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ABSTRACT. We establish the local-in-time well-posedness of classical
solutions to the vacuum free boundary problem of the viscous Saint-
Venant system for shallow waters derived rigorously from incompressible
Navier-Stokes system with a moving free surface by Gerbeau-Perthame
[18]. Our solutions (the height and velocity) are smooth (the solutions
satisfy the equations point-wisely) all the way to the moving boundary,
although the height degenerates as a singularity of the distance to the
vacuum boundary. The proof is built on some new higher-order weighted
energy functional and weighted estimates associated to the degeneracy
near the moving vacuum boundary.

1. INTRODUCTION

The one-dimensional compressible isentropic Navier-Stokes equations with
the density-dependent viscosity coefficient are given by

{pt + (pu)w = 07
(pu)t + (pu2)m + P = (M(P)Uz)x,

where (z,t) € R x Ry, and p(z,t) > 0,u(x,t) and p = p¥ (y > 1) stand for
the density, velocity, and pressure, respectively. And u(p) = p* (a > 0) is
the viscosity coefficient.

There is a vast body of literature on the long time existence and asymp-
totic behavior of solutions to the system (1.1) in the case that the viscosity
wu(p) is constant, i.e., @« = 0. When the initial density is strictly away
from vacuum (inf,er po(z) > 0), the global existence of strong solutions
was addressed for sufficiently smooth data by Kazhikhov et al. [31], and
for discontinuous initial data by Serre [48] and Hoff [21], respectively. The
crucial point to establish such global existence of strong solutions lies in the
fact that if the initial density is positive, then the density is positive for any
later-on time as well. This fact is also proved to be true for weak solutions by
Hoff and Smoller [23], namely weak solutions do not contain vacuum states
in finite time as long as there is no vacuum initially. When the initial den-
sity contains vacuum, the problem becomes subtle. In fact, the appearance
of vacuum indeed leads to some singular behaviors of solutions, such as the
failure of continuous dependence of weak solutions on initial data [22] and
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the finite time blow-up of smooth solutions [30,50], and even non-existence
of classical solutions with finite energy [34].

Thus, when the solutions may contain vacuum states, it seems natu-
ral to investigate the compressible Navier-Stokes equations with density-
dependent viscosity. Indeed, in the derivation of the compressible Navier-
Stokes equations from the Boltzmann equation by the Chapman-Enskog
expansions, as pointed out and investigated by Liu-Xin-Yang [40], the vis-
cosity shall depend on the temperature and thus correspondingly depend on
the density for isentropic flows. Moreover, Gerbeau-Perthame [18] derived
rigorously a viscous Saint-Venant system for the shallow waters which is
expressed exactly to (1.1) with a = 1 and v = 2, from the incompressible
Navier-Stokes equation with a moving free surface. Such viscous compress-
ible models with density-dependent viscosity coefficients and its variants also
appear in geophysical flows [3-5] (see also P.-L. Lions’s book [39]). There
are also extensive studies on the compressible Navier-Stokes equations with
density-dependent viscosity. When the initial density was assumed to be
connected to vacuum with discontinuities, the local well-posedness of weak
solutions to this problem was first established by Liu-Xin-Yang [40], and the
global existence of weak solutions for 0 < a < 1 was considered by many
authors, see [27] and the references therein. The above analysis relies heav-
ily on the fact that the density of the approximate solutions has a uniform
positive lower bound in the non-vacuum region. When the density connects
to vacuum continuously, the density has no positive lower bound and thus
the viscosity coefficient vanishes at vacuum. This degeneracy in the viscos-
ity coefficient gives rise to some new difficulties. Despite of this, there is
still much progress, for instance, one may refer to [52] when a > 1/2 for
the local existence result, and [51] for the global existence results of weak
solutions when 0 < a < 1/2, in the free boundary setting. For o > 1/2,
some phenomena of vacuum vanishing and blow-up of solutions were found
by Li-Li-Xin [33], more precisely, the authors proved that for any global en-
tropy weak solution, the vacuum state must vanish within finite time, and
the velocity blows up in finite time as the vacuum states vanish. For the
study on the asymptotic stability of rarefaction waves to this problem, one
may refer to [29] and the references therein.

Since P.-L. Lions’ breakthrough work [38,39], there have also been much
important progress for the multi-dimensional isentropic Navier-Stokes equa-
tions with the constant coefficients or density-dependent viscosity coeffi-
cients, see [3,6,11,13,17,20,24,28,35,36,45,49] and the references therein.

The vacuum free boundary problem of (1.1) had attracted a vast of at-
tractions in the past two decades. In the case that the viscosity is constant,
Luo-Xin-Yang [41] studied the global regularity and behavior of the weak
solutions near the interface when the initial density connects to vacuum
states in a very smooth manner. Zeng [54] showed that the global existence
of smooth solutions for which the smoothness extends all the way to the
boundary. In the case that the viscosity is density-dependent, the global
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existence of weak solutions was studied by many authors, see [51] without
external force, and [14,16,46] with external force and the references therein.
By taking the effect of external force into account, Ou-Zeng [47] obtained the
global well-posedness of strong solutions and the global regularity uniformly
up to the vacuum boundary.

Although there have been much important progress as aforementioned, it
is still not clear whether the above solutions are smooth or not even locally
in time when the viscosity coefficient vanishes at vacuum. In the present
paper, we study the local well-posedness of classical solutions to the vacuum
free boundary problem of the viscous Saint-Venant system for shallow wa-
ters derived rigorously from the incompressible Navier-Stokes system with a
moving free surface by Gerbeau-Perthame [18], which corresponds to (1.1)
with a =1 and vy =2, i.e.,

pt+ (pu)e =0 in I(t),
(pu)s + (pu? + p?)z = (pus)z in I(t),
p>0 in I(t),
p=0 on I'(¢), (1.2)
V(I(t)) = u,
(p,u) = (po, uo) on 1(0),
L [(0)=T={z:0<x<1}.

To solve the system (1.2), we need to solve the four pairs (p,u, I(t),'(t))
(in fact it suffices to solve the triple (p, u,I'(t))). Here p denotes the height of
the fluid (we use this terminology from its original meaning), and u denotes
the Eulerian velocity, respectively. The open, bounded interval I(¢) denotes
the changing domain occupied by the fluid, I'(f) =: 01(¢) denotes the mov-
ing vacuum boundary, and V(I'(¢)) denotes the velocity of I'(¢), respectively.
Equation (1.2), stands for the conservation of mass, and Equation (1.2), de-
scribes the conservation of momentum, the condition (1.2), means that there
is no vacuum inside of fluid, the conditions (1.2), tell the dynamical bound-
ary conditions to be investigated, (1.2), states that the vacuum boundary is
moving with the fluid velocity, and (1.2)4 are the initial conditions for the
height, velocity, and domain.

The initial height profile we are interested in this paper connects to vac-
uum as follows:

po € H®(I1(0)) and Cyd(z) < po(z) < Cod(z) for all z € I(0), (1.3)

for some positive constants C; and Co, where d(z) =: d(z,T'(0)) is the
distant function from z to the initial boundary.

We also explain a little bit on the condition (1.3). The condition (1.3)
is equivalent to the following so-called ”physical vacuum singularity”. Let
c(x,t) = y/p(x,t) be the sound speed, and hence ¢y = ¢(z,0) is the initial
sound speed. The physical vacuum singularity (see, for example, [9,40]) is
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determined by the following condition

0<d—cg<oo on I'(0) (1.4)
1 . .

It is straightforward to check that (1.3) is equivalent to (1.4) by assuming
po(x) vanishes on the boundary I'(0).

The study on the physical vacuum free boundary problem for the com-
pressible Euler equations was first given by Jang-Masmoudi [25] and Coutand-
Lindblad-Shkoller [8] with different methods handling the degeneracy near
the free boundary. For other important progress on the vacuum free bound-
ary problems in compressible fluids, one may also refer to [9,10,26,37,42,43|
and the references therein.

The physical vacuum free boundary problem of shallow waters was studied
by both Duan [13] and Ou-Zeng [47], with the external force "—pf” (im-
posed on the right hand side of the momentum equation (1.2),), for global
theory. In [13], the author considered some kind initial density degenerated
as d'/?(z) near the vacuum boundary and showed the global well-posedness
of weak solutions by establishing certain global space-time square estimates
using Lagrangian mass coordinates. In [47], the authors considered some
sort of initial density like d(z) near the vacuum boundary and showed the
global well-posedness of strong solutions based on certain weighted energy
estimates with both space and time weights using Hardy’s inequality to-
gether with the particle path method.

We aim to present a detailed proof on the local well-posedness of classical
solutions (see Definition 1 (b)) to the vacuum free boundary problem (1.2)-
(1.3) in the present paper. Comparing with [13,47], our classical solution
satisfies an additional Nuewmann boundary condition u, = 0 on I'(¢), which
is captured by the high regularity of the solution on the vacuum boundary
(see Remark 1-3).

To handle the degeneracy near the vacuum boundary and to capture
the feature u, = 0 on I'(¢) of our classical solution, we first construct a
higher-order energy functional associated to the degeneracy near the vacuum
boundary, and then develop some delicate weighted estimates to close the
higher-order energy functional, in which the weighted Sobolev inequalities
and some weighted interpolation inequality will play an important role. Our
higher-order energy functional consists of the following four type terms:

/Ipo(aflv)Q dz, /Ipo((?fsz)z dz, /Iplg3(6t6§3v)2 dz, /Iplg“((‘?g’j‘*v)Q dz,

for some non-negative integers ki, ks, k3, ks to be chosen. The first two
type terms come from the time-differentiated energy estimates, which are
essentially the estimates of the derivatives in the tangential direction of
the moving boundary. While the last two type terms are from the elliptic
estimates, which depend highly on the degenerate parabolic structure of
the momentum equation in (2.5) and make it possible for us to gain more
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regularities through the estimates of the derivatives in the normal direction
of the moving boundary.

Constructing approximate solutions usually is not a trivial process in
showing well-posedness of the physical vacuum free boundary problem of
compressible fluids since the system degenerates on the boundary, see [9, 10,
25,26]. In [9], in order to get the regular solution to the compressible Euler
equations, Coutand-Shkoller considered a degenerate parabolic regulariza-
tion well matched with the compressible Euler equations, more precisely
where the viscosity has a structure x(p2v;),. To show the existence of weak
solutions to this degenerate parabolic equation by the Galerkin’s scheme,
the authors introduced a new variable X = pgv, which satisfies a Dirichlet
boundary condition X = 0 on 01 x [0,T] since py vanishes on the boundary
and v, is bounded and then studied the equation for X instead of v. (Note
that v itself does not satisfy any boundary condition.) On the other hand,
to tackle the strong degeneracy of the viscosity, the authors had to divide
a weight pg on both sides of the degenerate parabolic equation to lower the
degeneracy (but there is no singularity in the new equation), where a new
higher-order Hardy-type inequality necessitates.

It seems difficult to apply the idea of [9] straightforwardly to construct
approximate solutions of the viscous Saint-Venant system for shallow waters
(1.2) (see Remark 5). In this paper, we will construct a classical solution
to the vacuum free boundary problem (1.2)-(1.3) satisfying the Nuewmann
boundary condition (2.11) (see Remark 1-3), so this boundary condition will
play an important role in constructing approximate solutions in the Hilbert
space H(I) = {h € H3(I) : hy = 0 on I'}. We will first use the Galerkin’s
scheme to construct a unique weak solution to the linearized problem, and
then improve the regularity of this weak solution based on some key higher
order a priori estimates, and finally show that the approximate solutions
converge to a unique classical solution to the degenerate parabolic problem
by a contraction mapping method.

It should be pointed out that, on the one hand, in deducing a priori
estimates on higher order derivatives here, one can not manipulate as [9]
to divide a pg on both sides of the degenerate parabolic equation to lower
the degeneracy since it will introduce some singularity in the new equa-
tion which prevents the analysis to work. Hence we will keep the original
structure of the degenerate parabolic equation, and use mainly the weighted
Sobolev inequalities to handle the degeneracy which depends heavily on the
degenerate parabolic structure of the momentum equation in (2.5). On the
other hand, due to the degeneracy, the energy estimates on the approximate
solutions are insufficient for us to pass limit in n on the iteration problem
for time pointwisely. Therefore we need use some weighted interpolation
inequality that can help us to obtain a pointwise convergence for time on
the approximate solutions to the iteration problem (see Section 7.3).

In [19], Guo-Li-Xin studied the multi-dimensional viscous Saint-Venat
system for the shallow waters and showed the global existence of a spherically
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symmetric weak solution to its free boundary value problem, in which de-
tailed regularity and Lagrangian structure of this solution was presented. It
is interesting to extend our classical solutions’ result to the multi-dimensional
(spherically symmetric) viscous Saint-Venat system for the shallow waters,
which is left for future.

The paper is organized as follows. In Section 2, we will first formulate
the vacuum free boundary problem into a fixed boundary problem and then
state our main results. Section 3 lists some preliminaries. In Section 4 and 5,
respectively, we will focus on the a priori estimates that constitute the energy
estimates and elliptic estimates. Section 7 and 8 are devoted to showing the
existence and uniqueness of a classical solution to our degenerate parabolic
problem, respectively.

2. REFORMULATION AND MAIN RESULTS

2.1. Fixing the domain. The initial domain (the reference domain) in
one-dimension is given by I(0) = (0,1). Afterwards, we will use the short
notation I to replace I(0) for convenience, and also denote by I' = OI the
boundary of the reference domain.

Denote by 1 the position of the fluid particle x at time ¢

8t77($7 t) = U(U(% t)7 t)a
{nm 0) -z, 2
and also by f(x,t) and v(x,t) the Lagrangian height and velocity
fz,t) = p(n(z,t),1),
{v@,w — u(n(z, 1) 1) 22)

Then (1.2) is transformed to the following problem on the fixed reference
interval I:

fit = =0 in I x (0,77,
Nz for + (f2)a: = (f%)x in I x (O,T],
F>0 in T x (0, ], (2.3)
f=0 on T x (0,7,
(f;v,m) = (po, uo, €) on I x {t =0},
where e(z) = x denotes the identity map on I.
Solving f from Equation (2.3), yields
f<$7 t) = :00(56)77;1('%'7 t)? (24)
one inserts (2.4) back to Equation (2.3), to transfer the problem (2.3) into
2
pove + (), = (%=),  inIx(0,T], (2.5)
(v,m) = (uo, €) on I x {t =0}.

The problem (2.5) is a degenerate parabolic problem.
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Definition 1 (Classical Solution). (a) We say a function v is a classical so-
lution to the problem (2.5) provided v satisfies (2.5); in I x (0, T pointwisely
and is continuous to the initial data ug.

(b) We say the pair (p(z,t),u(z,t),T(t)) fort € [0,T] and x € I(t) is a
classical solution to the problem (1.2) provided (p(x,t),u(x,t),T'(t)) satisfies
(1.2); — (1.2)5 pointwisely and is continuous to the initial data (po,uo,I"),
additionally, (1.2); and (1.2), hold on the spatial boundary of I(t) point-
wisely.

2.2. The higher-order energy functional. Our main purpose is to study
the local well-posedness of the degenerate parabolic problem (2.5) in certain
weighted Sobolev space with high regularity. For this, we will consider the
following higher-order energy functional:

3 2
B(tv) = Y IVmofo( Dlagy + S IV o Dl
k=0 k=0

4 6
+ 2 IV Ab00suC ) gy + DI bk Dl ey
k=2 k=2

We define the polynomial function My by
My = P(E(0,v9)),

(2.6)

where P denotes a generic polynomial function of its arguments.

2.3. Main result on the problem (2.5). The main result in the paper
can be stated as follows:

Theorem 2.1. Assume the initial data (po,vo) satisfy (1.3) and My < oo,
then there exist a suitably small T > 0 and a unique classical solution

v e C(0,T]; H (1)) N CH((0, T): H (1)) (2.7)
to the problem (2.5) on [0,T] such that
sup E(t,v) < 2Mj. (2.8)
0<t<T

Moreover, v satisfies the Nuewmann boundary condition

vy, =0 onT x(0,7]. (2.9)

2.4. Main result on the vacuum free boundary problem (1.2)-(1.3).
Due to (3.13), the flow map n(-,t): I — I(t) is inverse for any ¢ € [0,7] and
we denote its inverse by 7(-,t): I(t) — I, where T is determined in Theorem
2.1. Let (n,v) be the unique classical solution in Theorem 2.1. For ¢t € [0, T
and y € I(t), set
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Then the triple (p(y,t),u(y,t),T'(t))) (¢t € [0,T]) defines a unique classical
solution to the vacuum free boundary problem (1.2)-(1.3). More precisely,
Theorem 2.1 can be transferred into the following;:

Theorem 2.2. Assume the initial data (po,uo) satisfy (1.3) and My < oo,
then there exist a T > 0 and a unique classical solution (p(y,t),u(y,t),L'(t))
fort € [0,T] and y € I(t) to the vacuum free boundary problem (1.2)-(1.3).
Moreover, T'(t) € C?([0,T)]), and fort € [0,T] and y € 1(t), we have

ply,t) € C([0, T} H3(1(8))) N CH ([0, T]; H*(1(t)));

; ) ) (2.10)
u(y,t) € C([0,T]; H*(1(t))) N C([0,T]; H*(1(1)))-
Moreover, u satisfies the Nuewmann boundary condition
ug, =0 on I'(t). (2.11)

2.5. Some remarks. The following remarks are helpful for understanding
our main results.

Remark 1. By the trace theorem H?(I) < H°/?(T) (see [15] for instance)
and v(-,t) € H3(I) for each t € (0,T), one may define the Nuewmann
boundary condition (2.9) pointwisely due to (2.7). Similarly, one can also
define (2.11) by u(y,t) € C([0,T); H*(1(t))) for t € [0,T] and y € I(t)
pointwisely due to (2.10).

Remark 2. It follows from Remark 1 that (2.9) is well-defined if the solu-
tion to the problem (2.5) possesses the regularity (2.7). In fact, (2.9) holds
naturally for the classical solution in the sense of Definition 1 (a), however,
with a higher regularity (2.8). In the following, we show how to derive (2.9)
from Definition 1 (a) together with (2.8).
First note from Equation (2.5), that
PovE + 2P0(§0)m . 2p(2];]{17{l‘ _ (pO);'Ux 4 ('Umzz . 2U$;7xx)’
Nz Nz Nz Nz Nz

for (z,t) € I x (0,T]. It follows from (2.8), Lemma 1 and Lemma 2 that

POUt('yt)v U:E('at)a 7738(7t)7 Povxm('7t)7 Ponm(at) € HZ(I) fO’I" te (07T]7
which combines the trace theorem H?(I) — H3>(T') yields
POUt(‘,t), Um('>t)7 nx('at)7 povm(-,t), Poﬂm(‘at) € H3/2(F) Jort e (O7T]

This implies that each term in (2.12) is well-defined pointwisely on T'x (0, T].
Using (1.3), (3.13), and letting x go to the vacuum boundary I'(t), then one
obtains

(2.12)

(po)zvz =0 on I' x (0,T]. (2.13)

By (1.3) again, one sees (po)g # 0 on I', hence (2.9) follows from (2.13).
On the other hand side, to construct a classical solution to the problem

(2.5), we will use a Galerkin’s scheme to study its linearized problem, in

which the Nuewmann boundary condition (2.9) will play a crucial role.
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Remark 3. For the problem (1.2)-(1.3), since p vanishes on I'(t), the usual
stress free condition

S =p?—pu, =0 onT(t) (2.14)
holds automatically.

Remark 4. In [9], Coutand-Shkoller studied the well-posedness of the physi-
cal vacuum free boundary problem of the compressible Euler equations, which
may be written in Lagrangian coordinates as

ol
pov: + <2> =0. (2.15)
T

Nz

For 1 < ~ < 2, the authors constructed the following energy functional (see
Section 8 in [9]):

4 2
Ey(t,v) = Y 1050( ) Fra-srz + Y 100070 0)l[3s—s + I1v/P00:030 (-, £)|172
s=0

s=0

ag
1 _
T N e O P S IV S R G)) [
a=0

(2.16)
where ag satisfies 1 < 1 + ,Y—il —ag < 2. Note that the last sum in E,
appears whenever 1 < v < 2, and the order of the time-derivative increases
to infinity as v — 1T.
But the energy functional (2.16) fails for v = 1 whose equation corre-
sponds to the isothermal Euler equation:

povt + (po) — 0. (2.17)

T

Neaxt, we will compare the isothermal Euler model with the shallow water
model in the following two aspects. On the one hand, applying 0; to Equation
(2.17) yields

pod2v = <p;’7§x> . (2.18)

T

The term (Pg;’w)x in Equation (2.18) also appears in Equation (2.5),, which

contributes the main difficulties in the elliptic estimates (see Section 5). One
the other hand, it follows from (2.17) that

(p[])x _ POz
Nz 77325

One can claim that there is no classical solution to (2.17) living in some
weighted Sobolev space with high regularity such that

povi(- 1), ponee(-t) € HA(I) fort € (0,T].

pPov: + =0. (2.19)
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Otherwise, one may arque as Remark 2 for (2.19) to deduce
(pO)Cﬂ = 07
which contradicts (1.3).

Remark 5. In [9], to construct the approzimate solutions of (2.15) with
~v = 2, Coutand-Shkoller used the following parabolic k-problem:

povt + (z—é)x = Kk(p3vs)z in I x (0,7,
(v,1) = (o, €) on I x {t =0}

for small k > 0. To show the existence of solutions to the problem (2.20),
the authors considered its linearized problem

Povt + (é) = k(pEvy)s in I x (0,7
T/ 0 T (2.21)

(2.20)

(v,m) = (uo, €) on I x {t =0},

where .
f(z,s) =x +/ v(x,s)ds
0

for v in some Hilbert space Cp(M). The solution to the parabolic k-problem
(2.20) will then be obtained as a fized point of the map v — v (v is a
unique solution to the problem (2.21)) in Cp(M) for small T > 0 via the
Tychonoff fixed-point theorem (which requires that the solution space is a
reflexive separable Banach space).

To show the existence of solutions to the problem (2.5), we also need to
consider its linearized problem (7.4). However, the solution space (defined by
(7.1)) for the problem (7.4) (which is the same one with the problem (2.5))
is a non-reflexive Banach space, which prevents us applying the Tychonoff
fizxed-point theorem straightforwardly to obtain the existence of solutions to
the problem (2.5). To get around the difficulty, we will design a contraction
mapping for the approximate solutions to the iteration problem (7.59) and
show its approximate solutions converge uniformly to a classical solution to
the problem (2.5), in which some weighted interpolation inequality is needed
to overcome the difficulty of passing limit in n on the approximate solutions
to the iteration problem (7.59) for time pointwisely, which is caused by the
degeneracy in the energy estimates (see Section 7.3).

3. SOME PRELIMINARIES

3.1. Weighted Sobolev inequalities. To handle the degeneracy near the
vacuum boundary, we will need the following weighted Sobolev inequalities,
whose proof can be found for instance in [32]. Let d(x) =: d(z,T") be the
distant function to the boundary I'. Then the following weighted Sobolev
inequalities hold:

Jwllyrs) S [ ) + ud)(a) do. (3.1)
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/dk(x)wQ(x) dz < /dk+2(m)(w2 +w2)(z)der for k=0,1,2,..., (3.2)
I I
here and thereafter the convention - < - denotes - < C-, and C always
denotes a nonnegative universal constant which may be different from line
to line.

Recall that the initial height profile po(z) connects to vacuum as (1.3), so
the distance function d(z) can be replaced by po(x) in the weighted Sobolev
inequalities (3.1) and (3.2).

3.2. Sobolev embedding. The standard Sobolev embedding inequality
lwll p2ra-20(py S wllgsry for 0 <s <1/2, (3.3)
will also be used.

3.3. Consequences of (2.6). As a prerequisite for later use, we will use
the weighted Sobolev inequality (3.2) to deduce some useful consequences
of the boundness of the energy functional defined in (2.6).

Lemma 1. It holds that

”v(at)”H:”(I) S El/Z(tvv)' (34)
As a consequence, if (2.1) and (2.2) hold, then
o)) + 102Dy S ¢ sup BV2e0), (39
oz )l ooy + vaa (s D)l ooy S EV2(80), (3.6)
Hnmm('at)”Loo(I) Stosup E1/2(37U)- (3.7)
0<s<t

Proof. Indeed, it follows from the weighted Sobolev inequality (3.2) that

/v2 dz < /pg(v2 +v2)dr < E(t,v),
I I

/ 2da < / R 102, de < B(tv),
I I

and

Hence (3.4) follows.
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For (3.5), it follows from (3.4) that
t 1/2
Hain(-,t)llp([) < / </(8§v)2 dx) ds <t sup EY2(t,v)), k=2,3,
0 I 0<s<t

where one has used Minkowski’s inequality in the first inequality.
The inequality (3.6) is a consequence of (3.4) and the Sobolev embedding
HY(I) < L*®(I). Then the inequality (3.7) may be shown as

”nftx 5 HLoo / Hsz 5 HL‘X’(I ds <t sup E1/2(8 ’U)

0<s<t
O
Similarly, one also has
Lemma 2. It holds that
lpodzv (- )l 2y + 13020, ) 2y + 1PBORV (-, )2y S E1/2(t,vzé 9

As a consequence, if (2.1) and (2.2) hold, then
lpodzn(, O)ll 2y + 103020 )l 2y + 1106080 Ol 21y S toiugtEl/Q(tw),
o (3.9)

1p0020 (-, t) || oo (1) + 10802V, )| oo (1) + 10ROV )| oo (1) S B2 (2, 0),
(3.10)
lp0d2n(t, Moo (ry + ||P(2)5;177("75)||L00(I) + ||Pga:in('»t)”L°°(I) S toiulit E'V2(s,v).
(311

Proof. The proof follows a similar procedure as in that of Lemma 1 by
repeating using the weighted Sobolev inequality (3.2). O

3.4. The a priori assumption. Let ¢; be the Sobolev embedding H!(I) —
L*>(I) constant, and c2 be the constant in the inequality (3.4). Set M; =
2My. Let (v,n) satisfy (2.1) and (2.2). Assume that there exists some
suitably small T' € (0,1/(2c1cov/M7)] N (0,1) such that

sup E(t,v) < M. (3.12)
0<t<T
Then one has
1/2 < mp(z,t) <3/2, (z,t) €I x][0,T). (3.13)

Indeed, it follows from (2.1) that

n(m,t):x—i—/o v(z,s)ds, (z,t) €l x[0,T],
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which leads to

|72 (z, 1) —1]</ vz (s $)|| ooy ds < T sup vz (5 )l oo (1)

<aTl sup vz )y < clch sup E1/2(t v)
0<t<T 0<t<T

< crep/MIT <172, (x,t) € I x [0,T).
Hence (3.13) follows.

Remark 6. The a priori assumption (3.12) will be closed by the a priori
bound (6.2).

4. ENERGY ESTIMATES

This section is devoted to deducing some basic energy estimates on time-
derivatives. Let (v,n) be a solution to the problem (2.5) satisfying (3.12).

Estimate of >7_, Iv/P00Fv| 121y We first estimate [|\/pod7v| 2(r). To
this end, one can apply 87 to Equation (2.5),, multiplying it by 9;v, after
some elementary computations, to obtain that

1/ 3. \2 /t/PO(afvx)2
- o’v)*dx + ———dxds
2 Ipo(t ) oJr n2
1 t p2
= 2//)0(8?1))2(56,0) d:lc—i-/ /8? (g)@fvx dzds (4.1)
vz 83%

Using (3.13), one finds that

1
o (n) \ < 1020a] + 02000 + [vl?, (4.2)
xT

and

3 3 (8?%)2 2 2 47193
0; el = ) 0pv, — 2 S 0207 vz| + |0z (vF + [Opva]) + va]*] 10} val-
’ (4.3)

x
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Then one may use Cauchy’s inequality to get

’/ /8t (p())@tvxdxds
< 100/ /,00 8tvx d:cds+C’/ /po atvx dxds

+c/ HUIH%OO/po(atvx)zdxds+0/ Hva%w/povzdxds
0 I

(4.4)

/ /100 OPvy)? dads + CtP( sup EY?(s,v)),
100 0<s<t

po(93v;)?

2
T

>~ 100/ /PO at'l)a: d$d8+0/ HvaL‘X’/PO(atUx) dxds

+c/ Hvx]%oo/po((‘)tvx)deds—kC/ H(‘)tva%oo/po(atvx)deds
0 I 0 I

t
+c/ ||vx]6Loo/p0v§dxds

< / /po OPvy)? dads + CtP( sup EY?(s,v)),
100 0<s<t

|:at O/Ux 8t $ - :| dxds

where (3.6) was used in (4.4) and (4.5), while,
10| Loe S NOrvellr2 + [|0rvaz ]| L2
< P00kl 2 + 1 p0Bevaal L2 + [l podsd3v]| 2
S EV2(s,0) + 1030030 2 + 1930050 2 S B2 (s,0)
was used in (4.5), here the weighted Sobolev inequality (3.2) was utilized.
Here and thereafter P(-) denotes a generic polynomial function of its argu-

ments.
Due to the bound (3.13), and noting that the term fg I; po(%% dzds on

the left hand side (which will be abbreviated as LHS from nowzon) of (4.1)

is bounded from below by & [ [} po(9ivs)? dads, hence one inserts (4.4) and
(4.5) into (4.1) to obtain

t
/po(af’v)Q dm+/ /po(ﬁg’vm)2 dads < My + CtP( sup EY?(s,v)).
I o JrI

0<s<t
(4.6)
Next, we estimate ||\/po07v| 12(p). Since

t
O%v(x,t) = dtv(x,0) —I—/ OPv(x, s)ds,
0
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it then follows from Cauchy’s inequality and Fubini’s theorem that

¢
/pg(@f@f dz S /po(afv)z(x,O) da:+t/ /po(af’v)2 dzds
1 1 0 JI

< My + CtP( sup E1/2(s,v)),
0<s<t

(4.7)

where (4.6) has been used in the last line. Similarly, by (4.7), one can get

/po(atv) dz < My + CtP( sup E'Y/? (s,v)), (4.8)
0<s<t
and
/pov dz < My + CtP( sup EY?(s,v)). (4.9)
0<s<t

Estimate of Y7, Iv/P00Fvg || 2(1)- We start with ||\/pod7vel2(r). Ap-
plying 9? to Equation (2.5);, and multiplying it by d3v, one gets by some
direct calculations that

2
/ /,O() 83 2dzds + = /p0(8 £z)’ dz
I
/p0(6 ve)?(,0) dx—2/ /( pov + Ogtvx>8f’ vy dads
/ /pOUx 8t UJ? dzds — / /POU?’@, 'l)$

+6/ /povxﬁtvxat e dxds.
(4.10)

The above three terms on the right hand side (which will be abbreviated as
RHS from now on) of (4.10) can be estimated as follows:

‘/ /( Po” Po@%)ag, . dzds
2
/ /po 83% dxds—i—/ HvaLoo/pov dads
(4.11)
—i—/ /po(ékvm)2 dxds
o Jr

< My + CtP( sup E'Y?(s,v)),
0<s<t

’/ /povxavx dzds

t
S [ ol [ po@fen)? dsas
0 ! (4.12)

< CtP( sup EY%(s,v)),
0<s<t
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/ /pov 8tvxd ds / /pg 8”130 dxds
0 JI

+ / T / pov2 dads (4.13)
0 I
< My + CtP( sup El/Q(s,v)),
0<s<t

and

/ /pOUmatUxa t Uz dads
0o JI

/ / po( 03% dxds
+/ ||U:p|%oo/po(0tvm)2dxds (4.14)
0 I
< My + CtP( sup EY?(s,v)).
0<s<t

Here (3.6) has been used in the last line of (4.11)- (4.14).
Hence substituting (4.11)-(4.14) into (4.10) yields

t
/ /po(afv)zdxds—k/po(@fvx)Q dz < My + CtP( sup EY?(s,v)).
0 JI I

0<s<t
(4.15)
We now consider ||/po0vz|r2(r). Since
Ovg(z,t) = Opvg(z,0) + / Pv,(x,5) ds,
0
it then follows from Cauchy’s inequality and Fubini’s theorem that
t
/po(atvm)de S /po(ﬁtvx)Q(l’,O) dx —|—t/ /po(afvx)2 dxds
I I 0o JrI (4.16)

< My + CtP( sup EY?(s,v)) for small ¢t > 0,
0<s<t

where (4.15) has been used in the last line. In view of (4.16), one can derive
similarly that

/povfc dz < My + CtP( sup E'Y?(s,v)). (4.17)
I 0<s<t

5. ELLIPTIC ESTIMATES

Having the estimates on time-derivatives in Section 4, we will use the
elliptic theory to gain the spatial regularity of the solutions in this section.

Estimate of ||povyz|/12(7). It follows from Equation (2.5); that

(%) ], < et () -

< My + CtP( sup E'Y?(s,v)),
0<s<t

2
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in which ||po0sv||12 is bounded by (4.8), and the bound on H (%)xHLQ relies
on
()
M)

S 1+ [[Meallze S 1+ tP(sup E'Y2(s,0)). (5.2)
L2 0<s<t

S 1+ poleel,

and hence

G,

where one has used (3.5).
Next, we estimate ||povzz||p2(r)- Note that

_ _ (% _
POy *Uge + (P0) 2 2, = <P02x) — po(n; 2)9&”$~ (5.3)
”7113 x
The last term in (5.3) can be estimated as follows:
ooz %)avallze S llvsll 2 sl < CEP( sup E'3(s,0)), (5.4)
0<s<t

where (3.4) and (3.7) were used. We then insert (5.1) and (5.4) into (5.3)
to get

P01tz *vaz + (po)atly *vs |72 < Mo + CtP( sup E'2(s,0). (55
0<s<t

Integration by parts yields
”,0077;2%1:95 ”%2

::”pon;2vxm'%(p0)xn;20$ui2

-2 2 -4/ 2
— [(p0)enz vz —/p P0)zMy  (V)z do
[l (po) 172 f o(po) (vz) (5:6)

— {101 2an + (p0)ais 020 + /I pol(po)arr o2 da

< My + CtP( sup EY?(s,v)),
0<s<t

where one has used (5.5) and the estimate

‘ /Ipo[(Po)waTA‘]in dx

N ‘/po(Po)mﬁ;%g dz
I

+‘ / P0(P0)ay “Naavl da
1 (5.7)

<O+ Hnmum/povgdx
I

< My + CtP( sup EY?(s,v)).
0<s<t
Here (3.7) and (4.17) have been used. It follows from (3.13) and (5.6) that

p0vez |22 < My + CtP( sup EY?(s,v)). (5.8)
0<s<t
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Estimate of ||p)/>93v[|,2(;y. First, it follows from (3.2), (4.8) and (4.16)
that
1(p0Bev)2 172 S 10072 + llpodkvall7
< llpodrol 72 + [lpodevs|[72 (5.9)

< My + CtP( sup EY?(s,v)).
0<s<t

Since

()
%) v

S1+ H"?a:xHL2 + Hnm:”L‘”HnmeLz =+ Ha:?é??HLZ

one may estimate by Lemma 1 that !
L2 (5.10)
<1+ CtP( sup EY?(s,v)).

x xrxT
0<s<t

It then follows from (5.9) and (5.10) that

2 2 2
ov
[(22) | < twdrnaiza + | (2)
Nz / zxllr2 Nz / zallL2 (511)
< My + CtP(Oiugt E'Y2(s,0)).
<s<
To estimate \|p§/2(9§u||L2(,), we first write
~253 9 -2 _ [ POl _9 -2 _ -2
P ~Ozv + 2(p0)aty “Vaz = B po(Nz ")aVzz — (Po7y *)zaVa-
x xrxr

(5.12)
Considering the second term on the RHS of (5.12), one use (3.4) and (3.7)
to estimate

10 (17%)avae | oe < vael| 2 [Meell e < CP( sup EV2(s,0)).  (5.13)
0<s<t

Since
(P07 )awl S 1+ [zl + po(|eal* + |020]), (5.14)
the last term on the RHS of (5.12) may be estimated as follows:

||(P077;2)mvx”L2 S lvzllp2 + l[vellpee (1722 || 2
+ el 22 1Mael Loe + 1020 22) (5.15)

< [Mo + CtP( sup EY2(s,v))]"/2.
0<s<t

IWe can throw away the weight po in ||ponee||r2, ||ponez| Lo, [|p3Nees| 2 and similar
terms later on since we work with the energy functional E(t,v), see the difference when
one works with a lower-order energy functional in Subsection 8.1.
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In the last line of (5.15), one has used (3.5), (3.6), (3.7) and the estimate
[vallL2 S lpovell2 + llpovaz | L2
< [My + CtP( sup EY2(s,v)))"2, (5.16)
0<s<t
which follows from (4.17) and (5.8). Inserting (5.11), (5.13) and (5.15) into
(5.12) yields

lpon 00+ 2(po)any *vaz 72 < Mo + CtP( sup EV2(s,v)). (5.17)
S8

We then compensate a weight p(l)/ 2

3/2 _
o 05 20303

and integrate by parts to deduce that

3/2 _ 1/2 _ 1/2 _
— o800 + 208" (00)amy 2vaal 22 — 4108 (00)amy 2vrs 22
9 / PR (00)as  [(vre) e da

3/2 _ 1/2 _ _
11005205 + 208 (p0)ans 2vme % + /I ARl(po)arrs 102, da

3/2 _— 1/2 _
< 110202285 + 202 (p0)ems v |2 + (1 + 7aall o) /I pR2, di

< My + CtP( sup EY?(s,v)),
0<s<t

(5.18)
where (3.7), (5.8) and (5.17) have been used. The inequality (5.18) and the
bound (3.13) give

o5 2030132 < Mo + CP( sup EY*(s,v)). (5.19)
0<s<t

Estimate of ||po0;vsz||r2(r)- We first claim that

2
‘at<p°§x) < My + CtP( sup EY2(s,v)). (5.20)
Mz /22 0<s<t
To verify (5.20), we note that
p
) (p°§x> = podfv + &, (pg> . (5.21)
77:]5 T 77:]5 x

Since

S polvz| + P(2)(|Ux77m:| + [vzzl),

2

£o

a v
t(ng%)x

S lpovellze + vzl oo 102zl 2 + [ povas || L2
L2 (5.22)
< [My + CtP( sup EY?(s,v))]"/2,
0<s<t

one obtains

2

£o

@ Y
‘ t<n%>m
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where one has used (3.5), (3.6), (4.17) and (5.8) in the last inequality. Then
(5.20) follows from (5.21), (5.22) and (4.7).
Direct calculations give

0. oV
(pOatU:v)J: = at (p 2x) 77320 +2 <p 2:0) Nz Vg
77 x 7790 X

xT

(5.23)
V. v,
+ 2815 (P;)};) NaeNzz + 2%(”17%2: + nmvmz)-

x T

It follows from (5.20) and (5.1) that the L?— norm of the first two terms
on the RHS of (5.23) has the desired bound. It suffices to handle the last
two terms on the RHS of (5.23). Considering the third term on the RHS of
(5.23), by HY(I) < L*°(I), one has

v v v
‘@(’)0;)%% Sllee (o (257)| + ‘ o ™) | )
Nz L2 Nz L2 Nz / zllr2
< CtP( sup EY2(s,0)),
0<s<t

where in the last line one has used (5.20) and the estimate

POVz
(%)
‘ Uk

which together with ||1,, || 12 yields the bound CtP(supg<,<, EY/?(s,v)) since
|72z |lf2 contributes a factor ¢ due to (3.5). In the last term on the RHS of
(5.23), the L?— norm of the first part is bounded by ||vz||% e |22/ 72 Which
contributes the bound CtP(supy<,<; E'/?(s,v)), and the second part can be
estimated by (3.3) as follows:

since each factor in the second inequality enjoys the same bound [My +
CtP(supp<s<t E'Y2(s,v))]"/2. Indeed, one can apply (3.1), (3.2), (4.17), (5.8)
and (5.19) to deduce

S lpo0evell 2 + llvellze llpove |l 12
L2 (5.24)
< My + C(t+1)P( sup EY?(s,v)),
0<s<t

POVx
9 llzVxx
T

L S lzllzallpovasiza < lvzllgivellpovesll e
L

< My + CtP( sup EY?(s,v)),
0<s<t

1/2 1/2
vell grae S oo vl 2 + o6 *veell 2

1/2 3/2 3/2
S o velle + (lod *veall 2 + 10 vzl 12)
< [My + CtP( sup EY?(s,0))]/2,
0<s<t
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and similarly,

1/2 1/2
lpoveall vz S 106> (ovza) |2 + 1l (Povee )zl 2
1/2 3/2
< oy *vaall 2 + 103 vrzel| 2

3/2 3/2
<08 Pvaell 2 + 1Y *vagell 2

< [Mo + CtP( sup EY?(s,v))]"/2,
0<s<t

Taking all the cases into account and noticing
(pOatUx)a: = pOatUxx + (pO)xat'Uxa
one obtains

”poatvxx + (pU)xatva%Q < My + Ctp( sup E1/2(5a U)) (525)
0<s<t

Then integration by parts yields
lp0BsvazlT2 = llp00kves + (P0)2Orvzl72 — [[(p0)aBrvll7

—[mmM@%ﬂmx

(5.26)
— 1P0Dvse + (p0)eBhvalZe + /I 20(90) s (Br02)? die

< My + CtP( sup EY?(s,v)),
0<s<t

where (4.16) and (5.25) have been used. Therefore it follows from (5.26)
that

p0Bsvaz]|2s < Mo + CtP( sup EY%(s,v)). (5.27)
0<s<t

Estimate of ||p§0;vl| 21y Applying 92 to Equation (2.5); gives

2
o <” 02’”‘) = (p0Oyv)as + O (’B) (5.28)
n n

T x

A direct calculation shows that

2
I

T

+ 00 (|22 * + [m2203n| + |03n])-
We then may apply Lemma 1 and Lemma 2 to estimate

()
T\ n?

LS 1 laallzz + (el oo [zl 2 + 10271]1 2)
L

+ (Inwa | Zoe 1wl 2 + 120l o2 1027l 2 + [l 0nll 12)

<1+ CtP( sup EY?(s,0)).
0<s<t

(5.29)
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On the other hand, it holds that

H(P()atv)xa:||%2 < H(PO)mat”H%E! + 2”(P0)xatvx||%2 + HPOatvsz%?
S o003 + lp0devell72 + 1 p0Orvasll7 2 (5.30)
< My + CtP( sup EY?(s,v)),
0<s<t
where one has used (3.2) for ||0sv|| ;2 and ||0pvz|| 2 in the second inequality,
and (4.8), (4.16) and (5.27) in the last inequality. In view of (5.28), (5.29)
and (5.30), we deduce
P2
().
2

[CoN)
771’ Trrx

2

< H(Poatv)mHL? +

L2 (5.31)
< My + CtP( sup E1/2(s,v)).
0<s<t
To bound HpgaivHLg(I), one notes that
—294 293 3( POVz —2\ o3
ov+3 Oyv = 0, < ) -3 Oyv
POl (P0)az 2 Po (1 )z (5.32)

- 3(90"7;2)mvm - 83(9077;2)%-

Considering the second term on the RHS of (5.32), one may estimate

0307 2):020 22 5 1030l 2limecllze < OLP(sup. BV2(s.0)), (5.3

where (3.4) and (3.7) have been utilized. Recalling (5.14), we may estimate
the third term on the RHS of (5.32) as follows:
HPO(PO%TQ)MUMHLQ < llpovaz|l p2 + HUmHL“(H%xHL?‘f‘
(1Ml 2|12zl 2o + 110201 L2)) (5.34)
< [My + CtP( sup EY?(s,0v))]Y/2.
0<s<t

Since
102 (ponz ) S 1+ Iaa| + (73, + [030]) (5.35)
+ po([eal® + [n2003n] + |030]), ‘
the last term on the RHS of (5.32) can be estimated as follows:
1o (pomz: el 2
< llpovallze + l[vellzee (I1m2zll 22 + (12l 22 lnee | oo + 1027 2) 530

+ (Nl 21w [Zoe + 1722l 22| 0020 Loe + [ p00znlIL2))
< [My + CtP( sup EY?(s,v))]"/2,
0<s<t
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where (4.17), Lemma 1 and Lemma 2 have been used. Thus inserting (5.31),
(5.33), (5.34) and (5.36) into (5.32) yields

P51 2050 + 3po(po)any; >0 (|72 < Mo + CtP(OiugtEl/Q(s, V). (5.37)
SRS

We then use integration by parts and invoke (3.7), (5.19) and (5.37) to find

1p&n7 2080|122

= ||pgnz 2050 + 3p0(p0)amy 2050|132 — 9l[p0(p0)amy 2050 | 32

3 /I o (p0)en; [(030)?] da
= || pan, 205w + 3p0(po)any 2030|122 + /[pg[(po)xnf]x(@ﬁvf dw

< (10320 + 3p0(po)arr 2030 ]% + (1 + el ) / P (0%0)* du

< My + CtP( sup EY?(s,v)).

0<s<t
(5.38)
Hence (5.38) and (3.13) imply
1P§030ll72 < Mo + CtP( sup E'*(s,v)). (5.39)

0<s<t
. 3/2 3 .
Estimate of ||py'“0;9;v||12(r). Since
2
()
T’x T

it holds that

2
Po
8 YU
t(n%>x

S |ve] + po(|venee| + [Vaz)

+ ,0(2)(|Um7792m:| + |Uw8§77‘ + |V Nee| + \3§’v|),

S vzl + lvell e 022l 22 + [lpoves |l 12
L2

+ ol oo 100l 2o 11 22 + Vel oo 1027l 2 (5.40)
+ lvas || oo aa | 22 + [l P50z 0]l 2
< [Mo + CtP( sup E'2(s,0))]',
0<s<t
where one has used (5.8), (5.16), (5.19), Lemma 1 and Lemma 2 in the last
inequality. Applying 62, to Equation (2.5), gives

2

(%
@(’?72) =<poafv>m+at<gg) , (5.41)
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we then utilize (4.7), (4.15), (5.40) and (5.41) to estimate
2 2
(%) ()
T’x xrx 77:(]‘ xrx

L2
2
5 (p?))
i =5
/r]x xrxr

L2

2

< (e0)a 0772 + llpo0i vel7> +

L2

< lpodivll32 + || po0fval| 72 + ‘ (5.42)

< My + CtP( sup EY?(s,v)),
0<s<t

where (3.2) has been used for ||0?v| 2 in the second inequality.
Write

(pOat'Uz):m:

v v v
=0 <p02x> 1 + 40; <p021> NaTaz + 20; <p021> (N3 + 1203m)

T

(1X% [0X%
+2 (p 2x> MgV + 4 <p 2I> (anxz + nwvzx)
xx n x

x T

6
ov
+ 2%(2Uxxnzx + 'Umagn + nzagv) =: Z Ik
k=1

T

It is clear that ||I||;2 satisfies the desired bound due to (5.42). In view of
(3.7) and (5.22), one may estimate

Mz zllL
The estimates (5.22) and (5.24) together with (3.5) and (3.7) yield
PoVz
()| raali a2 + 20122
771 Lo
< CtP( sup EY?(s,v)).
0<s<t

It follows from (5.1) and (5.11) that

ey xrxr

wﬂmsH(”?)
T]:C x|l Lo°

< My + CtP( sup E1/2(s,v)),
0<s<t

12l 2 S

anxHLOO < CtP( sup El/z(s,v)).
2 0<s<t

wwys\

< My + CtP( sup EY?(s,v)),
12 0<s<t

Mallg> S Nlvellpos

where one has used (3.2) to find
lvaallz S lpovzall L2 + llpod3v]l 2
S llpovaellzz + 105920 22 + lp50sv]l 12 (5.43)
< [My+ CtP( sup E'(s,v))]"/2,
0<s<t
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due to (5.8), (5.19) and (5.39), and thus
[0zl zoe S Nlvellrz + [[vazll L2

S [MO +CtP( sup E1/2(87/U))]1/27
0<s<t

which follows from (5.16) and (5.43). Is can be estimated as

(5.44)

sllz2 < Jvellzoe (lvaell oo 1nwall 2 + lvell o= 10201 22 + [l podZ vl z2)

< My + CtP( sup E1/2(s,v)),
0<s<t

where, to estimate the term ||v.| o ||po02v| 2, one has used the fact that
each term enjoys the bound [My + CtP(supy< <, E'Y2(s,v))]Y/2, which fol-
lows from (5.44) and

lpodZvll 2 < Nlp503 vl + llpf0xv]l 2

S [MO +Ctp( sup El/Q(va))]1/27
0<s<t

(5.45)

due to (5.19) and (5.39). Collecting all the cases, we finally get
H(POatvx)mHZL? < My + CtP( sup El/Q(va))- (5.46)
0<s<t
Since
POatag'U + 2(,00)936t1]3:x = (pOatvm)x:c - (PO)mmat'Ura
it follows that
o> 0020 + 204" (p0)aOsvas |22

1/2 1/2
< 1100 > (p0Brva )22 + 1oy *Orve 32
1/2
< 1(p0dsvn)aall22 + |05 O 22

< My + CtP( sup EY?(s,v)),
0<s<t

(5.47)

where one has used (4.16) and (5.46). Integration by parts gives
3/2
oo 003l
= ll7g" 01050 + 20 (p0)2Okvs 72 — 41105 (p0)Orvzal 12

_2/Ip(2)(P0)z[(atvm)2]zd$

5.48
— 116°0:0% + 29/ (00)aOrge |22 + 2 / R(00)an (Brvpa)2da 048
I

N ||pg/28t3§?f + 2P(1)/2 (PO)xatUmH%2 + /p%(@tvm)2 dz
I

< My + CtP( sup E'Y?(s,v)),
0<s<t
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where one has used (5.27) and (5.47). Hence it follows from (5.48) that

log *0,030l132 < Mo + CtP( sup E'/?(s,v)). (5.49)

0<s<t

Estimate of Hpgnag’z;”Lz(I). Applying 92 to Equation (2.5), gives

2

ag(”og"”) = 03(poOyv) + O <p3> (5.50)

Nz Mz

We will estimate the L?— norm of 9; (2232 ) with suitable weight using (5.50).
"z

We start with the term 92(pgdv). For this, due to (5.49), one shall com-

pensate a weight pé/ ? to estimate

1/2 1/2 1/2
oo 02 (p0d0) |22 < llog *0e0 )22 + |1t v |2

1/2 3/2
+ 106 2 0vas |2 + 1oy *0:0%0]| 2

1/2 1/2
S lleo >0l + 1oy *Orvs 2 (5.51)

3/2 3/2
+ 1108 200z |32 + 103 0,020 )12

< My + CtP( sup EY?(s,v)).
0<s<t
Here one has used (3.2) for Hp(l)/ 28tvm|\ 12 in the second inequality, and (5.27)

2
and (5.49) in the last equality. Next, we deal with the term 6;%(’;—8). Direct
calculations give

2
P
a(ﬁ(})' <14 el + (12 4+ 1830]) + po(meal® + Ineadnl + |0%01)

x
+ 05 (11 + 034 03n0] + (921)* + 1152 0pn| + 107n]).
(5.52)
Thus, one can get

2
4( Po
(32)

S 1+ |70zl 22 + (ool oo 1722 [ 22 + 105711 2)

2
+ (naellFoo 1702 22 + 1020l 222 10301 L2 + lpodznll 2)
+ (1neall7e0 112 22 + 17027 19301 2
+ o0 nll o= 1030l L2 + |22l 22 lpodzll L2 + | P3O2N| 2)

<1+ CtP( sup EY?(s,v)),
0<s<t

(5.53)
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where in the last inequality Lemma 1 and Lemma 2 have been utilized. By
compensating a weight ,0(1]/2, we deduce from (5.50), (5.51) and (5.53) that

1/284<povx> 2 1/284<P0>
ngv L? 7730
1 Ak
<ot *omam s + |0 (5]
< My + CtP( sup EY?(s,v)).
0<s<t

2
1/2
< [lpg/ 203 (podrv)|122 +

(5.54)

We next control ||pg/28gv||L2. Note that
pomty 050 + 4(po)ny O

Vg _ _
=0, <p107 > — 4po(n;?)2030 — 6(pon *)za v

x

- 483(/)077;2)Um - 3§(pon;2)vm =: 1.

WE

k=1

The term I; has been handled by compensating a weight ,0(1)/ ? due to (5.54).
It follows from Lemma 1 and Lemma 2 that I and I, may be estimated as
follows:

2]l 2 < l|nwelp< llpodz 0]l 2 < CEP( sup EY(s,v)),
0<s<t

and
1 allz2 S veallzz + veell e (Ineellz2 + (el 220l + 10571 £2)

+ (1wl 2 19227 + 1n0ell 2 ]| 0083l L2 + [l poBz Il 2))

< [Mp+ CtP( sup EY2(s,0))]/2,
<s<t

where (5.35) and (5.43) have been used in estimating I4. For I3 and I5, one
can use a weight pg and apply Lemma 1 and Lemma 2 to get

lpoZallzz S Nlpod3vlle + 00030l Loe (Ineellz2 + (Ineell o2 neall e + 1050l 22))
< [Mo + CtP( sup EY2(s,0))]2,
0<s<t

and
lolslle < lpovellze + vzl (IMzellz2 + (1Mexll L2l poTex I + llpodinllL2)
+ (1nwell 22 1neal| 2o + 1n2ellz2 00050 Lo + [lpodnllL2)
+ (12|l 212z 7o + 103001 L2 1022 T + 020 2| 0003 n]|
+ neall L2 105 0anll Lo + [12505mIL2))
< [My + CtP( sup EY?(s,v))]"/2,

0<s<t
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here one has invoked (5.14) and (5.45) in estimating I3, and used
102 (ponz )| S 1+ [1a] + (12, +10301) + (112l + [ne203n] + 10z0])
+ po(Maal* + 12,1030 + N + [0 On| + 1070]),

in estimating I5. It follows from theses estimates and using a weight pg that

P15 2050 + 4po(po)any; *v]|72 < Mo + CtP(OiugtE”Q(s, V) (5.55)
S8

Then integration by parts leads to

5/2 _
oo *ny 2050] 2

5/2 _— 3/2 _
— 1082052030 + 405" (p0)umy 2040 |2

— 16]1p % (p0)arty 20022 — 4 /I pa(po)any H[(820)?, da
— 100 %05 2030 + 405" (po)umy 20 %022 + 4/ﬂ3[(p0)xnx4]m(3§v)2 dz
I

5/2 _— 3/2 _
< oy 20,2050 + 493 (po)amy 2000|132 + (1 + HnmuLoo)/Ipé(ﬁiv)de

< My + CtP( sup E'Y?(s,v)),
0<s<t

(5.56)
where (3.7), (5.39) and (5.55) have been used. The inequality (5.56) and
(3.13) yield

5/2
oo 0303 < My + CtP( sup EY*(s,v)). (5.57)
0<s<t

Estimate of || p§0,9;v| 21y Applying 9,07 to Equation (2.5); gives

3 ( POV 2 5 (P95
8t8$ ) == (poat U)xa: + 8tam R E (558)
UE Nz
Thus, to estimate the L?— norm of 8@3("%3“), it suffices to estimate L?—
norm of atag(%) and (ppd?v)ze. We start with c'?t@;’(%). Since

2
01? (f;)) \ < [va] + (vasel + losol) + po((vae] + [v:85m]

T
+ [VeaNee| + |8§U|) + P(Q)(’angx’ + |Uz77m8§77|
+ |U:v8;177| + ‘Umniﬂ + \vmﬁinl + |6§U77m| + |8§U|)>
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one gets

0,0 <3>
T\ n2

_ S llvallze + (lvallze lIneell 2 + 02zl 22)
L

+ (lvall oo 112l oo 1022 22 + l[va]| 2o 030 L2
+ lvsalloe 1zl 22 + lp0d3v]l 2)

+ (lvall oo M | Foo 1221 22 + vz | oo [m0a | oo [| 0301 2
+ vzl pee lpodznl 2 + Ve || Lo 102 || o 122 | 2
+ lvsall e 1020 L2 + neell oo 1020l 2 + 1| P50z 0]l 2)
< [My + CtP( sup EY?(s,0))]/2,

0<s<t

(5.59)
where one has used (5.16), (5.43), Lemma 1 and Lemma 2.
Next, we deal with (pg0?v)... Applying 97 to Equation (2.5), yields

2
v
at <P0 :t> — poa;?v_|_af <pg> .
77&? x 7727 xT

S PO(Ug + |Opve|) + Pg(vf«lnml + [0 vaea| + [VaVex| + [Ovzz]),

Since

52 <p(2))
t 2
Nz/ ¢

one gets

t 2
Ne/ x

S (lpovzllzeellvzllze + [ p0dve | 12)

+ (el el + loodhvall 2 nsellim (5 60)
+ [[oall < | p0vssll 22 + lp0Prvsll2)

< [My + CtP( sup EY?(s,v))]"/2,
0<s<t

where one has used the fact that in ||povs||Lee ||vz] 2 and [|vg|| Lee || povas || L2,
each factor enjoys the same bound [My + CtP(supy<s<; EY2(s,0))]/2, due
o0 (5.16), (5.44) and (5.8). In view of (4.6) and (5.60), we obtain

POV 2 2 2
%) x 0
‘ t(nx >m t(%)

< My + CtP( sup El/Q(s,v)).
0<s<t

POoVz 2
otz =085 ) 208 (33) o
0 ! ! 77% T ! 771 x

4
- 8152 (Pg) Uw:vnac O < > 81571333777;,; = Z 1.

< llpodPolZa + ]

r? (5.61)

Note that
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The estimate on the L2— norm of I follows from (5.61). The terms I3 and
14 can be estimated straightforwardly as follows:
1231122 S llpo(v3 + Opve)vee 2 S llvallioe l|poveall 2 + | povael| o< | Orva L2
< lloallZoe llpovacll 22 + lpovesll o= (| podevz | L2 + [l p0drvsell 2)

< My + CtP( sup El/z(s,v)),

0<s<t

and
[Lallz2 < [lpovaOvaalle S vz llzoel|p0Orvas || L2
< My + CtP( sup E'Y?(s,v)),
0<s<t

since each factor on the RHS of I3 and I enjoys the same bound [My +
CtP(supp<g<t E'Y2(s,v))]"/2. Here one has used (3.2) for ||0yvy| 2 in the
third inequality of I3, and bounded |povys||z~ by (5.43) and (5.45) in the
forth inequality of I3. For I, we first calculate

7).

and then compensate a weight pg to estimate

< gl (V2 4 100vs| + po (1w V2 + |V2Ves] + 1M000ivz] + [01v2a]))

+ |8tvzr‘ (|Ux| + p0(|77mvz| + |Uzm|)) + |8t20x|(1 + p0|nm|)7

lpol2llze S ([vzllFeo [0zl 2 + vzl ool podeve L2 + [1vellF o 172 22
+ vzl Foo [0zall 22 + 0al| oo 192 || ool poOrve | 2
+ vzl o= | P0Orvza | L2)
+ (llvallLoe 00wz L2 + [[va || oo 11w oo [| P0Orvz | L2
+ | povazl| Lo || poOrval| 12)
+ (10007 vl 2 + |11zl o< | P07 v || L2)
< [My + CtP( sup EY?(s,0))]Y/2.
0<s<t

It follows from the estimates in I;, i = 1,2, 3,4 that

19§07 vac |72 < Mo + CtP( sup E'2(s,0)). (5.62)
0<s<t
Consequently, (5.58), (5.59) and (5.62) yield
pova \ || Yk
02| < Im(motora + | marot (%)
Nz L2 Nz L2
< lpodtolzz + 1l pod7vallze + 11p507 vaa 1 7
) (5.63)

+

2
Po
()
T\ n2 L?
< My + CtP( sup EY?(s,v)).
0<s<t
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Next, we derive the weighted L? estimate of 93(pg0;v.). Note that
3§ (PoOrvz)

U v
= atag <P02x ) 77:%" + 6875 <p02x> NNz
n n T

xT x

(3122021 + 1:03m)

Vg

T

v, v,
+ 282 PoYa > NeVz + 6 <p021) (vaznmz + nmvxx)
n T
(

2“909577:52: + Uxagn + 771‘83%[0)

. o
+2 2 (30220210 + 3VppeNee + vwain + nxaifv) =: 1.
x

e
Il e
—

For the terms I, when k = 2,3,4,5,6, one may get directly

()
HQHL2f5‘6t<p°5‘> Imallie < CEP( sup EY2(s,0),
Ne / gallL2 0<s<t
POV
wwms\a( ;) (el Insellz + 18%0]122)
7736 x Il oo

< CtP( sup EY?(s,0)),

0<s<t
POV

(25| et + 10201
U

< CtP( sup EY%(s,0)),

0<s<t

POV
(%)
“\ n?
(lvzllLoe 1nzzl 22 + V22|l 22)

|hmpsH(m?)
U xx |l Loe

< My + CtP( sup E'Y?(s,v)).
0<s<t

wnns\

< My + CtP( sup EY?(s,v)),
L2 0<s<t

5] 2 S vzl 2o

To estimate I, Iy and Ig, we need a weight pg. The estimate on pgl; has
been done due to (5.63). For I7 and Ig, one can get
(lvzallpoo 1zall L2 + [zl Lo 030l L2 + [lpod3v]| L)

(%)
77% x I L>e

< My + CtP( sup El/z(s,v)),
0<s<t

lpolzllz2 S ‘
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and
lpolsll 2 S llvellzoe ([vaell Lo 1057 2 + 1vaz] Loo 022l 2
+ vl e lpo0anllz2 + p50avll 12)

< My + CtP( sup EY?(s,v)),
0<s<t

where one has used (5.39), (5.45), Lemma 1 and Lemma 2. Collecting all
the cases leads to

P02 (p0dry) |22 < Mo + CtP( sup E'/?(s,v)). (5.64)
0<s<t

Since
Po003v + 3(p0) 0030 = 92 (podrvs) — 2 podeve — 3(P0) 2w Orvas,
one can get
130:030 + 3po(p0)s 0:D3 0] 7
< o0 (o0dhva)132 + 0B + loodhvaslle  (5.65)

< My + CtP( sup EY?(s,v)),
0<s<t

where (4.16), (5.27) and (5.64) have been utilized. Integration by parts gives
1p50:05 0172

= [1059:93v + 3p0(p0)x0:0av||7 2 — 9l po(po)20:0av]|7 2

—B/ng(Po)x[(ﬁtﬁi’U)g]m dz (5.66)

— 00k + 3p0(m)0i020le + 3 [ ph(pu)aa(B520) o
I

< My + CtP( sup EY?(s,v)),
0<s<t

where one has used (5.49) and (5.65). Hence we obtain from (5.66) that

1p20,0|22 < Mo+ CtP( sup EY2(s,v)). (5.67)
0<s<t

Estimate of || p3dSv]|z2(y). We first claim that

2
po(?f;(p ;;’x) < My + CtP( sup EY?(s,v)). (5.68)

L2 0<s<t

Applying 9% to Equation (2.5), gives

o (";ZI) — (o) + afz(

2
Po
2

x

>. (5.69)
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A direct calculation shows that

2
P
o8 (77(;) ‘ S 1+ el + (24 + 1020)) + (nwal® + [122020] + [820])

T

+ p0(|Neal* + 122 |020] + (020)? + |NeaOpn| + 1020])
+ 08 (11wal® + 2202n| + 110a| (920) + 02,102
+ [02002n| 4 Nz 02| + 1050]).

Due to (3.9), the estimate of the last term p2d%n requires a weight po , hence
one may estimate as follows:

2
5( Lo
P00 <>
H A\ n2

S 1+ |70z 22 + (Ineell oo 1722l 22 + 11037]] 2)

L2
+ (1ee 1 Zos M2l 22 + 0eallzoe 030 2
+ [1p00znl £2) + (17|20 1710 ]| 2
+ 022l 7o 1031 L2 + 10030 || Lo |03 .2
+ Wl ood2l 2 + 1130202 510
+ (02| oo 12l 22 + 1172w 200 0201 22
+ 2| oo [l p0@3n || o< | 03n| .2
+ [meall7oe lo00zn ] 2 + lpod2nl L= | p0danl| 2
+ 172all o< 10502m 2 + [l G057 £2)

<14 CtP(sup EY%(s,v)),
0<s<t

where Lemma 1 and Lemma 2 have been used. One the other hand, it holds
that

P05 (p0Bs0) 172 < Nlpodev|72 + 1l podkvall7z + [|podkves |72
+[lpodd3v 72 + [150:050]1 7
S lpodev]|F2 + 1podeva|2e + || poOrvaz e (5.71)
+ 1105003072 + 1930050172

< My + CtP( sup EY?(s,v)).
0<s<t

Here one has used (3.2) for ||pg0;02v|| 2 in the second inequality, and (5.67)
in the last inequality. Then (5.68) follows from (5.69), (5.70) and (5.71).
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Next, we estimate ||p3dSv||z2. To this end, one notes that
—246 —245
POy amv + 5(p0)$nw arv

=) (p ;2’) — 5po (13 2)05v — 10(pon; ?) zaOsv

xT

— 1003 (pony %) 30 — 583 (pon; *)vwe — 03 (pom Jvw =2 Y I

NE

k=1

First, it follows from (5.68) that |[pol1]|;2 has the desired bound. For the
terms I when k = 2,4,5, in view of (4.17), (5.8), (5.45), Lemma 1 and
Lemma 2, we may choose a weight pg to estimate each term as follows:

2495 1/2
lpolallz2 S 1Malloe|p§05v]| 2 < CEP( sup EY2(s,v)),
0<s<t
lpolall2 < lpodivliLe + [lpodivll Lo (IMzellz2 + (1Meallzos 1ez |2 + 10371l L2)
+ (INeallZoe 1Mol L2 + 1100020l Lo 12zl L2 + 1lp0d3nllL2))
< [My + CtP( sup EY2(s,v))]"/2,
0<s<t
lpoLsllLz S llpovea iz + [vaallzoe (1Meellr2 + ([|ponesll Lo Mze |22 + 110020 12)
+ (1Mol T 12zl L2 + [|00d2n]| Lo 12zl 22 + llpodanllL2)
+ (12217 o0 M2l L2 + 172217 103011 L2 + 10003 o< 1057 L2
+ 1p305n | Lo M2zl 22 + 1p505mI £2))
< [My + CtP( sup EY2(s,v))]"/2.
0<s<t

For I3 and Ig, we choose a weight p3 to estimate them as follows:

10513l r2 < 1pG0avl r2 (1 4 1Neallzee + [Nezllfee + p003n|Lo0)
< [My + CtP( sup E1/2(s,v))]1/2,
0<s<t

and

105261122 S llpovellz + vl zoe (Inzellz2 + (Ineallzoe n2llz2 + 1030 22)
+ (a7 1702l 22 + 122 | 2< 1950]] 22 + 00850l £2)
+ (10 ll7 1m02ll 22 + 1021 2 020l 22 + 0003 n] Lo 1057 22
+ 1zl z= P08zl 2 + 11p502nl1 ) + (1wl 1922 22
+ neallFo 105011 L2 + 022l 2o [l 00030 Lov 1030 L2
+ 11222 00020 2 + [|p003n] o< | 00030 L2
+ 1wzl Lo [l 9502m 2 + [l p305n] £2))
< [My + CtP( sup EY2(s,v))]'/2,
0<s<t
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where in estimating Ig one has used

102 (pon; )| S 1+ [0l + (02, + 10500 + (00w l® + 0220 + 105m])
+ (Ineal* + 0210501 + (830)* + 112 0znl| + 1020])
+ 002 ” + [15:95m + (02| (831)% + 113, |05m]
+ [02n03n| + Ineadnl + |05n]).
Consequently,

Pz 2030 + 53 (po)ati * 05| 2
S PAlIZe + P LllZs + 13 EslIZe + NP3 LallZs + [P0 Ls 172 + [P LollZ
Sllpolillzz + lpolalle + 105 I 72 + llpoLallFz + llpoTsl|72 + 105172
< My + CtP( sup EY2(s,v)).

0<s<t

(5.72)

Then integration by parts yields
lponz20zvl7-
= llpgnz 2030 + 505 (po)anz 202172 — 251103 (po)wtiz 2070]|72

—5 / P (p0)as [(0%0)?], da
= [lBnz 205 + 5p2(p0)amy 2050|122 + 5 / P3l(p0)any Ja(0P0)2 da (BT3)

< 11680208 + 55800y 205025 + (1 -+ wallz) / p(050)? da

< My + CtP( sup EY?(s,v)),
0<s<t

where (3.7), (5.57) and (5.72) have been used. Hence we get from (5.73)
and (3.13) that

HpgagvH%g < My + CtP( sup El/Q(s,v)). (5.74)
0<s<t

6. AN A PRIORI BOUND

Collecting all inequalities (4.6)-(4.9) and (4.15)-(4.17) in Section 4, (5.8),
(5.19), (5.27), (5.39), (5.49), (5.57), (5.67) and (5.74) in Section 5, we obtain

E(t,v) < Mo+ CtP( sup EY?(s,v)) forall t € [0,T], (6.1)
0<s<t
where P denotes a generic polynomial function of its arguments, and C' is
an absolutely constant only depending on ||0% pol| 5y (I =0,1,...,5). The
inequality (6.1) implies for sufficiently small 7' > 0,

sup FE(t,v) < 2M,.
Sup E(tv) (6.2)
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7. PROOF OF THEOREM 2.1: EXISTENCE

In this section, we will show the existence of a classical solution to the
problem (2.5). For given T' > 0, let X be a Banach space defined by

Xr = {v e L*([0,T]; H3(I)) : OE?ETE(t, v) < oo},

endowed with its natural norm
[v]%, = sup E(t,v).
0<t<T
For given M, we define Cr-(M;) to be a closed, bounded, and convex subset

of Xr given by

Cr(M;)={veiXpr: ||U||/2YT < My, OFv|i—g = gj for k=0,1,2,3,

. (7.1)
and 0y vg|i—o = hy for k =0,1,2},

where g and hy are defined as follows:

go = V=0 = o,
= 051[(P0(U0)x)x - (pg)x]a

2
— POVx o
775% T 772 zd 1t=0
2
k1] Pov P
7733 xT 771 x

ho := veli=0 = (u0)a,
hy i= OFvgli—o = (gr)e for k=1,2.

9

[y

g for k= 2,3,

=

t=0

Note that each g (kK = 0,1,2,3) and hy (k = 1,2) is a function of spatial
derivatives of py and uyg.
For any given v € Cp(M), define

t
n(z,t) =z +/ v(x, s)ds. (7.2)
0
Arguing as for (3.13), by choosing T' > 0 suitably small, one also has
1/2 <z, t) <3/2, (x,t) €l x][0,T]. (7.3)

The choice of My and T is given in Subsection 3.4. We then consider the
following linearized problem for v:
)x = (%)373 in I x (0,7,

LoVt + (g 2 (7.4)
v =ug on I x {t =0}.

&m‘ow

In order to construct classical solutions to the problem (7.4), we first
study its weak solutions.



THE VISCOUS SAINT-VENANT SYSTEM FOR SHALLOW WATERS 37

7.1. Existence and uniqueness of a weak solution to the problem
(7.4). Let (-,-) be the pairing of H~(I) and H'(I), and (-,-) stand for the
inner product of L?(I). Then we give the following definition:

Definition 2 (Weak Solution). A function v, satisfying
py *ve € L2([0, T, L(I)) and  pov € L2([0,T); H™Y(I)),

is said to be a weak solution to the problem (7.4) provided

(@ 2
Povs p
(Povt,@ + ( 7(37% 7¢l‘> = (775%)7¢z>
for each ¢ € H(I) and a.e. 0 <t < T, and
(b) llpov(t,-) = pov(0, )|l r2ry = 0 as t — 0%, and v(0,-) = ug(-) a.e. on I.

We will use the Galerkin’s scheme (see [15]) to construct weak solutions
to the problem (7.4). Set
H(I)={hec H*(I):h, =0onT}.

Let {e,}22, be a Hilbert basis of H(I), with each e, being of class H*(I)
for any k£ > 1. Such a choice of basis indeed exists since one can take for
instance the eigenfunctions of the Laplace operator on I with the Nuewmann
boundary condition h, = 0 for x € I'. Given a positive integer n, we set

X"(t,z) = Z A (e (), (7.5)

in which the coefficients A7 (¢) are chosen such that

n X7 _ 2 .
(pOatX 7€j) + <p07792c’ (ej)$> - (52) (ej)l“> m (OvT]a (76)
A} = (uo, €;) on {t =0},
where j = 1,2, ...,n. Inserting (7.5) into (7.6) leads to

Sy J; poeiej da - [)\?(tﬂt
3o fy ekl qp yn ) = [, B892 4 i (0,7],  (77)
N = (up, ;) on {t =0},
where j =1,2,...,n.
It is clear that each integral in (7.7) is well-defined since each e; lives
in H&(I) N H(I) for all kK > 1. On the one hand, the {e,}%; are linearly
independent, so are the {,/poe, }52 ;. Hence the determinant of the matrix

[V/Poei, V/Poeslijeqt,...n}

is nonzero. On the other hand, it follows from v € Cr(M;) and (7.3) that
1/7, is continuous for ¢ € [0, T], which implies

/I po(ei)z(ej)a e

2
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/p()(e]) dx
I 7735

is Lipschitz continuous for ¢ € [0,7]. By the standard ODEs’ theory, one
can find solutions A(t) € C1([0,73,]) (i = 1,...,n) to (7.7), which means
there exist approximate solutions X"(¢,z) € C*([0,T,.], H(I)) (n = 1,2,...)
o (7.6).

is continuous, and

We next show that {X"}2°; satisfy some uniform estimates in n > 1.

Lemma 3. The approzimate solutions { X"} satisfy the following uni-
form estimates inn > 1:

n 1/2 vn n
wpmxxny s+ oo 2 X2 2o 22y + 10 X0 20,71 (1))
tE[O (78)

< Cllot o2y + CT.
Proof. 1t follows from (7.5) and (7.6), that

2
(p0d: X", X™) + <poa X7 5 X”) = (;‘2),8IX”>.

xT x

Integrating it over I x [0, 7T, and integration by parts yield

T )
/po (X™) dx—|—/ / 0(d dxds
1 Tn Dp X
— 2/po(xn)?(g;,()) dz + i -

(7.3) and Cauchy’s inequality imply

Th Xn 4 T
/ /po O X")” 2ds > 9/ /pg(BxX”)2dxds, (7.10)
0 I

n
Th 2 . 1 Th
‘/ /’)Oa < CTnJr/ /po(axX”)deds. (7.11)
o JI 100 Jo Jr

Hence it follows from (7.9)-(7.11) that

n
dxds

Tn
/po(X")QdH/ /p0(8xX”)2dxds < Cllpy*uol2s (g + CT. (7.12)
I o JI
Fix any ¢ € H(I) with 9l 1) < 1, and write ¢ = ¢1 + @2, where
¢1 € span{e;}i; and (¢2,e,) =0 (i =1,...,n).

Recalling that the functions {e;}? ; are orthogonal in H'(I), one has

o1l ) < WDl < 1.
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It follows from (7.6), that

ot + (P55 o) = (B (601 (713)

T T

for a.e. 0 <t <T. Hence (7.13) yields
<:00th¢¢> = (pOtha(b) = (pOXZLWbl)
2 n
p poXy
(o) (5 o)

which furthermore implies

[{po X2 )| < C(1+ oo > X2 o)1l )
< C(1+ o X2 2)-

This results in
oo X7 | ir-1(ry < C(L+ o> X2 12),
and therefore

Ty Tn
/ \\pon||%{_1(I) dt < C/ /po(Xf;)2 deds + CT,
0 0o Jr

1/2
< Cllpy*uol22(p) + CT,

(7.14)

due to (7.12).
It follows from (7.12) and (7.14) that

1/2 vn 1/2 v n n
o "X ey + o0 X Lo geny + 100XE Waqoar-r oy
€[0,Ty
1/2
< Clloy*uol3> sy + CTh.
(7.15)
Note that (7.3) holds on I x [0,7T], hence T,, can reach T. Consequently
(7.8) follows from (7.15).
O

Finally, we show the existence of a weak solution to the problem (7.4).

Lemma 4. There exists a unique weak solution v to the problem (7.4) with

po/Pv € L¥(0,T), LX(1)), py/*ve € L*([0,T), L*(D)),

podwv € L*([0,T]; HY(I)).

Moreover, the solution v satisfies the following estimate

1/2 1/2
sup |y’ UH%%I) + oo va%Q([O,T];LQ(I)) + HPOUtH%%[O,T};Hﬂ(I))
cl.1] (7.16)
< C|P(1)/2U0||%2(1) +CA+T).
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Proof. 1t follows from Lemma 3 that

1/2 v n n
o6 X2 n2oezy  and o X7 ln2qomsa oy

are uniformly bounded in n > 1. So there exist a subsequence of {X"}°
(which is still denoted by {X"}7° , for convenience) and a function v satis-

fying p[l)/%x € L*([0,T); L*(I)) and povy € L3([0,T); H~1(I)) such that as
n — 0o

po 2 X8 = oy P in L2(0,T); LA(D)),
poX{" — pove in L2([0, T}; H~(1)).

Then, the estimate (7.16) follows easily from the energy estimates (7.8) by
the lower semi-continuity of the norms.

We claim that v is a weak solution to the problem (7.4). Fix any positive
integer m > 1, and choose a function ® € C*([0,T]; H'(I)) of the form

o= Z wi(t)ei(z), (7.17)
i=1

where {p;(t)}", are any given smooth functions. Choosing n > m, mul-
tiplying (7.6); by p;(t), summing up for ¢ = 1,...,m, and integrating with
respect to ¢ over [0,7], we get

T n T 2
X
/ (po X', @) + <p02x ,(I):c> dt = / (pg, (I):c) dt. (7.18)
0 Nz 0 Nz

Taking the limit n — oo yields

T POV T p2
/ (povs, ) + (77;,%> dt :/ <77g,<1>$> dt. (7.19)
0 T 0 T

Since functions of the form (7.17) are dense in C([0,T]; H(I)), (7.19)
holds for all ® € C1([0,T]; H'(I)). In particular, it holds that

2
(pove, @) + (pf;;qs) - (ggqb) (7.20)

for each ¢ € H'(I) and a.e. 0 <t < T.
By Definition 2, it remains to check that

lpov(t, ) — pov(0,-)||L2(ry = 0 ast— 0t (7.21)

and

v(0) :==v(0,:) = up(0,-) a.e.in I. (7.22)
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First note that
P00 220 9,111y
S Hptl)/QUH%Q([O,T},LQ(I)) + Hptl)/vaH%Q([O,T},LQ(I)) + HUH%Q([O,T],LQ(]))
S ||p(1)/20||%2([0,T},L2(I)) + ||P(1)/2Uac||?;2([0,T],L2(1)) + ||UH%2([0,T],H1/2(1))
S Hp(l)/QUH%?([O,T},L?(I)) + ||P(1)/2“w||%2([0,TLL2(I))
S Hp(l)/QUHQLOO([O,T},L?(I)) + ||P(1)/2%:H%2([0,T],L2(1)),
where (3.1) has been used in the third inequality. Hence
pov € L*([0,T7, H' (1)),
which together with podw € L2([0,T); H~1(I)) yields
pov € C([0,T], L*(I)). (7.23)

Thus (7.21) follows. Then one may deduce from (7.19) and (7.23) that

/OT —(Py, pov) + (ngx’q)m> dt = /OT <5§’ ‘I)m> A (o), 20D

: : (7.24)
for each ® € C*([0,7]); HY(I)) with ®(T) = 0. For this ®, it follows from
(7.18) that

/oT —(®1,p0X") + ('00)2@‘1’> “ /oT <p§ q)“”> A, 2O

x x
(7.25)
Passing limits in n — oo in (7.25) gives

4 POz T (o}
/ _<(I)t7 POU> + < ,'7]2 7<I>m> dt = / (7727 (I):E> dt + (,OOUO, @(0))7 (726)
0 0

xT xT

where one has used the fact \|p(1)/2X"(0) - p(l)/2uoHL2(I) — 0 asn — oco. As
®(0) is arbitrary, comparing (7.24) and (7.26), one gets

1p0v(0) — pouollz2(ry = 0,
which yields
pov(0) = poup  a.e. in I.

Hence (7.22) follows due to (1.3).
The uniqueness of weak solutions of the problem (7.4) is easy to check
since (7.4) is a linear problem.
O
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7.2. Regularity. We have the following regularity result:

Lemma 5. The weak solution v to the problem (7.4) has the following reg-
ularity:

sup FE(t,v) < M;.
S, (t,v) < M (7.27)

Consequently the solution map v — v : Cp(My) — Cp(My) is well-defined.

Proof. To prove (7.27), it suffices to show

E(t,v) < Mo+ CtP( sup EY?%(s,0)) for all ¢t € [0,T)] (7.28)
0<s<t

whose proof is similar to that of (6.1) in Section 4 and Section 5. So we
only sketch the proof of (7.28) and point out the main modifications.
Estimate of [|\/po0iv| 12(1). We start with estimating ||\/po0sv||r2(r) based
on (7.8) by some basic energy estimates. To this end, one can apply d; to
(7.6),, multiply it by 9:A?(¢), and sum j = 1,2, ...,n, to obtain that

Xn 2
(p0d2X™, 8, X™) + (at<pi]2f>,atxg> <at(n ) atxn>

which gives

/po (B, X™) da;+/ /po O X2)” 44
_ /po(atxnﬁ(;g,o) dgg+/ /(‘)t<§> 0y X dzds (7.29)
/’/[@<WX'>aXn_pd@ )] vds

Then one uses Cauchy’s inequality to obtain

//polvxatX | dzds
< 100/ /po (0 X dxds+C/ / po02 dzds (7.30)

< — / /po 9, X™?dzds + CtP( sup EY%(s,v)),
100 0<s<t

3t < > 0; X dzds
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[&(’OOX )aX”—(agX)]d ds
§/ /p0|va;‘8tX;L|dxds

Uk
< 100/ /PO 3tX” dzds + C sup \vaLm/ /PO Xn dads

< 100/ /po 9, X™M?%dxzds + CtP( sup EY?(s,1)),

0<s<t

(7.31)
where (7.8) has been used in the last inequality.
It follows from (7.29)-(7.31) that

t
/po((?tX")2 dx—i—/ /po((?tX;L)Q dzds < My + CtP( sup EY?(s,v)).
I 0o JI

0<s<t
(7.32)
By the lower semi-continuity of the norms, it follows from (7.32) by taking
limit » — oo that

¢
/po(atv)2 dz +/ /po(atvx)2 dads < My + CtP( sup EY?(s,0)).
1 0 JI 0<s<t
(7.33)

Estimate of ||\/povz||r2(r)- Next, we estimate ||\/pove|/r2(r) using (7.32).
Multiplying Equation (7.6); by 0;A?(t), and summing j = 1,2,...,n, one
obtains

Xn 2
(poatXnaatXn) + <p0 < atXn> = <€(2)78th>7
2 Uz

which yields

X'rL
//poat dxds—l—z/po()dx
t xn Q*I
/pg(X” z,0) dx—i—/ / Xz d:cds—i—/ /deds.
0 I Uk

(7.8), (7.32) and Cauchy’s inequality imply

’// Idd’<t+//poat dads (7.35)

< My + CtP( sup EY%(s,7)),
0<s<t
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/ /pov dxds—i—/ /po (X™)?%daxds
(7.36)

< My + CtP( sup EY?(s,v)).
0<s<t

Xn
'00 )T dxds

It follows from (7.34)-(7.36) that

t
/ /po((?tX")2 dxds+/po(X§)2 dz < My + CtP( sup E'Y?(s,0)).
0o Jr1 I

0<s<t
(7.37)
By the lower semi-continuity of the norms again, one gets from (7.37) by
taking limit n — oo that

t
/ /pg(@tv)deds + /povi dz < My + CtP( sup EY?(s,0)). (7.38)
o J1 I 0<s<t

Estimate of |povzz| r2(r)- Now, we estimate ||povzz|/r2(r) based on (7.33)
and (7.38) by carrying out some elliptic estimates. We start with the fol-

lowing equality:
POV 2
(Povt, (b) ( %2 7¢1‘> = (zg: ¢z> (739)

for each ¢ € HY(I) and a.e. 0 < t < T, which follows from (7.20) and
(7.33). Indeed, (7.33) implies ,0(1)/2vt € L>([0,T), L*(I)), and thus pyv; €
L>=([0,T), L*(I)), which leads to

<100Ut7 ¢> = (p(]vta ¢)

Since pg satisfies the assumption (1.3), one can obtain the interior H?(I)-
regularity v € H2 (I) from (7.39) by a standard argument (see [15]). Hence

2
povr + <:_’](;> - <p%§x) a.e. in I x (0,T]. (7.40)

Now one can repeat the argument in estimating (5.8) from Equation (7.40)
to obtain the boundary regularity

lpovaal3z ) < Mo + CtP( sup EY2(s,7)). (7.41)
0<s<t

Indeed, it is easy to check that the only key estimate in this assignment is
(5.4), which should be replaced by

__ 1/2 _ _
007z 2)evellze S g 2vell 2 e | oo < CtP(OiugtEl/Q(s,v)),
<s<

where (7.38) has been used.

In the following, making using (7.40), we can show that the remaining
terms in E(t,v) have the desired bound Mg + CtP(supp< < EY2(s,0)).
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Estimate of ||¢%3?U||L2(1)- Applying 0? to (7.40) and multiplying it by
O?v yield

1 L po(9Fvs)?
- v 2d:c—|—/ /_txdazds
2 /Ipo( rv) oJr T2
1 t p2
=3 / po(820)2(z,0) dz + / / 07 (_g)@fvx dxds (7.42)
POVz 82%
//[at< 0 >at x—(ﬁ% )]d ds.

1
6()\ < |0,7,] + 2,
Ur

Note that

and

2 2 (0fva)? - ) - 2
9; ,'7 5 ) 0fve — 72 S (|v20¢0a| + [va V] + 020102 ])|0F va .
€T

T

Then one may use Cauchy’s inequality to obtain

[ (Yot

= 100/ /PO d}vy) dz:ds~|—C/ / po(00:)? + pov2] dzds  (7.43)

< 100/ /po 0%v,)? dads + CtP( sup EY?(s, 1)),

0<s<t

2
\//h@%@f<%wp®
< 100/ /PO dtvy) dxds+C/ Hf)tvaLoo/va dzds

+C T || 700 p0v2 dzds + C sup ||v, Loo 00 &gvx)Z dzds
g 0o JI

0<s<t

< 100/ /pg (0%v,)? dzds + CtP( sup EY?(s,0)),

0<s<t
(7.44)
where (7.33) and (7.38) have been used.
It follows from (7.42)-(7.44) that

¢
/po(f)tzv)2 dz +/ /po(@?vx)2 dzds < My + CtP( sup EY?(s,0)).
1 0 JI 0<s<t
(7.45)
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Estimate of ||,/p0:vz||r2(r)- Applying 0 to (7.40), and multiplying it by
O?v, one obtains by some direct calculations that

/ /po 82 2dxds + = /po(atvx) dz
02
/po(&gvx z,0) da:—i—/ /8,5((2))8?% dzds (7.46)
/ /8,5( > (Orvg) dxds—/ /8t< >vx8t2vxdxds.

The last three terms on the RHS of (7.46) can be estimated as follows:

< >8tvxdxds / /po d%v,) dxds+/ /pov dxds
(7.47)

< My + CtP( sup EY?(s,0)),

0<s<t
! £0 2
0| = ) (Opvy)” dads
‘/0/1 t(ﬁ%)(t )

t
< sup HUxHLoo/ /pg(@tvx)2dmds
0ss=t 01 (7.48)

< My + CtP( sup EI/Q(S,@))v

0<s<t
t o0 t
‘/ /8t<2>v$8fvmdxds g/ /po((?t?vm)deds
0 JI Nz o JrI
t
+/ H%H%m/povgdxds (7.49)
0 I
< My + CtP( sup E'Y?(s,0)),
0<s<t

where one has used (7.45) in (7.47) and (7.49).
It then follows from (7.46)-(7.49) that

t
/ / po(07v)? dwds + / po(0yv2)? de < My + CtP( sup EY?(s,0)).
0 JI 0<s<t
(7.50)

Estimate of ||p3 2831)\\,;2 N p0Orvs 2, |p30Lv| 2. Now, one can esti-
mate Hpo 63’UHLZ by using (7.50). Indeed, one just needs to replace (5.13)
by

o (72 *)avazllz2 S 00vasll 2 llfisell e < CtP(OiugtEl/z(S,@)),
8>
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due to (7.41), and replace (5.15) by
P07z 2)aavall e S vl 2 (U4 [1Twellee + 17ue oo + 11 p0057]| o)
S (lpovellr2 + lpovaell2)
X (1 + |1Twell Lo + 7zl Foe + 1100037 oo )
< [My + CtP( sup EY?(s,0))]"/2,

0<s<t
due to (7.38) and (7.41), and then repeat the argument for (5.19) to get
WW%QUMWHMF%W (7.51)

0<s<t

Similarly, one may repeat the arguments for (5.27) and (5.39) to obtain

lo00rvasl s + 10800l < Mo+ CHP(sup BV (s,0). (752
s<t

Estimate of ||./poafv||L2(I). Next, ||1/p08§’v||L2(1) can be estimated due to

(7.51) and (7.52). Indeed, one can apply 97 to (7.40) and multiply it by
8?1), after some elementary computations, to obtain that

Bp)?
/poat dx+//p°a”x dads
1 3.2 VLAY
:5 p0(07v)*(x,0)dx + Bt 2 0 v, dxds (7.53)
Vg 631@
LA )

Similar to (4.2) and (4.3), one gets from (7.3) that
1
()
Uz
and

(83%)2
% (m;)at e tﬁz

xT

5 |8t 77:0| + ‘@rat@ﬂ + |17:?£|a

N U@xafvx‘ + ‘atvxm@x’z + [0y, ]) + |U:v"77x|3

+ 02070z | + |0405 || U502 [] |07 Vs |

Then one uses Cauchy’s inequality to obtain

8t< >8tvxd:cds
t
< / /po(f)f’vz)2 da:ds—i—C/ /pg(@fvx)deds
100 Jo J1 o Ji

t t
+C’/ Hvx||2Loo/po(atvx)deds—i-C’/ ||va%oo/povidxds
0 I

< / /po dPvy)? dads + CtP( sup EY?(s, 1)),
100 0<s<t

(7.54)
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[at (pov‘”)at Vg — (832”9”)} dads

T

>~ 100/ /PO at’l)x dl‘dS‘"C Sup ”UZ‘HLOO/ /po atvx dxds

+c/ Hq_)z]%oo/po(é?tvm)?dxds—i—C/ HatﬁxH%oo/po(atvm)deds
0 I 0 I

t t
+c/ H@xy%m/povgddeC/ H%H%oo/po(atg@x)deds
0 I 0 I

t
e / 1Bl ]2 / po(0172)? dards

< 100/ /po (8Pv,)? dads + CtP( sup EY?(s,0)),

0<s<t
(7.55)
where one has used (7.38), (7.41), (7.51) and (7.52) to estimate

vellLee S vzl p2 + Vel L2
< (lpovallzz + [1p0vaallr2) + (lpovesll 2 + [|p0850] 2)
S llpovallzz + lpoveallze + 05020l 12 + 1p50sv |l 2

< My + CtP( sup EY?(s,0)).
0<s<t

It follows from (7.53)-(7.55) that

¢
/po(a{?’v)2 daz+/ /po(ﬁfvx)Q dzds < My + CtP( sup EY?(s,0)).
I 0o Jr 0<s<t
(7.56)
Estimate of H\/;ToavaHLg([). In view of (7.56), similar to (4.15), one can
derive that
t
/ /po(ﬁfv)deds + /po(ﬁfvx)z dz < My + CtP( sup E'Y?(s,0)).
0 J1 I 0<s<t
(7.57)
Estimate of |py/ >0, Rax 20,0° o B
stimate o HPO 3 vaL27”pD vaL27Hp0 13 xUHLz ||p0 UHL2 y

(7.56) and (7.57), one may repeat the arguments for (5 49) (5.57), ( 67)
and (5.74) to obtain

3/2 5/2
0 20030l132 + 195 030132 + 163000l 3y + 780501

< My + CtP( sup EY?(s,7)).
0<s<t
Finally, (7.28) follows from (7.16), (7.33), (7.38), (7.41), (7.45), (7.50),
(7.51), (7.52), (7.56), (7.57) and (7.58).

(7.58)
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7.3. Existence of a classical solution to the problem (7.4). In order
to show that there exists a classical solution to the problem (7.4), we will
construct its approximate solutions and show the approximate solutions con-
verge uniformly by a contraction mapping method. Therefore we consider
the following iteration problem:

(n)
povgn) + [ 7 } = [ Lol ] in I x (0,7,
xr X

(nS* 1)z (nS" V)2
v(n) = Ug on I X {t — 0}’ (759)
o =0 on T x (0,17.

For n = 1, we impose 79 (t,z) = z + tug(x). We then solve the problem
(7.59) for n = 1,2,... iteratively. Given T > 0 sufficiently small, in view of
Lemma 5, one can obtain {v(™}%, C Cp(M;) for any n > 1.

In the following, we will show that the approximate solutions {v(™}2°_, are
contractive in some appropriate energy space. To this end, setting a(v(")) =
vt — () one deduces

(

P 2
podio (v + [mﬁ%]x B [(@"p—O”)?L
MCERY v;") .
_ p€n§>)2 — WZ%_I))Q] in I x (0,77, (7.60)
o(v™) =0 on I x {t =0},
e =0 b 0.1)

Lemma 6. It holds that

d
— [ polo@™)?dz + | polos(v™)]? dz
i /I (7.61)

t
< oMM 4 1yt / / poloe(0™DY]2 dzds.
0o JI

Proof. Multiplying Equation (7.60), by o(v(™) and integrating by parts with
respect to x yield

(n+1) (n)

1d v
1rad (n)\12 PoVx . POV (n)
9 dt Ipo[o(v )] dx—l—/j[ ( én))Z (é” 1))2]@:(1) ) dz

2 2
Il(ne")? ()2
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Note that

(n+1) (n)
/[povz - le :|O'x(’l)(n))dl‘
L2 )

(n+1) (n)
- [ - 2 s
1L (e (ni)2 (7.63)

Direct estimates yield

4
I 2/ f;o) Z[Um(v(”))]de > g/po[ax(v("))]de, (7.64)
I (nz") I
and
(n) t
= [ [l [t et
1 L(n2")2(na )

1
< | polow@™)]2 da + ol HLOO//,)O (0™ Y2 dzds.
100 /,

(7.65)
Hence it follows from (7.63)-(7.65) that
(n+1) (n)
_/ |:<p 0V ) _ < pOUJ:l ) :|0(U(n))dl‘
I\ 2 S\t (7.66)

23 / o[z (v n))] dz — Ctljv n)||L°°/ /,00 (n 1 2 dxds.

Similar to (7.65), one has

/|: p(2) o P% }Ux(v("))dx
LMz @)
= /[ £ (n{™ —i—n(”_l))/t (0™ ))ds] oz (v™) da
O

1
< 100 Ipo[am( dx+C’t/ /po oz (v (n— 1 2 dzds.
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Substituting (7.66) and (7.67) into (7.62) gives

jt Pl da + [ poloa(o®)F do

CUI oy + 1t //poax (D)2 s

M 41y //po (v™D)]2 dads,

where one has used {v(™}2%, C Cp(M;) in the last line. Hence (7.61)
follows. O

Integrating (7.61) with respect to t on [0, 7], we deduce
1/2 n 1/2 n
sup (9?0 (0 72y + llow o0 ™) 32 o 11220
0<t<T
/2, (n 1 1/2 n—
< g @) O F2ry + COLT + DTy o0 0" 220 13200y
1 2 1/2 _
= o1 + 1>T||po/ 02 (0" ) Faqoryzay
1 n— 1/2 n—
< Z( Sup oy (v NNz + oy > (0 NNZ2 01322000
since T' > 0 is sufﬁmently small. Hence for any n > 1

sup ||P[1)/20(U("))HL2(1) + Hpé/z%(v("))HL?([QT];Lz(I))
Pt (7.68)
"Nl z2op:22(1))) -

_

< 125

3 0 1070w ) )+ )
The estimates (7.68) imply that {v(™}% | is a Cauchy sequence in the
space L2([0,T], L*(I)) by using the weighted Sobolev inequality (3.2). Ac-
cording to this fact and the a priori bound (6.2) (see (3.4) that this a priori
bound (6.2) controls H3(I)-bound of v), one may furthermore deduce that
{v(M}2 | is a Cauchy sequence in the space L?([0,T], H*(I)) (0 < s < 3) by
using the standard Gagliardo-Nirenberg interpolation inequality for func-
tions in spatial variables (see [7]). However this is insufficient for us to
pass limit in n in Equation (7.4), for time pointwisely. To get around this
difficulty, we need the following weighted interpolation inequality:

Lemma 7 (Weighted Interpolation Inequality). The following weighted in-
terpolation holds

1/2 1/2

lollz2ary < Mgz nyllalls 1y (7.69)

where

Hg||%go(1) :/IPOQQdSU and ||9||§{;0(1) :/100(92+g§)d90-
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Proof. Due to the assumption (1.3) on pg, it suffices to prove (7.69) for pg
with po(z) =z on [0,1/2] and 1 — z on [1/2,1]. Note that

1/2 1
/dex:/ g2daz+/ g*dx.
I 0 1/2

Integration by parts yields

(7.70)

To estimate g(3), one has

1/2 1/2
/ pog’ dz = / zg® dz
0 0

L oo z=1/2 12 2
= PP - /0 g, du (7.71)

1 1 1/2
= 892(2)—/0 p29gs dz.

It follows from (7.70) and (7.71) that

1/2 1/2 1/2 1/2
/ g dr =4 / pog® dz + 4 / peggs dz — 2 / p0g9s d
0 0 0 0

1/2 1/2 1/2 1/2 1/2
< / pog® dx + ( / og’ dx) < / ogs dw)
0 0 0
1/2 1/2 1/2 1/2
+ </ pog* da:) (/ p0g> d:v)
0 0
1/2 1/2
< (/p0g2 dw) </p0(g2+gi)dx> )
I I

Similarly, one can obtain

1 1/2 1/2
/ ¢?dr < ( / pog’ dw> < / po(g? +g§)d$> : (7.73)
1/2 I I

Finally, (7.69) follows from (7.72) and (7.73).

(7.72)

O

Taking g(-) = o(v™)(-,t) in (7.69), one has that for each ¢ € [0, 7]

lo ™)l £ lo @) DI o@Dl (- (7.74)

It follows from (7.68) that Ha(v(”))(-,t)HL%O(I) — 0 as n — oo. And (6.2)
implies that ||a(v(”))(-,t)||H;O(I) is uniformly bounded in n > 1. Hence
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(7.74) implies that as n — oo
o™ = v in C([0, T); L2(1)). (7.75)

Then the standard Gagliardo-Nirenberg interpolation inequality on a bounded
domain (see [7]) shows that for any s € (0, 3)

n n 1-3 n 3
lo @) ey S lo @)D o @)D gy (7.76)

Since || (v™)(-,t)]| m(r) is uniformly bounded in n > 1, it follows from
(7.75) and (7.76) that as n — oo

o™ v in C([0,T]; H5(I)), Vse(0,3),
which furthermore implies by Sobolev embedding that as n — oo
o™ = v in C([0,T); C*(1)). (7.77)
According to (7.59),, one has
2 (n)
(n)__[ PG ] { J }
pove = n—1 + n—1 ’
(77( ))2 - (77( ))2 -

X T

which, together with (7.77), yields that as n — oo

2
povi™ = —<f)g> + (P;;gx) in C([0,T]; C(I)). (7.78)

Due to (7.78), the distribution limit of vt(n) must be v; as n — 00, 8o, in
particular, v is a classical solution to the problem (2.5). Moreover, following
the standard argument (see [44]), one may show v € C([0,T]; H3(I)) N
C([o, T); HY(I)).

8. PROOF OF THEOREM 2.1: UNIQUENESS

The following observation will be useful in showing the uniqueness of the
classical solution to the problem (2.5).

8.1. A lower-order energy function. Define the following lower-order
energy functional:

2 1
E(t,v) =Y IIVoodfvllizy + Y IvPodrvell 3y
k=0

k=0

A (8.1)
2
+ HpOatUx:rH%?([) + Z H PﬁanHLz(l)-
k=2
Then one can also close the energy estimates, namely £(¢,v) satisfies
E(t,v) < Mg+ CtP( sup EY%(s,v)) forall t € [0, 7] (8.2)

0<s<t
with My given by
My = P(E(0,vp)),
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where P denotes a generic polynomial of its arguments, and C' is an abso-
lutely constant depending only on ||a$p[)||Loo (1=0,1,2,3).

In fact, (8.2) follows from (4.8), (4.7), (4.6) in Section 4, (4.16), (4.15),
(5.8), (5.19), (5.27), and (5.39) in Section 5. Indeed, (8.2) can be proved
in a similar way as (6.1) with some modifications as follows. In this case,
the estimates on highest order time-derivatives are (4.8) and (4.16), which
can be obtained straightforwardly as (4.9) and (4.17), respectively. Lemma
1 and Lemma 2 should be replaced by

Lemma 8. It holds that

[v(- )2y S EV2 (). (83)
Hence,
s Dl S ¥ sup EY%(1,0) (5.4
v ()| ooy S EY2(,0). (8.5)
Lemma 9. It holds that
lpod2v(-, )| L2ry S EV2(t,v). (8.6)
Consequently,
P00z (- D)l L2y St bugtc‘?l/Q(t v), (8.7)
lpovaa (- )l oe 1) S €28, 0), (8:8)
[ponza (- DLy St S<11pt51/2(8 v). (8.9)

In elliptic estimates, one can use Lemma 8 and Lemma 9 to replace Lemma
1 and Lemma 2. On the one hand, the second term on the RHS of (5.7) can
be estimated as follows:

/po(po)xnfnmvf« dz| < [lponaell o< lval7> < CtP(Oiug E2(s,)).
I <s<t

One may also handle the similar term in (5.18) as

‘/ng(PO):cn;577mva%x dr| < ||P077m||L°°HUxx||%2 < CtP(OS<UI<)t51/2(S,U)),
<s<

and the one in (5.38) as

/po(po)wx N2 (020)? dz| < || potue|| Lo || po03v| 32 < CtP(OiulztEI/?(s v)).

On the other hand, one can use ||po7zz| L~ to replace ||7zz||Le in (5.10),
(5.13), (5.15), (5.29), (5.33), (5. 34) and (5.36); and use || povzz| L~ to replace
|vzz||Lee in (5.34); and use ||pod3n]|12 to replace [|93n| 2 in (5.10), (5.29),
(5.34) and (5.36); and use ||ppd3v| 72 to replace H83v||L2 in (5.33); and use
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1p30%n|| 12 to replace ||podin|| 2 in (5.29) and (5.36). All of these replace-
ments are possible due to the suitable choice of weights in the corresponding
formulae.

Remark 7. The main reason that we use E(t,v) instead of E(t,v) to define
the solution space is to achieve the regularity v € L°°([0, T|; H3(I)) which is
needed to define the classical solutions. The energy functional E(t,v) only
gives us the reqularity v € L°°([0,T]; H*(I)), however, which will play an
important role in showing the uniqueness of the classical solution to the
problem (2.5) in the next section.

8.2. Uniqueness of the classical solution to the problem (2.5). Let
v and w be two solutions to the problem (2.5) on [0,7] with initial data
(po, up) satisfying the same estimate. Their corresponding flow maps are:

t
n(x,t) = x+/ v(zx, s)ds,
0

C(m,t)—x—i—/o w(z, s)ds.

Set
Opw = UV — W.

Then 0., satisfies:

po(0u)e + [ (z — &)], = [po(i3 — )], i Ix (0],

(6pwsm) = (0,€) on I x {t =0},
(Opw)z =0 on I' x (0,7T].
Note that

(3], [ (fowno [orsm)]
{po(ng C%)L_ L?%C% /(J(5Uw)xds/()(vx+w$)ds K
and

t t
{pO <:’)§c - Zg)} N = |:77323pg§ ((5vw)x + 2(61)11))1:/0 wy ds — sz/o (Gvw)e ds

= [[Gunaas [t as)|

which contain some additional error terms:

t t t t
(Ovw)x / wyds,  wy / (6pw)zds and / (Ovw) ds/ (vy + wy) ds.
0 0 0 0

Unfortunately, it can be checked that these additional error terms make
it difficult to derive an inequality as (6.1) for E(t,dyy). In other words,
it needs some higher-order energy functionals than E(¢,v) and E(t,w) to
control these error terms if one works with E(¢, yy)-

So we instead work with the lower-order energy functional E(t, dyy) de-
fined by (8.1), and find that all the error terms can be easily controlled by
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the energy functionals E(t,v) and E(t,w). Therefore we may get finally (see
Subsection 8.1 for more details) that

sup E(t,8pw) < CtP( sup EY%(s,8,,)) for all t € [0,T], (8.10)
0<s<t 0<s<t

where C' depends on E(t,v) and E(t,w). Hence 0., = 0 follows from (8.10).
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