α;E)
2,α;(β);Ω± + ‖gT‖(−α−1;{1})

3,α;(β−1);(1,∞) ≤ Cε. (2.25)

Such a solution (U+, U−,ΓT ) to the Main Problem is unique in the class
defined by (2.25).

Remark 2.1. Some explanations on the the assumptions and results in the
main theorem are given as follows

(1) For the thin airfoil, the assumption ζ± ∈ C3,α
((−α−1);{0,1})((0, 1)) implies

that ζ± are C3,α in the open interval (0, 1), moreover, ζ± are also C1,α

up to the corner points O and T . However, the second derivatives of
ζ± may be discontinuous at corner points O and T .

(2) The superscript (−α; E) of the term ‖U± − U±0 ‖(−α;E)
2,α;(β);Ω± in (2.25) im-

plies that U± have lower regularity at corner points O and T . In
particular, U± are small perturbations from the background solutions
U±0 up to the edges in the Cα−norm. The index β in the subscript
implies that U±(x) converge to U±0 as x ∈ Ω± and |x| → ∞ with the
rate |x|−β.

(3) The bound on ‖gT‖(−α−1;{1})
3,α;(β−1);(1,∞) with superscript (−1− α; {1}) means

that the vortex curve ΓT is C1+α continuous at the trailing edge T so
that the airfoil and the vortex line have a C1+α continuous fitting at the
trailing edge, while the subscript, index β − 1, implies that the vortex
curve ΓT may deviate from the background contact discontinuity line
at the rate x1−β

1 as x1 → +∞, but the unit normal of ΓT converges to
(0,1) at the rate x−β1 as x1 → +∞.

Theorem 2.1 (Stability of vortex lines). Let α, β, ζ±, ε0 be the same as in the
Main Theorem. For any ε, ε̃ ∈ [0, ε0], denote by the corresponding subsonic
profile solutions (U±,ΓT ), (Ũ±, Γ̃T ) with the associated vortex lines ΓT and Γ̃T
given as the graphs of gT and g̃T , respectively. Then

‖gT − g̃T‖(−α−1;{1})
3,α;(β−1);(1,∞) ≤ C|ε− ε̃|. (2.26)
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Remark 2.2. This theorem yields the uniform structual stability of the vortex
line in the weighted Hölder space. However, it should be pointed out that the
uniform global stability estimate (2.22) does not yield the asymptotic stability
in the super-norm of the vortex lines. Instead, it can be checked that (2.22)
allows sublinear divergence of the vortex lines in L∞-norm. However, it can be
checked easily that the stability estimate (2.22) implies that the unit normals
n(x) and ñ(x) of the vortex line ΓT and ΓT̃ converge to each other in L∞-norm
as x1 → +∞.

3. Reformulation of the Main Problem

Let (U+, U−,ΓT ) be a subsonic profile solution. Then the conservation of
mass equation (2.1) gives a stream function in each domain of Ω+ and Ω−.
For convenience, we will focus on Ω+ and the notations for the problem in Ω−

will be replacing + signs with − signs.
The stream function ψ+ is uniquely determined in Ω+ by

ψ+
x1

= −ρ+u+
2 , ψ+

x2
= ρ+u+

1 , (3.1)

with

ψ+(0, 0) = 0.

Define the following coordinate transformation of Euler-Lagrange type®
y1 = x1,
y2 = ψ+(x1, x2),

(3.2)

so that the streamlines in x-coordinates are mapped to horizontal lines in y-
coordinates. Correspondingly, domains Ω+ and Ω− are mapped into the first
quadrant Q+ and the fourth quadrant Q− respectively, and the boundaries Γ+

and Γ− both become positive y1-axis.

Remark 3.1. Let g+ be the boundary function defined in (2.20). The coordi-
nate transformation (3.2) is equivalent to®

y1 = x1,
y2 =

∫ x2
g+(x1) ρ

+u+
1 (x1, s)d s.

(3.3)

Furthermore, this transformation is globally invertable as long as u+
1 > 0.

In the new coordinates y = (y1, y2), the unknown variables become U+(y) :=
U+(x(y1, y2)) and the Euler system, (2.1)–(2.3), becomesÇ

1

ρ+u+
1

å
y1

−
Ç
u+

2

u+
1

å
y2

= 0, (3.4)Ç
u+

1 +
p+

ρ+u+
1

å
y1

−
Ç
p+u+

2

u+
1

å
y2

= 0, (3.5)

(u+
2 )y1 + p+

y2
= 0, (3.6)

B+
y1

= 0. (3.7)
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Equations (3.7) and (2.14) imply the Bernoulli’s law:

1

2
|u+|2 +

γp+

(γ − 1)ρ+
= B+

0 . (3.8)

Equations (3.4)–(3.7) also give

(γ ln ρ+ − ln p+)y1 = 0,

which, combined with (2.14), leads to

p+ = A+
0 (ρ+)γ. (3.9)

Define a new variable in terms of the flow angle and the reciprocal of the
horizontal momentum

v+ = (v+
1 , v

+
2 ) :=

Ç
u+

2

u+
1

,
1

ρ+u+
1

å
. (3.10)

Then (3.4) becomes

(v+
2 )y1 − (v+

1 )y2 = 0. (3.11)

It follows from (3.10) and (3.9) that the Bernoulli’s law can be written as

(v+
1 )2 + 1

2(v+
2 )2

+
γ

γ − 1
A+

0 (ρ+)γ+1 = B+
0 (ρ+)2. (3.12)

Since the flow is subsonic, so (3.8) and (3.9) imply

(ρ+)γ−1 >
2(γ − 1)B+

0

γ(γ + 1)A+
0

. (3.13)

Solving (3.12) for ρ+ as a function of (A+
0 , B

+
0 ,v

+) gives two solutions,
corresponding to the subsonic and supersonic solutions respectively. Condition
(3.13) singles out the unique value for ρ+ in the subsonic regime, and we denote
it as

ρ+ = ρ(A+
0 , B

+
0 ,v

+).

Thus, the solution U+ is expressed as a vector-valued function of v+:

U+ = (ρ+, u+
1 , u

+
2 , p

+)> =

Ç
ρ+,

1

ρ+v+
2

,
v+

1

ρ+v+
2

, A+
0 (ρ+)γ

å>
. (3.14)

Denote u
+
2 := N+

1 (v+) = N1(A+
0 , B

+
0 ,v

+)

p+ := N+
2 (v+) = N2(A+

0 , B
+
0 ,v

+).
(3.15)

Then (3.6) becomes

(N+
i (v+))yi = 0, (3.16)

where the Einstein’s convention for the summation has been used.
The slip condition (2.9) on Γ+ implies that

v+
1 (y1, 0) = (g+)′(y1), y1 ≥ 0. (3.17)
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Condition (2.14) on H+ gives rise to

v+
2 (0, y2) =

1

m+
10

. (3.18)

Similarly, in Q−, one has that

(N−i (v−))yi = 0, (v−2 )y1 − (v−1 )y2 = 0. (3.19)

with boundary condition

v−1 (y1, 0) = (g−)′(y1), v−2 (0, y2) =
1

m−10

. (3.20)

On the contact discontinuity line ΓT , (2.10) becomes

N+
2 (v+(y1, 0)) = N−2 (v−(y1, 0)), y1 > 1. (3.21)

Therefore, the Main Problem is reformulated as follows:

Reduced Problem. Suppose that (U+
0 , U

−
0 ) and P± are given in the Main

Problem. Find the functions gT for the contact discontinuity curve ΓT , and
v± such that the followings are satisfied:

(1) v+ and v− are C2 solutions to equations (3.11) and (3.16) in Q+ and
the equations (3.19) in Q− respectively;

(2) Boundary conditions (3.17), (3.18), (3.20) and (3.21) are satisfied;
(3) At far field, the asymptotic behavior, v±(y) → (0, 1

m±10
), y ∈ Q± and

|y| → +∞, is satisfied.

4. Solution to A Fixed Boundary Value Problem in Q+

Note that the Main Problem in the previous section is a free boundary
problem since the contact discontinuity curve ΓT is unknown. As we mentioned
in the introduction, this free boundary problem will be solved by using the
implicit function theorem. To this end, it turns out that the key step is to
solve two fixed boundary value problems in Q± respectively for a given ΓT .
Since the solvability for the boundary value problem on Q− is similar to that
for Q+, we will focus on the solvability of the (3.11) and (3.16) with the
boundary condition (3.17) and (3.18) for the given vortex line ΓT in Q+. this
nonlinear problem will be solved by the following three steps:

(1) Linearize the nonlinear fixed boundary value problem and reformulate
the linearized problem as a mixed boundary value problem for a second
order linear elliptic equation;

(2) Solve the reformulated linear problem;
(3) Construct a map F based on linearization problem and show the ex-

istence of a fixed point of F , which yield the solution the nonlinear
problem, (3.11),(3.16) subject to the boundary condition (3.17) and
(3.18) in Q+.
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Step 1. Linearization and reformulation. Given v+ = v+
0 + δv, find

v̄+ = v+
0 + δv̄ by solving equations

(δv̄2)y1 − (δv̄1)y2 = 0, (4.1)

(N+
i (v+))v+j

(δv̄j)yi = 0, (4.2)

with boundary conditions

δv̄1(y1, 0) = (g+)′(y1), y1 ≥ 0; (4.3)

δv̄2(0, y2) = 0, y2 > 0. (4.4)

Let q+ =
»

(u+
1 )2 + (u+

2 )2. Direct calculations show that

(N+
1 )v+1 =

u+
1 ((c+)2 − (u+

1 )2)

(c+)2 − (q+)2
, (4.5)

(N+
1 )v+2 = (N+

2 )v+1 = − (c+)2ρ+u+
1 u

+
2

(c+)2 − (q+)2
, (4.6)

(N+
2 )v+2 =

(c+)2(ρ+)2(q+)2u+
1

(c+)2 − (q+)2
. (4.7)

Hence, for a subsonic flow with u+
1 > 0, it holds that

(N+
1 )v+1 > 0, (N+

2 )v+2 > 0.

It follows from (4.1) and (4.2) that

(aij(v+)(δv̄1)yj)yi = 0, (4.8)

where

a11 =
(N+

1 )v+1
(N+

2 )v+2
, a12 =

2(N+
1 )v+2

(N+
2 )v+2

, a21 = 0, a22 = 1. (4.9)

Then for a subsonic flow with u+
1 > 0,

a11 −
Ç
a12

2

å2

=
(N+

1 )v+1 (N+
2 )v+2 − (N+

1 )2
v+2

(N+
2 )2

v+2

=
((c+)2 − (q+)2)(u+

1 )2

(c+)2(ρ+)2(q+)4
> 0, (4.10)

which shows that the equation (4.8) is elliptic.
To recover equation (4.2) from (4.8), we prescribe (4.2) on H+ as a boundary

condition. Since δv̄2 = 0 on H+, this condition can be written as

a11(v+)(δv̄1)y1 + a12(v+)(δv̄1)y2 = 0. (4.11)

Subsonicity condition (2.12) for U+
0 and (4.10) imply the uniform ellipticity

of (4.8), provided that v+ is a small perturbation from v+
0 . More precisely,

there exist constants λ, σ > 0, depending only on U+
0 , such that when

‖δv‖L∞(Q+) ≤ σ,
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for any ξ ∈ R2, it holds that

λ|ξ|2 ≤ aij(v+)ξiξj ≤
1

λ
|ξ|2. (4.12)

Set

Gσ := {v : ‖v‖(−α;E)
2,α;(β);Q+ ≤ σ}, (4.13)

Gσ∗ := {v : v(0, 1) = εk∗, ‖v‖(−α;E)
2,α;(β);Q+ ≤ σ}, (4.14)

where
E = {O, T}, T = (1, 0).

Given δv ∈ Gσ∗ ×Gσ, we will solve equations (4.1), (4.8) with boundary condi-

tions (4.3), (4.4), (4.11) by δv̄ ∈ C2,α;(β)
(−α;E)(Q+)× C2,α;(β)

(−α;E)(Q+).
For the purpose of applications later, instead of solving the above problem,

we consider a more general setup. Set

L+ := [0,∞)× {0}.
We will solve the following mixed boundary value problem (Problem MB)

aijvyiyj + bivyi = f in Q+,

v = g on L+,

µi∂yiv = g1 on H+.

Step 2. Solve the linear problem. Results about existence and uniqueness
of solutions to mixed boundary problems can be found in Lieberman’s paper
[23]. However, since here the domain is unbounded and boundary data may
have low regularity, so Lieberman’s theorems can not be applied directly. Thus,
we may need to carry out estimates on some truncated domains. To this end,
we will use the following notations. For constants δ and R such that 0 < δ < 1,
R > δ + 1, set

QR = BR(O) ∩Q+, QRδ = QR\Bδ(O) ∪Bδ(T ),

SR := ∂BR(O) ∩Q+, HR = {0} × (0, R),

LR = [0, R]× {0},
(4.15)

where BR(X) denotes the disc centered at point X with radius R.
In order to prescribe a boundary condition on SR ∪LRδ , one can extend the

domain of (g+)′ from R+ to Q+ in the following way.
Let K(t) be a smooth mollifier satisfying

K(t) ≥ 0, suppK ⊂ [−1, 1],
∫
R
K(t)d t = 1,

and η ∈ C∞c (R) be a cut-off function with the following properties
0 ≤ η(t) ≤ 1, t ∈ R;

η(t) = 1, t ∈ [−1, 1];

η(t) = 0 t ∈ (−∞,−2] ∪ [2,∞).

(4.16)
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O y1

y2

T

H+

H−

Q+

Q−

SR

Sδ

0 Sδ

1

QR
δ

δ 1 R

Figure 2. Truncated domain in y-coordinates.

Define for (y1, y2) ∈ Q+

g(y) := η(y2)

Ç∫ ∞
0

(g+)′(y1 + ty2)K(t)d t+
∫ 0

−∞
(g+)′(y1 − ty2)K(t)d t

å
,

(4.17)

Then we prescribe the following Dirichlet condition :

δv̄1 = g (4.18)

on SR ∪ LR.

Remark 4.1. The following estimate holds for g defined in (4.17):

‖g‖(−α;E)
2,α;(β);Q+ ≤ C‖g+‖(−1−α;{0,1})

3,α;(β−1);(1,∞), (4.19)

where C depends only on the choices of the kernel K and the cut-off function
η. We refer to the proof of Lemma 2.3 in [19] about the details for the proof
of (4.19).

The following result for the truncated problem in QR holds:

Proposition 4.1. Suppose that aij, µi, g ∈ C2,α;(β)
(−α;E)(Q+), bi, g1 ∈ C1,α;(1+β)

(1−α;E) (Q+),

f ∈ C0,α;(2+β)
(2−α;E) (Q+) and

‖aij − δij‖(−α;E)
2,α;(β);Q+ ≤ τ, ‖µi − δ1i‖(−α;E)

2,α;(β);Q+ + ‖bi‖(1−α;E)
0,α;(2−β);Q+ ≤ τ, (4.20)

where i, j = 1, 2, δij =

1 if i = j

0 if i 6= j
.
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Then there exists a suitably small constant τ > 0, such that the following
truncated mixed boundary value problem (Problem MR)

aijvRyiyj + bivRyi = f in QR,
vR = g on SR ∪ LR,
µi∂yiv

R = g1 on HR

has a unique solution in C2,α(QR) ∩ C0(QR) for any fixed positive constant
R > 4. Furthermore, the following estimate holds:

‖vR‖(−α;E)

2,α;(β);Q
R
2
≤ C

(
‖f‖(2−α;E)

0,α;(2+β);Q+ + ‖g‖(−α;E)
2,α;(β);Q+ + ‖g1‖(1−α;E)

1,α;(1+β);Q+

)
, (4.21)

where the constant C depends only on τ , but is independent of R.

Proof of Proposition 4.1. By Theorem 1 in Lieberman’s paper [23], there is a
unique solution vR in C2(QR) ∩ Cα′(QR) for some α′ > 0 to Problem MR.
Next, we will derive some estimates independent of R so that one can let
R→∞ to obtain the solution to Problem MB.

Set
κ := ‖f‖(2−α;E)

0,α;(2+β);Q+ + ‖g‖(−α;E)
2,α;(β);Q+ + ‖g1‖(1−α;E)

1,α;(1+β);Q+ .

Decay estimates. Since bi, f, g and g1 may have lower regularities at E ,
it is convenient to use the polar coordinates (r, θ) centered at O and (r∗, θ∗)
centered at T respectively to construct barrier functions. Define

ϕ1(y) := r−β sin(β1θ + θ0), (4.22)

ϕ(y) := Cκϕ1(y), (4.23)

where β < β1 < α, θ0 > 0, β1π/2 + θ0 < π/2, here and hereafter, all C’s and
Ci’s, i = 1, 2, · · · , denote generic positive constants, which may depend on
U±0 , ζ

±, α, β.
Direct calculations show that

∆ϕ1(y) = (β2 − β2
1)r−β−2 sin(β1θ + θ0), (4.24)

(ϕ1)y1(0, y2) = −r−1∂θϕ1|θ=π
2

= −β1r
−β−1 cos(β1π/2 + θ0). (4.25)

Let τ be suitably small and choose proper C. Then it follows from (4.20) and
(4.22)-(4.25) that 

aijϕyiyj + biϕyi ≤ f in QR,
ϕ ≥ g on SR ∪ LR,
µi∂yiϕ ≤ g1 on HR.

Consequently, the standard maximum principle for elliptic equations shows
that ϕ − vR cannot achieve a minimum in QR. Since µi∂yi(ϕ − vR) < 0 on
HR and (µ1, µ2) · (1, 0) > 0 for suitably small τ , so ϕ − vR cannot achieve a
minimum on HR neither. It thus follows that

vR ≤ ϕ(y). (4.26)
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Similarly, one can check that −ϕ is a strict sub-solution to Problem MR,
thus it holds that

vR ≥ −ϕ(y). (4.27)

It follows from (4.26), (4.27) and (4.23) that

|vR(y)| ≤ ϕ(y) ≤ Cκr−β. (4.28)

C0 estimate. It follows from (4.28) that

|vR(y)| ≤ Cκ, on S2.

In Q2, one can define a barrier function as

ϕ2 := Cκ(rβ2 sin(β1θ + θ0) + (r∗)β2 sin(β1θ
∗ + θ∗0))

with β1 and θ0 are given as in (4.22), 0 < β2 < β1, θ
∗
0 > 0, and β1π + θ∗0 < π.

Then this enables one to get

|vR(y)| ≤ ϕ2(y) ≤ Cκ for y ∈ Q2.

The estimate above and estimate (4.28) yield the following C0 estimate for vR

in QR:

|vR(y)| ≤ Cκmin(1, r−β). (4.29)

Weighted C2,α estimates on Q
R
2
1
4

. Choosing proper scalings and applying

Schauder estimates will lead to the desired estimate (4.21). Indeed, for any

y0 in Q
R
2
1
4

, let d∗ = 1
8
dist (y0, E), D1 = Bd∗(y0)∩Q+, D2 = B2d∗(y0)∩Q+ and

C = ∂D2\∂Q+. The Schauder interior estimate of Theorem 6.2 in [20] on the
domain D2 gives rise to

‖vR‖(0;C)
2,α;D2

≤ C(‖vR‖0,0;D2 + ‖f‖(2;C)
0,α;D2

), (4.30)

here ‖vR‖0,0;D2 = supx∈D2
|vR(x)| and C depends only on α, λ.

Near SR∪LR, by the boundary estimate of Lemma 6.4 in [20] on the domain
D2, one can get

‖vR‖(0;C)
2,α;D2

≤ C(‖vR‖0,0;D2 + ‖g‖(0;C)
2,α;D2

+ ‖f‖(2;C)
0,α;D2

) (4.31)

where C does not depend on R.
Near HR, applying the Theorem 6.26 in [20] on the domain D2 yields

‖vR‖(0;C)
2,α;D1

≤ C(‖vR‖0,0;D2 + ‖g1‖(1;C)
1,α;D2

+ ‖f‖(2;C)
0,α;D2

) (4.32)

here C is independent of R.
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Since x,y ∈ D2, 1
4
≤ δx, δy ≤ 1, then

‖f‖(2;C)
0,α;D2

= sup
x∈D2

d2
x|f(x)|+ sup

x,y∈D2;x 6=y
d2+α
x,y

|f(x)− f(y)|
|x− y|α

≤ C|y0|−β
(

sup
x∈D2

d2
x(d∗)β|f(x)|+ sup

x,y∈D2;x 6=y
d2+α
x,y (d∗)β

|f(x)− f(y)|
|x− y|α

)
≤ C|y0|−β‖f‖2−α;E

0,α;(2+β);Q+ ≤ Cκ|y0|−β
(4.33)

where dx = dist {x, C} and dx,y = min{dx, dy}. Similarly, we infer that

‖g‖(0;C)
2,α;D2

≤ Cκ|y0|−β; ‖g1‖(1;C)
1,α;D2

≤ Cκ|y0|−β. (4.34)

For any y0 ∈ Q
R
2
1
4

, from (4.30) to (4.31), we have

2∑
|k|=0

(d∗)|k||DkvR(y0)|+ sup
y ∈ D1,y 6= y0

|k| = 2

(dy,y0)
2+α |DkvR(y)−DkvR(y0)|

|y − y0|α

≤ C(‖vR‖0,0;D2 + ‖g‖(0;C)
2,α;D2

+ ‖g1‖(1;C)
1,α;D2

+ ‖f‖(2;C)
0,α;D2

).
(4.35)

Therefore, estimates (4.29), (4.35), (4.33) and (4.34) yield

2∑
|k|=0

(d∗)|k||DkvR(y0)|+ sup
y ∈ D1,y 6= y0

|k| = 2

(dy,y0)
2+α |DkvR(y)−DkvR(y0)|

|y − y0|α

≤ Cκ|y0|−β.
(4.36)

This leads to the following estimate:

‖vR‖
2,α;(β);Q

R
2
1
4

≤ Cκ. (4.37)

Corner estimates near O and T . Consider domain Q 1
2 for the corner

estimates near O. We use the following barrier function

ϕ̄(y) := Cκrα sin(β3θ + θ0) (α < β3 < 1)

for v̄R(y) := vR(y)− vR(0, 0) and obtain

|v̄R(y)| ≤ Cκrα, ∀y ∈ Q 3
4 . (4.38)

Using the Schauder estimates derived in the same way for (4.35) and the
same scaling argument as for (4.36), one gets that

2∑
|k|=0

(d∗)|k||Dkv̄R(y0)|+ sup
y ∈ D3,y 6= y0

|k| = 2

(d̃y,y0)
2+α |Dkv̄R(y)−Dkv̄R(y0)|

|y − y0|α
≤ Cκ|y0|α,

(4.39)
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for any y0 ∈ Q
1
2 , whereD3 = B |y0|

4

(y0), d̃y,y0 = min{dist(y, ∂D3), dist(y0, ∂D3)}.
Thus, one can get the following corner estimate:

‖v̄R‖(−α;{O})
2,α;Q

1
2
≤ Cκ. (4.40)

Similarly, the following corner estimate near T holds:

‖v̄R‖(−α;{T})
2,α;B 1

2
(T )∩Q+ ≤ Cκ. (4.41)

Estimate (4.21) follows from estimates (4.37), (4.40) and (4.41). Hence, the
proof of Proposition 4.1 is completed.

�

By estimate (4.21), one can choose a subsequence {vRi} converging to v in

each space C
2,α′;(β)
(−α′;E)(QRi

2 ) for a fixed α′ ∈ (0, α), as Ri → ∞. Then (4.21)
implies

‖v‖(−α;E)
2,α;(β);Q+ ≤ C

(
‖f‖(2−α;E)

0,α;(2+β);Q+ + ‖g‖(−α;E)
2,α;(β);Q+ + ‖g1‖(1−α;E)

1,α;(1+β);Q+

)
. (4.42)

Obviously, v is a solution to the Problem MB.

For the uniqueness in space C
2,α;(β)
(−α;E)(Q+), it suffices to show that there is only

a trivial solution in C
2,α;(β)
(−α;E)(Q+) to the Problem MB with f = g = g1 = 0.

Define a barrier function as

ϕ3(y) := c0

Ä
C3r

−β′ sin(β1θ + θ0) + η(4r∗)(r∗)−β sin(β1θ
∗ + θ∗0)

ä
, (4.43)

where 0 < β′ < β, β1, θ0 are given in the definitions (4.22) and r∗, θ∗, θ∗0 are
the same as for the definition of ϕ2, η(t) is defined in (4.16), c0 is a positive
constant which will approach to 0 later.

Since β′ < β implies that v decays faster than ϕ3 as |y| → +∞, for large
enough R, then

|v(y)| ≤ ϕ3(y), for y on SR.

As for the calculations of (4.24) and (4.25), one can check that ϕ3 is a super-
solution of the following equation

aijvyiyj + bivyi = 0 in QR,
v = 0 on SR ∪ LR,
µi∂yiv = 0 on HR,

provided that τ is suitable small.
As for (4.28), one shows that ϕ3− v can achieve the minimun neither in QR

nor on HR. Note that v is bounded and ϕ3(y)→ +∞ as y→ O or T . Hence
ϕ3 − v can achieve minimum only on SR ∪ (0, 1)× {0} ∪ (1, R)× {0} and the
minimum is nonnegative. Therefore, we conclude that

|v(y)| ≤ ϕ3(y), for y ∈ QR.
Thus, letting R→∞ yields that

|v(y)| ≤ ϕ3(y), for y ∈ Q+.
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Let c0 → 0, we conclude that v ≡ 0 in Q+.

Remark 4.2. In fact, it follows from Proposition 4.1 that the solution is Hölder
continuous at the corners O and T . Since the Problem MB is linear, it is
easy to see the uniqueness. The proof above shows that the uniqueness holds
even in the case that the bounded solutions may be singular at the corners O
and T .

The results discussed above can be summarized in the following proposition:

Proposition 4.2. Under the same assumptions as in Proposition 4.1, there
exists a solution v to the Problem MB satisfying the estimate (4.42). Fur-

thermore, the solution is unique in C
2,α;(β)
(−α;E)(Q+).

We now apply Proposition 4.2 to solve the boundary value problem (4.8),
(4.3) and (4.11). Though the coefficients in (4.8) and (4.9) may not satisfy the
assumption (4.20) directly, yet by a suitable rescaling of y1 (depending only on
the background solution), one may reduce the problem (4.8), (4.3) and (4.11)
to the following problem

›aijvyij + ‹bivyi = 0 in Q+

v = g ≡ (g+)′ on L+

µ̃i∂yiv = 0 on H+

with

ã11 =
a11

a11(v+
0 )
, ã12 =

a12»
a11(v+

0 )
, ã21 = 0, ã22 = 1‹bi = ∂yj(

›aji), µ̃1 =
a11

a11(v+
0 )
, µ̃2 =

a12»
a11(v+

0 )
.

It can be checked easily that the coefficients above satisfy (4.20), so one can
apply Proposition 4.2 to conclude that there exists a unique solution δv̄1 to
the problem (4.8), (4.3) and (4.11), such that

‖δv̄1‖(−α;E)
2,α;(β);Q+ ≤ C‖g‖(−α;E)

2,α;(β);Q+ ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+ . (4.44)

Set

δv̄2(y) =
∫ y1

0
(δv̄1)y2(t, y2) dt, ∀y ∈ Q+. (4.45)

Then the equation (4.1) and the boundary condition (4.4) are satisfied. Next,
we derive the super-norm estimate on δv̄2.

Boundedness of δv̄2. The right hand side of (4.45) is integrable for each
fixed y2 > 0, which implies that δv̄2 is bounded for each fixed y2 > 0. However,
the bounds are not uniform in y2, due to less regularity of the solutions at O
and T . Observe that for any given point y∗ ∈ Q+\E , and any smooth curve C
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starting from (0, 1), ending at y∗, with parametrization y(t), t ∈ [0, 1], it holds
that:

δv̄2(y∗) =
∫ 1

0
∇(δv̄2)(y(t)) · y′(t) d t. (4.46)

It follows from (4.1), (4.2) and (4.44) that

|∇(δv̄2(y))| ≤ C|∇(δv̄1(y))| ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+|y|−1−β. (4.47)

Then for any y away from E (with distance greater than 1
2
), (4.46) leads to

|δv̄2(y)| ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+ ∀y ∈ Q+, dist (y, E) ≥ 1

2
. (4.48)

For dist (y, E) < 1
2
, (4.44) yields the following possible blowup rate for∇(δv̄1(y)):

|∇(δv̄1(y))| ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+δ

−1+α
y .

Hence, the following boundedness for δv̄2(y) holds:

|δv̄2(y)| ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+ , ∀y ∈ Q+, dist (y, E) <

1

2
. (4.49)

It follows that

‖δv̄‖L∞(Q+) ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+ . (4.50)

Decay estimates of δv̄2. To guarantee δv̄2 ∈ Gσ, besides estimates (4.50),
one needs to derive the decay of δv̄2 at far field. In the similar way as solving
for δv̄1 in Step 1, one differentiates equation (4.1) w.r.t. y1, equation (4.2)
w.r.t. y2 to eliminate δv̄1 and obtain the equation for V := δv̄2 as

(ãij(v+)Vyi)yj = 0, (4.51)

where

ã11 = 1, ã12 =
2(N+

1 )v+2
(N+

1 )v+1
, ã21 = 0, ã22 =

(N+
2 )v+2

(N+
1 )v+1

.

The boundary conditions can be prescribed as follows:
V = 0 on H+,

V = δv̄2 on (0, 1)× {0},
ã12(v+)Vy1 + ã22(v+)Vy2 = (g+)′′ on (1,∞)× {0}.

(4.52)

Since δv̄1 and δv̄2 solve the equations (4.1) and (4.2), it is easy to see that δv̄2

also solves the equations (4.51) and (4.52). We define the following barrier
function, similar to ϕ3 in (4.43):

ϕ4(y) :=ε(C4r
β′ sin(β1θ + θ0) + η(4r)r−β

′
sin(β1θ + θ0)

+ η(4r∗)(r∗)−β
′
sin(β1θ

∗ + θ∗0)),
(4.53)

where 0 < β′ < β1, while θ0, θ
∗
0, β1 satisfy the following conditions:

0 < β < β1 < 1, θ0 > π/2, θ∗0 > 0, β1π/2 + θ0 < π, β1π + θ∗0 < π. (4.54)
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This enables one to show the uniqueness of bounded solutions of the equations
(4.51) and (4.52), which implies that the solution V has to be δv̄2.

On the other hand, (4.47) and (4.49) imply ‖δv̄2‖(−α;{0,1})
2,α;(0,1) ≤ ‖(g+)′‖(−α;{0,1})

2,α;(β);R+ .

Similar to the estimates for (4.44), using the barrier function ϕ defined by
(4.23) with the conditions (4.54) can yield a solution V to (4.51), (4.52) with
the following estimate

‖V ‖(−α;E)
2,α;(β);Q+ ≤ C‖(g+)′‖(−α;{0,1})

2,α;(β);R+ .

This together with (4.44), implies the estimate

‖δv̄‖(−α;E)
2,α;(β);Q+ ≤ C‖(g+)′‖(−α;{0,1})

2,α;(β);R+ . (4.55)

Step 3. The fixed point of F . Assume

‖(g+)′‖(−α;{0,1})
2,α;(β);R+ ≤ τ, (4.56)

where Cτ < σ with C given in (4.55). Then estimate (4.55) guarantees δv̄ ∈
Gσ∗ × Gσ.

Thus we define a map F : Gσ∗ × Gσ → Gσ∗ × Gσ by δv̄ := F(δv) to solve
the equations (4.1) and (4.2) with the boundary conditions (4.3) and (4.4) for

given δv. Observe that Gσ∗ × Gσ is a compact convex set in C
2,α′;(β)
(−α;E) (Q+) ×

C
2,α′;(β)
(−α;E) (Q+) for 0 < α′ < α and F is continuous. Indeed, the continuity of F

can be proved by the argument for the estimate (4.42). By the Schauder fixed
point theorem, there exists a fixed point δv+ ∈ Gσ∗ × Gσ for F . Hence, v+ =
v+

0 + δv+ is a solution to equations (3.11), (3.16) with boundary conditions
(3.17), (3.18).

Now we show the uniqueness of the solution for v+ ∈ Gσ∗ × Gσ.
Suppose that v+ and v̄+ are both solutions to (3.11) and (3.16) with bound-

ary conditions (3.17), (3.18). Then δv := v̄+ − v+ satisfies equation (3.11)
and the following equationÇÇ∫ 1

0
(N+

i )v+j
(v+ + tδv)d t

å
δvj

å
yi

= 0,

with boundary conditions

δv1(y1, 0) = 0, δv2(0, y2) = 0.

Then by the estimate (4.42) in the proof of Proposition 4.2, δv ≡ 0, provided
that δv ∈ G2σ × G2σ. In summary, we have the following result:

Proposition 4.3. For suitably small σ and τ , if g+ satisfies (4.56), then
there exists a solution v+ to equations (3.11), (3.16) with boundary conditions
(3.17), (3.18), satisfying the following estimate:

‖v+ − v+
0 ‖(−α;E)

2,α;(β);Q+ ≤ C‖(g+)′‖(−α;{0,1})
2,α;(β);R+ . (4.57)

The solution is unique for v+ − v+
0 ∈ Gσ∗ × Gσ.
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Remark 4.3. Similarly, for given suitably g−, one can solve the fixed boundary
value problem, (3.19)-(3.20), on Q− to obtain a unique solution v− satisfying
(4.57) with v+, v+

0 , g+ and Q+ replaced by v−, v−0 , g− and Q−respectively.

5. Construction and properties of the slip line

With the solvability and the corresponding estimates of the fixed boundary
value problems (with fixed ΓT ), Proposition 4.3 and Remark 4.3, we will be
able to solve the free boundary value problem, the Reduced Problem, by
an elaborate use of the implicit function theorem in this section.

Define a Banach space

Σ := C
2,α;(β)
(−α;{1})((1,∞)),

equipped with norm

‖ · ‖Σ := ‖ · ‖(−α;{1})
2,α;(β);(1,∞).

Set

V ε1
∗ = {w ∈ Σ : w(1) = εk∗, ‖w‖Σ < ε1}.

For any w ∈ V ε1
∗ , let

gT (t) := εh0 +
∫ t

1
w(s)d s, t > 1 (5.1)

and g± be defined by (2.20). Choose suitably small ε1 so that (4.56) holds
for w ∈ V ε1

∗ and |ε| ≤ ε1. It then follows from Proposition 4.3 and Remark
4.3 that there exist v+ and v− which solve the fixed boundary value problem,
(3.11) and (3.16)-(3.18) on Q+ and (3.19)-(3.20) on Q−, respectively. Set

[ p ] :=
Ä
N+

2 (v+)−N−2 (v−)
ä∣∣∣

(1,∞)×{0}
, (5.2)

and then define a map T : (−ε1, ε1)× V ε1
∗ → Σ by

T (ε, w) := [ p ].

The condition (2.10) for the pressure, i.e. (3.21), can be written as the
equation

T (ε, w) = 0,

which will be solved by the implicit function theorem stated below for conve-
nience.

Lemma (Implicit function theorem). Let X, Y, Z be Banach spaces over R
and V (x0, y0) is an open neighborhood of (x0, y0) in X × Y . Suppose that the
mapping F : V (x0, y0)→ Z satisfies:

(1) F (x0, y0) = 0;
(2) The partial Fréchet derivative DyF exists on V (x0, y0) and DyF (x0, y0) :

Y → Z is bijective;
(3) F and DyF are continuous at (x0, y0).
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Then there exist two positive constants ε1 and ε2, such that for any x ∈ X
satisfying ‖x − x0‖ ≤ ε1, F (x, y) = 0 has a unique solution y(x) ∈ Y with
‖y(x)− y0‖ ≤ ε2.

Furthermore, if F is continuous in a neighborhood of (x0, y0), then y(·) is
also continuous in a neighborhood of x0; if F is a C1-map on a neighborhood
of (x0, y0), then y(·) is also a C1-map on a neighborhood of x0.

The precise statement of this lemma is given by Theorem 4.B page 150
in [29].

We now verify the conditions in the implicit function theorem.
Obviously, T (0,0) = 0.
Differentiability of T . Consider the perturbation of a given point (ε, w)

as (ε̃, w̃) = (ε+ δε, w+ δw). The boundary data g± change to g̃± = g±+ δg±.
It follows from the definition (5.1) that

δg±(t) =

δεζ±(t), 0 ≤ t ≤ 1;

δεh0 +
∫ t
1 δw(s) d s, t > 1.

We linearize equations (3.16) and (3.19) around (v+,v−) respectively and solve
the following linear problems:

Å
(N±i )v±j

(v±)δv±j

ã
yi

= 0 in Q±;

δv±1 = (δg±)′ on L+;

δv±2 = 0 on H±.

(5.3)

By Proposition 4.2, the above problems are uniquely solvable in C
2,α;(β)
(−α;E)(Q±),

if v± − v±0 ∈ Gσ∗ × Gσ
Then we linearize the right hand side of (5.2) and set

δp :=
Ä
(N+

2 (v+))v+ · δv+ − (N−2 (v−))v− · δv−
ä∣∣∣

(1,∞)×{0}
.

Noticing that δp is linear in δv± and δv± is linear in (δε, δw), we define a
linear map DT (ε, w) of (δε, δw) by

DT (ε, w)(δε, δw) := δp.

Since w(1) = w̃(1) = εk∗, we require that δw(1) = 0. Set

Σ0 := {v ∈ Σ : v(1) = 0}.
Then DT (ε, w) is a linear map from (−ε1, ε1)× Σ0 to Σ.

Now we show that DT (ε, w) is the differential of T at (ε, w).
Let ṽ+ be the solution to (3.11) (3.16) with boundary data g̃+ and Φ :=

ṽ+ − v+ − δv+. Then Φ satisfiesÅ
(N+

i )v+j
(v+)Φj

ã
yi

= F,
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with homogeneous boundary data, where

F =

ÇÇ
(N+

i )v+j
(v+)−

∫ 1

0
(N+

i )v+j
(v+ + t(ṽ+ − v+))d t

å
(ṽ+
j − v+

j )

å
yi

.

It thus follows from the proof of Proposition 4.2 that

‖Φ‖(−α;E)
2,α;(β);Q+ ≤ C‖F‖(2−α;E)

0,α;(2+β);Q+ ≤ C
(
‖ṽ+ − v+‖(−α;E)

2,α;(β);Q+

)2
. (5.4)

Since ṽ+ − v+ satisfiesÇÇ∫ 1

0
(N+

i )v+j
(v+ + t(ṽ+ − v+)) d t

å
(ṽ+
j − v+

j )

å
yi

= 0, (5.5)

with boundary data (δg+)′, so Proposition 4.2 yields the following estimate

‖ṽ+ − v+‖(−α;E)
2,α;(β);Q+ ≤ C‖(δg+)′‖(−α;{0,1})

2,α;(β);R+ ≤ C(|δε|+ ‖δw‖Σ) (5.6)

Similar estimates hold in Q− with H−. This and estimates (5.4) and (5.6)
lead to

‖ṽ± − v± − δv±‖(−α;E)
2,α;(β);Q± ≤ C(|δε|+ ‖δw‖Σ)2. (5.7)

Hence, with estimates (5.6) and (5.7), we have

‖T (ε̃, w̃)− T (ε, w)−DT (ε, w)(δε, δw)‖Σ

= ‖[ p̃ ]− [ p ]− δp‖Σ

≤ C
∑
I=±

∥∥∥N I
2 (ṽI)−N I

2 (vI)− (N I
2 )vI (v

I) · δvI
∥∥∥(−α;E)

2,α;(β);QI

≤ C
∑
I=±

Å ∥∥∥N I
2 (ṽI)−N I

2 (vI)− (N I
2 (vI))vI · (ṽI − vI)

∥∥∥(−α;E)

2,α;(β);QI

+
∥∥∥(N I

2 (vI))vI · (ṽI − vI − δvI)
∥∥∥(−α;E)

2,α;(β);QI

ã
≤ C

∑
I=±

ÇÅ∥∥∥ṽI − vI
∥∥∥(−α;E)

2,α;(β);QI

ã2

+
∥∥∥ṽI − vI − δvI

∥∥∥(−α;E)

2,α;(β);QI

å
≤ C(|δε|+ ‖δw‖Σ)2.

This implies that DT (ε, w)(δε, δw) is the differential of T at (ε, w).
To show T is C1, we need to prove that DT is continuous in (ε, w) ∈

(−ε1, ε1)×V ε1 . Note that for any (ε̃, w̃) near (ε, w) and (δε, δw) ∈ (−ε1, ε1)×
Σ0, ṽ+ solves (3.11) (3.16) with boundary data g̃+. Thus, ṽ+ − v+ satisfies
equation (5.5) with boundary data g̃+ − g+. Denote

κ1 := |ε̃− ε|+ ‖w̃ − w‖Σ,

κ2 := |δε|+ ‖δw‖Σ.

It follows from (4.42) in Proposition 4.2 that

‖ṽ+ − v+‖(−α;E)
2,α;(β);Q+ ≤ C‖(g̃+)′ − (g+)′‖(−α;{0,1})

2,α;(β);R+ ≤ Cκ1. (5.8)
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Note that δṽ+ and δv+ take the same boundary conditions and satisfy the
equation (5.3) with the coefficients (N+

i )(ṽ+)v+j
and (N+

i )(v+)v+j
, respectively.

Therefore, δṽ+ − δv+solves the following equationÄ
(N+

i )v+(v+) · (δṽ+ − δv+)
ä
yi

=
ÄÄ

(N+
i )v+(ṽ+)− (N+

i )v+(v+)
ä
· δṽ+

ä
yi

with homogeneous boundary conditions. Noticing the fact that

‖δṽ+‖(−α;E)
2,α;(β);Q+ ≤ C‖(δg+)′‖(−α;{0,1})

2,α;(β);R+ ≤ Cκ2,

one can get

‖δṽ+ − δv+‖(−α;E)
2,α;(β);Q+ ≤ C‖ṽ+ − v+‖(−α;E)

2,α;(β);Q+‖δṽ+‖(−α;E)
2,α;(β);Q+

≤ Cκ1κ2.

Therefore, the following estimate can be derived

‖(DT (ε̃, w̃)−DT (ε, w))(δε, δw)‖Σ

= ‖δp̃− δp‖Σ

≤ C‖(N±2 )v±(ṽ±) · δṽ± − (N±2 )v±(v±) · δv±‖(−α;E)
2,α;(β);Q+

≤ C
(
‖δṽ± − δv±‖(−α;E)

2,α;(β);Q± + ‖ṽ± − v±‖(−α;E)
2,α;(β);Q±‖δṽ±‖

(−α;E)
2,α;(β);Q±

)
≤ Cκ1κ2,

which implies that

‖DT (ε̃, w̃)−DT (ε, w)‖ ≤ Cκ1 = C(|ε̃− ε|+ ‖w̃ − w‖Σ).

Thus, DT is Lipschitz continuous in (−ε1, ε1)× V ε1 .
Isomorphism of DwT (0,0). We need to show that for any δp ∈ Σ, there

exists a unique δw ∈ Σ0 such that DwT (0,0)δw = δp.
Observe that DwT (0,0)δw = DT (0,0)(0, δw). When ε = 0, w = 0, δε = 0

in the procedure of defining DT above, then δv± solve the following problems:a±(δv±1 )y1 + b±(δv±2 )y2 = 0

(δv±1 )y2 − (δv±2 )y1 = 0
in Q±; (5.9)

δv
±
1 = (δg)′ on L+

δv±2 = 0 on H±,
(5.10)

where

a± = (N±1 )v±1 (v±0 ), b± = (N±2 )v±2 (v±0 ),

δg(t) =

0, 0 ≤ t ≤ 1;∫ t
1 δw(s)d s, t > 1.
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We stretch δv± in the y2 direction and also flip δv− into Q+ in the following
way:

δv̄+
1 (y1, y2) := δv+

1

Å
y1,
√

b+

a+
y2

ã
, δv̄+

2 (y1, y2) :=
√

b+

a+
δv+

2

Å
y1,
√

b+

a+
y2

ã
,

δv̄−1 (y1, y2) := δv−1

Å
y1,−

√
b−

a−
y2

ã
, δv̄−2 (y1, y2) := −

√
b−

a−
δv−2

Å
y1,−

√
b−

a−
y2

ã
.

Therefore, each of the pairs (δv̄+
1 , δv̄

+
2 ) and (δv̄−1 , δv̄

−
2 ) satisfies the Laplace

equation with the same boundary conditions. By the uniqueness, we conclude
that δv̄+ = δv̄− in Q+.

Note that

δp = (b+δv+
2 − b−δv−2 )|(1,∞)×{0} = (

√
a+b+ +

√
a−b−)δv̄+

2 |(1,∞)×{0}.

To prove the isomorphism of DwT (0,0), it suffices to show that the following
problem is uniquely solvable for any given δp ∈ Σ:(δv̄+

1 )y1 + (δv̄+
2 )y2 = 0

(δv̄+
1 )y2 − (δv̄+

2 )y1 = 0
in Q+; (5.11)


δv̄+

2 = 0 on H+,

δv̄+
1 = 0 on (0, 1]× {0},

δv̄+
2 = δp√

a+b++
√
a−b−

on (1,∞)× {0}.
(5.12)

We first solve

∆(δv̄+
2 ) = 0 (5.13)

in Q+ with the mixed boundary condition
δv̄+

2 = 0 on H+;

(δv̄+
2 )y2 = 0 on (0, 1)× {0};

δv̄+
2 = δp√

a+b++
√
a−b−

on (1,∞)× {0}.
(5.14)

Problem (5.13)-(5.14) can be solved in the truncated domain and then taken
limit as in Section 4. Using the barrier function

ϕ5(y) := C‖δp‖Σ r
−β sin(β1θ + θ0)

with

β < β1 < 1, θ0 ∈ (π
2
, π), β1π/2 + θ0 < π

for the decay estimate and the barrier function

ϕ6(y) := C‖δp‖Σ (r∗)α sin(β2θ
∗ + θ∗0)

with

α < β2 <
1

2
, θ∗0 ∈ (π

2
, π), β2π + θ∗0 < π
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for the corner estimate near T , we can derive the estimate

‖δv̄+
2 ‖(−α;{T})

2,α;(β);Q+ ≤ C‖δp‖Σ. (5.15)

Remark 5.1. Due to the boundary conditions at O in (5.14) and using the
reflection, it is easy to see that the point O is an interior point in the new
domain and one thus can show that δv̄+

2 is C2,α up to the point O.

Next, we solve the following problem

∆(δv̄+
1 ) = 0 in Q+; (5.16)

δv̄+
1 = G(y2) := − ∫∞y2 (δv̄+

2 )y1(0, s)d s on H+,

δv̄+
1 = 0 on (0, 1]× {0},

(δv̄+
1 )y2 = (δv̄+

2 )y1 , on (1,∞)× {0}.
(5.17)

It follows from (5.15) that G(y2) defined in (5.17) satisfies

|G(y2)| ≤ C‖δp‖Σ y
−β
2 for y2 > 0,

and G′(y2) = (δv̄+
2 )y1(0, y2). It follows from the same arguments as in Section

4 that δv̄+
1 solves the problem (5.16)-(5.17) satisfying

‖δv̄+
1 ‖(−α;E)

2,α;(β);Q+ ≤ C‖δp‖Σ. (5.18)

Combining (5.15) with (5.18) leads to

‖δv̄+‖(−α;E)
2,α;(β);Q+ ≤ C‖δp‖Σ. (5.19)

Next, we show that the solution δv̄+
2 to the problems (5.13)-(5.14) and the

solution δv̄+
1 to the problems (5.16)-(5.17) will lead to the solution to the

original problem (5.11)-(5.12). Indeed, setV := (δv̄+
1 )y1 + (δv̄+

2 )y2 ,

W := (δv̄+
1 )y2 − (δv̄+

2 )y1 .

Then the system (5.13), (5.16) is equivalent to the following systemVy1 +Wy2 = 0

Vy2 −Wy1 = 0
in Q+ (5.20)

and conditions (5.13) and (5.17) imply thatV = 0 on (0, 1)× {0}
W = 0 on H+ ∪ (1,∞)× {0}. (5.21)

The system (5.20) implies that there exists a harmonic potential Φ in Q+ such
that

∆Φ = 0, Φ(O) = 0, ∇Φ = (V,W ).
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Conditions (5.21) becomeΦ = 0 on H+ ∪ (0, 1]× {0}
Φy2 = 0 on (1,∞)× {0}. (5.22)

It follows from (5.18) that Φ is Hölder continuous up to O and T . Therefore,
the solution is unique and Φ = 0. This implies that V = W = 0 in Q+.

Set δw = δv̄+
1 |[1,∞)×{0}. Then (5.18) shows that δw ∈ Σ0. Hence, we have

shown that there exists a unique δw ∈ Σ0 such that DwT (0,0)δw = δp. This
completes the proof of the isomorphism of DwT (0,0).

Then by the implicit function theorem, there exists ε0 > 0, such that
T (ε, w) = 0 is uniquely solvable for 0 ≤ ε ≤ ε0 and w(ε) is C1 on [0, ε0]
with

‖w(ε)‖Σ ≤ Cε. (5.23)

Since g+ is piecewise defined by εζ+ on [0, 1] and w(ε) on (1,∞), the estimate
(5.23) implies that

‖(g+)′‖(−α;{0,1})
2,α;(β);R+ ≤ Cε. (5.24)

Choosing ε0 suitably small so that Cε0 ≤ τ , then (5.24) implies the condition
(4.56). Hence, the estimate (4.57) in Proposition 4.3, together with (5.24),
gives that

‖U+ − U+
0 ‖(−α;E)

2,α;(β);Q+ ≤ C‖v+ − v+
0 ‖(−α;E)

2,α;(β);Q+ ≤ Cε. (5.25)

Similar estimate holds in the domain Q−. Thus, we have solved the reduced
problem with the following estimate:

‖U± − U±0 ‖(−α;E)
2,α;(β);Q+ + ‖gT‖(−1−α;{1})

3,α;(β−1);(1,∞) ≤ Cε. (5.26)

Since the coordinate transformation (3.2) is invertible and bi-Lipschitz, the
solution transformed back in x-coordinates solves the main problem and
the estimate (5.26) implies the estimate (2.25) in the Main Theorem. This
completes the proof of the Main Theorem.

Proof of Theorem 2.1. Since w(ε) is a C1 map on [0, ε0], it follows that for any
ε, ε̃ ∈ [0, ε0],

‖w(ε)− w(ε̃)‖Σ ≤ sup
ε∈[0,ε0]

‖w′(ε)‖|ε− ε̃| ≤ C|ε− ε̃|. (5.27)

This implies the estimate (2.26), hence proves Theorem 2.1. �
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