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Abstract. This paper concerns the inviscid, heat-conductive and resistive compressible MHD
system in a horizontally periodic flat strip. The global well-posedness of the problem around an
equilibrium with the positive constant density and temperature and a uniform non-horizontal
magnetic field is established, and the solution decays to the equilibrium almost exponentially.
Our result reveals the strong stabilizing effect of the transversal magnetic field and resistivity as
the global well-posedness of compressible inviscid heat-conductive flows in multi-D is unknown.

1. Introduction

When the viscosity is neglected whereas the heat conduction and magnetic diffusion are
taken into account, the dynamics of compressible electrically conducting fluids interacting with
magnetic fields can be described by the following magnetohydrodynamic system (MHD) [11, 7]:

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇p = curlB ×B
∂t(ρe) + div(ρue) + pdiv u− µ∆θ = κ |curlB|2

∂tB = curlE, E = u×B − κ curlB

divB = 0,

(1.1)

where ρ, u, θ and B denote the density, velocity, temperature and magnetic field, respectively,
and E is the electric field. The fluid is assumed to obey the ideal polytropic law, so the pressure
p = Rρθ and the internal energy e = cvθ with constants R, cv > 0. µ > 0 is the heat conduction
coefficient and κ > 0 is the magnetic diffusion coefficient.

The main difficulty of studying the global well-posedness of (1.1) lies in the absence of the
viscosity. Similar to the Navier-Stokes equations, the viscous and resistive (incompressible and
compressible) MHD system has a unique global classical solution, at least for the small initial
data, see [5, 18, 9] for instance. On the other hand, it is remarkable that the ideal incompressible
homogeneous MHD system in the whole space also admits a unique global classical solution
around a nonzero uniform magnetic field [2, 8, 3, 22]. It is then natural to ask whether the
MHD systems with only the viscosity or resistivity admit global classical solutions or develop
singularities in finite time. The global existence of classical solutions to the viscous and non-
resistive MHD systems has been established around a nonzero uniform magnetic field. For the
Cauchy problem, we refer to [13, 25, 15, 27, 1] for the incompressible homogeneous case and
[24] for the 2D compressible isentropic case. For the initial boundary value problem, the global
well-posedness has been proved only for the case of a horizontally flat strip domain, see [16]
for the 2D incompressible homogeneous system around a uniform horizontal magnetic field and
[20] for the 3D (incompressible and compressible) systems around a uniform non-horizontal
magnetic field. The inviscid and resistive incompressible homogeneous 2D MHD system has a
global weak solution in H1, but the question whether such weak solutions are unique or can be
improved to be global classical solutions remains open [10, 12, 4]. For a 2D periodic domain,
[28] showed the global existence of classical solutions around a nonzero uniform magnetic field
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when the initial data has certain symmetries, and [23] proved a global well-posedness around
the zero magnetic field.

In this paper, we consider the compressible MHD system (1.1) in the strip Ω = T2 × (0, 1)
for T = R/Z, with the following boundary conditions:

u · e3 = 0, ∇θ · e3 = 0, B · e3 = B̄ · e3, E × e3 = 0 on ∂Ω, (1.2)

where B̄ is the uniform magnetic field of the background. We will prove the global existence of
classical solutions to (1.1)–(1.2) around the steady state (ρ̄, 0, θ̄, B̄) with the constant density
ρ̄ > 0 and temperature θ̄ > 0 and B̄3 6= 0.

Set

% = ρ− ρ̄, u = u, ϑ = θ − θ̄, b = B − B̄. (1.3)

Then the problem under consideration can be reformulated as

(∂t + u · ∇)%+ ρdiv u = 0 in Ω

ρ(∂t + u · ∇)u+∇p = curl b× (B̄ + b) in Ω

cvρ(∂t + u · ∇)ϑ+ pdiv u− µ∆ϑ = κ |curl b|2 in Ω

∂tb = curlE, E = u× (B̄ + b)− κ curl b in Ω

div b = 0 in Ω

u3 = 0, ∂3ϑ = 0, b3 = 0, E × e3 = 0 on ∂Ω

(%, u, ϑ, b) |t=0= (%0, u0, ϑ0, b0).

(1.4)

Recall that the conditions div b = 0 in Ω and b3 = 0 on ∂Ω in (1.4) should be regarded as the
constraints on the initial data:

div b0 = 0 in Ω and b0,3 = 0 on ∂Ω. (1.5)

Indeed, it follows from ∂tb = curlE in Ω and E × e3 = 0 on ∂Ω in (1.4) that ∂t div b = 0 in Ω
and ∂tb3 = 0 on ∂Ω.

It is important to observe the entropy-dissipation structure of (1.4): for a smooth solution,
it holds that

d

dt

∫
Ω

(
1

2
ρ|u|2 + ρcv

(
θ − θ̄ ln

θ

θ̄
− θ̄
)

+Rθ̄(ρ ln
ρ

ρ̄
− ρ+ ρ̄) +

1

2
|b|2
)

+

∫
Ω

µθ̄

θ2
|∇ϑ|2 +

∫
Ω

κθ̄

θ
| curl b|2 = 0. (1.6)

Hereafter the differential elements dx of the integrals over Ω are omitted. Furthermore, the
following conservation laws hold:

d

dt

∫
Ω
% = 0,

d

dt

∫
Ω

(
1

2
ρ|u|2 + cvρϑ+

1

2
|b|2
)

= 0 and
d

dt

∫
Ω
bh = 0, (1.7)

where bh = (b1, b2), etc. It follows that if initially∫
Ω
%0 = 0,

∫
Ω

(
1

2
ρ0|u0|2 + cvρ0ϑ0 +

1

2
|b0|2

)
= 0 and

∫
Ω
b0,h = 0, (1.8)

then for any time t > 0,∫
Ω
% = 0,

∫
Ω

(
1

2
ρ|u|2 + cvρϑ+

1

2
|b|2
)

= 0 and

∫
Ω
bh = 0. (1.9)

(1.9) allows the use of the Poincaré inequality for %, ϑ, bh in our analysis of the global well-
posedness.

Let Hk(Ω), k ≥ 0 and Hs(T2), s ∈ R be the usual Sobolev spaces with norms denoted by
‖·‖m and |·|s, respectively. For an integer N ≥ 8, define the high-order energy as

E2N :=
2N∑
j=0

∥∥∥∂jt (%, u)
∥∥∥2

2N−j
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j+1
+
∥∥∂2N

t (ϑ, b)
∥∥2

0
. (1.10)
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The key part in proving the global well-posedness of (1.4) is to show that E2N (t) is bounded for
all t ≥ 0. To this end, we need to derive a sufficiently fast time-decay rate of certain lower-order
Sobolev norms of the solution, which will follow from a set of energy-dissipation estimates. For
n = N + 4, . . . , 2N , define the dissipations as

Dn :=
n−1∑
j=0

∥∥∥∂jt (%, u)
∥∥∥2

n−j−1
+
n−2∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

n−j
+

n∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

1,n−j
(1.11)

and the corresponding energies as

En :=
n∑
j=0

∥∥∥∂jt %∥∥∥2

n−j
+ ‖u‖20,n + ‖u‖2n−1 +

n∑
j=1

∥∥∥∂jt u∥∥∥2

n−j

+ ‖(ϑ, b)‖2n +

n−1∑
j=1

∥∥∥∂jt (ϑ, b)∥∥∥2

n−j+1
+ ‖∂nt (ϑ, b)‖20 . (1.12)

Here the anisotropic Sobolev norm ‖·‖m,` is defined as

‖f‖m,` :=
∑

α∈N2,|α|≤`

‖∂αf‖m . (1.13)

Now the main result of this paper is stated as follows.

Theorem 1.1. Assume that µ > 0, κ > 0 and ρ̄ > 0, θ̄ > 0, B̄3 6= 0. Let N ≥ 8 be an integer.
Assume that %0, u0 ∈ H2N (Ω) and ϑ0, b0 ∈ H2N+1(Ω) are given such that E2N (0) < +∞ and
that the 2N -th order compatibility conditions required for the local well-posedness of (1.4)

∂jt u3(0) = 0, ∂3∂
j
tϑ(0) = 0 and ∂jtE(0)× e3 = 0 on ∂Ω for j = 0, . . . , 2N − 1, (1.14)

(1.5) and (1.8) are satisfied. There exists a universal constant ε0 > 0 such that if E2N (0) ≤ ε0,
then there exists a unique global solution (%, u, ϑ, b) to (1.4) satisfying that for all t ≥ 0,

E2N (t) . E2N (0) (1.15)

and
N−6∑
j=0

(1 + t)N−5−jEN+4+j(t) +

N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s) ds . E2N (0). (1.16)

Remark 1.2. Note that the global well-posedness of compressible inviscid heat-conductive flows
for the small initial data has been established only in 1D (see [9, 19, 14, 26] for instance), but the
one in multi-D is unknown. So our result reveals the strong stabilizing effect of the transversal
magnetic field and resistivity. In a forthcoming paper, we will use some ideas developed here to
prove the global well-posedness of free interface problems for the compressible MHD system (1.1),
which generalizes our previous work [21] of the inviscid and resistive incompressible homogeneous
MHD system.

Remark 1.3. Our result here relies crucially on the consideration of the heat-conductive flows,
and it does not hold for isentropic flows or the case without heat conduction; for example, taking
B = B̄ = e3, these flows are reduced to the 1D compressible Euler flows for which in general
one may expect the formation of shock in finite time. One of the key points here is that the heat
conduction produces the dissipation control of the divergence of the velocity, as explained below.

Note that the local well-posedness of (1.4) (for ρ, θ > 0) for E2N <∞ with N ≥ 8 is classical,
which can be proved by using an iteration argument based on the solvability of the compressible
Euler equations [17] and the parabolic problems for the temperature and magnetic field [6].
Hence, by a standard continuity argument, to prove the global well-posedness in Theorem 1.1
it suffices to derive a priori the estimates (1.15).

The basic strategy in our analysis is to use first the entropy-dissipation structure (1.6) to get
the tangential energy evolution estimates of the solution to (1.4) as well as its temporal and
horizontal spatial derivatives that preserve the boundary conditions, which will be carried out
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in Section 2. The next step is to derive the estimates involving normal derivatives by exploiting
further the structures of the equations and boundary conditions, and the key here is to observe
the following equations for the fluid vorticity curlu: applying curl to the second equation in
(1.4), and then using the horizontal components of the fourth equation to replace ∂2

3bh and the
first equation to replace div u, one finds

ρ(∂t + u · ∇)(curlu)i +
B̄2

3

κ
(curlu)i

= B̄h · ∇h(curl b)i + (−1)i+1B̄3∂3∂3−ib3 + (−1)i+1 B̄3

κ
(κ∆hb3−i − ∂tb3−i)

+ (−1)i+1 B̄3

κ
(B̄h · ∇hu3−i + B̄3∂3−iu3 +

B̄3−i
ρ̄

∂t%) + · · · , i = 1, 2, (1.17)

where ∇h = (∂1, ∂2), ∆h = ∂2
1 + ∂2

2 and + · · · means plus some nonlinear terms. As κ > 0
and B̄3 6= 0, one thus sees that there is an induced damping effect for (curlu)h in (1.17). By
controlling the linear terms in the last line of (1.17) in terms of the tangential energy at the
beginning, in a recursive way in terms of the number of normal derivatives one derives the
following full energy estimates:

E2N (t) . E2N (0) +

∫ t

0

√
EN+4E2N . (1.18)

Various elliptic estimates are involved in the derivation of (1.18), see Section 3 for the details.

Note that if
√

EN+4 is integrable in time, then (1.18) can be closed to be (1.15). This will
be achieved by using

d

dt
En + Dn ≤ 0, n = N + 4, . . . , 2N − 2. (1.19)

(1.19) is derived in an elaborate way by controlling instead the linear terms in the last line of
(1.17) in terms of the tangential dissipation. To achieve this, one notes first from the fourth
equation in (1.4) that

∂tb− κ∆b = B̄ · ∇u− B̄ div u+ · · · . (1.20)

It is then crucial here to use the third equation in (1.4) to replace div u in (1.20) to find

∂tb− κ∆b = B̄ · ∇u+
B̄

p̄
(cvρ̄∂tϑ− µ∆ϑ) + · · · . (1.21)

As mentioned in Remark 1.3, it should be pointed out here that such replacement is effective
only for µ > 0 since there is no priori tangential dissipation estimates of ∂tϑ if µ = 0, and the
same reason holds also for that one could not use the first equation in (1.4) to replace div u by
∂t%/ρ̄ in (1.20). Now using the vertical and horizontal components of (1.21), respectively, one
then gets the tangential dissipation estimates of the following two quantities:

B̄ · ∇(u3 −
µ

p̄
∂3ϑ) and B̄ · ∇(κ∂3bh + B̄3uh −

µB̄h
p̄
∂3ϑ). (1.22)

Thus one can use the Poincaré-type inequalities related to B̄ · ∇ for B̄3 6= 0 together with the
boundary conditions on ∂Ω to derive the tangential dissipation estimates of u. The tangen-
tial dissipation estimate of ∂t% then follows from the interaction between the first and second
equations in (1.4).

Now observe that E` ≤ D`+1. Then by employing a time weighted inductive argument based
on (1.19), one concludes (1.16), which implies in particular a decay of

√
EN+4 with the rate

(1+t)−(N−5)/2, see Section 4 for more details. Consequently, this scheme of the a priori estimates
is closed by requiring N ≥ 8.

Notation. Now we list the conventions for notation in this paper. C > 0 denotes generic
constants independent of the data and time, but may depend on the parameters of the problem,
κ, µ, B̄, ρ̄, θ̄ and N , which is referred to as “universal” and allowed to change from line to line.



COMPRESSIBLE INVISCID HEAT-CONDUCTIVE RESISTIVE MHD 5

A1 . A2 means that A1 ≤ CA2 for a universal constant C > 0, A1 . A2 + A3 means that
A1 ≤ A2 + CA3 and

∂tA1 +A2 . A3 means ∂tÃ1 +A2 . A3 for A1 . Ã1 . A1. (1.23)

N = {0, 1, 2, . . . } denotes for the collection of non-negative integers. When using space-
time differential multi-indices, we write N1+d = {α = (α0, α1, . . . , αd)} to emphasize that the
0−index term is related to temporal derivatives. For just spatial derivatives, we write Nd. For
α ∈ N1+d, ∂α = ∂α0

t ∂α1
1 · · · ∂

αd
d . We define the standard commutator

[∂α, f ] g = ∂α(fg)− f∂αg and [∂α, f, g] = ∂α(fg)− f∂αg − ∂αfg. (1.24)

2. Tangential energy evolution

In this section, we will derive energy evolution estimates for temporal and horizontal spatial
derivatives of the solution to (1.4) by using the entropy-dissipation structure (1.6). It will be
assumed throughout the rest of the paper that the solution to (1.4) is given on [0, T ] and obeys
the a priori assumption

E2N (t) ≤ δ, ∀t ∈ [0, T ] (2.1)

for a sufficiently small constant δ > 0. This implies in particular that

1

2
ρ̄ ≤ ρ ≤ 2ρ̄ and

1

2
θ̄ ≤ θ ≤ 2θ̄, ∀(t, x) ∈ [0, T ]× Ω̄. (2.2)

Note that (2.1) and (2.2) will be always used in the following; in particular, the smallness (2.1)
is used in many nonlinear estimates so that various polynomials of E2N are bounded by CE2N .

In order to use the nonlinear structure of (1.4) to derive the tangential energy evolution
estimates at the 2N level, one applies ∂α for α ∈ N1+2 to (1.4) to find

(∂t + u · ∇)∂α%+ ρ div ∂αu = F 1,α in Ω

ρ(∂t + u · ∇)∂αu+∇(Rθ∂α%+Rρ∂αϑ) = curl ∂αb× (B̄ + b) + F 2,α in Ω

cvρ(∂t + u · ∇)∂αϑ+ p div ∂αu− µ∆∂αϑ = F 3,α in Ω

∂t∂
αb = curl ∂αE, ∂αE = ∂αu× (B̄ + b)− κ curl ∂αb+ F 4,α in Ω

div ∂αb = 0 in Ω

∂αu3 = 0, ∂3∂
αϑ = 0, ∂αb3 = 0, ∂αE × e3 = 0 on ∂Ω,

(2.3)

where

F 1,α = − [∂α, u] · ∇%− [∂α, %] div u, (2.4)

F 2,α = − [∂α, ρ(∂t + u · ∇)]u−∇(R [∂α, %, ϑ])− [∂α, b]× curl b, (2.5)

F 3,α = − [∂α, cvρ(∂t + u · ∇)]ϑ− [∂α, p] div u+ κ∂α(|curl b|2), (2.6)

F 4,α = − [∂α, b]× u, (2.7)

with notation of commutators given in (1.24).
These nonlinear terms F i,α are estimated as follows.

Lemma 2.1. For |α| ≤ 2N , it holds that∥∥(F 1,α, F 2,α, F 3,α, F 4,α)
∥∥2

0
. EN+4E2N . (2.8)

Proof. Note that all terms in F i,α are at least quadratic and each term can be written in the
form XY , where X involves fewer derivatives than Y . One may use the definition of En to
estimate ‖Y ‖20 . E2N and the usual Sobolev embeddings along with the definition of En to

estimate ‖X‖2L∞ . EN+4. Then ‖XY ‖20 ≤ ‖X‖
2
L∞ ‖Y ‖20 . EN+4E2N , and the estimate (2.8)

follows by summing terms. �

For n ≥ 3, define the tangential energy by

Ēn :=
n∑
j=0

∥∥∥∂jt (%, u, ϑ, b)∥∥∥2

0,n−j
(2.9)
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and the corresponding dissipation by

D̄n :=
n∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

1,n−j
, (2.10)

where anisotropic Sobolev norms (1.13) have been used. Then one has the following tangential
energy evolution at the 2N level.

Proposition 2.2. It holds that

d

dt
Ē2N + D̄2N .

√
EN+4E2N . (2.11)

Proof. Let α ∈ N1+2 with |α| ≤ 2N . First, taking the inner product of the second equation in
(2.3) with ∂αu and then integrating by parts over Ω, by using the first equation in (1.4) and
the boundary conditions, one has

1

2

d

dt

∫
Ω
ρ |∂αu|2 −

∫
Ω

(Rθ∂α%+Rρ∂αϑ) div ∂αu

=

∫
Ω

curl ∂αb× (B̄ + b) · ∂αu+

∫
Ω
F 2,α · ∂αu. (2.12)

The first equation in (2.3) leads to

−
∫

Ω
Rθ∂α%div ∂αu =

∫
Ω

Rθ

ρ
(∂t∂

α%+ u · ∇∂α%− F 1,α)∂α% (2.13)

=
1

2

d

dt

∫
Ω

Rθ

ρ
|∂α%|2 − 1

2

∫
Ω
Rρ(∂t + u · ∇)(

θ

ρ2
) |∂α%|2 −

∫
Ω

Rθ

ρ
F 1,α∂α%.

Next, taking the inner product of the third equation with ∂αϑ/θ and using the relation p = Rρθ
give

1

2

d

dt

∫
Ω

cvρ

θ
|∂αϑ|2 +

∫
Ω

µ

θ
|∇∂αϑ|2 +

∫
Ω
Rρdiv ∂αu∂αϑ

=
1

2

∫
Ω
cvρ(∂t + u · ∇)(

1

θ
) |∂αϑ|2 −

∫
Ω
µ∂αϑ∇(

1

θ
) · ∇∂αϑ+

∫
Ω
F 3,α∂αϑ, (2.14)

while taking the inner product of the fourth equation with ∂αb yields

1

2

d

dt

∫
Ω
|∂αb|2 + κ

∫
Ω
|curl ∂αb|2 =

∫
Ω
∂αu× (B̄ + b) · curl ∂αb+

∫
Ω
F 4,α · curl ∂αb. (2.15)

Consequently, combining (2.12)–(2.15) yields that, by (2.8),

1

2

d

dt

∫
Ω

(
Rθ

ρ
|∂α%|2 + ρ |∂αu|2 +

cvρ

θ
|∂αϑ|2 + |∂αb|2

)
+

∫
Ω

(µ
θ
|∇∂αϑ|2 + κ| curl ∂αb|2

)
=

∫
Ω

(
1

2
Rρ(∂t + u · ∇)(

θ

ρ2
) |∂α%|2 +

1

2
cvρ(∂t + u · ∇)(

1

θ
) |∂αϑ|2 − µ∂αϑ∇(

1

θ
) · ∇∂αϑ

)
+

∫
Ω

(
Rθ

ρ
F 1,α∂α%+ F 2,α · ∂αu+ F 3,α∂αϑ+ F 4,α · curl ∂αb

)
.
√

EN+4

(
‖∂α%‖20 + ‖∂αϑ‖20 + ‖∂αϑ‖0 ‖∇∂

αϑ‖0
)

+
∥∥F 1,α

∥∥
0
‖∂α%‖0 +

∥∥F 2,α
∥∥

0
‖∂αu‖0 +

∥∥F 3,α
∥∥

0
‖∂αϑ‖0 +

∥∥F 4,α
∥∥

0
‖curl ∂αb‖0

.
√
EN+4E2N +

√
EN+4

√
E2N (‖∇∂αϑ‖0 + ‖curl ∂αb‖0). (2.16)

By Cauchy’s inequality, one deduces from (2.16) that, by the convention notation (1.23),

d

dt

(
‖∂α(%, u, ϑ, b)‖20

)
+ ‖∇∂αϑ‖20 + ‖curl ∂αb‖20 .

√
EN+4E2N . (2.17)

It follows by using the Poincaré’s inequality and (1.9) that

‖∂αϑ‖20 . ‖∇∂
αϑ‖20 + |

∫
Ω
∂αϑ|2 . ‖∇∂αϑ‖20 + EN+4E2N . (2.18)
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Employing the Hodge-type estimates (A.3) of Lemma A.1 with r = 1 and by (1.9), one finds

‖∂αb‖21 . ‖curl ∂αb‖20 . (2.19)

Then the estimate (2.11) follows from (2.17) by summing over such α. �

Now we rewrite (1.4) as a perturbation of the linearized equations:

∂t%+ ρ̄div u = G1 in Ω

ρ̄∂tu+∇(Rθ̄%+Rρ̄ϑ) = curl b× B̄ +G2 in Ω

cvρ̄∂tϑ+ p̄ div u− µ∆ϑ = G3 in Ω

∂tb− κ∆b = B̄ · ∇u− B̄ div u+G4 in Ω

div b = 0 in Ω

u3 = 0, ∂3ϑ = 0, b3 = 0, κ∂3bh = B̄3uh on ∂Ω,

(2.20)

where p̄ = Rρ̄θ̄ and

G1 = −div(%u), (2.21)

G2 = −%∂tu− ρu · ∇u−∇(R%ϑ) + curl b× b, (2.22)

G3 = −cv%∂tϑ− cvρu · ∇ϑ− (p− p̄) div u+ κ |curl b|2 , (2.23)

G4 = curl(u× b). (2.24)

The nonlinear terms Gi are estimated as follows.

Lemma 2.3. It holds that

2N−1∑
j=0

∥∥∥∂jt (G1, G2, G3, G4)
∥∥∥2

2N−j−1
. min{EN+4,DN+4}E2N . (2.25)

Proof. (2.25) can be proved similarly as Lemmas 2.1. �

One has the following tangential energy evolution at the N + 4, . . . , 2N − 2 levels.

Proposition 2.4. For n = N + 4, . . . , 2N − 2, it holds that

d

dt

(
Ēn − B̄n

)
+ D̄n .

√
E2NDn, (2.26)

where B̄n is defined by (2.33), which satisfies∣∣B̄n∣∣ .√E2NEn. (2.27)

Proof. For n = N + 4, . . . , 2N − 2, similarly as the derivation of (2.16), one deduces from (2.20)
that for α ∈ N1+2 with |α| ≤ n,

1

2

d

dt

∫
Ω

(
Rθ̄

ρ̄
|∂α%|2 + ρ̄ |∂αu|2 +

cvρ̄

θ̄
|∂αϑ|2 + |∂αb|2

)
+

∫
Ω

(µ
θ̄
|∇∂αϑ|2 + κ| curl ∂αb|2

)
=

∫
Ω

(
Rθ̄

ρ̄
∂αG1∂α%+ ∂αG2 · ∂αu+ ∂αG3∂αϑ+ ∂αG4 · curl ∂αb

)
. (2.28)

It follows from (2.25) that∫
Ω

(
∂αG3∂αϑ+ ∂αG4 · curl ∂αb

)
.
∥∥∂αG3

∥∥
0
‖∂αϑ‖0 +

∥∥∂αG4
∥∥

0
‖curl ∂αb‖0

.
√
DN+4E2N

√
Dn. (2.29)

Now we estimate the G1 term. If |α| ≤ n− 1, then (2.25) implies∫
Ω
∂α%∂αG1 . ‖∂α%‖0

∥∥∂αG1
∥∥

0
.
√
Dn

√
DN+4E2N . (2.30)
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If |α| = n and α1 + α2 ≥ 1, then one writes α = α′ + (α − α′) for α′ ∈ N2 with α′ ≤ α and
|α′| = 1 and then integrates by parts over Ω to have, since n ≤ 4N − 2 and by (2.25),∫

Ω
∂α%∂αG1 =

∫
Ω
∂α−α

′
%∂α+α′

G1 .
∥∥∥∂α−α′

%
∥∥∥

0

∥∥∥∂α+α′
G1
∥∥∥

0
.
√
Dn

√
DN+4E2N . (2.31)

The remaining case, α0 = n, can be handled by the integration by parts in t and using (2.25)
as ∫

Ω
∂nt %∂

n
t G

1 =
d

dt

∫
Ω
∂n−1
t %∂nt G

1 −
∫

Ω
∂n−1
t %∂n+1

t G1

.
d

dt

∫
Ω
∂n−1
t %∂nt G

1 +
∥∥∂n−1

t %
∥∥

0

∥∥∂n+1
t G1

∥∥
0

.
d

dt

∫
Ω
∂n−1
t %∂nt G

1 +
√
Dn

√
DN+4E2N . (2.32)

Consequently, combining (2.30)–(2.32) (and doing the similar computations for the G2 term)
and (2.29), one concludes (2.26) from (2.28) by summing over such α, where

B̄n :=

∫
Ω

(
Rθ̄

ρ̄
∂n−1
t %∂nt G

1 + ∂n−1
t u · ∂nt G2

)
, (2.33)

which, by (2.25), satisfies (2.27). �

3. Boundedness estimates of EN
In this section, we will explore further the structures of (1.4) to derive the estimates involving

the normal derivatives of the solution, with the energy evolution estimates in hand.
For the estimates of the normal derivatives of the velocity u, as for the Euler equations,

a natural way is to estimate first the fluid vorticity, curlu, and then to use the Hodge-type
estimates. Applying curl to the second equation in (1.4) yields that

ρ(∂t + u · ∇) curlu = B̄ · ∇ curl b+ curl(curl b× b)− [curl, ρ(∂t + u · ∇)]u. (3.1)

It follows from the first component of the fourth equation in (2.20) that

B̄ · ∇(curl b)1 ≡ B̄h · ∇h(curl b)1 + B̄3∂3(curl b)1

= B̄h · ∇h(curl b)1 + B̄3∂3∂2b3 +
B̄3

κ
(κ∆hb2 − ∂tb2 + B̄ · ∇u2−B̄2 div u+G4

2. (3.2)

On the other hand, one can write, by using the first equation in (2.20), that

B̄ · ∇u2−B̄2 div u = B̄h · ∇hu2 − B̄3(curlu)1 + B̄3∂2u3+
B̄2

ρ̄
(∂t%−G1). (3.3)

Hence, as a consequence of (3.2) and (3.3), the first component of (3.1) can be rewritten as

ρ(∂t + u · ∇)(curlu)1 +
B̄2

3

κ
(curlu)1

= B̄h · ∇h(curl b)1 + B̄3∂3∂2b3 +
B̄3

κ
(κ∆hb2 − ∂tb2 + B̄h · ∇hu2 + B̄3∂2u3 +

B̄2

ρ̄
∂t%)

+
B̄3

κ
(−B̄2

ρ̄
G1 +G4

2) + (curl(curl b× b))1 − [curl, ρ(∂t + u · ∇)]u1. (3.4)

Similarly, one has

ρ(∂t + u · ∇)(curlu)2 +
B̄2

3

κ
(curlu)2

= B̄h · ∇h(curl b)2 − B̄3∂3∂1b3 −
B̄3

κ
(κ∆hb1 − ∂tb1 + B̄h · ∇hu1 + B̄3∂1u3 +

B̄1

ρ̄
∂t%)

− B̄3

κ
(−B̄1

ρ̄
G1 +G4

1) + (curl(curl b× b))2 − [curl, ρ(∂t + u · ∇)]u2. (3.5)
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The equations (3.4) and (3.5) yield a transport-damping evolution structure for (curlu)h, which
depends crucially on the positivity of the magnetic diffusion coefficient κ > 0 and the non-
vanishing of B̄3 6= 0.

Applying ∂α for α ∈ N1+3 with |α| ≥ 1 to (3.4) and (3.5) gives

ρ(∂t + u · ∇)∂α(curlu)h +
B̄2

3

κ
∂α(curlu)h = ∂αLh + Φα

h , (3.6)

where for i = 1, 2,

Li =B̄h · ∇h(curl b)i + (−1)i+1B̄3∂3∂3−ib3

+ (−1)i+1 B̄3

κ
(κ∆hb3−i − ∂tb3−i + B̄h · ∇hu3−i + B̄3∂3−iu3 +

B̄3−i
ρ̄

∂t%) (3.7)

and
Φα
h = ∂αΦh − [∂α, ρ(∂t + u · ∇)] (curlu)h (3.8)

with that for i = 1, 2,

Φi = (−1)i+1 B̄3

κ
(−B̄3−i

ρ̄
G1 +G4

3−i) + (curl(curl b× b))i − [curl, ρ(∂t + u · ∇)]ui. (3.9)

The nonlinear terms Φα
h can be estimated as follows.

Lemma 3.1. It holds that for |α| ≤ 2N − 1,

‖Φα
h‖

2
0 . min{EN+4,DN+4}E2N . (3.10)

Proof. The proof follows in the same way as for Lemmas 2.1. �

The estimates involving normal derivatives at the 2N level are derived as follows.

Proposition 3.2. It holds that

d

dt
‖(curlu)h‖22N−1 +

2N∑
j=0

∥∥∥∂jt (%, u)
∥∥∥2

2N−j
+

2N∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j+1

. Ē2N + D̄2N + EN+4E2N (3.11)

and that

E2N . Ē2N + ‖(curlu)h‖22N−1 + EN+4E2N . (3.12)

Proof. Fix ` = 0, . . . , 2N − 1. Let α ∈ N3 with |α| ≤ 2N − 1 such that α3 ≤ 2N − 1− `. Taking
the inner product of (3.6) with ∂α(curlu)h and then integrating by parts over Ω, one obtains

1

2

d

dt

∫
Ω
ρ |∂α(curlu)h|2 +

B̄2
3

κ

∫
Ω
|∂α(curlu)h|2 =

∫
Ω

(∂αLh + Φα
h) · ∂α(curlu)h. (3.13)

By Cauchy’s inequality, (3.7) and (3.10), it follows from summing (3.13) over such α that

d

dt
‖(curlu)h‖22N−1−`,` + ‖(curlu)h‖22N−1−`,` .

∑
α

‖∂αLh‖20 + ‖Φα
h‖

2
0

. ‖u‖22N−1−`,`+1 + ‖b‖22N−`,`+1 + ‖∂t(b, %)‖22N−1 + EN+4E2N . (3.14)

Now employing the Hodge-type estimates (A.1) of Lemma A.1 with r = 2N − ` ≥ 1 and using
the first equation in (2.20) and (2.25), one obtains

‖u‖22N−`,` . ‖u‖
2
0,`+2N−` + ‖(curlu)h‖22N−1−`,` + ‖div u‖22N−1−`,`

≤‖u‖20,2N + ‖(curlu)h‖22N−1−`,` + ‖∂t%‖22N−1−`,` +
∥∥G1

∥∥2

2N−1

. ‖u‖20,2N + ‖(curlu)h‖22N−1−`,` + ‖∂t%‖22N−1 + EN+4E2N . (3.15)

On the other hand, consider the following elliptic problem{
−κ∆b = B̄ · ∇u− B̄ div u− ∂tb+G4 in Ω

b3 = 0, κ∂3bh = −B̄3uh on ∂Ω.
(3.16)
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By the standard Hr elliptic estimates with r = 2N − `+1 ≥ 2, the trace theory (as 2N − ` ≥ 1)
and (2.25), one has

‖b‖22N−`+1,` . ‖bh‖
2
0 + ‖u‖22N−`,` + ‖∂tb‖22N−`−1,` +

∥∥G4
∥∥2

2N−`−1,`
+ |uh|22N−1/2

. ‖bh‖20 + ‖u‖22N−`,` + ‖∂tb‖22N−1 + EN+4E2N . (3.17)

Then it follows from (3.14), (3.15) and (3.17) that

d

dt
‖(curlu)h‖22N−1−`,` + ‖u‖22N−`,` + ‖b‖22N−`+1,`

. ‖u‖22N−1−`,`+1 + ‖b‖22N−`,`+1 + ‖∂t(b, %)‖22N−1 + EN+4E2N . (3.18)

A suitable linear combination of (3.18) for ` = 0, . . . , 2N − 1 yields that

d

dt
‖(curlu)h‖22N−1 + ‖u‖22N + ‖b‖22N+1 . ‖u‖

2
0,2N + ‖b‖21,2N + ‖∂t(b, %)‖22N−1 + EN+4E2N .

(3.19)

Next, applying curl to the second equation in (2.20) yields

∂t curlu = B̄ · ∇ curl b+ curlG2. (3.20)

For j = 1, . . . , 2N − 1, employing the Hodge-type estimates (A.2) of Lemma A.1 with r =
2N − j ≥ 1, by (3.20), the first equation in (2.20) and (2.25), one obtains∥∥∥∂jt u∥∥∥2

2N−j
.
∥∥∥∂jt uh∥∥∥2

0
+
∥∥∥∂jt curlu

∥∥∥2

2N−j−1
+
∥∥∥∂jt div u

∥∥∥2

2N−j−1

.
∥∥∥∂jt uh∥∥∥2

0
+
∥∥∥∂j−1

t b
∥∥∥2

2N−j+1
+
∥∥∥∂j−1

t G2
∥∥∥2

2N−j
+
∥∥∥∂j+1

t %
∥∥∥2

2N−j−1
+
∥∥∥∂jtG1

∥∥∥2

2N−j−1

.
∥∥∥∂jt uh∥∥∥2

0
+
∥∥∥∂j−1

t b
∥∥∥2

2N−(j−1)
+
∥∥∥∂j+1

t %
∥∥∥2

2N−(j+1)
+ EN+4E2N . (3.21)

On the other hand, for j = 0, . . . , 2N − 1, by Poincaré’s inequality and (1.9) and using the
second equation in (2.20) and (2.25), one has∥∥∥∂jt %∥∥∥2

2N−j
.
∥∥∥∂jt∇%∥∥∥2

2N−j−1
.
∥∥∥∂j+1

t u
∥∥∥2

2N−j−1
+
∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+
∥∥∥∂jtG2

∥∥∥2

2N−j−1

.
∥∥∥∂j+1

t u
∥∥∥2

2N−(j+1)
+
∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+ EN+4E2N . (3.22)

We shall use the estimates (3.21) and (3.22) repeatly. First, letting j = 2N − 1 in (3.21) yields∥∥∥∂2N−1
t u

∥∥∥2

1
.
∥∥∥∂2N−1

t u
∥∥∥2

0
+
∥∥∥∂2N−2

t b
∥∥∥2

2
+
∥∥∂2N

t %
∥∥2

0
+ EN+4E2N . (3.23)

Next, for j = 1, . . . , 2N − 2, (3.21) together with (3.22) (with j replaced by j + 1) implies∥∥∥∂jt u∥∥∥2

2N−j
.
∥∥∥∂jt u∥∥∥2

0
+
∥∥∥∂j−1

t b
∥∥∥2

2N−(j−1)
+
∥∥∥∂j+2

t u
∥∥∥2

2N−(j+2)

+
∥∥∥∂j+1

t (ϑ, b)
∥∥∥2

2N−(j+1)
+ EN+4E2N . (3.24)

Using a simple induction based on the estimate (3.24), one obtains

2N−2∑
j=1

∥∥∥∂jt u∥∥∥2

2N−j
.

2N−2∑
j=1

∥∥∥∂jt u∥∥∥2

0
+

2N−3∑
j=0

∥∥∥∂jt b∥∥∥2

2N−j
+
∥∥∥∂2N−1

t u
∥∥∥2

1
+
∥∥∂2N

t u
∥∥2

0

+

2N−1∑
j=2

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+ EN+4E2N . (3.25)
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This together with the estimates (3.23) and (3.22) for j = 0, . . . , 2N − 1 implies

2N∑
j=0

∥∥∥∂jt %∥∥∥2

2N−j
+

2N∑
j=1

∥∥∥∂jt u∥∥∥2

2N−j
.

2N∑
j=1

∥∥∥∂jt u∥∥∥2

0
+
∥∥∂2N

t %
∥∥2

0
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+ EN+4E2N .

(3.26)

Now, applying ∂jt , j = 1, . . . , 2N − 1, to the problem (3.16) and the standard Hr elliptic
estimates with r = 2N − j + 1 ≥ 2, the trace theory (as 2N − j ≥ 1) and (2.25) show that∥∥∥∂jt b∥∥∥2

2N−j+1
.
∥∥∥∂jt bh∥∥∥2

0
+
∥∥∥∂jt u∥∥∥2

2N−j
+
∥∥∥∂j+1

t b
∥∥∥2

2N−j−1
+
∥∥∥∂jtG4

∥∥∥2

2N−j−1
+
∣∣∣∂jt uh∣∣∣2

2N−j−1/2

.
∥∥∥∂jt bh∥∥∥2

0
+
∥∥∥∂jt u∥∥∥2

2N−j
+
∥∥∥∂j+1

t b
∥∥∥2

2N−(j+1)
+ EN+4E2N . (3.27)

On the other hand, consider the following elliptic problem{
−µ∆ϑ = −p̄ div u− cvρ̄∂tθ +G3 in Ω

∂3ϑ = 0 on ∂Ω.
(3.28)

Applying ∂jt , j = 0, . . . , 2N − 1, to the problem (3.28) and the standard Hr elliptic estimates
with r = 2N − j + 1 ≥ 2 and (2.25) show that∥∥∥∂jtϑ∥∥∥2

2N−j+1
.
∥∥∥∂jtϑ∥∥∥2

0
+
∥∥∥∂jt u∥∥∥2

2N−j
+
∥∥∥∂j+1

t ϑ
∥∥∥2

2N−j−1
+
∥∥∥∂jtG3

∥∥∥2

2N−j−1

.
∥∥∥∂jtϑ∥∥∥2

0
+
∥∥∥∂jt u∥∥∥2

2N−j
+
∥∥∥∂j+1

t ϑ
∥∥∥2

2N−(j+1)
+ EN+4E2N . (3.29)

Collecting (3.26), (3.27) with summing over j = 1, . . . , 2N − 1 and (3.29) with summing over
j = 0, . . . , 2N − 1 yields that

2N∑
j=0

∥∥∥∂jt %∥∥∥2

2N−j
+

2N∑
j=1

∥∥∥∂jt u∥∥∥2

2N−j
+

2N−1∑
j=0

∥∥∥∂jtϑ∥∥∥2

2N−j+1
+

2N−1∑
j=1

∥∥∥∂jt b∥∥∥2

2N−j+1

. ‖u‖22N +

2N∑
j=1

∥∥∥∂jt u∥∥∥2

0
+
∥∥∂2N

t %
∥∥2

0
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+ EN+4E2N . (3.30)

Now combining (3.19) and (3.30) leads to

d

dt
‖(curlu)h‖22N−1 +

2N∑
j=0

∥∥∥∂jt (%, u)
∥∥∥2

2N−j
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j+1

. ‖u‖20,2N +
2N∑
j=1

∥∥∥∂jt u∥∥∥2

0
+
∥∥∂2N

t %
∥∥2

0
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+ ‖b‖21,2N + EN+4E2N . (3.31)

This together with the Sobolev interpolation implies that

d

dt
‖(curlu)h‖22N−1 +

2N∑
j=0

∥∥∥∂jt (%, u)
∥∥∥2

2N−j
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j+1

. ‖u‖20,2N +
2N∑
j=1

∥∥∥∂jt u∥∥∥2

0
+
∥∥∂2N

t %
∥∥2

0
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

0
+ ‖b‖21,2N + EN+4E2N , (3.32)

which yields (3.11) by controlling the first fourth terms in the right hand side by Ē2N and the
fifth term by D̄2N .



12 YANJIN WANG AND ZHOUPING XIN

We now prove (3.12). Recalling (3.15) with ` = 0, (3.26), (3.27) and (3.29) for j = 0, . . . , 2N−
1, and then summing them up, similarly as the derivation of (3.32), one deduces

E2N . ‖u‖20,2N +

2N∑
j=1

∥∥∥∂jt u∥∥∥2

0
+
∥∥∂2N

t %
∥∥2

0
+

2N−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

0
+ ‖(curlu)h‖22N−1 + EN+4E2N ,

(3.33)

which yields (3.12) since the first four terms in the right hand side can be controlled by Ē2N . �

We now deduce the boundedness estimates of E2N . Set

EwN+4(t) := (1 + t)N−5EN+4(t). (3.34)

Theorem 3.3. Let N ≥ 8. It holds that

E2N (t) +

∫ t

0
D̄2N (s) ds . E2N (0) + sup

0≤s≤t
E2N (s)

√
EwN+4(s), ∀t ∈ [0, T ]. (3.35)

Proof. First, integrating (2.11) in time implies that for N ≥ 8,

Ē2N (t) +

∫ t

0
D̄2N (s) ds . Ē2N (0) + sup

0≤s≤t
E2N (s)

√
EwN+4(s)

∫ t

0
(1 + s)−(N−5)/2 ds

. E2N (0) + sup
0≤s≤t

E2N (s)
√
EwN+4(s). (3.36)

Next, a Gronwall type argument for (3.11) yields

‖(curlu)h(t)‖22N−1 . E2N (0) + sup
0≤s≤t

Ē2N (s) +

∫ t

0
D̄2N (s) ds+ sup

0≤s≤t
(E2N (s)EN+4(s))2. (3.37)

Hence, one concludes (3.35) from (3.36), (3.37) and (3.12). �

4. Decay estimates of EN+4

In this section, to close the full energy estimates (3.35), we will derive the decay estimates of
EN+4. This will follow from a set of energy-dissipation estimates related to En and Dn.

Note that the tangential dissipation estimates of D̄n only control the temperature ϑ and
magnetic field b. The tangential dissipation estimates for the velocity u rely on the coupling
between the fluid and the magnetic field and the presence of the heat conductivity, and one has
the following:

Proposition 4.1. For n = N + 4, . . . , 2N , it holds that

n−1∑
j=0

∥∥∥∂jt u∥∥∥2

0,n−j−1
. D̄n + DN+4E2N . (4.1)

Proof. Let n = N + 4, . . . , 2N . It follows from the fourth and third equations in (2.20) that

∂tb− κ∆b = B̄ · ∇u+
B̄

p̄
(cvρ̄∂tϑ− µ∆ϑ−G3) +G4. (4.2)

By the vertical component of (4.2) and using the fifth equation in (2.20), one obtains

B̄ · ∇(u3 −
µ

p̄
∂3ϑ)

≡ B̄h · ∇h(−µ
p̄
∂3ϑ) + B̄ · ∇u3 −

µB̄3

p̄
∂2

3ϑ

= B̄h · ∇h(−µ
p̄
∂3ϑ) + ∂tb3 − κ∆bh + κ∂3 divh bh −

B̄3

p̄
(cvρ̄∂tϑ− µ∆hϑ−G3)−G4

3. (4.3)
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As B̄3 6= 0 and since u3 = 0 and ∂3ϑ = 0 on ∂Ω, by the Poincaré-type inequality, (4.3) and
(2.25), one deduces that for j = 0, . . . , n− 1,∥∥∥∥∂jt (u3 −

µ

p̄
∂3ϑ)

∥∥∥∥2

0,n−j−1

.

∥∥∥∥B̄ · ∇∂jt (u3 −
µ

p̄
∂3ϑ)

∥∥∥∥2

0,n−j−1

.
∥∥∥∂jt (ϑ, bh)

∥∥∥2

1,n−j
+
∥∥∥∂j+1

t (ϑ, b3)
∥∥∥2

0,n−j−1
+
∥∥∥∂jtG3

∥∥∥2

n−j−1
+
∥∥∥∂jtG4

3

∥∥∥2

n−j−1

. D̄n + DN+4E2N . (4.4)

This implies∥∥∥∂jt u3

∥∥∥2

0,n−j−1
.

∥∥∥∥∂jt (u3 −
µ

p̄
∂3ϑ)

∥∥∥∥2

0,n−j−1

+
∥∥∥∂jtϑ∥∥∥2

1,n−j−1
. D̄n + DN+4E2N . (4.5)

Now by the horizontal components of (4.2), one finds

B̄ · ∇(κ∂3bh + B̄3uh −
µB̄h
p̄
∂3ϑ)

≡ B̄h · ∇h(κ∂3bh −
µB̄h
p̄
∂3ϑ) + B̄3(κ∂2

3bh + B̄ · ∇uh −
µB̄h
p̄
∂2

3ϑ)

= B̄h · ∇h(κ∂3bh −
µB̄h
p̄
∂3ϑ) + B̄3(∂tbh − κ∆hbh −

B̄h
p̄

(cvρ̄∂tϑ− µ∆hϑ−G3)−G4
h). (4.6)

Since ∂3ϑ = 0 and κ∂3bh + B̄3uh = 0 on ∂Ω, by the Poincaré-type inequality again, (4.6) and
(2.25), one deduces that that for j = 0, . . . , n− 1,∥∥∥∥∂jt (κ∂3bh + B̄3uh −

µB̄h
p̄
∂3ϑ)

∥∥∥∥2

0,n−j−1

.

∥∥∥∥B̄ · ∇∂jt (κ∂3bh + B̄3uh −
µB̄h
p̄
∂3ϑ)

∥∥∥∥2

0,n−j−1

.
∥∥∥∂jt (ϑ, bh)

∥∥∥2

1,n−j
+
∥∥∥∂j+1

t (ϑ, bh)
∥∥∥2

0,n−j−1
+
∥∥∥∂jtG3

∥∥∥2

n−j−1
+
∥∥∥∂jtG4

h

∥∥∥2

n−j−1

. D̄n + DN+4E2N . (4.7)

This implies, using B̄3 6= 0 again, that∥∥∥∂jt uh∥∥∥2

0,n−j−1
.

∥∥∥∥∂jt (κ∂3bh + B̄3uh −
µB̄h
p̄
∂3ϑ)

∥∥∥∥2

0,n−j−1

+
∥∥∥∂jt (ϑ, bh)

∥∥∥2

1,n−j−1

. D̄n + DN+4E2N . (4.8)

This together with (4.5) gives (4.1). �

Next, we derive the dissipation estimates of ∂n−1
t %.

Proposition 4.2. For n = N + 4, . . . , 2N , it holds that

d

dt

∫
Ω
ρ̄∂n−1

t u · ∂n−2
t u+

∥∥∂n−1
t %

∥∥2

0
. D̄n +

√
E2NDn. (4.9)

Proof. Let n = N + 4, . . . , 2N . One applies ∂n−2
t to the first equation in (2.20) and then takes

inner product with Rθ̄
ρ̄ ∂

n−1
t % to have∫

Ω

Rθ̄

ρ̄

∣∣∂n−1
t %

∣∣2 +

∫
Ω
Rθ̄∂n−1

t % div ∂n−2
t u =

∫
Ω

Rθ̄

ρ̄
∂n−1
t %∂n−2

t G1. (4.10)

By (2.25), one obtains∫
Ω

Rθ̄

ρ̄
∂n−1
t %∂n−2

t G1 .
∥∥∂n−1

t %
∥∥

0

∥∥∂n−2
t G1

∥∥
0
.
√
Dn

√
DN+4E2N . (4.11)

Integrating by parts over Ω and using the second equation in (2.20), one has∫
Ω
Rθ̄∂n−1

t %div ∂n−2
t u = −

∫
Ω
∇
(
Rθ̄∂n−1

t %
)
· ∂n−2

t u
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=

∫
Ω

(ρ̄∂nt u+∇(Rρ̄∂n−1
t ϑ)− curl ∂n−1

t b× B̄ − ∂n−1
t G2) · ∂n−2

t u. (4.12)

Integrating by parts in time yields∫
Ω
ρ̄∂nt u · ∂n−2

t u =
d

dt

∫
Ω
ρ̄∂n−1

t u · ∂n−2
t u−

∫
Ω
ρ̄
∣∣∂n−1
t u

∣∣2 . (4.13)

One obtains directly

−
∫

Ω
(∇(Rρ̄∂n−1

t ϑ)− curl ∂n−1
t b× B̄) · ∂n−2

t u .
∥∥∂n−1

t (ϑ, b)
∥∥

1

∥∥∂n−2
t u

∥∥
0

(4.14)

and by (2.25), ∫
Ω
∂n−1
t G2 · ρ̄∂n−2

t u .
∥∥∂n−1

t G2
∥∥

0

∥∥∂n−2
t u

∥∥
0
.
√
DN+4E2N

√
Dn. (4.15)

Consequently, combining (4.10)–(4.15) yields, by Cauchy’s inequality,

d

dt

∫
Ω
ρ̄∂n−1

t u · ∂n−2
t u+

∥∥∂n−1
t %

∥∥2

0
.
∥∥(∂n−2

t u, ∂n−3
t u)

∥∥2

0
+
∥∥∂n−1

t (ϑ, b)
∥∥2

1
+
√
E2NDn. (4.16)

One thus conclude (4.9) by controlling the first term in the right hand side by using (4.1) and
the second term by D̄n−1, since n ≥ N + 4. �

Now we derive the full energy-dissipation estimates.

Proposition 4.3. For n = N + 4, . . . , 2N , it holds that

d

dt

(
‖(curlu)h‖2n−2 +

∫
Ω
ρ̄∂n−1

t u · ∂n−2
t u

)
+ Dn . D̄n +

√
E2NDn (4.17)

and that

En . Ēn + ‖(curlu)h‖2n−2 + EN+4E2N . (4.18)

Proof. Let n = N + 4, . . . , 2N . It follows similarly as the derivation of (3.32), with 2N replaced
by n− 1, that

d

dt
‖(curlu)h‖2n−2 +

n−1∑
j=0

∥∥∥∂jt (%, u)
∥∥∥2

n−j−1
+
n−2∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

n−j

. ‖u‖20,n−1 +

n−1∑
j=1

∥∥∥∂jt u∥∥∥2

0
+
∥∥∂n−1

t %
∥∥2

0
+

n−2∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

0
+ ‖b‖21,n−1 + DN+4E2N . (4.19)

One may appeal to (4.1) to control the first two terms in the right hand side, and the fourth
and fifth terms are bounded by D̄n−2. One then combines the resulting inequality and (4.9) to
conclude (4.17).

We now prove (4.18). Taking ` = 0 and replacing 2N by n − 1 in (3.15), taking j = 0 and
replacing 2N by n− 1 in (3.27) and (3.29), and then combining them yield

‖u‖2n−1 +‖(ϑ, b)‖2n . ‖u‖
2
0,n−1 +‖(curlu)h‖2n−2 +‖(ϑ, b)‖20 +‖∂t(%, ϑ, b)‖2n−2 +EN+4E2N . (4.20)

Replacing 2N by n− 1 in (3.30) (but without estimating ‖ϑ‖2n) leads to

n∑
j=0

∥∥∥∂jt %∥∥∥2

n−j
+

n∑
j=1

∥∥∥∂jt u∥∥∥2

n−j
+

n−1∑
j=1

∥∥∥∂jt (ϑ, b)∥∥∥2

n−j+1

.
n∑
j=1

∥∥∥∂jt u∥∥∥2

0
+ ‖∂nt %‖

2
0 +

n−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

2N−j
+ EN+4E2N . (4.21)

Hence, combining (4.20)–(4.21) gives

En . Ēn + ‖(curlu)h‖2n−2 + ‖∂t%‖2n−2 +
n−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

n−j
+ EN+4E2N . (4.22)
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This together with the Sobolev interpolation implies that

En . Ēn + ‖(curlu)h‖2n−2 + ‖∂t%‖20 +

n−1∑
j=0

∥∥∥∂jt (ϑ, b)∥∥∥2

0
+ EN+4E2N

. Ēn + ‖(curlu)h‖2n−2 + EN+4E2N . (4.23)

This is (4.18). �

With the previous estimates in hand, we now derive the decay estimates.

Theorem 4.4. It holds that∫ t

0
D2N (s) ds+

N−6∑
j=0

(1 + t)N−5−jEN+4+j(t) +
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s) ds

. E2N (0) + sup
0≤s≤t

E2N (s)
√
EwN+4(s). (4.24)

Proof. First, taking n = 2N in (4.17), one deduces that for E2N ≤ δ is small,

d

dt

(
‖(curlu)h‖22N−2 +

∫
Ω
ρ̄∂2N−1

t u · ∂2N−2
t u

)
+ D2N . D̄2N . (4.25)

Integrating (4.25) in time and by (3.35) gives in particular that∫ t

0
D2N (s) ds . E2N (0) + Ē2N (t) +

∫ t

0
D̄2N (s) ds . E2N (0) + sup

0≤s≤t
E2N (s)

√
EwN+4(s). (4.26)

Next, it follows from (4.17) that for n = N + 4, . . . , 2N − 2,

d

dt

(
‖(curlu)h‖2n−2 +

∫
Ω
ρ̄∂n−1

t u · ∂n−2
t u

)
+ Dn . D̄n. (4.27)

On the other hand, it follows from (4.18) that

En . Ēn + ‖(curlu)h‖2n−2 . (4.28)

One can deduce from (4.27), (4.28), (2.26) and (2.27) that

d

dt
En + Dn ≤ 0. (4.29)

Observe that E` ≤ D`+1. Then we will employ a time weighted inductive argument here. To
begin with, it follows from (4.29) that for j = 0, . . . , N − 4,

d

dt
EN+4+j + DN+4+j ≤ 0. (4.30)

Multiplying (4.30) by (1 + t)N−5−j and using EN+4+j ≤ DN+5+j , one gets

d

dt

(
(1 + t)N−5−jEN+4+j

)
+ (1 + t)N−5−jDN+4+j ≤ (N − 5− j)(1 + t)N−6−jEN+4+j

. (1 + t)N−5−(j+1)DN+4+(j+1). (4.31)

Integrating (4.31) in time directly and using a suitable linear combination of the resulting
inequalities, one obtains

N−6∑
j=0

(1 + t)N−5−jEN+4+j(t) +
N−6∑
j=0

∫ t

0
(1 + s)N−5−jDN+4+j(s) ds

. E2N (0) +

∫ t

0
D2N−1(s) ds. (4.32)

This together with (4.26) implies (4.24). �
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5. Global well-posedness

We are now ready to present

the proof of Theorem 1.1. The estimate (4.24) implies in particular (1.16), for E2N ≤ δ is small.
Then combining the estimates (3.35) and (1.16) yields (1.15). This closes the a priori assumption
(2.1) if E2N (0) ≤ ε0 for ε0 > 0 sufficiently small. Therefore, the global well-posedness follows
by using a standard continuity argument. �

Appendix A. Hodge-type estimates

Lemma A.1. Let r ≥ 1 be an integer. Then it holds that

‖v‖r . ‖v‖0,r + ‖(curl v)h‖r−1 + ‖div v‖r−1 . (A.1)

If v3 = 0 on ∂Ω, then

‖v‖r . ‖vh‖0 + ‖curl v‖r−1 + ‖div v‖r−1 . (A.2)

If v3 = 0 on ∂Ω and
∫

Ω vh = 0, then

‖v‖r . ‖curl v‖r−1 + ‖div v‖r−1 . (A.3)

Proof. One may refer to Lemma A.9 in [21] for the proof of (A.1). Now for v3 = 0 on ∂Ω, by
the standard elliptic estimates on −∆v3 = (curl curl v)3 − ∂3 div v, one obtains

‖v3‖r . ‖(curl v)h‖r−1 + ‖div v‖r−1 . (A.4)

On the other hand, one has

‖∇vh‖r−1 . ‖∇v3‖r−1 + ‖curl v‖r−1 + ‖div v‖r−1 . (A.5)

Then (A.2) follows from (A.4)–(A.5), and (A.3) follows by using further Poincaré’s inequality.
�
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