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Abstract. Given a weighted toroidal graph, each realization to a Euclidean

torus is associated with the Dirichlet energy. By minimizing the energy over all
possible Euclidean structures and over all realizations within a fixed homotopy

class, one obtains a harmonic map into an optimal Euclidean torus. We show

that only with this optimal Euclidean structure, the harmonic map and the
edge weights are induced from a weighted Delaunay decomposition.

1. Introduction

Let G = (V,E, F ) be a cell decomposition of a topological torus S and f :
(V,E) → S be a corresponding realization of the graph (V,E). We assume the
graph is equipped with some positive edge weights c : E → R>0 where cij = cji.

We parameterize the space of Euclidean tori with unit area by the upper half
plane H ⊂ C and write Sτ for the corresponding Euclidean torus given by τ ∈ H.
For every straight-line mapping to a Euclidean torus h : (V,E)→ Sτ , it is associated
with the Dirichlet energy

Ec(h) :=
1

2

∑
ij∈E

cij`
2
ij .(1)

where ` is the edge length.
There are several interpretations of the edge weights and the energy. One is to

think of the edges as springs with force constant c. Then the total energy stored
in the springs is the Dirichlet energy. There is also an interpretation in terms of
electric networks, where the edge weights are regarded as conductance.

In our case, it is a classical result that for every fixed Euclidean torus Sτ and
among all mappings h : (V,E)→ Sτ such that h is homotopic to f , the energy Ec
has a minimizer hτ unique up to translations [14, 6]. The map hτ has convex faces
and is called a Tutte-like embedding [6]. It is also known to be a harmonic map
satisfying a discrete Laplace’s equation.

One can further minimize the energy by varying the Euclidean structures, i.e.
to consider the function

Ec : H× Cf → R
(τ, h) 7→ Ec(h)

where Cf denotes the space of mappings h that are homotopic to f . It is known
that Ec has a unique minimizer (τ, hτ ) [12]. Our goal is to explore the relation
between this optimal Euclidean structure τ and the edge weights. Specifically, we
are interested in a converse question.
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Question A: Given a Euclidean structure τ on the torus and a straight-line em-
bedding h : V → Sτ such that all faces are convex, what are the positive edge
weights c such that (τ, h) is the minimizer of Ec?

We shall relate the above question to conjugate maps. For every harmonic map
h : (V,E)→ Sτ , its lift to the universal cover h̃ : (Ṽ , Ẽ)→ C has a conjugate map

h̃∗ : F̃ → C defined by

h̃∗left(ij)
− h̃∗right(ij)

=
√
−1 cij(h̃j − h̃i)(2)

where left(ij) is the left face of the oriented edge ij. Alternatively, one can write

cij =
1√
−1

h̃∗left(ij)
− h̃∗right(ij)

h̃j − h̃i
.

The map h̃∗ defines a realization of the dual decomposition of the universal
cover (Ṽ ∗, Ẽ∗, F̃ ∗) ∼= (F̃ , Ẽ, Ṽ ) and is harmonic with respect to the edge weights
c∗ := 1/c. The edges of h∗ are orthogonal to those of h. The maps h and h∗ are said

to be reciprocal in the sense of the Maxwell–Cremona correspondence [15]. Since h̃

is doubly periodic, one can deduce that h̃∗ projects to an Euclidean torus kSτ ′ for
some k > 0. Here kSτ ′ denotes the scaled copy of the Euclidean torus Sτ ′ having
area k2.

Question B: Given edge weights c and any Euclidean torus τ , the harmonic map
hτ : (V,E) → Sτ defines a conjugate harmonic map h̃∗ : (Ṽ ∗, Ẽ∗) → C over the

universal cover. Does h̃∗ project to the same torus Sτ up to scaling? It is shown
in [3] that this only holds for some unique Euclidean structure.

We relate the two questions above by applying discrete harmonic conjugates,
which is also known as the response matrix in electric networks [11].

Theorem 1.1. Let c : E → R>0 be positive edge weights. Then there exists a
unique τc ∈ H and kc > 0 such that the following holds:

(1) (τc, hτc) is the minimizer of Ec over the space H× Cf with value kc.
(2) The conjugate map of hτ : V → Sτ projects to kSτ for some k > 0 if and

only if τ = τc and k = kc.

In other words, the scaled conjugate map h†τc := h∗τc/kτc projects to the same

torus as hτc . Both the maps hτc and h†τc are respectively unique up to translations.

However, if we fix a choice for hτc , then there is a unique choice for h†τc such that hτc
is a realization of a weighted Delaunay decomposition with vertex weights defined
consistently, and h†τc is the dual Voronoi diagram [3, Theorem 4.4].

Corollary 1.2. Let c : E → R>0 be positive edge weights. Then (τ, hτ ) is the
minimizer of the energy Ec with value k if and only if the realization of the cell
decomposition (V,E, F ) under hτ is a weighted Delaunay decomposition and h† :=
h∗τ/k is the dual Voronoi decomposition. Furthermore, the edge weighs satisfy for
every ij ∈ E

cij =
k√
−1

h̃†
left(ij)

− h̃†
right(ij)

h̃j − h̃i
> 0(3)

Here left(ij) denotes the left face of the oriented edge {ij} while right(ij) denotes
the right face.
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A weighted Delaunay decomposition is also known as a power diagram. It is a
generalization of the classical Delaunay decomposition where the distance function
for the Voronoi cells are modified by vertex weights. One can show that the dual
edge is always perpendicular to the primal edge, which motivates the

√
−1 in equa-

tion (2). In the case where the vertex weights are constant, one obtains the classical
Delaunay decomposition and equation (3) yields the famous cotangent weights from
the finite element discretization [17]. Corollary 1.2 provides an answer to Question
A and there are embeddings with convex faces that cannot be minimizers of Ec for
any positive edge weights c (See Example 1).

On the other hand, one observes that the minimal Dirichlet energy kc is intrinsic
to the weighted toroidal graph. It is natural to expect that kc can be expressed in
terms of the edge weights without involving the embedding h as in equation (1).
We first state the formula and then explain the notations.

Theorem 1.3. Let c : E → R>0 be positive edge weights. Then the minimal
Dirichlet energy is given by

kc := min Ec =

√
det0(d̃TCd̃)

det0(dTCd)

In the formula, we fix an arbitrary orientation for the edges and d denotes the
E×V -incidence matrix, where dT is its transpose. C is the E×E diagonal matrix
consisting of edge weights. Thus, ∆ := dTCd is a V×V -matrix that represents the
discrete Laplace operator: for every g : V → R,

(∆g)i =
∑

cij(fj − fi).

Furthermore, det0 denotes the product of nonzero eigenvalues of the corresponding
matrix. d̃ is a E×(V+2)-matrix. Its first V columns are those of d, which can

be regarded as a basis of the space of exact 1-forms. The last two columns of d̃
represent closed 1-forms with nontrivial periods, whose integrals along γ1 and γ2

are respectively (1, 0) and (0, 1).
In fact, Theorem 1.1 and Theorem 1.3 hold for edge weights with arbitrary signs

as long as the energy functional is positive definite (Section 7). However, Corollary
1.2 has to be interpreted differently in this case, since the Delaunay condition is
equivalent to the edge weights being positive.

1.1. Related work. It is common in computer graphics [6, 7] and discrete confor-
mal geometry [4, 5, 16, 9, 19] to consider edge weights defined by equation (3) from
a given Delaunay decomposition. On the one hand, it includes the cotangent-weight
Laplacian which is obtained from the finite element discretization [17]. On the other
hand, the corresponding discrete harmonic functions are related to deformations of
circle patterns [13].

Delaunay decompositions minimize energy in several other ways. An example is
Rippa’s theorem [18]. For that setting, vertex positions are fixed while combina-
torics are allowed to change. It is in contrast to our setting where combinatorics
and edge weights are fixed but vertex positions are allowed to move.

Realizations of graphs to other surfaces that minimize the Dirichlet energy have
been considered [20]. For a finite planar graph, one obtains the classical Tutte
embedding. For hyperbolic surfaces, one also obtain a harmonic map to an optimal
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hyperbolic surface [8]. However, its connection to Delaunay decomposition remains
unclear.

The energy that we consider is naturally associated to an electric network where
the edges weights play the role of conductance. Our main tool is to consider discrete
harmonic conjugates, which is also called the response matrix in electric networks.
If we regard the weights as those in dimer models, there are related realizations
[10].

We focus on edge weights where the energy functional is positive definite (Defini-
tion 7.1). However, it is also interesting to consider edge weights where the energy
functional fails to be positive definite [2, 13].

2. The space of marked Euclidean tori

We assume that γ1, γ2 are the generators of the fundamental group and parame-
terize the space of Euclidean tori with unit area by the upper half plane H ⊂ C such
that for each τ ∈ H, the Euclidean torus Sτ is obtained as a quotient of R2 ∼= C by
translations and has holonomy

ργ1(z) = z +
1√

Im τ
, ργ2(z) = z +

τ√
Im τ

.

For every mapping h : (V,E)→ Sτ where edges are realized as straight lines, we

consider its lift to the universal cover h̃ : (Ṽ , Ẽ)→ C. It satisfies

(4) h̃ ◦ γ1 = h̃+
1√

Im τ
, h̃ ◦ γ2 = h̃+

τ√
Im τ

In terms of the lift, the energy can be expressed as

Ec(h) :=
1

2

∑
ij∈E

cij |h̃j − h̃i|2.

The map h is harmonic if it is a critical point of the energy under variation of vertex
positions, equivalently for i ∈ Ṽ∑

j

cij(h̃j − h̃i) = 0.

In the following sections, we shall interpret Re h̃ and Im h̃ as integrals of harmonic
1-forms with specific periods.

3. Discrete harmonic 1-forms

A discrete 1-form is a function on oriented edges ω : ~E → R such that ωij = −ωji
for every edge ij. A discrete 1-form is closed if its summation over the boundary of
every oriented face is zero. For example, in the case of a triangulation, ω is closed
if for every triangle {ijk},

ωij + ωjk + ωki = 0.

For a closed discrete 1-form ω on a torus, one can consider its periods∑
γ1

ω = A,
∑
γ2

ω = B
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where the summation is over an edge path homotopic to γk. Because ω is closed,
the summation is independent of the path chosen. A 1-form ω is exact if there
exists f : V → R such that

ωij = fj − fi.
One can show that a 1-form is exact if and only if it is closed with vanishing periods,
i.e. (A,B) = (0, 0) in the case of tori.

The orientation of the primal edges naturally induces an orientation for the dual
edges. Given an oriented edge ij, the dual edge ∗ij is oriented from right face to
the left face of ij. In this way, we say a 1-form ω is co-closed if it is a closed 1-form
with respect to the dual decomposition, i.e. for every vertex i ∈ V∑

j

ωij = 0

where the summation is over the neighboring vertices of i.
For every 1-form ω, there is an associated 1-form ∗ω defined by ∗ω = cω. The

map sending ω to ∗ω is a discrete analogue of the Hodge star operator.
We call ω a harmonic 1-form on the primal decomposition (V,E, F ) if ω is closed

and ∗ω = cω is co-closed. The co-closeness implies for every vertex i ∈ V∑
j

∗ω =
∑
j

cijωij = 0.

One can check that ∗ω is a harmonic 1-form with respect to the dual cell decom-
position and edge weights c∗ := 1/c. We call ∗ω the harmonic conjugate of ω.

It is known [1, Theorem 3.9] that the space of discrete harmonic 1-forms on a
torus is parameterized by the period (A,B) ∈ R2.

4. Response matrix over the period space

For any edge weights c, we consider a map on the period space

L : R2 → R2

(A,B) 7→ (Ã, B̃)

which maps the periods of a harmonic 1-form on (V,E, F ) to the periods of the
conjugate harmonic 1-form, which is also called the response matrix in the setting
of electric networks. Namely, for every (A,B) ∈ R2, there exists a unique harmonic

1-form ω : ~E → R such that ∑
γ1

ω = A,
∑
γ2

ω = B.

Its conjugate would have periods∑
γ1

∗ω = Ã,
∑
γ2

∗ω = B̃.

Then we define L(A,B) = (Ã, B̃). We shall relate it to the Dirichlet energy and
derive an explicit form.

Definition 4.1. We define a skew symmetric bilinear form over R2. For any
(A,B), (Ã, B̃) ∈ R2,

{(A,B), (Ã, B̃)} := AB̃ −BÃ.
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Given a closed 1-form ω and a co-closed 1-form ω̃ we can consider their product∑
ij∈E

ωijω̃ij

Because of the closeness and the co-closeness, the summation can be rewritten as
the product of integrals along the boundary of a fundamental domain, which is
analogous to Stokes’ theorem.

Proposition 4.2. [1] Suppose ω is a closed 1-form on the primal decomposition
(V,E, F ) with periods (A,B) and ω̃ is co-closed, i.e. a closed 1-form on the dual

decomposition (V ∗, E∗, F ∗), with periods (Ã, B̃). Then∑
ij

ωijω̃ij = {(A,B), (Ã, B̃)}

For any harmonic 1-form ω and ω̃ on the primal graph, we take the product∑
cijωijω̃ij =

∑
ω∗ω̃ =

∑
∗ω ω̃

Notice that ω is closed on the primal graph while ∗ω := cω is co-closed. So we can
apply Proposition 4.2.

Corollary 4.3. Suppose ω, ω̃ : ~E → R are harmonic 1-forms on the primal decom-
position with periods (A,B), (Ã, B̃) respectively. Then∑

cijωijω̃ij = {(A,B), L(Ã, B̃)} = {(Ã, B̃), L(A,B)} = −{L(A,B), (Ã, B̃)}(5)

Now we are able to deduce the operator L.

Proposition 4.4. For any edge weight c : E → R>0, in terms of the standard basis
of R2, the operator L over the period space has the matrix form

L =

(
kc

Re τc
Im τc

−kc 1
Im τc

kc
|τc|2
Im τc

−kc Re τc
Im τc

)
for some kc > 0 and τc ∈ H.

Proof. In terms of the standard basis of R2, we write the L operator as a 2×2-matrix

L =

(
a b
c d

)
Equation (5) implies for any column vectors U, V ∈ R2,

U t
(

0 1
−1 0

)
LV = −U tLt

(
0 1
−1 0

)
V

and we deduce that a = −d.
Furthermore, since the energy is always non-negative, Equation (5) implies for

any nonzero column vector U ∈ R2,

0 < U t
(

0 1
−1 0

)
LU = U t

(
c −a
−a −b

)
U

It is deduced that

(
c −a
−a −b

)
is positive definite. Thus

det

(
c −a
−a −b

)
= −bc− a2 > 0
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c > 0

b < 0

We define

kc :=
√
−bc− a2 > 0

Re τc :=− a

b

Im τc :=− k

b
> 0

and the claim follows. �

5. Proof of Theorem 1.1

We investigate harmonic maps to the torus from the information of the operator
L. Throughout the section, we assume τc, kc to be the one given in Proposition
4.4. Theorem 1.1 is a restatement of Proposition 5.1 and 5.2.

Proposition 5.1. Let τ ∈ H represents any Euclidean torus and hτ : V → Sτ be
the corresponding harmonic map. Then its energy satisfies

Ec(τ, hτ ) = Ec(hτ ) ≥ kc = Ec(τc, hτc)

and (τc, hτc) is the unique minimizer of Ec.

Proof. We abbreviate hτ as h and write h̃ the lift of h to the universal cover. For
every oriented edge ij, we consider

ωij := Re(h̃j̃ − h̃ĩ), ηij := Im(h̃j̃ − h̃ĩ).

which defines harmonic 1-forms on the torus (V,E, F ). Equation (4) implies that
they have periods ∑

γ1

ω =
1√

Im τ
,
∑
γ2

ω =
Re τ√
Im τ∑

γ1

η = 0,
∑
γ2

η =
Im τ√
Im τ

We compute its energy using Proposition 4.2

Ec(hτ ) =
1

2

∑
ij

cij |ω|2 +
∑
ij

cij |η|2


=
1

2
{( 1√

Im τ
,

Re τ√
Im τ

), L(
1√

Im τ
,

Re τ√
Im τ

)}+
1

2
{(0, Im τ√

Im τ
), L(0,

Im τ√
Im τ

)}

=
kc

2 Im τc Im τ
(|τc|2 + |τ |2 − 2 Re τc Re τ)

=
kc

2 Im τc Im τ
((Re τc − Re τ)2 + | Im τc|2 + | Im τ |2)

=
kc|τ − τc|2

2 Im τc Im τ
+ kc

≥ kc
The equality holds if and only if τ = τc. �
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Proposition 5.2. For any τ ∈ H, the conjugate map of hτ : V → Sτ projects to
kSτ for some k > 0 if and only if (τ, hτ ) = (τc, hτc) and k = kc.

Proof. We abbreviate hτ as h and define ω, η as in the proof of Proposition 5.1.
We consider the conjugates ∗ω and ∗η which have periods

(
∑
γ1

∗ω,
∑
γ2

∗ω) = L(
1√

Im τ
,

Re τ√
Im τ

) =
kc

Im τc
√

Im τ
(Re τc − Re τ, |τc|2 − Re τc Re τ)

(
∑
γ1

∗η,
∑
γ2

∗η) = L(0,
Im τ√
Im τ

) =
kc

Im τc
√

Im τ
(− Im τ,−Re τc Im τ)

By Equation (2), the conjugate harmonic map h̃∗ : Ṽ → C is in the form

h̃∗left(ij)
− h̃∗right(ij)

= − ∗ ηij +
√
−1 ∗ ωij

and hence

h̃∗ ◦ γ1 − h̃∗ =
kc√
Im τc

(

√
Im τ

Im τc
+
√
−1

Re τc − Re τ√
Im τc Im τ

)

h̃∗ ◦ γ2 − h̃∗ =
kc√
Im τc

(
Im τ Re τc

Im τc
+
√
−1
|τc|2 − Re τc Re τ

Im τc
)

Thus h̃∗ projects to kSτ , i.e. in the form

h̃∗ ◦ γ1 − h̃∗ =
k√
Im τ

h̃∗ ◦ γ2 − h̃∗ =
kτ√
Im τ

for some k > 0 if and only if τ = τc and k = kc. �

6. Response matrix L from Laplace operator ∆

In the section, we shall express the response matrix L : R2 → R2 in terms of the
discrete Laplacian and prove Theorem 1.3.

We first define an incidence matrix d. We fix an arbitrary orientation for every
edge e so that e+ and e− represent the head and the tail of the oriented edge e.
Then we define d : RV → RE by

df(e) = f(e+)− f(e−).

We further define

∆ := dTCd

where C : RE → RE is the diagonal matrix of the corresponding edge weights and
dT is the transpose of d. One can show that the operator ∆ : RV → RV satisfies
for every vertex i

(∆f)i =
∑
j

cij(fj − fi)

and ∆ is the so called discrete Laplacian. It is semi-positive definite and the kernel
consists of constant functions.

Notice that each column vector of d represents a closed discrete 1-form that is
exact. The column vectors form a basis of the space of exact 1-forms on the cell
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decomposition G = (V,E, F ). To get a basis of the space of closed 1-forms, we
consider two more closed 1-forms m1 and m2 that have nontrivial periods∑

γ1

m1 = 1,
∑
γ2

m1 = 0

∑
γ1

m2 = 0,
∑
γ2

m2 = 1

Thus, every closed 1-form with periods∑
γ1

ω = A,
∑
γ2

ω = B

can be expressed as

ω = df +

 | |
m1 m2

| |

(A
B

)
=: df +M

(
A
B

)
for some f ∈ RV unique up to constants. The closed 1-form ω is harmonic if

0 = dTCω = dTCdf + dTCM

(
A
B

)
= ∆f + dTCM

(
A
B

)
To obtain a solution in terms of f uniquely, we can pick a vertex o and demand
fo = 0. We write dō as the submatrix of d with the column corresponding to
vertex o removed and ∆ōō as the submatrix of ∆ with the column and the row
corresponding to vertex o removed. One can show that ∆ōō is invertible. The
values of f at vertices other than o can be obtained via

fō = −∆−1
ōō d

T
ō CM

(
A
B

)
(6)

Now we can compute the operator L : R2 → R2 in terms of the edge weights.

Proposition 6.1.

L =

(
0 1
−1 0

)
(−MTCdō∆

−1
ōō d

T
ō CM +MTCM)

Proof. To compute the formula, we need further notations on the dual graph. Since
the orientation of the primal edges is chosen, it naturally induces an orientation of
the dual edges. Namely, a dual edge ∗e is oriented from the right face of e to the
left. We then define the incidence matrix d∗ : RF → RE similarly. The columns of
d∗ form a basis of the space of exact 1-forms on the dual graph. We further define
a |E|×2 matrix M∗ such that its columns m∗1 and m∗2 represent closed 1-forms on
the dual graph having nontrivial periods∑

γ1

m∗1 = 1,
∑
γ2

m∗1 = 0

∑
γ1

m∗2 = 0,
∑
γ2

m∗2 = 1

For a harmonic 1-form ω, it is closed and ∗ω is co-closed. So we have

Cdf + CM

(
A
B

)
= Cω = d∗g +M∗

(
Ã

B̃

)
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for some f : V → R and g : F → R. Applying MT to both sides from the left yields

MTCdf +MTCM

(
A
B

)
= (MT d∗)g +MTM∗

(
Ã

B̃

)
= 0 +

(
0 1
−1 0

)(
Ã

B̃

)
where Proposition 4.2 is applied to MT d∗ and MTM∗ since the rows of MT repre-
sent closed 1-forms on the primal graph while the columns of d∗ and M∗ represents
co-closed 1-forms. Because fo = 0, we have from Equation (6)(

Ã

B̃

)
=

(
0 −1
1 0

)
(MTCdōfō +MTCM

(
A
B

)
)

=

(
0 −1
1 0

)
(−MTCdō∆

−1
ōō d

T
ō CM +MTCM)

(
A
B

)
and thus

L =

(
0 −1
1 0

)
(−MTCdō∆

−1
ōō d

T
ō CM +MTCM)

�

Proof of Theorem 1.3. From Proposition 4.4, the minimal energy is kc. We know

(7) k2
c = detL = det(−MTCdō∆

−1
ōō d

T
ō CM +MTCM)

Recall that the determinant of a block matrix satisfies

det

(
P Q
QT R

)
= detP det(R−QTP−1Q)

whenever P is an invertible matrix. Applying this formula to Equation 7 yields

k2
c =

det

(
∆ōō dTō CM

MTCdō MTCM

)
det ∆ōō

=
det(d̃Tō Cd̃ō)
det(dTō Cdō)

where

d̃ō =
(
dō M

)
is a |E|×(|V |+1) matrix. Notice that both matrices d̃TCd̃ and dTCd are semi-
positive definite. One has

dTCdf = 0

if and only if f ∈ RV is a constant function. On the other hand

d̃TCd̃

fA
B

 = 0

if and only if f ∈ RV is a constant function while A = B = 0. Thus

k =

√
det(d̃Tō Cd̃ō)
det(dTō Cdō)

=

√
det0(d̃TCd̃)

det0(dTCd)

and det0 denotes the product of non-zero eigenvalues. �

Remark 6.2. The discrete Laplace operator dTCd is a sub-matrix of d̃TCd̃. The
Schur complement of the block (dTCd)ōō of the matrix (d̃TCd̃)ōō is in fact the matrix(

0 1
−1 0

)
L
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c1

γ1

c2c3
γ2

Figure 1. One-vertex triangulation of the torus. The vertex has
six neighboring edges on the universal cover.

where L is the response matrix that we used.

Example 1. We consider a one-vertex triangulation of the torus (Figure 1). By
computing the L operator on the period space, one finds that the minimal energy is

kc =
√
c1c2 + c2c3 + c3c1

and the optimal Euclidean structure is given by

τc =
−c2 + i

√
c1c2 + c2c3 + c3c1
c2 + c3

where i =
√
−1. Notice that Re τc < 0 for this weighted graph. In other words,

for this graph, any realization to a Euclidean torus Sτ with Re τ > 0 cannot be a
minimizer of Ec for any positive edge weights c.

7. Weights with arbitrary sign

In Theorem 1.1, the assumption about edge weights being positive is not com-
pulsory. We can allow the edge weights taking negative values as long as the energy
functional is positive definite over the space of closed discrete 1-forms.

Definition 7.1. Let (V,E, F ) be a cell decomposition of a torus. The edge weight

c : E → R is said to be non-degenerate if for every closed 1-form ω : ~E → R

Ec(ω) =
∑
ij

cijω
2
ij ≥ 0

and the equality holds if and only if ω ≡ 0

Proposition 7.2. Suppose the edge weight c : E → R is non-degenerate. Then
over the period space L : R2 → R2 is well defined.

Proof. We first show that if ω is a harmonic 1-form with vanishing periods, then
it must be trivial. Observe that ω having vanishing periods implies there exists
f : V → R such that ωij = fj − fi. Thus∑

cijω
2
ij =

∑
i

fi
∑
j

cij(fj − fi) = 0

The non-degeneracy of ω yields ω ≡ 0. This also implies the uniqueness of harmonic
1-form with any given periods if exist. Indeed, by dimensional argument, we thus
deduce that for any prescribed period (A,B), there exists a unique harmonic 1-form
ω such that ∑

γ1

ω = A,
∑
γ1

ω = B

Thus the map L : R2 → R2 as in Section 4 is well defined. �
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For non-degenerate edge weights, one can check Proposition 4.4, 5.1 and 5.2
hold and the proofs remain the same. However, Corollary 1.2 has to be interpreted
differently.
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