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Abstract

In this paper, we establish the global existence of smooth solutions to the 2-dimensional (2D) com-
pressible isentropic irrotational Euler equations for Chaplygin gases with the short pulse initial data
introduced by Christodoulou. This is related to the Majda’s conjecture on the non-formation of shock
waves of solutions from smooth initial data for multi-dimensional nonlinear symmetric systems which
are totally linearly degenerate. The main ingredients of our analysis consist of showing the positivity of
the inverse foliation density near the outermost conic surface for all time and solving a global Goursat
problem inside the outermost cone. To overcome the difficulties due to the slower time decay rate of the
solutions to the 2D wave equation and the largeness of the solution, we introduce some new auxiliary
energies. It is noted that the methods and results in the paper can be extended to general 2D quasilinear
wave equations satisfying corresponding null conditions for short pulse initial data.
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1 Introduction

1.1 The formulation of the problem and main results

The 2-dimensional (2D) compressible isentropic Euler equations for Chaplygin gases are

{ dyp + div(pv) =0,

1.1
O¢(pv) + div(pv ® v) + Vp =0, (-0

which express the conservations of the mass and momentum respectively. Where V = (01,02) =
(Opy,O0ry), (t, ) € Ry x R%, v = (v1, v2), p, p stand for the velocity, density, pressure respectively, and

the equation of state is given by
B
p(p) = Po — " (1.2)

with Py and B being positive constants.
Away from vacuum, i.e., p > 0, the system can be symmetrized as

AgdV + A101V + AV =0 (1.3)
with
V1 p 0 0 pvr O 1 pva 0 0
V= V9 ,AO = 0 P 0 ,Al = 0 pPU1 0 ,AQ = 0 pU2 1 . (1.4)
D 0 0 % 1 0 % 0 1 %2

For any w = (w!,w?) € S, Ay (w! A + w?Ay) has three real distinct eigenvalues

M(V,w) = wlvg + w?vy — c(p), X(V,w) = wlor + w?ovs, A3(V,w) = wlvy 4+ w?vy + c(p),



with the corresponding right eigenvectors r1(V,w) =

1

= (W' w? —pc(p), 2(Vow) = (—w?,w', 0)7,
r3(V,w) = (w!,w?, pc(p))T respectively, where c(p) =

\/ ( ) = % is the local sound speed. It is
then easy to verify that for any w € S',

VV/\i(V,w) : rz-(V,w) = 07 1= 1, 2,3. (15)

Thus the 2D compressible isentropic Euler system for Chaplygin gases is the prototype example of
multidimensional quasilinear symmetric hyperbolic systems with totally linearly degenerate structures.
Our main concern is the global in time smooth solutions to such a system for general smooth initial data,
in particular, the non-formation of shock waves for smooth solutions in finite time. This is closely related
to the following conjecture formulated clearly by Majda in [31]:

Conjecture. For any given n-dimensional nonlinear symmetric hyperbolic system with totally lin-
early degenerate structures, a smooth solution, say in C([0,T], H,(R™)) N C*([0,T], H:; H(R™)),
T > 0, s > 5 + 1, will exist globally in time in general when the solution runs out of the domain
of definition of the Cauchy problem in finite time. In particular, the shock wave formation does not occur
in general for any smooth initial data.

As pointed out in [31] by Majda, such a conjecture is plausible physically and its resolution would
both elucidate the nonlinear nature of the condition requiring linear degeneracy of each characteristic
field and may isolate the fashion in which the shock wave formation arises in quasilinear hyperbolic
systems. However, although some important progress have been achieved in the case n = 1 [24,27,28],
yet this conjecture has been far from being solved in multi-dimensions, even for small data except the
special cases [8, 16,18, 19]. In this paper, we will resolve this conjecture for the physically important
system in 2D, (1.1), for a class of irrotational “short pulse” initial data.

Thus we supplement (1.1) with the irrotational initial data

(p,'l))(o, ) = (ﬁ+p0(')av0('>) = (ﬁ+p0(')77)?(')’vg('>)

such that p + po(z) > 0 and rot vg(x) = G20 — 1) = 0 with p being a positive constant which can
be normalized so that ¢(p) = 1. Then the irrotationality, rot v(t, - ) = (Oav1 — d1v2)(t, ) = 0, holds true
as long as the solution remains smooth. Hence there exists a potential function ¢ such that v = V¢, and

the Bernoulli’s law, 9;¢ + 1|V ¢|? + h(p) = 0, holds with the enthalpy h(p) satisfying h’(p) = 0275)[)) and
h(p) = 0. Therefore, for smooth irrotational flows, (1.1) is equivalent to

2

2
> 9P(00)0a50 == 0o+ Dp =2 0,00:0:6 + 20,60

a,B=0 i=1 (1.6)

—~ Z 8i00;0056 + |Vo|*Ad = 0

,j=1

with 20 = ¢, 9y = 0, 0 = (0, 01, 02) and A = §? + 93. We will study the global smooth solution to
equation (1.6) with the initial data of the “short pulse” form as

(6,008 i1 = (620 20,5 21) (" ), (17

where r = |z| = /2?7 + 2%, w = Z € S, & € (0, ] (o, #1)(s,w) are any fixed smooth functions
with compact supports in (—1, O) for the variable s. Furthermore it is required that

(O + 8, pli—1 = O(827150/2), 1 =1,2, (1.8)



4
and
(0 + 0PV 9'g)i1 = O(627070), 0<k <2, (1.9)

where Y stands for the derivative on S'. Note that although the short pulse initial data (¢, 9;¢)|;=1 in
(1.7) do not have the uniform boundedness (smallness) in %JF(RQ) X Hit (R2) -norm (independent of
0) required for the well-posedness of regular solutions for 2D quasilinear wave equations in [1-3,21,35]
(see Remarks 1.1-1.3), yet the conditions (1.7)-(1.9) imply the hyperbolicity of the equation (1.6) and
the suitably stronger smallness of the directional derivatives 0; + O, of ¢ up to the second order. This is
essential for our global existence of smooth solutions to the Cauchy problem (1.6)-(1.7).

The main result of this paper is stated as follows:

Theorem 1.1. Assume that (1.8)-(1.9) hold. Then there exists a suitably small positive constant &g
such that for all § € (0, 8], the Cauchy problem, (1.6)-(1.7), admits a global smooth solution ¢ €
C>®([1,400) x R2). Furthermore, it holds that for all time t > 1,

IVo(t,z)] < O =0t~ Y2 z e R?, (1.10)
where C' > 0 is a constant independent of 6 and &.

Some comments on the main result and a brief review of some closely related literature are given in
the following remarks.

Remark 1.1. The initial data of form (1.9) are essentially the “short pulse data” first introduced by D.
Christodoulou in [5], where it is shown that the formation of black holes in vacuum spacetime is due
to the condensation of the gravitational waves for the 3D Einstein equations in general relativity (see
also [23]). Note that properties (1.8)-(1.9) hold true for given smooth function ¢g and the choice of
qﬁl(%, w) = fasqbo(?"g—l, w) — %gbo(r%;l, w). In addition, a large class of short pulse initial data with
the properties (1.7)-(1.9) can be found for general second order quasilinear wave equations (see [12]).
Roughly speaking, the “short pulse data” can be regarded as some suitable extensions of a class of
“large” symmetric data, for which the smallness restrictions are imposed on angular directions and
along the “good” direction tangent to outgoing light cone {t = r}, but the largeness is kept at least for
the second order “bad” directional derivatives 0y — O,. This provides a powerful framework to study
effectively the blowup or the global existence of smooth solutions to the multi-dimensional hyperbolic
systems or the second order quasilinear wave equations with short pulse data by virtue of the corre-
sponding knowledge from the 1D cases, see [5,6, 11-13, 17,23, 29, 30, 32, 33, 36, 37] and the references
therein. It is noted that for short pulse data (1.7) and sufficiently small § > 0, although both ||¢|| L~ and
||| are small att = 1, yet the initial data are still regarded as “large” in the sense that |0*¢| may
be large, and in fact,

—eq

11
16(1, a2y = OB 2" 7%) = 400 as 6 — 07 fors > =. (1.11)

Remark 1.2. Theorem 1.1 implies in particular the uniform (independent of 0) local in time well-
posedness for the Cauchy problem (1.6)-(1.7), which does not follow from the known results [21,22,35].
Indeed, for the Cauchy problem of general 2D quasilinear wave equation with smooth coefficients,

2
Z gaﬁ(w,aw)aiﬁw =0,
a,=0

(w(1,2), dw(l,x)) = (wo(x), wi(x)) € (H*(R?), H*~H(R?)),
the local in time well-posedness of solution w € C([1,T], H*(R?))NCY([1,T], H5~1(R?)) with s > %

has been established in [35]. However, such a theory cannot be applied to (1.6)-(1.7) to yield the local
well-posedness of smooth solution with time interval independent of § due to (1.11).

(1.12)



Remark 1.3. Consider the second order quasilinear wave equations of the form

2
3 g (w)92gw =0 (1.13)
a,3=0

with g% (0w) being smooth such that for small |Ow

)

2 2 2
g°% (Ow) :cg‘ﬁ + g PN w + g B2 1w, w + E BN ., W, w
7=0 71,72=0 71,72,73=0
2

ot Z caﬂrﬂ“/mﬁka,ylwa’mw, . -37kw+0(|8w|k+1),
717727"'77%:0

2
where k > 2, Z cg‘ﬁ 02
a,B=0
the l-th null condition (I < k) is defined to be

2
ST I Nawpty, o wy, = 0 forwy = —1, (wi,we) € ST (1.14)
04757’71u~~-,’7l:0

3= 0= —83 + A, and P, 0Bz 0BT gre constants. Then

If one supplements (1.13) with small data, i.e.,
(w, Qw)(1,z) = e(wo, w1)(x) (1.15)

with (wo,w1) € C§°(R?) and € > 0 being sufficiently small, then the global well-posedness of the
solution to (1.13) and (1.15) has been studied extensively and it is known that the small data solution
exists globally if both the first and second null conditions hold, while it blows up in general if otherwise,
see [1-3]. However, such a theory does not apply to the Cauchy problem (1.6)-(1.7) since though both
the first and second null conditions are satisfied for (1.6), yet the smallness condition (1.15) can not
be true by the short pulse data (1.7) due to (1.11). It should be noted that recently in [13], we have
considered the global well-posedness problem for (1.13) with short pulse data of the form

r—1
)
where ¢o(s,w) and ¢1(s,w) are smooth functions supported in (—1,0) for the variable s, and shown
that there exists an optimal constant €}, € (0,1), (e} = 11 as k — o0), such that the smooth solution
to (1.13) and (1.16) exists globally for eq € (0,¢},) if the k-th null condition and all B = bz =
o = BM2-M-1 = 0 hold, and blows up in finite time if the k-th order null condition fails and

o0 € e}, 1).

(w, Qyw)(1,x) = (6>, 601 ) (——, w), (1.16)

Remark 1.4. Theorem 1.1 implies that Majda’s conjecture is solved for the 2D compressible Euler
system for Chaplygin gases, (1.1) with small and irrotational data. Yet such a conjecture is still open
for general small data of the form (p,v)(0,x) = (p + epo(x),evo(x)) with € > 0 being small without
the irrotationality assumption unless some symmetries are assumed, see [8, 16, 18, 19] and the references
therein.

Remark 1.5. In [11], we have also established the global existence of smooth solutions for the 3D
compressible isentropic Euler equations with irrotational and short pulse initial data of the form (1.7)-
(1.9). Compared with the analysis for 3D in [11], due to the slower time-decay rate of the solutions in
2D, more involved and technical analysis is needed in this paper.
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Remark 1.6. Note that for the short pulse data (1.7) satisfying (1.8)-(1.9), it holds that |V ¢| is small
for small 5 > 0, which is necessary to ensure the hyperbolicity of (1.6). This is in contrast to the case
in [32], where the global smooth solution ¢ = (¢, --- , V) has been established for the following 3D
semi-linear wave system

O¢' =Q'(Ve,Ve), i=1,--- N (1.17)
with some short pulse data, where Q'(NVp, V) are quadratic forms in Vi and satisfy the first null
condition. In [32], the short pulse data for (1.17) are required to satisfy, instead of (1.9),

(8% + 0, 9™ ey < 62, VE < Ny (1.18)

for some sufficiently large No, where Y stands for any derivative on S%. Note that though (1.18) imposes
no restriction on the size of V since the semi-linear wave equation (1.17) is always hyperbolic with
respect to the time, yet Ny is required to be sufficiently large. It should be emphasized that one cannot
require (1.9) holds for large k since it follows from (1.7) and (1.6) that 3ga;¢‘t:1 = 0(52750/27“1') hold
such that (1.9) seems to be over-determined for k > 3. Furthermore, our energies for (1.6) are different
from the ones in [32].

Remark 1.7. We have generalized the main ideas and techniques in this paper to study the Cauchy
problem for general 4D quasilinear wave equations of the form

4
D 9™ (w,0w)92 5w = 0 (1.19)
a,B=0

with short pulse initial data (1.16), where (1.19) satisfies the first null condition, and ¢y(s,w) and
#1(s,w) are smooth functions on R x S3 with compact support in (—1,0) for the variable s satisfy-

ing
(8 + 0,)F Q9w = O8>~ 1) for0 <k <3, Qe {20, —270;,1 <i < j <4},

We have shown in [12] that there exists an optimal constant €* € (0, 1) such that for g € (0,€*), such
a problem has a global smooth solution.

Remark 1.8. There have been many very interesting recent works on global well-posedness or finite
blowup of smooth solutions to various nonlinear multi-dimensional wave equations with some short
pulse initial data. In particular, in [33], Miao and Yu studied the following 3D problem

— (1+3G"(0)(8:¢)*)0}¢ + A¢ = 0,

— (1.20)
(6,006)(~2,2) = (%260, 8"261) ("= ),

where G"(0) is a non-zero constant, w € S? & > 0 is suitably small, and ¢o(s,w) and ¢1(s,w) are
given smooth functions supported in (0, 1] with respect to s, and proved the shock formation before time
t = —1 due to the genuinely nonlinear structure in the equation (1.20) which leads to the compression
of incoming characteristic conic surfaces. This is one of main motivations of our works. Moreover,
some systematic results along this line have been obtained in [11, 14, 29] for general quasilinear wave
equations of the form Zi,ﬁ:o gaﬁ(ﬁw)ﬁiﬁw = 0 with short pulse initial data (1.16) (for 0 < gg < 1).

Remark 1.9. Note that for the short pulse data (1.7), the corresponding initial data (p,v) for (1.1) are
small perturbations of the non-vacuum uniform state (p,0). For general large initial data, one cannot
expect the global existence of smooth solution to (1.1) in general. Indeed, even in 1D case, such a global
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existence of smooth solution fails for general large data as shown by the following example. Consider
the following Cauchy problem of the 1D compressible isentropic Euler equation for Chaplygin gases

Op + 0. (pv) =0
B(pv) + 0u(pv® + p(p)) = 0 (1.21)
(pv v)(07 x) = (17 UO(:E))

1

where p(p) = 2 — 2 00 () € C§°(—1,1) and vo(x) # 0. In terms of Lagrange coordinate (s, m):

s=1, m= / p(t7 y)dya
n(t,0)

where 1(t,y) is the particular path through y, (1.21) becomes

dsp + p?Opmv = 0,
9sv + Omp(p) = 0,
p(ovm) =1, U(Ovm) :Uﬂ(m)‘

Then the special volume V = % solves the following problem

{DV: (82 — 02V =0,
(V,95V)(0,m) = (1,vh(m)),

whose unique solution is
1
V(s,m) = 1+§(vo(m+s)—v0(m—s)). (1.22)

It follows from (1.22) that one can choose vo such that vo(mz) — vo(my) = —2 for my,ma € (—1,1)
with my < 0 < ma. Hence for such initial data, there exists a s* < ™25 such that

0<V(s,m), s<s*,minV(s*,m) =0,

which implies max p(s,m) — oo as s — s*, so concentration occurs at s*. Note that even for such
an example, the Majda’s conjecture still holds true since the singularity is the density concentration,
not formation of shocks. For more results on finite time blow up of smooth solutions to n-dimensional
quasilinear wave equations with general large data (not the short pulse data), we refer to [34] and the
references therein.

Remark 1.10. Finally, we make some brief comments on the analysis of the proof of Theorem 1.1, the
details are given in the next subsection. Our analysis is strongly motivated by the geometric approach
initiated by D. Christodoulou in order to study the formation of shocks for multi-dimensional hyperbolic
systems and the second order wave equations with the genuinely nonlinear conditions, see also [6, 17,
30, 33, 36, 37]. In the seminal work [4], Christodoulou introduced the “inverse foliation density” | to
measure the compression of the outgoing characteristic surfaces, and proved the finite time formation
of shocks for 3D relativistic Euler equations with small initial data by developing a geometric approach
which has been applied and refined to study shock formation for other important problems, see [4-6, 17,
29,33,36,37], where the key is to show that 1 is positive away from the shock and approaches 0" near the
blowup curve in finite time based on the genuinely nonlinear conditions. In this paper, the characteristic
fields for Chaplygin gases are linearly degenerate, so it is possible to exclude the possibility of finite time
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collapse of the outgoing characteristic surfaces. Then as in [4,5,33,36], we may choose a similar inverse
foliation density yon a domain, Ays = {(t,z) : t > 1426,0 < t—r < 2§}, near the outermost outgoing
conic surface Coy = {t = r}. The first main step is to show that there exists a positive constant C' such
that n > C > 0 on Ass for all time, which can be established simultaneously with suitable apriori
time-decay estimate on the solution ¢ to (1.6) on Ass. To this end and to overcome the difficulties due to
the slow time decay rates of solutions to th 2D wave equation, we introduce some new auxiliary energies
and take full advantages that the equation (1.6) is totally linearly degenerate and satisfies both the first
and second null conditions, which are rather different from the analysis in [4, 31]. Then we can obtain
the global smooth solution ¢ of (1.6) with suitable time-decay in Ass. The second main step to prove
Theorem 1.1 is to solve a Goursat problem for (1.6) in the domain Bos = {(t,z) : t > 14+06,t —r > 25}
inside the outermost outgoing cone {r < t}. To this end, we first derive some delicate estimates on
Cos = {(t,z) : t > 1+ 25,t —r = 20} which is the lateral boundary of Bas (see the end of Section 10
for details). Then we can establish the global weighted energies of ¢ in Bos by making use of both the
first and second null conditions satisfied by (1.6). It should be noted that (1.7) is the short pulse data, it
seems difficult to adopt the ideas in [8, 32] where the data are small. Finally, Theorem 1.1 follows from
these two main steps.

1.2 Sketch for the proof of Theorem 1.1

Since the proof of Theorem 1.1 is rather lengthy, for convenience of the reader, we will outline the main
steps and ideas of the analysis in this subsection. Recall some notations in Remark 1.10: Cy = {(¢, ) :
t > 1+ 24,t = r} is the outermost outgoing conic surface; Ays = {(t,z) : t > 1+26,0 <t —r < 24}
is a domain containing C; and Bys = {(t,z) : t > 14 6,t —r > 26} is a conic domain inside Cyp with
the lateral boundary given by Cos = {(t,x) : t > 1 + 26, — 7 = 25}. Then the proof of Theorem 1.1
consists of three parts: the local existence of solution ¢ for ¢ € [1,1 + 24], the global existence of the
solution in Asg, and the global existence in Bgs. The main ideas are sketched as follows.

1.2.1 Local existence of the solution for ¢ € [1,1 + 2]

At first, by the energy method and the special structure of equation (1.6), one can obtain the local exis-
tence of the smooth solution ¢ to (1.6) with (1.7)-(1.9) for ¢ € [1,1 + 26]. Furthermore, following basic
estimates on ¢(1 + 24, x) can be derived:

|L20%Q% (1 4 26, 2)| < 627 1=20 forr e [1 — 26,1 + 26], (1.23)
|L2O“Q (1 4 26, 2)| < 627 1°1=20 forr e [1 — 36,1 + 4], (1.24)

where a € Ny can be chosen as large as needed, o € Ng, k € Ng, L =0+ 0p, L =0 — 0, and
Q = 210y — 220;. Note that (1.23) and (1.24) yield some better smallness property of ¢ along certain
directional derivatives L or L in different space domains than that on the whole hypersurface {(t, z) :
t =1420} (i.e., |L20*QFp(1 + 26, )| < §*lel=lel=20 and | L49*QF (1 + 26, )| < 62~ lel=lal=20 can
be obtained for € R? and a > 2). Based on these crucial estimates together with the totally linearly
degenerate structure of (1.6), we can obtain the desired delicate estimates of ¢ near C, which is one of
the key points for proving the global existence of ¢ in As;.

1.2.2 Global existence of the solution in Ao

Motivated by the strategy of D. Christodoulou in [4], we start to construct the solution ¢ of (1.6) in
Ags. Note that although the main results in [4] concern the finite time blowup of smooth solutions to the
3-D compressible Euler equations, which seem to be different from our goal to establish global smooth
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solution to (1.6)-(1.7), yet we can still make full use of the idea in [4] to verify whether the outgoing
characteristic surfaces collapse since the intersection of characteristic surfaces will lead to the formation
of singularities of smooth solutions and further correspond to the formation of shock waves, as indicated
in other studies for global existence of smooth solutions to the compressible Euler equation [7,38—41].
In this process, one of the key elements is to derive the suitable time-decay rates of the solution ¢ in
Ass under some suitable coordinate transformation. Due to the slower time-decay rate of solutions to
the 2-D wave equation, we need to introduce some new auxiliary energies and carry out some delicate
analysis on the related nonlinear forms by utilizing the distinguished characters of the resulting new 2-D
quasilinear wave equations satisfying the first and second null conditions as well as the totally linearly
degenerate condition. This is rather different from those in [4] and [36] for the 3D small data solution
problem with the genuinely nonlinear condition.

As in [4] or [36], for a given smooth solution ¢ to (1.6), one can study the related eikonal equation

Z 9°%(8¢)Doudzu = 0 with the initial data u(1 + 26, x) = 1 4 2§ — r. Then the inverse foliation
7/3 0
density p = —(Zi 50 9°?Daudst) ™" can be defined. Under the suitable bootstrap assumptions on

0¢ (see (x) in Section 4) and with the help of the totally linearly degeneracy of (1.6), then y satisfies
2

Ly = O(8Y20¢=3/2 ), where L = —p Z 9°P D, is a vector field approximating & + .. Thus

O‘vﬁZO
1 ~ 1 can be derived. The positivity of 1 means that the outgoing characteristic conic surfaces never

intersect as long as the smooth solution ¢ exists. Set ¢ = (o, 1, 2) = dp = (Ovp, D10, D2). Then
it follows from (1.6) that

pOgey = Fy(9,00), v=0,1,2, (1.25)

where g = gaﬁ(go)d:no‘d:z:ﬁ is the Lorentzian metric, (gas(p)) is the inverse matrix of (¢%%(¢)), O, =

|d - Z 0o (/| det g| go‘ﬁ J3), and F, are smooth functions in their arguments. To study the quasi-
et g|

7

linear wave system (1.25), we first focus on its linearization
py ¥ = @. (1.26)

Note that the function p never goes to O in the paper, which means that the defined energies and the
fluxes of ¥ (see (6.20)-(6.23) in Section 6) do not contain the degenerate factors. As in [12], it is crucial
to derive the global time-decay rate of ¥ since ¥ = W, = Z¥¢ will be chosen in (1.26), here Z
stands for one of some first order vector fields. In this case, by computing the commutator [p[y, Z k],
there will appear the quantities containing the (k + 2)-th order derivatives of ¢ in the expression ¢ of
(1.26). For examples, Y ZE=1)\ and WQZk_lu will occur in @, where A\ = g(@Xf, X)) is the second
fundamental form of S ,, with & being the Levi-Civita connection of g and X = 8% (¥ is the extended
local coordinate of # € S which is described by LY = 0and V|t=1126 = 0). Following the analogous
procedures in Section 3-Section 11 of [12] and by the much involved analysis to the 2D problem (1.6)
with (1.7), we can eventually obtain |¢| < § 1-20¢=1/2 and further close the basic bootstrap assumptions.
However, compared with the corresponding treatments for the global 4D problem in [12] or the 3D
problem before the shock formation in [4, 36], it is more difficult and complicated to derive the global
weighted energy estimates for the 2D system (1.26) with the suitable time-decay rates due to the lower
space dimensions. In order to obtain the global weighted energy of W, one can proceed as usual to
compute || pru 40y ¥ (VW) through appropriate choices of some first order vector field V', where Db =
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{(t,u,9):1 <t <t,0<u <u,0<9 <27}, We will choose the vector field V' as, respectively,

2
J1 = _Q2m Z gaHQnBLﬁaa,
a,k, =0

2
> B
<]2 = - Z gchmﬂL aom
a,k,3=0

2
1 1
J3 = Z (§Q2m—1‘1,9a\11 o Z‘1}2@a(92m—1))80”

a=0

2
where m € (%, %) is a fixed constant, o = t — wu, L= —,u(lo} + 2 Zg”oa,,), and () is the energy-

v=0
momentum tensor field of U given as

2
Qus = (0a)(D50) ~ 3005 Y 9O T)(OLD)
v,A=0

It should be pointed out that the weight o acts as the time t in J; and J3 since p ~ {, and the

requirement of m > % in Jp is due to the slow time-decay rate of solutions to the 2-D wave equation

such that some related integrals are convergent (see (9.22) in Section 9, where ftto = 12=mdr will be
uniformly bounded for t). However, once m > % is chosen, then f D ,uDg\I/(V\II) with V' = J; and
Ja will contain the non-negative integral (m — %) S 10>~ 1AW |? which cannot be controlled by the
corresponding energies and fluxes on the left hand side of the resulting inequality. To overcome this
crucial difficulty, we introduce a new vector field .J3. Thanks to the special structure of J3 and by some
technical manipulations, we can eventually obtain a new term (m — 1) [, po®™ ' |d¥|?* instead of
(m—3) [ Dtu 110°™ AW |? on the right hand side of the related energy inequality, which has the desired
sign for m < 1. Meanwhile, in the estimate of [}, uy¥(J3W), it is necessary to restrict m < % since
the integral ftto 72m=5/2 7 is required to be uniformly bounded (see (6.32)). In addition, it is noted that
for the shock formation problem of the 3-D potential flow equation for polytropic gases with small initial
data, the vector fields J; with m = 1 and J are chosen in the related energy estimates, see Subsection
10.2 of [36].

1.2.3 Global existence of the solution in By

It follows from (1.23) and (1.24) that for r € [1 — 30, 1 + 0], 9“¢ admit the smallness of the higher order
62-1el=20 4t time ¢t = 1 + 26. In addition, note that the outgoing characteristic cones of (1.6) starting
from {t =1+ 20,1 — 26 < r <1+ 4} are almost straight, and contain Cys. By the properties (1.23)
and (1.24), we can prove that on Css, the solution ¢ and its derivatives satisfy |0%¢| < §27c0¢=1/2 with
the better smallness O(52~<°). Based on such “good” smallness of ¢ on Cys, we will solve the global
Goursat problem of (1.6) in the conic domain Bsys. To this end, we intend to establish the global weighted
energy estimates for the solution ¢ in Bss and make use of the Klainerman-Sobolev inequality to get the
time-decay rates for 9%¢. However, since the classical Klainerman-Sobolev inequality holds generally
on the whole space (see Proposition 6.5.1 in [21]), we need a modified Klainerman-Sobolev inequality
for Bys whose lateral boundary is Cas. Using this together with the bootstrap energy assumptions, and

2(1—&-15—1")’1/2

a careful analysis on the weighted energy estimates with the ghost weight W = e , wWe can
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obtain the large time behaviours of the solution ¢ up to the forth order derivatives (see Proposition 11.1),
for examples, (w'd;+0;)p = O(625/16=20)t=3/2(1 4t —7), (W' +3;)0p = O(3%/3720)t=3/2(1 4t —r),
(W' +0;)0%p = O(6°/16=20)¢=3/2(1 4+t —r) and (W'D +0;)0%p = O(69/16=20)¢t=3/2(1 4+t —r) with
i = 1,2 (which imply that 9*¢ may be large). On the other hand, the bootstrap assumptions can not be
closed directly since the corresponding higher order energies of ¢ may grow in time as ¢2 (here ¢ > 0 is
some positive constant, see Theorem 11.1). To overcome this difficulty, we turn to studying the nonlinear
equation for the error <;5 = ¢ — ¢q, Where ¢, is the solution to the 2D free wave equation [, = 0 with
the initial data (¢(1 + 26, x), 0:¢(1 + 26, x)), and obtain the uniformly controllable energy estimates for
¢ by a delicate analysis. Based on this, the bootstrap energy assumptions of ¢ can be closed, and the
global existence of ¢ with |0¢| < C'§25/16=20¢=1/2 inside By is established.

1.3 Organization of the paper

Our paper is organized as follows. In Section 2, we prove the local existence of the solution ¢ for
1 <t <14 26 by the energy method, moreover, some desired smallness properties of ¢ are obtained. In
Section 3, we first list some preliminary knowledge in the differential geometry, such as the definitions
of the optical function, the inverse foliation density p, the deformation tensor, the null frame and some
norms of smooth functions. Then the equation for p is derived, and some elementary calculations for
the covariant derivatives of the null frame and for the deformation tensors are given. In Section 4, the
crucial bootstrap assumptions (%) in Ags are listed, meanwhile, under assumptions (x) we derive some
estimates on several quantities which will be extensively used in subsequent sections. In Section 5,
under assumptions (%), the L> estimates for the higher order derivatives of ¢ in Ass are established. In
Section 6, we carry out the energy estimates for the linearized equation 1,V = @ and define some
suitable higher order weighted energies and fluxes as in [36]. In Section 7, under assumptions (%), we
derive the higher order L? estimates of several key quantities. In Section 8, L? estimates on the highest
order derivatives of tr\ and /Ay are established, where tr) is the trace of the second fundamental form
A, and /A is the Laplacian operator on S'. In Section 9, we deal with the error terms appeared in the
energy inequalities of Section 6. Based on all the estimates in Section 4-Section 9, in Section 10 we
complete the bootstrap argument and further establish the global existence of the solution ¢ to (1.6) in
Ass. In addition, in the end of Section 10, we derive the delicate estimates of ¢ on 6’25, which will
play an important role in solving the global Goursat problem inside Bs. Finally, we establish the global
existence of the solution ¢ in Bsgs and complete the proof of Theorem 1.1 in Section 11.

1.4 Notations

Through the whole paper, unless stated otherwise, Greek indices {«, 3, - - - }, corresponding to the space-
time coordinates, are chosen in {0, 1, 2}; Latin indices {3, j, k, - - - }, corresponding to the spatial coordi-
nates, are {1,2}; and we use the Einstein summation convention to sum over repeated upper and lower
indices. In addition, the convention f < g means that there exists a generic positive constant C' such that
[ <Cy.
Since (1.6) is a nonlinear wave equation, it is natural to introduce the inverse spacetime metric (gaﬁ)
as follows:
g =-1, ¢ =9"=-00, g7 =cbiy—0i60;9, (1.27)

while (g,s) represents the corresponding metric:
goo = —1+c Vo, gio = goi = —c 10, gij = ¢ b, (1.28)

where ¢ = 1 + 29,¢ + |V ¢|?, and §;; is the usual Kronecker symbol.
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Finally, the following notations will be used throughout the paper:

to =1+ 296,
L =0+ 0y,
L:at_ara
Qzeg:piﬁj,
t— t
S=t0i+r0, = L+ 1L

: r—t ot tw'
Hi:t&-—l—x’@t:w’(r2 L+ J;rL)+ 7}(2,

Y ={(t x):t' =tz eR?},

where e =1, el = —1, ¢! = 0andw; = (—w? wh).

2 Local existence of the smooth solution ¢

In this section, we use the energy method to prove the local existence of the smooth solution ¢ to (1.6)
with (1.7) for 1 < ¢ < (. Furthermore, we derive the important smallness estimates of ¢(to, x) on some
special spatial domains. The main result is:

Theorem 2.1. Under the assumptions (1.8) and (1.9) on (¢g, ¢1), when 6 > 0 is suitably small, the
Cauchy problem, (1.6)-(1.7), admits a local smooth solution ¢ € C>¥([1,t] x R?). Moreover, for
a €Np, be Ny, q¢€ Ng and k € Ny, it holds that

(i)
|L20I0 (g, )| < 6¥lal=s0 e [1— 26,1+ 20], 2.1
|L20%0 p(tg, 2)| < 627120 e 136,14+ 4). (22)
(i)
1090 B (to, )| < 077, as ol <2, [1— 38,1+ 0] 2.3)
,T)| S re|l—30,1+09]. .
0 547‘(1'7607 as ‘Q| > 27
(iii)
|LALPQF o (to, )| < 6%7%0, e[l —26,1+ ). (2.4)

Proof. Although the proof is rather analogous to that of Theorem 3.1 in [12], due to the different struc-
tures between the general 4D quasilinear wave equation satisfying the first null condition in [12] and the
2D quasilinear equation (1.6) fulfilling the first and second null conditions, we still give the details for
the reader’s convenience.
Denote by Z, any fixed vector field in {.S, H;,i = 1,2}. Suppose that for 1 <t < ¢y and Ny € Ny
with Ny > 6,
0°0F Zg ¢ < 6%271 (jgl+k+a < Ny, a<2). 2.5)

Define the following energy for (1.6) and for n € Ng,

Mu(t)y = > 9009 Zp(t, )72 g2
la|+k+a<n
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Letw = 011990 Z%¢ (|| + k + a < 2Ny — 2). It follows from (1.27), (1.6) and integration by
parts that

t

// (atwgo‘ﬁ(‘?iﬁw)(T,x)dxdT
1 s,

1

:2/2 (= (Bww)? — g Qwojw) (¢, x)dx — ;/2 (= (Bw)? — ¢" 0;wojw) (1, z)dx (2.6)
tt 1
1

+ / ( — BigOi(atw)Q — (&-gij)@jw@tw + %(Gtgij)aiwajw) (1, x)dxdr

with
gaﬂﬁiﬁw — gldl Z (90™ 0k Zgl (b)(aQanQkQ Z;;Q é)
Ezz:1(%‘7kz‘7ai) < (q,k,a)
(q2,k2,0a2) < (q,k,a)
o 2 (007 0 231 6) (000 Zg20) (P00 231,

22 (gi, kivai) < (g, k,a)
(Q37 k3a Gg) < (q, k, a)

2.7

where we have neglected the unnecessary constant coefficients in (2.7).
It follows from the assumption (2.5) and (2.6) that

/E ((Br0)? + [Vwl?) (¢, 2)de

w)? w|? x)dx t —1/2 w)? w|?) (1, z)dxdr
S [ (@) + [vuP) o) +/1/T5 () + [Vul?) (r.2)dadr  28)

31
t
+/1/2 |(atwga63§5w)|(7,x)dxd7-.

Using the bootstrap assumption (2.5) to estimate (2.7) and substituting the resulting estimates into (2.8),
one can get from the Gronwall’s inequality that for 1 < ¢ < ¢,

Mo, _5(t) < Man,_3(1)ed /2D < g3=2¢0,

Next, it follows from the following Sobolev’s imbedding theorem on the circle S! (with center at the
origin and radius 7):

w(t,z)] £ =195 wll 2y,

7|
together with r ~ 1 for t € [1,¢o] and (¢,x) € supp w that
099 Z56(t, )| < 1951079 Z5 6| 12 (sp) S 67|05 0IFZ5 6| L2,y S 5771, (2.9)

when |q| + k + a < Np and a < 2, where Ny > 6 has been used. Therefore, (2.5) can be closed for
suitably small 6 > 0 and g5 < % A
This, together with L = (¢t + )~ (S + w'H;), yields

|L009QF p(t, x)| S | Z50°Q p(t, x)| S 67190 (2.10)

with |g| + £+ a < Npand a < 2.
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Y0

2
T=1—25 'r=1—(5 T

1 r=1+26

Figure 1. Space-time domain D! = {(t,7) : 1 <t <tp,2 -t <r <t}

Now we start to improve the L estimate of ¢(to, ) on some special domains. Note that (1.6) can
be rewritten as

_ L1t 1 Loz, Lo, Loo, v L r0
LL¢—@{2TL¢ o Lo+ 0% + L% Lo+ L7 Lo — - (L9) +G1+Ga}, (2.11)

where © = 1 + % L¢, G1 and G4 are quadratic and cubic nonlinearities in the first and second order
derivatives of ¢, which have better smallness due to (2.10).

Acting the operator L? on both sides of (2.11) yields an expression of LL?’qb by LL = LL and direct
computations. It can be checked easily that the worst terms in the expression of LL3¢ are 5 (L1¢) (L)
and 55(L%¢)(L%¢). Then one can use (2.10) to get [LL3¢| < §'7%0. Using this together with the
vanishing property of ¢ on Cy, one can integrate LL3¢ along integral curves of L to show that for
(t,7) € D' (see Figure 1),

|L3p(t, x)| < 6272, (2.12)

Similarly, it holds that for (¢,7) € D?,

|L3090F g (t, )| < 627 1=250 for |g| + k < Ny — 4. (2.13)
Substituting (2.10) and (2.13) into the expression of L L3¢ again, and noting that the worst term in the
expression of LL3¢ becomes — 515 L2L¢, one then further gets |[LL3¢| < 6'7° for (t,r) € D' by
(2.10). Hence the following improved smallness estimate holds:

|L3p(to, z)| < 02750 forl—26 <r <1+ 26.
Similar arguments show that
|L3090 ¢ (to, )| < 6271150 for|q| + k < Nop—5Hand1—26 <r <1+ 26.

Analogously, for € [1 — 2§, 1 + 24], an induction argument yields that

|L2L0%0% p(to, )| < 6271020 304 |¢| + k < No — 2. (2.14)
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el — 5 r=1-6 r=1 r=1+6

Figure 2. Space domain for 1 — 35 <r <144 on 395

Similarly, by the expression of LL®092"¢, integrating along integral curves of L yields that for
r € [1 — 34,1+ ¢] (see Figure 2),

|L20I0 ¢ (tg, x)| < 627101720 24 4 |g| + k < Ny — 1. (2.15)

k3

Furthermore, since 9; = %(L +L)and 0; = (L — L) + %Q, 0 (2.15), (2.11) and (2.10) imply that
when |¢| + k < Ny —3andr € [1 — 36,1 + 4],

52780 ag lq] <2,

070k @(to, )| < { (2.16)

sld==0as |g| > 2.

Next we prove the final estimate (2.4). Note that (2.16) implies that on the surface X;, with r €
[1—26,1+6], |L=2QF¢| < 62750 and |L=2QF¢| < 627°0 for k < Ny — 5, and hence | LLQF¢| < 62720
by (2.11). Furthermore, we claim that

|LALPQF | < 6270, for3a+3b+k < Np — 1. (2.17)

(2.17) can be proved by induction. Indeed, assume that (2.17) holds for a + b < ng with ng € Ny
satisfying 3ng + k < Ny — 1. One needs to verify the estimate in (2.17) for 3(ng + 1) + & < Ng and
a+b=mng. If a > 1, by (2.11) and the induction assumption, one can get that

’LaLb+1Qk¢‘ _ ’LaflLka(Lqu)’

<5220 4 §2-c0| ot bkl 4 §2—c0| a1 20 <k g (2.18)
This together with an induction argument yields
ILLPHIQFg| < 6770 4 520 |LU T LY. (2.19)
If b > 1, similar to the proof of (2.19), one has
LT PG| < 0770 4 520 |LU LY TS g (2.20)

Combining (2.19) with (2.20) yields
|LaLb+1Qk¢| + |La+1Lka¢)| 5 52—50,

which means (2.4). Therefore, the proof of Theorem 2.1 is finished. ]
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3 Some preliminaries

3.1 The related geometry and definitions

In this subsection, we give some preliminaries on the related geometry and definitions, which will be
utilized as basic tools later on. It is assumed that a smooth solution ¢ to (1.6) is given. The “optical
function” corresponding to (1.6) can be introduced as in [4] (see also Definition 3.4 of [36]).

Definition 3.1 (Optical function). A C! function u(t,z) is called the optical function of problem (1.6) if
u satisfies the eikonal equation
9*?dpudgu = 0. (3.1)

Choose the initial data u(tp,z) = 1 4+ 29 — r and pose the condition d;u > 0 for (3.1). For a given
optical function, the inverse foliation density u of the outgoing cones is defined as

1 1

- (=), 2
H gBOudat ( gaoﬁau) (32)

We will show that > C > 0 as long as the smooth solution ¢ to (1.6) exists. We adopt most of
terminologies and definitions introduced by Christodoulou in [4] (see also [36]).
Note that
L=—g*8 Onu0g
is a tangent vector field for the outgoing light cone {u. = C'}. In addition, L is geodesic and Lt = pt
Then it is natural to rescale L as

L=ul,
which actually approximates to L = 9; + 0,. To obtain the approximate vector field of the incoming
light cone, one sets T =—g¢"%, — L, which is near —d, for t = to. Then in order to define a null frame,
one can set

T=ul, L=pL+2T,

where L and L are two vector fields in the null frame. Finally, the third vector field X in the null frame
can be constructed by using L. Extending the local coordinate § on S' as

LY =0,

De=t, = 0.
Subsequently, let X = %. Then X is the tangent vector on S ,. Rewrite X = X“0,. Then X 0=0
holds due to 2t = 0.

o9 —

Lemma 3.1. {L, L, X} constitutes a null frame with respect to the metric (9ap), and admits the follow-
ing identities:

g(L,L) = g(L,L) = g(L,X) = g(L,X) =0, (3.3)
g(L,L) = —2p. (34)

In addition,
Lt=1, Lu=0, (3.5)

Lt=p, Lu=2. (3.6)
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And

g(L,T) = —p, g(T,T) =2, (3.7)

Tt=0, Tu=1. (3.8)

As in [36] or [33], one can perform the change of coordinates: (t, 2!, z?) — (t,u, ) near Cy with

=t,
u=u(t,x), (3.9)
9= 0(t,)

Under the new coordinate (t, u, 1), we introduce the following subsets (see Figure 3 below):

Definition 3.2. Set

= {{,d,9) ¥ =t,0<d <u}, wue€l0,40],
Cu={{t,u,9): ¥ > ty,u/ = u},
Ct={({,u,0) : tg <t < t,u' = ul,

St,u = Et N Cu,
DY = {(,u/,9) i to <t < ,0 <o/ <}

Next, we list some geometric notations which will be used frequently.
Definition 3.3. For the metric g on the spacetime,

o g = (gij) is defined as the induced metric of g on %y, i.e., g(U, V) = g(U,V) for any tangent
vectors U and V' of X,

° ]ZIg = (5& —(5gloﬂ + Lo TP is the projection tensor field on S, of type (1, 1), where (5£ is Kronecker
delta;

o ¢ = A is the tensor field on S, for any (m, n)-type spacetime tensor field &, whose components

are
/

In particular, ¢ = (g is the induced metric of g on Sy,

op)
o (gXX) is defined as the inverse of § . with § ... = g(X, X);

e 9 and Y denote the Levi-Civita connection of g and ¢, respectively;
o [, := go‘ﬁ@iB, A= gXXW?X;

o Ly¢ is the Lie derivative of & with respect to V and Ly ¢ = YI(Ly€) for any tensor field & and
vector V' ;

e For any (m,n)-type spacetime tensor field &,

/
Oy,

|§‘2 = gal@ta e ganza;ngﬁlﬁl o gﬁnﬁnggllg'fznggilﬁa ’
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o divU = D,U® for any vectorfield U; divY = YV xY X and divk = WX/@X are angular diver-

gence for any vectorfield Y and one form k on St ,,.

C, Cy

Y1425

1-20 14+20—wu 1426

Figure 3. The indications of some domains

Under the frame {IO/, L, X}, the second fundamental forms X and 6 can be defined as

Axx =9(ZxL,X), Oxx =g(2xT,X). (3.10)
At the same time, define one-form tensors  and £ as
(x = 9(ZxL.T), &x =—g(IxT.L). (3.11)
Then u(x = — X + €x. For any vector field V, denote its associate deformation tensor by
Wrtas = 9(2aV,05) + 9(Z5V, 0a). (3.12)

i i
On the initial hypersurface $#°, one has that 7" = L yo@te), i0=1, 0= 4 0(5%7%0)
r r

1
and Axx = ¢, + 0(61750). Note that on X, r is just ty — u. For t > ¢y, we define the “error
T
vectors” with the components being
Y=o,
=1 — x—l
%
L gt (3.13)
T =T+ —,
o

where ¢ :=t — u.
Note that ¢J is the coordinate on S ,,. Then under the new coordinate system (t, u, ?}), one has L = %.
In addition, it follows from (3.8) that T = % — nX X for some smooth function 7. And moreover, a

similar analysis as for Lemma 3.66 of [36] gives that
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Lemma 3.2. In domain D%, the Jacobian determinant of map (t,u,9) — (2%, z', 2?) is

(20, zt, 2?) B _1/2

Remark 3.1. Iz follows from (3.14) that if the metrics g and ¢ are regular, that is, detg > 0 and

9y > 0. then the transformation of coordinates between (t,u, V) and (z°, 21, £2) makes sense as long
as > 0.

On S!, one is used to applying the standard rotation vector field 2 = ef :cif)j as the tangent derivative.
In order to project €2 on S 4, as in (3.39b) of [36], one can denote by

R:=1Q, d:=1d

the rotation vectorfield and differential of Sy ,,, respectively. Then

R = (MQ)'0; = (W;99)0; = (8 — g;aT*T*)Q 0y = Q — g;, TQIT. (3.15)
Set o o
vi= g T = gi; T (3.16)
Then one has 3
R=Q—T.

For domains with > 0, we give some definitions of related integrations and norms, which will be
utilized repeatedly in subsequent sections.

Definition 3.4 (Integrations and norms). For any continuous function f, set

/Qmj¥=il;ufm@:znélf(bu,ﬁh/gXX(EUM%dﬁ, HfH%q&&)?=jgwlffj

t
L= [ swndar 51y = [ 1P
C,& to ST,u C'ltt
/u f ;:/0 ; ft, ul,ﬁ)dl/gdul, ”fH%Q(E?) = /Eu ’f‘Q’
t t,u/ t

t pru
/ f ::/ / / fr, u/,ﬁ)dygdu/dﬂ HfH%2(Dt,u) 3:/ ‘f’z
Dtu to 40 ST,u/ Db

For reader’s convenience, the notation of contractions is recalled as follows:

Definition 3.5 (Contraction). If © is a (0, 2)-type spacetime tensor, k is a one form, U and V are vector
fields, the contraction of © with respect to U and V is then defined as

Ouy 1= OusUV7,
and the contraction of k with respect to U is
Ky = kaU®.
Definition 3.6. If £ is a (0, 2)-type tensor on Si,, then the trace of £ is defined as

tré = gXXfX)(.
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3.2 Basic equalities in the null frames

In this subsection, with the help of A, 6 ¢ and & defined in Section 3.1, we will derive some basic
equalities in the frame {L, L, X} or {T, L, X }.
Set

agaﬁ aG'y
G, =% and G :=
af 6@7 af - 84,0,/

0 0
For any vector fields U = U*—— and V = V®——, as in Definition 3.5, one can define GUV =
oz ox®

GopU VA and G}y, = =GRU @8, Direct computations yield

G%i =—2c7'07, GY.=2c", Gir= =2c Y, — 71T,

LT
Glz=-2c", Gi%z=—2c"¢pq, G%X —0, G, =—cldxa", (3.17)
Gy =0, Ghx =—2"gyxr Ghx=—2 Py
and
G%OE =8¢ 2, G%“i =4¢ (g, + LY, G‘%’l — —2( oL? + oy L),
Gg(gX - 72gXX’ GggX = 8072%&)@(7 C;’XX - 2(490a§0b - Caab)gxxv
GP =0, GYy =2 xa, GPy =27 (padxa’ + adxa?), (3.18)
G%OT = —8¢72, G%‘} = 20_2(Ta — 4<pa), G“b~ = _Q(C(Sab — 4papp + gpafb + gpr“)’
GOT%, =8¢ 2, G%“T =8¢ 2%, G%bf = 2¢72(4paspp — COap), G;’i( =0,

where dx f = X', f and d; f = V' (do f) = V5 (D f) for any smooth function f.
Based on (3.17), p satisfies the following transport equation.

Lemma 3.3. u satisfies
Ly = cilu(lo}alo/cpa — Lc) (3.19)
Proof. Note that L = —gaﬁé?auﬁﬂ is geodesic, i.e., @EI: = 0. Then it holds that
L*(0,LP)05 + Eaiﬁrgﬁa7 =0, (3.20)

1

where Fg 5 are the Christoffel symbols. Since IO = p+ and L= uf/, taking the component relative to

¢ in (3.20) yields

Lp= uiu = L LTy,

N 1 . e o (3.21)
§GLL(T900¢) - §NGEE(LSOOJ) - NGTL"/L(P(X-
Since Ty = 1 Z 00 — uigpa + 10 and Oy g = 93pq, one can get from (3.17) that
i
GY; (Tpa) = —2¢7 T (Lip,). (3.22)

Substituting (3.22) into (3.21) and applying (3.17) yield (3.19) immediately. ]
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Remark 3.2. The importance of the expression (3.19) should be emphasized here. Due to the special
2

structure of equation (1.6), j}u is just the combination of icpa (note that Le = 2j}<p0 + 2 Z goz-lolgoi ).
i=1

With the smallness and some suitable time-decay rate of Egaa, we will be able to show that > C for

some positive constant C (see (4.2) in Section 4). This is in contrast to the cases in [4], [33] and [36],

where the expressions of Ly contain the “bad” factor T'p, which leads to ;. — 0+ in finite time (e.g.

(2.36) in [33]).

Note that the quantity “deformation tensor” defined in (3.12) will occur in the subsequent energy
estimates. It is necessary to check the components of (V)7 in the null frame {i, L, X}.

Let (V)ﬁUX = (V)T('UX for U € {lO},L, X }. Following the computations for Proposition 7.7 of [36],
one can have

(1) forV =T,
Drpp=0, Onpp=2Tp, Dmpp=-Tu, Dy =0, (3.23)
Mis o = —dxp— 2T Axoa, Dty = 2u0xx; '

() forV =1,
Oy =0, Orpp=2bp, Orpp=—Lp, O =0,
: ) . (3.24)
( )¢TX = dxp+ 2y dx pa, )ﬂ-XX = 2A\xx;

3) forV =R,

(R)Wii =0, (R)WTT =2Rpu, (R)WET = —Ryu,

; » . 1 .1
R)fix = —R*Axx + gajel L'dxa® + v ' Tx oo — 50_1RXgXX(LC) - 50_1UdXC

1 o _
#TX = :UR )\XX + UdX,U + Gaj€ ZTZdXx + 20 MRXgXX(LC) —-cC 1M(R‘Pa)dX$a
1
+ §c_luv¢fxc,

R>¢XX =2vAxx + C_IU(ECWXX - QC_IU(dXan)dX% - C_I(RC)gXX'
(3.25)

. As seen in (3.19) and (3.23)-(3.25), the components of L and T appear frequently. In view of
T = ¢p; — L', one can find the equations for L' and L' under the actions of the derivatives in the
null frame {7, L, X}

Lemma 3.4. It holds that

LL' = —c'L¥(Lpa)T?, (3.26)

f)(gﬂi) = oLl = —cilgio‘(lo}gpa)fi, (3.27)
. 1 . 1 - . .

dxL' = (r\)dxz' + §C_I(LC)¢2X1’Z - §C_I(¢ZXC)TZ + T (dxpa) T, (3.28)
. . 1 . 1 - . .

Ay L' = (N )dxa’ + et (Lejdxa’ = S (due) T + 7T (dxpa) T, (3.29)

where de = gXXde = gXX(Xf)for any smooth function f.
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Proof. As for the proof of Proposition 4.7 in [36], (3.26)-(3.29) can be obtained directly by using (3.17).

O

In addition, it follows from (3.10)-(3.11), (3.17) and Lemma 3.4 that
(x = 'T(dxea),  &x =c uT(dxwa) + dxp, (3.30)
Oxx = —%c_l,u_l(Tc)gXX - %c_l(ic)g){x + ¢ Yy dxz® — Axx, (3.31)

which have been given in Lemma 5.1 of [36] in terms of G xy. Then (3.30) implies that

TL = — N (T Loa) T + (dxp) (™ 2¥) + ¢ (T dxpa)d ™ 2 + ;mdxcxdm (3.32)

For later analysis, one also needs the following connection coefficients in the new frames, which are
given in Lemma 5.1 and Lemma 5.3 of [36].

Lemma 3.5. The covariant derivatives in the frame {T, L, X} are
P;L = 'Lu)L, PrL=—LuL+&65X, IxL=—C(xL+mAX,
9T = —Lul — u¢XX, 97T = pLpl + (' Tp+ Lp)T — p(d™ p) X,

R A (3.33)
DxT = pCx L+ p~ ExT + (utrt) X
Dx X = WXX + (éXX + /\X)()E + Mfl)\X)(T.
Lemma 3.6. The covariant derivatives in the frame {L, L, X } are
P; L =—Lul + 265X, 9;L =—2u¢*X,
= (3.34)

Py L=~ Ly + L)L — 2ud™ )X

Next we compute the equation for ¢, under the action of the covariant wave operator [1,. With the
metric g given in (1.28), one has

1
0,0y =——0, detg|g®? 0
= T o (V/|detg|g* Dy )

= — ¢ 19" 0ac(98p,) + 9*P 0250+ (3.35)

_Zaz‘%’z at‘i‘Z(Pj ‘P'y‘i‘zaz@w 8t+280]
Differentiating (1.6) with respect to the variable 27 yields
6625907 =2 Z Ditp (0 + Z ©;j0j)pi — 2 Z dipi(O + Z ©;05) - (3.36)
i J

Substituting (3.36) into (3.35) yields

Ogpy = — ¢ 9°(0a)(95)
*3251901 at+z% gpﬁszal% o+ 005 (3.37)

J

Note that

g8 = —[eLP — ToLP — [oTP 4 (dya®)(dX o), (3.38)
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0y = ¢ VT + M (A ) X, (3.39)

O+ 05 =L+p'T. (3.40)
J

Then in the frame {7, f, X}, (3.37) can be rewritten as

HEgpy 20_1{3@0 +Te—3T"Tp; — guiﬁi% - gudxxi(dxw)}fi%
+se M Lot 8T g, — 3¢ 0 (dxo0) ) Loy (3.41)
+ 0_1{ — ,uch + 3M(i@i)dX$i + 3(Tgoi)dxxi}dxgow,
where v = 0, 1, 2.
For later use, we list in the following lemmas some identities involving commutators, which are given

in Lemmas 4.10, 8.9 and 8.11 of [36].

Lemma 3.7. In the frame {L, T, R}, it holds that

L, R) = g, X,
1L,1]= D¢, x, (3.42)
T, R = Mg, X,

where (R)a‘iX = gXX(R)ﬁiX and (R)ﬁix = (R)TI'EX = (R)Waﬁio‘Xﬁ.

Lemma 3.8. For any vector field Z € {L,T, R},

1. if f is a smooth function, then
1
([W27 Z:Z]f)XX = ivX (tr(Z)%L)dea
2. if © is a one-form on S, then

([Vx,£4]0)x = %WX (D ¢)Ox;

3. if©isa (0,2)-type tensor on S, then

(Yx,£210)xx = Vx (D)%) Oxx,
(V. £2170) xxx = SV x () 4) ¥ xOxx.

where (Z)ﬁXX =Dryx.
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4 Bootstrap assumptions on 0¢ near C\ and some related estimates

To show the global existence of a solution to (1.6) near Cp, we will utilize a bootstrap argument. To this
end, for any given smooth solution ¢ to (1.6), we make the following assumptions in D% C Ays:

5l\\iza@7|’Lw(zg) < Moo/
! 1—e0—3/2
SNAZ% || ooy < ME 20472,
17 —e04—1/2
SN LZ%py || Lo (syy < M0t /7, ()
2 o
IV 0 | oo () < ME' 047572,
[yl poo sy < Mo Eo/2)
where |a| < N, N is a fixed large positive integer, M is some positive number to be suitably chosen
later (at least double bounds of the corresponding quantities on time t¢(), Z € {oL,T, R}, and [ is the

number of 7" included in Z¢. o
We now give a rough estimate of p under assumptions (x). Note that 1 = gijTiT I = (1 +

2
O(M§t—=0t1/2)) Z |T%|? by (3.7). This means
i=1

1T, |LF] < 14 O(M§—=0¢~1/2) 4.1)

due to L = ; — T". This, together with (x) and (3.19), implies \L,u\ < M —20¢=3/2),, When 6 > 0 is
small, by integrating Ly along integral curves of L and noting p = =1+ 0(6'7%°) on 3;,, one can
get directly that

S\

p=1+O0(Ms ), 4.2)

To improve the assumptions (x), we may rewrite (3.41) in the frame {L, f;, X} as
o o 1 .
LLpy + %va = H,, 4.3)

here one has used the fact that ugp, = —.@%Lgov + 1 X D2y = LLpy — 20N A pry + by —

,u(tré + tr)\)Io/goﬁ, — trAT'p,, by (3.33) and (3.34). In addition, by (3.30)-(3.31),

1 e 3 ~ o 1 _ X
fl,y :,U%QO'Y + { — 50 I7e + 3¢ 1TaTSOa + 50 IMTaL@a + §C lﬂ(d xa)ngOa

1 . ° 1 . 1 o 3 ~ o 3 o
g+ 35} by + { = 5= so o= Se T gy + S (e} gy B9

— {37 + LY (A u)dxpr

It follows from the expression of H., that when there are some terms containing factors T’y or igpa
which are not small enough and have slow decay rate in time, then there will appear always some ac-
companymg factors Lgpv or tr\ with the “good” smallness and fast time-decay rate (see — 50 YTe) (Lgofy)
and — §tr)\(Lg07) in H.). This implies that /1, may possess some desired “good” properties for our anal-
ysis later.

Unless stated otherwise, from now on to Section 9, the pointwise estimates for the corresponding
quantities are all made inside the domain D%%.

It follows from (4.3) that Lgo7 can be estimated by integrating (4.3) along integral curves of L. To
this end, we start with the estimates of 47, \ and so on in H,,.
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Note that |dz’|? = ¢*°d, ' dya’ = c — (T%)2. Then (%) and (4.1) imply that

da'| < 1. 4.5)

To estimate \, one needs to study the structure equation of \ by utilizing the Riemann curvature %
of the metric g, which is defined as follows (see the Definition 11.1 of [36]):

Rwxvz = —9( Dy xY — DxwY, Z), (4.6)

where W, X, Y and Z are vector fields and .@a/XY = W“Xﬁ.@a.QBY. Due to (3.17) and (3.18), one
has

Lemma 4.1. Let # be the Riemann curvature tensor defined as (4.6). Then in the frame {L, T,X},
Ry ix and E; « i« have the following forms:

1 _ o .
‘%TXEX = ic 1dan(dXT‘Pa) +tc 1gxx(LT(PO + 0o LT ¢q)
_ 2 1- 2 1 . =~
= {¥xeo + (ga — 5TV x0a} + 5¢ (T xpa)dxp
1 1 1 ., =~
— 3¢ Lidxa® (dxpa)trh + 3¢ YTe)Axx — ¢ NT"Tpa)Ax x

e 2 (L ) < Ly ) < dyxle ) L2y ) ( pdx - dxe > ’

Ty dxz® - dxa F*Fuldxadxpq)?
4.7
_ o _ o o _ o 2
Rixix =—¢ dxa®(dxLoa) + ¢ gy (L0 + walPpa) + ¢ L7 (Vipy)
XXszD : dg@ )
- - Fa 7 — 2 (dxxdxpa)
+ ' Ndxz)d —c¢ A T Log) + ¢ 2f(L7, g : X ’
( X ) XPa XX( (Pa) f( 90) ﬁXX(DP)(Lf)
(dandX(Pa)L(P
4.8)
Ay By
where f, f1 and f5 are generic smooth functions with respect to their arguments and : :
A, B,

stands for those terms which are of forms A;B; (1 <i <n,1 < j <m).

Proof. Note that % is a (0, 4)-type tensor field. Taking W = 0., X = 0),Y = 0, and Z = 03 in (4.6),
and applying 7,03 = g7"I'4,30,, one gets

%nAa,B = a)\raﬁn - 8I€FA605 - gé’yravnFA&B + gé’yr)\'yarms,ﬁ

with the Christoffel symbols

1
Lo = §{Gg,§aa80v + Gzéﬁan%% - Glnalﬂov}-
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Then

Fnsas =5{ G BRasts — ConTinpn — Gip Tt + Gir D200}
— ig(”GEn 30 (0500)(0400) + ig‘”GEAGZa(é’a%)(awu)
- 3957((;5(56”%)( Jx0a)o) + EQM(GZ(,BOR)%)(Gg(xaa)%)
+ %{GE‘;(@A%)(%%) — Gt (O6po)(9800) — G55 (0kp0) (Oatpr)
+ G320 (0p0) (D50) }

where GZ(/\{?OC)@7 = G, 00y + GlaOrp. It follows from (3.38) that

97(950) (0y00) = (B~ 0a) (dxcpn) — (Lpa)(Lipy) — 1~ H(Twa)(Lipy) — 1~ (Tpy) (Lipa).-

Contracting #,;\qp With T (dxx*) L (dx xP) leads to

1
Q%XIX':§{MG}T9§jwu_‘NG%Tg§¢V_'G%XQ%va+'G}EQ§T@V}

corsningg e ) (1) )
LYo 9) | To :
pdp A

In addition, (3.31), (3.30) and Lemma 3.5 imply that

Dxrey =AxToy — (ZxT) oy

) pLp Lo
=dxToy — (W Toy)dxp+ (udxoy)rh + ¢ 2 f(AT, L% ¢, 9) | pde ( I ) :

Ty
(4.10)
Similarly,
2 7 -2 - Ta /«LIOJQD i(p
2 2 2p( 4= T Mi(p i@
1Dx oy = bV xy — Axx(Tpy) + ¢ 2 f(dZ, L 0, ¢) | pde ( do ) : (4.12)

Ty

Substituting (4.10)-(4.12) into (4.9) yields (4.7).

(4.8) follows by an analogous argument for (4.7), the details are omitted here. However, it should be
emphasized that the terms containing factors Tgoaigpg and Tgpadgog in (4.7) disappear in (4.8) due to
the special structure of (1.6). ]

Note that in Lemma 4.1, %y ; y and #;  ; | are obtained after contracting % With respect to
the corresponding vectorfields. If using (4.6) directly, e.g. Z; yj = g(.@x(@ii) - Qi(ng}), X),
then one can get the following structure equations for Ax x and Ax x with the help of Lemmas 4.1.
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Lemma 4.2. The second fundamental form X and its “error” form X, defined in (3.10) and (3.13) re-
spectively, satisfy the following structure equations:

Exxx =M xa(dxLoa) — ' (BP0 + wal?0a) — 1LY (Vipy) + (rA)Axx
(dxe)(dxp)
§F** (dxadxea)® | @13)
7 (Le)(Ly) )
(Xm'adXSOa)LSO

1 o ..
—c'trA(dxx®)dxa — 5071(LC)>\XX +c 2 f(L )

(1 . .
Lraxx =Yxu+c l{gdxfl(desoa) — § o (LT 00 + ¢aLT0) + 1V 00
1 7a 2 1 —1/7a
+ p(pa + §T )VX%} — p(trA)Axx — 3¢ (TTpq + Tc)Ax x

1 . 3
+ ¢ Yuldxa®dxpa)trh + 5¢ YT xpa)dxpt

ot () () e S2050 )

(4.14)

and hence,
. B W s s B . . . 1 e .
EAxx =e Mxa (dx D) = ¢ g (BP0 + wal00) = L1 (Fpy) = ¢ (L)

= Ny )y pa — 207 (B — 0l (A a )y pa + (M) Axx

2
X&dézw)(djw) »
_92 [Q/l g Xoxa )g‘pa
+e 7 f( 790) gXX(LSO)(LS?) )
(Xm'adXSDa)L‘p
(4.15)
) 1 . . 1-
Lrixx =Yxu+ 0_1{§dX$a(dXT<Pa) — g (LT00 + 0aLTpa) + 1V x 00 + 1100 + §T“)Y7§<soa}
.. 1 - 1 3 ~
— p(trA)Axx — §C_I(TaTg0a +Te)dxx + 50_1M(dxflfa¢fx%)f”)\ + 56_1(Tadx%)dxu
1 1, 9¢-1 1
+ T+ (L)~ TP e+ g
2 i Ly g Ly > 2 (Fi ( u(dx o) (dx ) >
reniii) (50 ) (e Y eenino (D0 ).
4.16)
Proof. 1. It follows from (4.6) that
ixix =9(Px(P;L) — 7;(IxL), X). (4.17)

Substituting the expressions for _@ilo', and @XIOL in Lemma 3.5 into (4.17) and noting that Ax x =
9(IxL,X) = 9(2; X, X), one can get
Rixix =h {(L)Axx — LAxx + (t\)Axx. (4.18)

This, together with (4.8) and (3.19), yields (4.13). On the other hand, (4.15) follows directly from
AXX = Axx — %gXX and LgXX =2A\xx.
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2. Using the definition of Lie derivatives, and by some detailed computations, one has
Lraxx = Lrdxx = 9(Dx DrL, X) + g(Zx L, 721 X) — 9(X. Dr x1L) — Bpxixr (4.19)
where
9(Zx PrL, X) = g(Ix(—LpL + ¥ X), X)
Y+ V() — (LA 0

and

9(Dx L, 91X) =Cxtx + 9(Ing.x L, X)
=(x&x + Q(Q[T,X]ia X)+ Q(QM@XTL X) (4.21)
=Cxéx + 9(Zir,x) L, X) + ptrfg(Zx L, X),

here (3.10), (3.11) and (3.33) have been used repeatedly. Substituting (4.20) and (4.21) into (4.19)
yields

Lrixx 277%(# + YV x (uCx) — (Lp)Axx + Cxéx + ptrfg(Px L, X) — Rrxix-

This leads to (4.14) with the help of (3.30), (3.19), (3.31), (4.7) and (3.10). Similarly for (4.15),
onecanuse Axx = Axx — %gXX and £TgXX = 2ufx x to obtain (4.16).
O

Based on LA in (4.15), the estimate of A could be achieved by integrating along integral curves of L.
Proposition 4.1. Under the assumptions (x) with 6 > 0 suitably small, it holds that
A = lorA] S Mo'o 2, (4.22)
and

1
Al = i O(M ' —=0¢=3/2), (4.23)

Proof. 1t follows from tr\ = gX X x x that

o . 2 . o v
LX) = —2(trh)? — ~teh + ¢ ¥ LAxx. (4.24)
p

Substituting (4.15) into (4.24) and using (x), (4.1) and (4.5) to estimate the right hand side of (4.24)
except A itself, one can get

L(*w)| S ME—045/2 % 4 M5' 042 | Pted| + 7% Pteh 2.

Thus, for small § > 0, we obtain (4.22) by integrating along integral curves of L, which also yields
(4.23) directly due to (3.13). ]

It follows from Proposition 4.1, (3.28) and (3.29) that for small § > 0,
AL S o7, ALY S Ms' o3, (4.25)

Note that . } )
L(o?dpl?) = 20*{ — aNdul? + (dx L) (4™ 1) }. (4.26)
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Substituting (3.19) into (4.26) and applying (%), (4.1) and (4.25) give
|L(eldul)| < M5 =20t75/2(o|dp]) + Ms'—=0t5/2,

This implies immediately that
dp| S Ms' ot 4.27)

Now we are ready to improve the estimate on Lgow, which will lead to better estimates for Io/gov and
some other related quantities independent of M.

Proposition 4.2. Under the assumptions (x) with 6 > 0 suitably small, it holds that
| Lo (tu, 9)| + [Tepy (, u,9)] S 67012, (4.28)

Proof. By (%), (4.1), (4.5) and (4.22), it follows from (4.3) that
o o 1 -
|[LLpy + o Lpy| S MP512072,
0

This yields
1L (0" 2Ly (t,u,9)| S M2§1—250¢73/2, (4.29)
Integrating (4.29) along integral curves of L gives

102 L. (t, u, ) — 04/ Lips (to, u, 0)| < M251—2%0, (4.30)

where oo = to — u. Then the estimate on | L‘Pv’ in (4.28) follows from (4.30) for small §. This, together
with L = L + 27, yields the estimate for [T’y | in (4.28) by (x). O
To improve the estimate on ., further, we need to treat 7 first since 7' = a% —nXX.

Lemma 4.3. Under the assumptions (x), it holds that for § > 0 small,

nl = Vaxxn¥nX S Ms ot (4.31)
Proof. Note that 7 is a vector field on S, and one has
L =1, L)X = (2rL — 2; )" = & p+ 2u¢™. (4.32)
Then, it follows from (3.30) that
L(o™2n|*) = o *{2ueA|nl” + dxpm™ + 2¢7 uT A pun™ }.
This, together with (4.27), (4.22) and (%), yields
Lo~ InDI € M0t (o™ ) + M &' =02, (4.33)
Thus (4.31) follows immediately by integrating (4.33) along integral curves of L. O

Based on Proposition 4.2 and Lemma 4.3, we can now improve the estimates on ¢~ and fgp,y which
are independent of M.

Proposition 4.3. Under the assumptions (x) with 6 > 0 suitably small, it holds that

o (tu, 9)| S 87020 Loy (tu, 9)| S 810t 3/2, (4.34)



30

Proof. First, substituting T' = % — %X X into (4.28) and using (x) and (4.31) lead to
g(p (t,u, 9)| < 5750t 1/2 (4.35)
au 0ANS RS ~ . .

Integrating (4.35) from O to u yields the desired estimate on (., in (4.34) since ¢, vanishes on Cj.
Next, note that L., satisfies the equation

.. 1. ..
LLpy = =5 Lipy + Hy = LuLpy + 2 aipr + 20uC aoy

due to (3.34) and (4.3). Then ‘LLQOVI < §—€0¢=3/2 follows from (4.4), (3.19) and (3.30). Similarly as
for (4.35), one can get

o .
| Lipo (t,u,9)| < =0473/2, (4.36)
ou

Then the estimate for lo'Ap7 in (4.34) follows by integrating (4.36) from O to u. O

One can now use Propositions 4.2 and 4.3 to measure the errors of the components of the frames.

Lemma 4.4. Under the assumptions (x) with 0 > 0 suitably small, the following estimates hold:

‘Lz’ S.; 51*50{*1/2’ ‘T1| S 51750,(71/2’ (4.37)
O (T e 4.38)
0
|RF — QF| < §le0gl/2, (4.39)
Proof. First, it follows from (4.1), (4.34), and (3.27) that
|L(oL?)| S o' c07 12, (4.40)

Integrating (4.40) along integral curves of L yields the desired estimate on L’ in (4.37), which implies
the estimate on 7" in (4.37) by T" = ¢; — L.

oy L J S S
Next, since g;; (1" — x—)(TJ - x—) =1,then % = c— 8T + 25ijT’%. Thus,
0 %

0
K 1= 2(4/70 + QOzwi) + 2LZ<,07, _V(Si{ffiffj — 2(52']':&1.&)]‘7 (441)
0 \/C + (5ijT"wj)2 — (SijZT] +1-— 51']‘Tiwj
which implies (4.38) due to (%) and (4.37).
Finally, (4.39) follows directly from (3.16), (4.37) and (4.38).
]

Note that the rotation vector field R behaves just as the scaling operator Y under the assumptions
(%) and the estimate (4.22) as stated in the following lemma, which is similar to Lemma 12.22 in [36] or
Sect.3.3.3 in [33].

Lemma 4.5. Under the assumptions (x) with 6 > 0 suitably small, it holds that
(i) if k is a I-form on S, then

(k- R)* = (1+ 08 =0t 1/2))r? k]2, (4.42)

(L ri? = (1408 50t 12)) 12| Vx| + O 0t /2 02 w2, (4.43)
(ii) if © is a 2-form on Sk ,,, then

[£ROI = r?|YOP (14 0(5' =t 1/2)) 4+ |©PO(s" =0t~/ M), (4.44)
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5 L™ estimates for the higher order derivatives of 09 and some related
quantities near C)

Note that although the L°° estimates for lower order derivatives of some geometrical quantities (such
as (4.22), (4.25) and (4.27)) and the M-independent estimates for the first order derivatives of (., (see
(4.28) and (4.34)) obtained in Section 4 are not enough to close the assumptions (%), yet the method
proving (4.34) indicates that it is possible to improve the estimates on ¢, by making use of the equation
(4.3). Thus, in this section, under the assumptions (%), we will improve the estimates of ¢~ up to the
(N — 1)*" order derivatives. To this end, we start with some preliminary results which involve only the
rotational vector fields on S .

Lemma 5.1. Under the assumptions (x) with 6 > 0 suitably small, it holds that for k < N — 1,
L i <1, [#EA] < M2, | REFLE| < 1,
’K%(R)ﬂ g ]\45175%71/27 ’KI;:%(R)ﬁj‘ g ]\451750,‘71/27 (5.1)
[RFFLLI) S Mot =012, | RMT | S Mot o2,

Proof. This will be proved by induction with respect to the number k.
First, for k = 0, the desired estimates for A\, RL/, RL/, (R)zf, (R)ﬁ i x and Ruv follow easily from
(4.22), (4.25), (4.37), (4.42), (3.16) and (3.25), respectively. Since

R%x' = R(Q — T = €§R£L'j — R(vTY),
then |R?z*| < tby (4.38) and (4.39). This and (4.42) with £ = Rz’ yield
|Lpdz'| = |[dR2'| < v R%2'| < 1. (5.2)

Next, assuming that (5.1) holds up to the order £k — 1 (0 < k < N — 1), one needs to show that (5.1)
is also true for the number k. This is done by the following three steps:

(1) Treatments of KI;%;\ and KZ(R)@‘ i
Using the expression of (R)7/f j x obtained in (3.25) and the induction assumption, one can check that

L5 0% | S HLRA] + 610 M2, (5.3)

Then ml;%(R)ﬁ ;| admits the upper bound once t|£l;%5\| is bounded suitably. Thus, it remains to
estimate £I;35\. It follows from direct computations that

L(o*u(£hN) = —20*(e(£RA) + ¢ (£ £7Axx)
= =202 (W) (£RA) + 0”9 X (LRL i Axx)

k—1
£ 30 g R (P VR e £ Ay,
k1=0

54

where we have neglected the constant coefficients in the summation above. It then follows from
(5.4), (4.15), and the induction assumptions that

L(QPr(£5N) ]| S M0t 3/2| 2ur(LN)| + M§' =0t 1/2, (5.5)
Integrating the inequality (5.5) along integral curves of L and using (5.3) yield that for small § > 0,

LR+ LR | S M0,
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(2) Treatments of RFF1[i RF1[i RE+1y and K%(R)ﬁ
Due to (3.29), it holds that
RMIULN = RMRY (L)

. . 1 . 1 . . . (5.6)
:Rk{tr)\(Ra:Z) + icfl(Lc)Rxl — icfl(Rc)TZ + ¢ ' T(Rpa) T}

This implies | RFT1Li| < M§'—=0¢1/2 by (%), the induction assumptions and the estimate on ﬁ%j\
in part (1). Hence |R¥*1L| < 1 holds for small § > 0. It follows from this and induction assump-
tions that the desired estimate for R**t1v can be obtained by applying (3.16) directly. In addition,
L5 Bt < MST=204=1/2 holds due to (3.25).

(3) Treatment of K?ldﬂ
Note that

Rk+21 — ;RkJrlxj _ Rk+1(UTi).

Then by the induction assumptions, the estimates on R¥*1v and R¥177 (= RF+1¢p, — REHLLIY) in
part (2), one can get | RF+227| < t, and hence |£];%+1¢‘Za:j| < 1as for (5.2).

O

Based on Lemma 5.1, one has the following estimate on the higher order rotational derivatives of y.
Proposition 5.1. Under the same assumptions in Lemma 5.1, it holds that

|RFF | < Mt k< N —1. (5.7)

Proof. This will be proved by induction.
When k£ = 0, (5.7) follows from (4.27) and (4.42). Assume that (5.7) holds up to the order k£ — 1
(k < N —1). Then (3.19) and (3.42) imply

lo-/RkH—lM — [IO/,Rk—i_l]lU/—i- Rk+1iu

= Z Rk ((R)ﬁiXdXRkQM) + RkH{c*lu(fLaiﬂpa - Lc)} (5.8)
k1+ko=k

Using (*), the induction assumptions and Lemma 5.1, one can estimate the right hand side of (5.8) to get

‘I"/Rk—l-lu‘ < Mal—sot—3/2’Rk+1M 4 MstEog3/2, (5.9)

Integrating (5.9) along integral curves of L yields | R¥™ | < M§1~¢0 for small § > 0. O
One can conclude from (3.25), Lemma 5.1 and Proposition 5.1 that

LR Pt S M 02 E< N 1. (5.10)

Similarly, we can estimate the derivatives containing 7" as follows.
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Proposition 5.2. Under the assumptions (%) with small § > 0, it holds that for k < N — 1 and any
operator Z € {T, R},
’£1%+1,de]’ 5 5171'{*1’ |¢’%l5\’ ,S M517i760t73/2, ‘ltl%-i-l;iR‘ 5 M527i750t71/2’
L5 ] S Mot Tieo 2 g | S Mgt 2,
’Zk+1;iz-/j| S M527i750t717 ‘ZkJrl;iTj’ S M(Slfifsotfl/Q, ‘ZkJrl;i,U’ S ]\46171‘750{1/27
|Zk+1;i,u| 5 M(Sl—i—a(), Mtgi(R)#ﬂ 5 M(Sl_i_got_l/Q, ‘Kl%;i(T)ﬂ S M(S_i_got_l/Q,

(5.11)

where the array (k;1) means that the number of Z is k and of T is i (i > 1).
Proof. We first check the special case of ¢ = 1.

1. Taking Lie derivative R™ on both hand sides of (4.16), and using Lemma 5.1, Proposition 5.1 and
the assumptions (%), one can get that for m < N — 2,

LR LA < Ms—=0t73/2, (5.12)
Note that [T}, B] = " #, X in (3.42) and for ky + ky < m,

Y2 DN Y S R S Y Y o Y
l1+1lo=ko—1

Then \K%lj\] < 50 Mt=3/2 follows for k < N — 1 by making use of (5.12), (5.10) and the
estimate of \ in Lemma 5.1.

2. Similarly, noting that

Lrda? = (dp)T7 + pdT7,
w o —1.. TJ
Tii =T - P T
0 0
. a ~ . ~ -

Tv:eggjb{ — ¢ YTe)zTT — ,u%Tj +z*TT },

LrR =T, R] = PiX,
which are due to the definitions, (3.16) and (3.42), one can get the estimates in (5.11) for K?l;ld:ﬂ ,
L3R, ZEF LI, ZERA TS Z6H Ly by (332) and T = oy — LD,

3. Now we estimate u by induction.

Differentiating (3.19) with respect to 7" and using (3.42) lead to
o o o X _ ~ X _ o ) o
LTp = [L,T)p+TLpp = (=d" p = 2¢7 uTd” pa)dx p + T{c™ (L Lpa — Le)}.

Then

|LTu| < Mo—=0t3/2 4 §l==0¢=3/2| 1y (5.13)
holds due to (%) and (5.7).
Integrating (5.13) along integral curves of L and applying Gronwall’s inequality yield

Tu| < M§=. (5.14)
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Assume that forn <m —1(m < N — 1),
\R"Tp| < M§—e. (5.15)
Note that

m1+ma=m—1
+ R™{(~d™ pp = 2e7 T o) dxep + Tle™ i(LO Lipo — Le)] ).
It follows from (5.15), Lemma 5.1 and Proposition 5.1 that
|LR™T | < M50+ 3/2| R Ty + M0+ 3/2,

which yields (5.15) for n = m by integrating along integral curves of L, and hence | ZF+1L | <
M ~#° follows from induction. The estimates of K’;l(R)#, K?l(T)yf and ﬁgl(R)yf ; follow easily
from using (3.23) and (3.25). Meanwhile, £7' "4, can be estimated by (3.25).

Analogously, (5.11) for ¢ > 2 can be proved by induction. O

We can now improve the L estimates on derivatives of ¢ with respect to Z € {T,R}.
Corollary 5.1. Under the same assumptions as in Proposition 5.2, it holds that for k < N — 1,
|25 L (&0, 0)| + 25Ty, 0)] S 520412, (5.16)
\Zk”'cpv(t, u,9)| < glmi—eog=1/2, (5.17)
here i is the number of T in Z*.

Proof. For any k € N with k +¢ < N — 1, one has from (4.3) that
. . e 1o
RFT'H, = R*T"(LLep,, + ygg%)

=L(RFT'Lep,) + 2—@3’@ Loy — S RM(WgXdR"T'Le,)

st (5.18)

. o 1 o
= > RTH(DffdxT L)+ 30 TN() BT Lyg,
i1+ia=i—1 11+i2=1%,11>1 ¢
Since the last three summations above can be estimated by Lemma 5.1 and Proposition 5.2, one gets
from (5.18) that
RMT'Hy = L(R*T' L) + R Lipy + O(MP3' 7 72072). (5.19)
0

On the other hand, one can also estimate Ri-“TiH7 by the expression of H, in (4.4) as follows
|RFTH,| < M?§1 72072, (5.20)
Combining (5.19) and (5.20) yields |L(o"/2RFT Ly, )| < M?8'~i~220¢=3/2, which can be integrated
along integral curves of L to obtain
0" 2R Ly (4.0, 9) — o *R¥T Lips (t0, u, 0)] S MP6' 2.

This yields that |RkTiLg07 (t,u,9)| < 6720t~ 1/2 for small § > 0. This, together with the commutator
relation and L =2T + MIO,, implies (5.16).

Note that (5.16) also implies |T'Z*¢., (t,u,9)| < 67~°0¢~1/2, Thus, (5.17) can be derived in the
same way as for (4.34). ]
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It remains to deal with the derivatives involving the scaling vectorfield ,QIOJ. To this end, due to (4.15)
and (3.27), one can take Lie derivatives of oL\ with respect to Z to estimate £%£Q ;A as for (5.12).

Note that the terms containing the derivatives of QIO/ can be estimated in the same way as in the proof of
Proposition 5.2. We can now state the main results as follows without tedious proofs.

Pr(gposition 5.3. Under the assumptions (%) with § > 0 small, it holds that for any operate Z €
{oL,T,R} and k < N — 1,

’£2+1;i,ldmj‘ < 5—1'7 |¢2”5\| < ]\461—1‘—5()t—:’>/27 ml?l;i,lm < Mél—i—eot1/2’

’K?Z’Z(R)?ﬂ 5 M617i750t71/2’ |£§ZJ(R)¢L’ S M(slfifeotfl/Q’

’2k+1;i,le| S M&l_i_EOt_l/Z, ‘Zk—l-l;i,lTj‘ S M(gl—i—sot—l/Q’ |Zk+1;i,l,v| S Mél—i—€0t1/2’

’Zk+1;i,lu| < ]\4517175%71/27 mlgal(R)?fT’ < M517i750t71/2’ MIEWT)#! < M(Sfifsotfl/Z?
(5.21)

where the array (k;i,1) means that the number of Z is k, the number of T is i , and the number of Q[O/ is
L(>1).

Note first that (5.16) implies |RFT" Lip- (t, u,9)| < 67704~ 1/2 for k 4+ i < N — 1. Assume now
that the following estimates hold:

|RFT (oL)! " Loy (t,u, 9)| S 677504 Y2 (k4+i41—1<N—-1, 1>1). (5.22)
(4.3) gives that
e e 1.
RFTY(oL)' Ly, = R*T"(oL)'*( - gLy + oH,). (5.23)

Due to (4.4), RkTi(gIo/)l_l(QHW) can be estimated easily by (5.1), (5.2) or (5.21). This, together with
the induction assumption (5.22), shows that

|RFTH(oL) L | S 6775 V2 k+i+1 <N, (5.24)

which implies | - R¥T" (oL)!p, | < §===04~1/ as for (4.35). Thus, one obtains also that for k +i+1 <
Nandl > 1,
|RFT (oL)\p,| < 81-i=0¢71/2, (5.25)

Using Lemma 3.7 and rearranging the orders of derivatives in (5.24) and (5.25) lead to

Corollary 5.2. Under the same assumptions as in Proposition 5.3, it holds that for k < N — 1,

R, (4, 9)] S 570, (526
‘Zk—i-l;z’,l—&-l(pv(t,u’ 9)| < gl-i—eog—1/2 (5.27)

Finally, it is noted that under the assumptions (%), we have obtained not only the estimates with M
dependent bounds in Lemma 5.1, Proposition 5.1, 5.2 and 5.3, but also more refined results independent
of M in Corollary 5.1 and Corollary 5.2. On the other hand, if starting with Corollary 5.1-5.2 and
repeating the above analysis as in Section 5, one can improve the conclusions in Lemma 5.1, Proposition
5.1, 5.2 and 5.3 such that all the related constants are independent of M when k& < N — 3. Therefore,
from now on, we may apply these estimates without the constant M since N could be chosen large
enough.
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6 Energy estimates for the linearized equation

To close the bootstrap assumptions (x), one needs further refined estimates than those derived in Section
5. To this end, we plan to construct some suitable energies for higher order derivatives of ¢.. Note that
(-~ satisfies the nonlinear equation (3.41), and each derivative of ¢, also fulfills similar equation with the
same metric. Thus, in the section, we focus on the energy estimates for any smooth function ¥ solving
the following linear equation

pdy U = & (6.1)

for a given function ®, where ¥ and its derivatives vanish on C§. The following divergence theorem in
D% will be used to find the related energies adapting to our problem.

Lemma 6.1. For any vector field J, it holds that

/t u.@ajo‘dygdu'dT :/ ( — Jr — ,uJi)dugdu’ — / ( — Jr — uJi)dUgdu'
Dtu sy

o 6.2)
— /(J; JidvgdT.
Proof. This follows from the proof of Lemma 10.12 in [36]. O
The vectorfields J’s in (6.2) will be chosen as
Ji i= —0"Mg°" Q5 LBy, (6.3)
Jo = =g Qs L0, (6.4)
J3 = (%gm—lwgaxp - iw@a(g?m—l))aa, (6.5)

where m € (%, %) is a fixed constant and () is the energy-momentum tensor field of ¥ defined as

Qus = Qusl¥] 1= (aT)(O50) ~ 10030 (0, W)(01T)
= (0a0)(050) — Sgus{ IV~ (LW) (L)),

Each term in (6.2) will be analyzed respectively.
We start with the estimates of right hand side of (6.2). Note that the components of )3 relative to
{L,L, X} are

Qij = (LY, Qpp=(LV)? Qpp = uldvf,
Qiyx = (LY)(dxV), Q;y = (LY)(dxV),

1 1 5 0
Qxx = 5(AxV)(dx®) + Sgcn (LO)(LW).
Then it follows from (6.2)-(6.4) that
1 o 1 o
/ (1 Dai® :/ She” (L) + | 4w )?) —/ —pue®™ ((LO)? + |40|?)
Dtu Z? 2 yu 2

fo (6.6)
- / o™ (LW)?
Ct

u
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and

1 [} 1 o
/ Doy = / L (@wy 4 2 iwp) - / L (@wy? 4 2w
o 2 i ? 6.7)

While (6.2) and (6.5) yield

Lemma 6.2. It holds that

1ogmg oo 1, )
/D s = /E (= 5@ (L) + 102U (2m 1) (1~ 2) + opird)
u u

1 o 1 ~
= [ (= L) £ (2 = ) 2) + ourd)  (68)

to

1 .
+ / (= =trh-0®" 102 — LY.
c, 4

Proof. Applying (6.2) directly to J3 yields

2m — 1

1 _ 1 _ o
/Dt 1D oI5 =/Z (— F@TIU(TY) = ST (uL ) +
u u

L,

1 o 2m — 1
Jr/ ( _ *Q2m_1\I/(L\I/) + m sz—2\1,2).
ot 2 4

i A (7E 1))

2m

1, 1, . 1,
(*592 1\II(T‘IJ)*gg2 1‘I’(ML\I’)+T92 2‘1’2(#*1)) (6.9)

Note that ¥ vanishes on © = 0. Then

Y0
2m_1\IJ2d :/ / 2m—1‘lj2d d/
/Svtyu Q Vg 0 <8u/ S Q l/g) u

tu/

= / < — (2m — 1) 202 4 202U Ty + ng_l,utré\IlQ>,

t
which is

1 1 1 ~
/ —— P (T = _/ 92m11p2+/ (—(2m—1)0*" 2V 4 o*" 1 utrdT?). (6.10)
s 2 4 /s, 4 Jsu

Taking t = £ in (6.10) gives

J

Thanks to the following identity

t
/ sz_1\1'2dyg :/ gzm_l\ll2d1/g+/ 6(/ Q2m_1\112dug>d7'
Sl,u Sto,u to 87- ST,u

- o dyy + (i(QQm_IV) +tr)\-92m_1‘1f2)d’/ dr,
Styu / G '

1 1 1 :
—5 0" T(TY) = _4/ g2m—1\1/2+4/ (—(2m—1)*" W+ *" ! urf¥?). (6.11)
St by

u
to 0, to
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then (6.10) becomes

1 1 1 .
/ —fQQm_l\I/(T\I/) _ / 02 ly? / (L(sz—lqp) +tr/\.g2m—1qj2>
s 2 4 Jsy 0 4 Jou

1 ) (6.12)
+ 4/ ( —(2m — 1) 202 4 QQm*l/,LtrQ\Iﬂ).
ity
Substituting (6.12) and (6.11) into (6.9) yields (6.8). O

It follows from (6.8) and (6.6) together with (4.2) that
/ N(gajla - 90“]301)
Dtu

1 i )
:2/ (Hg2m|d\11|2 +,ug2m(L‘I’)2+uQ2m71\Il(L‘ll) _’_mg2m72‘112 +O(575002m73/2q]2)>
u¢

1 o o
_ 2/ (u@zm\d‘l’\z i MQQm(L\I,)z I MQZm—lql(L\I/) + m?m 2w 4 O((')-—EOQQm—?)/Q\IjQ))
s

+ / ((Qmi\lf + %Qm—l\p)2 + 0(51_50927”_5/2\112)),
Ct

u

(6.13)

here one has used the estimate | it | < 67%0t~1/2 due to (3.31) and the estimates in Section 5.
In order to estimate 60 [, 0*™~%/2¥2 and 51 [, 0*™~/2¥? in (6.13), one needs the follow-
t u

ing inequality.

Lemma 6.3. Under the assumptions (), it holds that for any f € C1(D%%) which vanishes on C},

2 —1y2 2 (2 —1 42
Lo [ oss [ nste [ 0RA+or ) (614

Eto

Proof. 1t follows from Lemma 3.4 in [30] that for any vectorfield J,
UDoJ* = —IOL(MJE + Jr) = T(J;) + div(pd) — pu(trf + trA).J; — trAJr, (6.15)

where / is the projection of J on Sy ,,. Take J = f2lD} and J = do '~ f2T in (6.15) respectively, and

/ u / u
> b

5| o 'fr=9¢ (po 'udf* + T (07" f?)). (6.17)
C}& Dtu

uf? + /Dt ) ((Lpe + pteX) f2 + pL(f%)), (6.16)

By adding (6.16) and (6.17) together with the estimates on the coefficients in the right hand sides of
(6.16)-(6.17), one arrives at

2 142 2 142 209 142
Lo [ s [t [ @b e ),

to

Hence (6.14) follows directly from Gronwall’s inequality. O
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Let f = §—50/2p™m=3/4 in (6.14). Using the facts that

L) S o f2+ 570" 2L

and
T ) S 6 o7 f2 48! 0P AT,

one then can get

/ ,U,(Siso Q2m73/2\112 + §l—eo 92m75/2\112
by

Cu
5\/
by

Substituting (6.18) into (6.13) yields

(6.18)
M(S_EOQQm_g/Q\IfQ + / (5_509_1/2(gmL\If + %Qm—l\Ij)Q + 52—€og2m—5/2’T\I/’2)_

u t,u
to Db

/ :U’(@ocjla - @ajiia)
Dtu

Z/ (Q2m|¢2\11’2—|-QQm(i\I/)2+Q2m_2q/2) _/ (\d\Il|2+(i‘I/)2+5_50\112)
s =

o 1 o
§—¢eo (Q_l/Q(QmL\I/ + §Qm—1\p)2 + 52Q2m_5/2(L\P)2)-

t

o

.1
(€LY + o w)? - /

b Db
(6.19)
By (6.19) and the identity (6.7), it is natural to define the following energies and fluxes
Ey[¥](t,u) == /E ) (®™(LW)? + ™™ |40 |? + o*™~2W?), (6.20)
{
B0t = [ (L9 + 4P (6.21)
{
Fi[V](t,u) == /Ct ("L + %gm*1W)2, (6.22)
B[U)(tu) = /Ct 4w |?. (6.23)
Next, we treat the left hand side of (6.2). Set
Vi=¢"L,  Va=L
Direct computations give that
1Zai” = =™ (LV) — %u@“ﬁ (] 7o, (6.24)
1D Js® = —B(LT) — %MQO“B W]V, (6.25)
p0ds® = 3" 4 (= S EO)(LD) + g o)
+ 2\112(2771 —1)p*m 2 <(2m —2)0 M —2) + Ly + putef + (p — 1)tr)\>. (6.26)
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Recall that the components of (Vi)wag in the frame {f, L,X } have been given in (3.23)-(3.25). To

compute QO‘B(Vi)ﬁaﬁ in (6.24)-(6.25), we can use the components of the metric in the frame {Ii, L, X},
given in (3.38), to derive directly that

1 (e
- §MQ 'B[‘I’](Vl)ﬁaﬁ
1 —1(V1) 1 —1(W1) 1(V1) X I v xx
=gl T Qpp — g T Qpp + 5T Qe — 5 VT T Qxx .
1, - 1. g PR R X :
=(50"" L+ p(m = 5)@*" AU + (m(n = 2)0™" 1 = S0 L) (L®)* + 0™ (d” o
1 a X o 1 5, 1 9, . .
+ 267 T pa) (L) (A 0) — S g™ XA [* — S 0™ urx (L) (L)
and
L g (va)
- 5”@ [\IJ] 2 Tas
1. . .
Zi(LM tplp+ e \pTe+ ¢ pPhe + peh — 20 2 dxa® - 4 00) |40 628)
— (2uc T po + 4 1) (Ax W) (L) — ™ (L) (dx )
1 1 3 1 .
+ (5o et ppe be— ot dxpa + Gurx) (L0)(L).

We first treat the terms involving J; and J3.

Combining (6.24) and (6.26) and using (6.27), % <m < % and ¢ < 2, one can get by using the
estimates in Section 5 that

/Dt (u@aJla — M@ajga)

S—

o 1 1 o 1 <
O(o*" LY + — o™ 1) +/ (u(m —1)0* 1 + Z0® Ly — ~po®™ ) | A2
Dtu 2 Dtu 2 2

(e (u=2) = ) E0?+ [ 2 T ) (LD

1 . ~
—U%(2m —1)*m 2 ((Qm —2)o Y —2) + Ly + ptef + (p — 1)tr)\)

1 o o
— / — 0N (L) (L)
Dtu 2
o 1 1 o . 1 . .
g—/ Q)(ngL\II—i—QQQm_l\P)—i—/ 292’”(L,u—,utr)\)\d‘ll]2—/ 592mL,u,(L\I/)2
Dtu Dtu Dtu

O™ (dx i+ 2¢ pTx o) (DY) (X W) — /D . %thr;\(i‘l’)(ﬁ‘lf)
1

~(2m —1)0*202(Ly + ptrd + (u — 1)trd)

> 1 . .
5‘ / t @(Q2mL\IJ + 5Qmel\I/)’ + / (6178092m73/2‘d\1}‘2 + 627809277175/2 ’L\I/‘Q)
Dtu Dt,u

+/ 5_€0Q_1/2(Qmi\1f _|_ lgm—l\P)Q + / 6_8092m_5/2\1/2.
Dtu 2 D

t,u

(6.29)
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The last integral in (6.29) can be estimated by taking f = o™ 3/4W in (6.14) as

5 Q2m75/2\112 </
ct ~ s

Sj /
S

+ / 0?5 /292
Dtu

This, together with Gronwall’s inequality, yields

5 QQm_5/2\If2</
ot ~ s

/ 92m75/2 P2 S /
Dt b

Substituting (6.30) into (6.29), we arrive at

\112+/ (92m71/2|i\11|2_’_5202m75/2‘L\P|2+Q2mf5/2\112)
Dtu

u
to

o 1 °
\If2+/ (Q71/2(gmL\I]+§Qm71W)2+52Q2m75/2|L\11’2)
Dtu

° 1 o
\I’2+/ (Q_1/2(QmL\I’+ igm—l\Ij)Q+5292m—5/2|L\I]|2).
Dtu

to
Thus

° 1 °
\112+/ (Q71/2<QmL\p+§melqj)2+6292m75/2‘L\I}|2). (630)
Dtu

u
to

/ (u.@ajla — ,u.@w]ga)
Dtu

° 1 o
§| k @(szL\I’ + §Q2m_1\1’)| + / t (51—50Q2m—3/2|d\11’2 + 52—50Q2m—5/2|é‘1}|2) (6.31)
Dtu Dtu
o 1
+ / 678()@71/2(@171[/\1/ + 7Qm71\11)2 + 502,
Dtu 2 E;LO

It follows from (6.19), (6.31) and Gronwall’s inequality that

t
B U](t u) + F[0)( u) SEL[0](tg,u) + [ 6002 4 5250 / 72502 1 (7, ) dr
it to (6.32)

o 1
[ @(PLY + P
Dtu 2

It remains to treat (6.25) involving J. Recalling (6.28) and estimating each coefficient in it by using
Proposition 5.3, one can get

1
a /Dt u i’uQaﬁ [q}](vg)ﬂ-aﬁ

o0 / (AT 4 L] ]+ 57 L] |4 47| | L) (6.33)
Dtu

u t t
<p-0 / R[] (t, oo + / S By W] (7, w)dr + 620 / M= By (W] (7, w)dr
0 to to
Then, it follows from (6.7), (6.21), (6.23), (6.25), (6.33) and Gronwall’s inequality that

t 1
B[] (¢, w) + B[] (1) < B[ W(to, u) + / @ [LW] 4+ 520 / 7 B0 (r, w)dr. (6.34)
Dtu to
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Combining (6.32) with (6.34) and using Gronwall’s inequality again, due to m € (%, %) we obtain
finally that

SE[W] (4, u) + SFa[W](t, u) + B [](t, w) + F [W](t, u)

SOE[W](to, u) + E1[)(to,u) + [ 075002445 & LU
Sty Dt (6.35)

° 1
+ | D(* LV + ™).
Dtu 2

(6.35) will be used to derive the energy estimates for ¢, and its derivatives. To this end, we will
choose W = Wk .= 7kl and then ® = ®F*! := uO0,UFH (k < 2N — 6) in (6.35). Note that

SNt = O, U = [0y, 204 + Z(u0, W) — (Zu) 8, ¥

(6.36
_ v @CE 4 (24 Dp)t, |
where
v 1 v
D0y = (D7 = 507, m) 0,305,
(Z)A _ ltr (Z)ﬂ_ _ ,U_IZ,U«a (6.37)

oy
U =, ) = pOgp,
with try® 7 = g*#@) x5 and Y being the right hand side of (3.41). Consequently, for WA +! =
Zi1Zi -+ - Z1py with Z; € {oL, T, R}, we can derive by (6.36) and an induction argument that
k
<I>f/+1 _ Z (Zk+1 + (Zk+1)A) o (Zk+2—j + (Zk+2fj)A) (Iudiv(ZkJrlfj)Cf;—j)

i=1 (6.38)
+ pdiv @) CF 4 (Zyy + BN (2 + PIN) DY, k>,

o) =(21 + PIA) @Y + pdivi#) Y.
In order to estimate (?)A and udiV(Z ) Cﬁ, it is more convenient to rewrite

Z) 1(2)

T™=—2u"

trg( Tip —|—trg(Z)7f.

It follows from (3.23)-(3.25) that

1 1 .
(DA = —ic_ch — §c_l,uLc +c tpda® - dp, — PTG,

@A = otr} 42, (6.39)

1 o 1
(BIA = vtrd + 50711}(.[/6) —c todx® - do, — icfch.

In addition, in the null frame {L, L, X }, the term pudiv(? )C’ff can be written as

. 1, 1, ‘
pdiv 5 = = SL(AC ) = SL(PCh ) + div(u? )

Lo 3\ (Z) vk L \(2)k
—i(L,u+utr)\+2utr«9)( )CW,E_§tr)‘( )C’LL’

(6.40)
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where
X
Dk | = Dy (W) — S D)L,
o 1 o
Dk = —2(Dmpr + p~ Prrr)(LUE) + (Z>¢EX(¢2X\If§) - i(tﬁz);ﬁ)gp’;, (6.41)

: S Htr Z)W{X‘Ifk

Z) 4k 1
“( )¢7,X (Z ?‘LLX(L\H?) *(Z #LX(L\I'k) 7TLT(dX‘I’ )+ 2

A direct substitution of (6.41) into (6.40) would result in a lengthy and complicated equation for MdiV(Z )C’,'j.
To overcome this difficulty and to get the desired estimates efficiently, we follow the ideas in [33] to de-
compose pdiv(? )C’ﬁ as

pdivi?ck = Zpk | A pk )+ ZIph (6.42)
where
DDk, =D (LLVE + JwALw) - Dy (0¥ LE) - Dy (0 L) (6.43)
. 1 :
+ ((Z)FET + (Z)T('TT)(LQ\IJ,’;) + §utr(z)7f4£\1’,]§ + (Z)WET4A\IJ,’;,
. . 1_.x 1. .
Dk i+ g0 (7= L) i
1
-5 S0 D — dx Py ) 0+ A 2gt) - 4wl (644)
1 X . 1 ¥ 1. .
(W Dt 5 ) LV ~ §(¢i(z)ﬁx)d v+ ZL(tr(Z)ﬁ)L‘I’§7
(%) pk (2) (2) 1 L)@y — 1450 gk
Dk, :{tr/\( mip+ Dnpg) + (qud + g ued)u? gt — S ¢LX}L\I/7 o5
1 o )
* 5{(tr(z)¢)(ix 1) + (ueh = L) Dt o+ ex Dy Nk,
Note that all the terms in (%) D ; are the products of the deformation tensor and the second order deriva-

tives of \Il]fy, except the first term containing the factor of the form LL‘I»@ Qtr)\L\I@ (see (6.43)). It
should be emphasized here that such a structure is crucial in our analysis since \Il,’j is the derivative of
¢~ and by (4.3), LL<p7 tr)\Iojgov = H, + tI'j\Io/(p7 admits the better smallness and the faster time-
decay rate than those for Lchﬁ, and tr)\chﬁ, separately. In addition, (z )Dk o collects all the products of
the first order derivatives of the deformation tensor and the first order derlvatwes of \ll,]j, while (4 )D;“’
denotes all the other terms.

The explicit expression for f1>§+1 obtained from (6.38)-(6.39) and (6.42)-(6.45) will be used to esti-
mate the corresponding last two integrals in (6.35). Due to the structure of (6.35) for ¥ = \I/’;H, it is
natural to define the corresponding weighted energy and flux as in [33]:

E;pi1(tu) Z Y Ei[Z u), i=1,2, (6.46)
7=0 |a|=p

Fp1(t ) Z > %Fz u), i=1,2, (6.47)
7=0 |a|=p

Eicpri(tu)= > Einpl(tu), i=1,2, (6.48)

0<n<p
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Ficpri(tu)= > Finpa(tu), i=1,2 (6.49)
0<n<p

where [ is the number of 1" in Z¢. We will treat these weighted energies in subsequent sections.

7 Higher order L? estimates for some quantities

In this section, we shall carry out the higher order L? estimates for some related quantities so that the last
two terms of (6.35) can be absorbed by the left hand side, and hence the higher order energy estimates
on (3.41) can be done. To this end, we first state two elementary lemmas, whose 3D analogous results
can be found in Lemma 7.3 of [33] and Lemma 12.57 of [36] respectively.

Lemma 7.1. For any function ) € C'(D%"") vanishing on Cy, it holds that for small § > 0,

W 56/ 1Ly + @2 Ly[?), (7.1)
St su
RS 52/ Ly P + p?| Ly?). (72)
oy oy
Therefore,
|0t S 6(Ew + R ) (13)
t,u
V? <P (EL[Y](tu) + 0 P Er[Y](t u)). (7.4)
3¢
Furthermore,
By <rr1(tu) S 020" 2By <pra(tu) + 020 2By <pra(t, ). (7.5)
Proof. For any function f € C''(D%*) which vanishes on Cy, it follows from (3.23) and (3.31) that
0 1
v — 41D
8’[1, - fdl/g /t’u (Tf + 2tr ﬂL f)dl/g
= / <Tf + %( — ¢ e — pe ' Le+ 2ciludx:z“(¢lX<pa) — 2utr)) f).
St,u
This leads to

0 —eo
gu f, fanl s [ s, .6

Setting f = )2 and integrating (7.6) from 0 to v yield

/ deygg/ (ym\.|¢y+5—80¢2)5// 6_1¢2dugdu’+// S| TP dvgdu.
Stu 3¢ 0 v 0 St,u’

Thus Gronwall’s inequality implies that
u
g < / / 8| T\ dvgdu. (7.7)
St,u 0 Sk,u’

1L — 1uL, then (7.1) is proved. And hence (7.2) follow from (7.1). O
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Lemma 7.2. Assume that (%) holds for small 6 > 0. Then for any f € C(D%), F(t,u,9) :=
ft (1,u,¥)dT admits the following estimate:

HFHL2 E“) < 1+051 80 \/ t U

(7.8)

f 2 u
" \/TH ||L (Zv)

We now turn to derive L2 estimates for higher order derivatives of 5\, 7 ixe 7 XX° IZ, v and 7. To
this end, as in Section 5, one starts with estimates for the rotational vector field.

Proposition 7.1. Under the assumptions (x) with small § > 0, it holds that for k < 2N — 6,

H/:’;%XHLQ(E?) <33 2 Int 4+ By <o (tu) + 6270 2 Inty/ By <pya(t, )
[(RFHLA, K%(R)ﬁ)uﬂ DI §3/2750 4 o= By <o (tu) + 0/ B <pya(t,u)
L5 el o sy S 0242 4 01/ By <t ) + wE2 <t

IR 0 pagsny S 632790t + 0* 7™\ By <hpa(tu) + 0t/ By <ot

where Ei’gk_;,_g(t, u) = SuptOSTSt Ei,§k+2 (T, 'LL) (l = ]., 2)

Proof. Since the L> estimates for lower order derivatives of the above quantities have been given in

Lemma 5.1, the corresponding rough L? estimates can be obtained by the fact ||1]| r2sey S Voo(t u)
(see Corollary 12.54 in [36]). In particular, one has
IRL| 2 (sy S §3/2 =<0, H(R)ﬂm(zg) < 9320, 7.9)

[£rdatll 2y 51/2f1/2, | ROl 2y S 027508

To treat higher order derivatives of L7, one can use (3.29) for RFT1L7 as (5.6) in the proof of Lemma
5.1 by carrying out the following two steps:

e Keep the L2 norms for the highest order derivatives of A, L, 7 and ¢, while apply the L estimates
in Section 5 to treat the corresponding coefficients in these terms.

e Instead of controlling the L2-norm of Z<*¥+1y (Z € {R, gi}) directly by o' ™™ \/E1 <41 (t, u),
one can use (7.4) to obtain better smallness and decay rate for || Z¥1¢|| ;2 (su), for example, |R=FLe|| L2(sw)

can be controlled by 501"\ /E1 <12t u) + 071 \/Fa <kra(t, u).

Consequently, one can arrive at
oy en— <k-1 <kx en— <k
IRETY L || pogpy SO0 2 LR Pt papsmy + LR Al paemey + 002 L5 da| (s

+ 607" \/E1,§k+2(t, u) + 5\/E2,§k+2(f, u) + 612 REE LI oy

Using this iteratively and taking into account of (7.9), one then gets

IRFHLI|| sy S6%/27 22047 1/2 4 6120 V2| £2F TR oy + LR M 20

1—eg—1/2) p<k —m (7.10)
+ 0 T2 LR ]| 2 sy + 007V B <y + 0/ Ea <hya-
Similarly, one also has
<k oy _
R HUHB(EU) <6 50"1/2”@% dﬂCHLQ(zy) +fHR§kHL]HL2(27) + 60" "/ B <ki2 (7.11)

+ 0o/ Ea <2,
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k _ -
L5 B 2y S82722047 12 4 47 REF0| 2 sy + 6120t 2| LF N | L2 gy

(7.12)
+ 007" /Er <iro + 03/ Fa cpya + 020t £ d|| L2 (s,
k+1 _ o~ 2
£ dallp2sey S SOV 4 | RS o sy + 61750t 1/ZHRSICHLJHL?(Z;L) (7.13)
R et O TN e’
It follows from (7.9)-(7.12) and a direct induction that
o _ <k _
”Rk+1L]||L2(E:L) < 83250 Ly £5 M2y + 007"/ Er<ki2 + 0y/Ea <kra, (7.14)
k1 <k _
145 d|| 2 (spy < S L Mz2sey + 007"/ Er <kt2 + 0y/ Bz ki, (7.15)
_ <k —m
IR 0l gy € 6%27 0t + 21 L7 M2y + 00"V Erchsa + 00 Eagia, (1.16)
k _ <kx _
I£5 % r2impy S 6%27% + LR Mlr2(sy) + 60"/ Er<kra + 03/ Ea<haa. (7.17)

It remains to estimate £];%5\ in L2 norm. To this end, as in Lemma 5.1, one needs to treat each term
in /£ iﬁ%ﬂ (see (5.4) and (4.15)). We treat K%(dw“ dLp,) in details as an example.
Note that £ pdz? = €} dz® — d(v(p; — L7 — )) Then
Lda?| S 14+ RSF| + 6204 V2 (|RSF )| + |REFII)).

This implies that

15 (A dLepa) | sy

S S MRRLg| 4 8ot By
k1+ko=k

+ (1 RE0| 4+ 8 B (RSN )| + [REMILI)) AR Lo | 2 sy
Stilim E1 ,<k+2 + 51750{77/2“R§k'l]”[/2(27) + 627260{73”R§ijHLQ(Z?)
+51 Eot—5/2||£<k (R )¢||L2(E?)

The same results hold also for the L2 norms of K%(L;WZQDQ) and K%(dma -dpa), where %W24pa arises

in the term —c_llofl(Yﬂgpa) = —c_IL“(Yﬂgpa) — c_lg_lx“W2<pa in (4.15).
Let F(t,u,9) = o(t, w)2tr(£5N) (¢, u, 9) — o(to, w)2r(£52) (to, u, 9) in (7.8). Then

Pt (LEN |20y S %2750 /5+ Vo / V2 L(Pte(L3N) || 2 gy - (7.18)

Apply (5.4) and (4.15) to estimate the integrand in (7.18) to get

t
e acsn 0250+ [ (72 [Brcratr)
to

—|—(51 €0 71||R<kLzHL2 E”)"’_(;l €0 71H£<k (R )ﬂLHL?(Zg) (7.19)
4802 R sy + 5N s )

Substituting the estimates (7.14)-(7.17) into (7.19) and utilizing the Gronwall’s inequality yield

Htr(£R>\)||L2 Zu 53/2 Eot_3/2 lnt+t \/El <k+2 f u (52 60f_3/21nf\/E2 <k:+2 f U (7 20)

Then the remaining inequalities in Proposition 7.1 follow from this and (7.14)-(7.17).
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As a consequence of (R)yf j x 1n (3.25) and Proposition (7.1), it is direct to get

k/. _ _ ~ ~
IR 1l sy S 8%77%0 + ¢! m\/E1,§k+2(t u) + 5\/E2,§k+2(f, w). (7.21)
Next we estimate the L? norms of the derivatives of .

Proposition 7.2. Under the same assumptions in Proposition 7.1, it holds that for k < 2N — 6,

IR pall ey S 322 4 (12 By po(tu) + 62502 \/ Ep <pya(t ). (7.22)

Proof. It follows from (5.8), Proposition 7.1 and the L> norm estimates in Section 5 that
e —eoi—1y p<k e0i—

ILR* pll p2 sy SO0t L (R)ﬁiHB(E*;) + 610t 3/2HR§H1MHL2(2?)
+ " By <ppa(t u) 4+ 61702 RS lr2(sw) + 51_80’(_3/2HngdxjHL%zg)

<20 4 By cpa(tu) + 8 By cppa(t )

+ 6175(){73/2 HRSk+1MHL2(E’{) )

(7.23)
Applying (7.8) to F(t,u, ) = R*1u(t,u,9) — R¥ ' u(to, u,9) and using (7.23) lead to
¢
||f_1/2Rk+1M||L2(2;L) <g3/2 0 +/ {53/2_607'_3/2 + 7'_1/2_m\/ By <pya(T,u)
to
+ 6270732 [ By cppa(r,u) 4 610 32T 2 RS o s }dT-
(7.24)
This, together with Gronwall’s inequality and the fact m € (3, 2), yields (7.22). O

For any vectorfield Z & {Qi/, T}, we can also obtain similar L? estimates for the corresponding
quantities as in Proposition 7.1 and 7.2. The main ideas and methods for this are along the same lines
of establishing Proposition 5.2, 5.3 from Lemma 5.1 and Proposition 5.1, so the details are omitted. We
may conclude from this and Proposition 7.1 and 7.2 that

Proposition 7.3. Under the same assumptions in Proposition 7.1, it holds that for k < 2N — 6,

5l|’Zk+1Li||L2(Z?) S 53/2_60 + fl_m \/ELS]H_Q(’C, u) + 5\/E~'27§k+2 (f, u), (7.25)

(SlHZk—HwiH[;(E%) S (51/2f3/2 + f2_m \/E17§k+2(’£, ’U,) + (5f\/E~'27§]€+2(f, u), (7.26)

k o [E -
NS gl 2y S 02 4 67 [ By cpya(t,w) + 84/ Bo <ppa(t ), (7.27)
(Sl”Zk—HUHLQ(E?) < 53/2_60f + t2_m\/ E1’§k+2(t, ’LL) + (5t\/ EZS]H_Q({, u), (7.28)
51””25\”9(23) S A B \/ By <hya(tu) + 5ty By <pra(t,u), (7.29)

SILS (D, Dy, ) sy S 692750 + 0™\ By cusa(tow) + 0y By cpsa(tiu), (7.30)
SIS Dt i |2y S 82750472 4 p7V2\ [ By ot w) + 062 By cpaa(ty ), (7.31)

LG Dt 2y < 6172750 4 550 l/27m \/E1,§k+2(f7 u) + \/E2,§k+2(t, u), (7.32)
(5l”Zk+1/,LHL2(E1{) 5 53/2_60’(1/2 + f1/2 Elék_;,_g(f, u) + 5t1/2\/ Egék_i_g(t, u), (733)

where [ is the number of T’ in the corresponding derivatives.
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8 L? estimates for the highest order derivatives of tr) and /Ay

Note that due to (6.36) and (6.44), the top orders of derivatives of , A and u for the energy estimates
in (6.35) are 2N — 4, 2N — 5 and 2N — 4 respectively. However, as shown in Proposition 7.3, the L?
estimates for the (2N — 5)™ order derivatives of A and (2N —4)™ order derivatives of 1 can be controlled
by the (2N — 3) order energy of ¢. So there is a mismatch here. To overcome this difficulty, we need to

deal with trA and /Ay with the corresponding top order derivatives.
As in Proposition 7.1, we also modify the associated fluxes as follows:

Fi,p+1(t7 ’LL) = sup {Fi7p+1(7—’ U)}, 1=1,2,
to<t<t

0<n<p
8.1 Estimates for the derivatives of tr)

Due to (4.13), tr\ satisfies a transport equation as

o o o o ° 1 o
L(tr\) =c Mz - dLo, — ¢ H(LPp0 + pal?pa) — ¢ 1L fpry — ic_l(Lc)tr)\

do-dy
(d%’a : d?a)Q
(Le) (L)
(dl'a : d@a)LSD

- CiltrA(dxa : d@a) - ‘)\’2 + Ci2f<dx7 f/ia 2 ﬂ)

In addition, (4.3) can be rewritten as
.. 1. -
/MA‘P“/ = LLypy + QT)L(‘D“’ — H,,
where ﬁw = H, — p/Ap,. Then (8.3) can be written as
o 2 1 1383 1 <10
L(rtA—E) = (— = —c¢ 'Le+ ¢ ' LP Lypg)rA + — — [A]? + ¢,
0 o

which contains only the first or zeroth order derivatives of ¢, on the right hand side, where

3 .. e
E =c Yz dp, — =c¢ 'Le+ c_lL’Bng,

2
<¢zd¢'¢zd¢>2
o 2" diga
e=c"fde. o) |t o) (he)

(dz? - dipa) Lip
Set F¥ = dZ*ue\ — dZ*F with Z € {g/i, T, R}. It then follows from (8.5) inductively that
2 o o po
LiFF=(- . ¢ 'Le+c tLPLpg)F*

2 o o pe .
+ (- 0 ¢ Lo+ T \LPLog)dZE — 4ZF (1N ?) + €F,

8.1

8.2)

(8.3)

(8.4)

(8.5)

(8.6)

8.7

(8.8)
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where for k > 1,

ek :ﬁgeo + Z ﬁlgﬁ[LZ}F]Q

ki1+ko=k—1
9 ) o (8.9)
+ > ZFM(=Z Lo+ o WP Lpg)dZM A
k1<k—1 0
and
¥ =de +d( - c’li)c+c’1i)5fgog)tr)\. (8.10)
Note that for any one-form ~ on Sy, it holds that
L(0%|k[%) = —20°tA|k]? + 20 (el )| ]. (8.11)
Then choosing kK = 0*F* in (8.11) and using (8.8) lead to
IQ/(Q6IF’€\2) :96{ — 2\ |F*)? + 2(— ¢ 'Le+ c_llo/ﬁicpg) |F*|2 4 2¢F . FF
2 o o 50 .
+2(==—c'Le+c 'LPLpg)dZFE - F* — 24 Z%(|N\?) - F* ).
o
This yields,
o . o o o 2 o
|L(PFH)| SRl [F¥| 4+ 0°| — ¢ ' Le+ ¢ LV Ly |- |[F¥| + 0*| = = — ¢ Le 3.12)
Y .

+ VLY Lpn | |AZR E| + PIAZF(IAP)] + 0%le"].
Then it follows from this and (7.8) that
5lQ3HFkHL2(21;) =0'|F*(to, -, )l L2 (s + 5lo'/? /tt {75/2“5\“@0(27;) AFM) 20w
0
+ 792 = e+ Cilin%HLw(zg) : ”FkHH(zg)
+ 72| — ?) —c 'Le+ ¢ DLy | oo sy - IMZR B 250y
+ 722 AP 2y + T b 2o b

Thus, the Gronwall’s inequality yields

t
o2 agegy S 220480 [ {rPIAZ8Bl gy + T IAZH AP g .
to .

+ T5/2H€k”L2(E$)}dT'

Each term in the integrand of (8.13) will be estimated as follows.
We start with dZ*E. Since F = ¢ 1dx®- dp, — %cich + cilLBng, then

SMAZYE Loy S 832750472 + 77 [ By cpopa(tu) + 077042 [ By cppn(tw),  (8.14)

where one has used L°° estimates in Section 5, Proposition 7.3 and Lemma 7.1.
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Next, we treat dZ* (| \|?). Direct computations give
AZ*(|N?) =2 A (dZFe)) + 2 > ZF M dZF )
k1+ko=k, k1<k—1

=2t \(F* + AZ"E) + 2 > ZE2uN(dZM ).
k1+ko=k, k1<k—1

(8.15)

Taking L? norm of (8.15) on the surfaces X% directly, and applying the estimates in Section 5 and Section
7 to handle the lower and higher order derivatives respectively, one can deduce

SIAZF (NP2 (mpy S8' =420 F¥| 2y + 67272077/

_ - (8.16)

Finally, it remains to treat e”.
At first, we deal with the term £’;£[£ Z]Fk2 in (8.9) with ky + ko = k — 1. If Z € {R, T}, then
L, 7] = P #X X by (3.42), and therefore, £.; , Fk2 = D . yrk: 4 ph2 (). This leads to
Loy [L,2] i i
that by Proposition 7.3,

k _ _ _ _
SIS £ P iagsp) S 60028 [ F¥]| o sy + 6225047/

. _ (8.17)
+ 61 B o (tu) + 6202 By <o (t ).
If Z = oL, thenby [L, Z] = L and (8.8),
2 o o o .
'}%[LZ]F’% — ’;1{(_E — ¢ e+ ¢ L Ly )AZM e\ — 4272 (|N)?) + eF2}. (8.18)

Note that the estimate of £5 dZ*2(|\[2) in (8.18) can be obtained by Proposition 7.3 immediately,

SIAZE (AP gy 07222047/ 4 512052 [y ()
+ (52750’(77/2\/ E27§k+2(’£, u)

The other two terms in (8.18) can be estimated similarly as for the remaining terms in (8.9), which will
be done below.

Indeed, for the term Z*F—%1 (—% —c e+ c_lfﬁfjapg)deltrA in (8.9) with k1 < k — 1, by Propo-
sition 7.3, one can get

(8.19)

B 2 . e
|| z* kl(,g,c "Le+ ¢ 'L L) AZM X[ 2 sy

SOt 2 S By ot u) 4+ 082 B <ppa(t ),

It remains to estimate K’;eo in (8.9). By (8.10), (8.7) and Proposition 7.3, one has

5 M’;eOHLZ(zy) SO TP By cppa(tou)s + 0702 By cpa(tu). (82D
Combining the estimates (8.17)-(8.21) and (8.9) yields
0¥l sy S8t 28| ¥ | a(upydr + 03275047 44727 By cpa(t )

+ (St_g\/ E27§k+2(f, u)

(8.20)

(8.22)
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By inserting (8.14), (8.16) and (8.22) into (8.13), one obtains from (8.5) and (8.6) that

5l||FkHL2(EZ‘) §53/2760f72 + tilim\/ ENLSkJrQ(f, u) + (5’(72\/ E27§k+2 (t, u) (823)
In addition, due to the definition of F*, dZFtrA = F¥ + dZ*E, and hence,

. k x
S NAZ N | 2wy + S| AIVLZ A L2 (s

SO T By cpa(tw) + 5672 By cia(t )

holds true, where one has used (8.23) and (8.14).

(8.24)

Remark 8.1. Since AZ%tr\ = dZ%tr\ by (3.13), so (8.24) gives also the L? estimate for VVASION

8.2 Estimates for the derivatives of /Ay

As in Subsection 8.1, one can use (3.19) to estimate A . Indeed, it follows from [L, A = —2(trX) A p—
20 1Ay — ditrX - dp due to Lemma 3.8 and (3.19) that

Lisp =[L, flp+ SLp
= — 2(trA) Sy — 24@ — dted - dp+ (Ap)e (L Lipa — Le) + 2dp- d(c™ L Lpa
i) + M{A UL Lo+ 24(c7 L) - dLpa } + LT uL® ppa)
— L(c ' L) ppa — ¢ pL® (L, g + plL, A e — L(pgne) + (Lp)Ane.

To estimate the term with wavy line in (8.25), one notes that (3.29) implies

(8.25)

AL* =dir) - da® + uehpa® + Y~ { N (Le)dya® —%c Ydxo)T + ' TP (dx )T}, (8.26)

and the L? norm of each term in (8.26) can be estimated by (8.24).

Observe that the two terms with the underline in (8 25) are both derivatives with respect to L and
then can be moved to the left hand side of (8.25). Let E = ¢~ uL*Apq — pilncand F = Ap — E.
Then (8.25) can be rewritten as

LE =(=2trA — 207 ' + ¢ 'L Ly — ¢ Le)F
— ditrx - (dp — cfl,ulozgoadxa — cil,ulozadcpa +udlne) + é

Recall that Z is any vector field in {T', R} defined in Proposition (5.2). Set F¥ = Z¥/Ay — Z*E, one
can get by induction as for (8.8) that

LF* =(—2u) — 207" + c_lloﬂlo/gow — ¢ 'Le)F*

_ . . . _ (8.27)
— dZ*uX- (dp — ¢ pLgada® — ¢ L oo + pdine) + [L, Z| dx F*' + @
with
=y I 2N A PR 2P+ Y {Z’ﬂ(-m& — 207 4 ¢ L Ly — ¢ Le) PR
ki+ko=k—1 ki+ko=k

[k1] > 1 [k1| > 1

— (dZ*2te)) ﬁkzl (dp — ¢ YLpada® — ¢ pLdpn + pdIn c)}7
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where the first sum on the right hand side above vanishes when & = 1. Thus, applying (7.8) to
F(tu,9) = 0?F*(t,u,9) — QOFk(to, u, ) and using (8.27) lead to

t
5193/2”Fk”L2(Z}L) §53/250+/ 5175051’“716“112(2?)617'
to (8.28)
/(51+l 071/ 2)| A ZFteA|| 2 zu)dT+/ 3/25lHékHL2(E¥)dT'

to to

It follows from (8.24) and Proposition 7.3 that

51+l o 1/2H¢2Zktr)‘”L2(Eu dT—|—/ 3/25l”ék”L2(Eg)dT

to

<3220 4 / ( By csa(ru) + 07 2m>d7 (829)
<$%2750 4\ [ By cpra(tu) + 00/ B <iya(t,w).

Inserting (8.29) into (8.28) and appying the Gronwall’s inequality yield

5l93/2||FkHL2(2g) <§3/27E0 V B <iaa(t,w) + 0/ Ea <ppa(t, ),
and hence,
SN Z* gl Loy S22t 4 32 By cppa(tu) + 6832 By <ppa(tw).

The other cases, which contain at least one Q[O/ in Z*, can be treated by using (3.19) and commutators
[oL, Z] and [oL, /\]. Therefore, we eventually arrive at

6l||Zk4A:uHL2(E?)

_ . (8.30)

At the end of this section, we are going to improve the L? estimate of K%j\ in (7.29). It follows from
the proof of Proposition 7.1 and 7.3 that the estimate of L2 norm of K%S\ was obtained by integrating

L iﬁ’;;\ along integral curves of L. Such an approach leads to losses of time decay of some related
terms. To avoid such a difficulty, we now make use of the estimates (8.24) and (8.30) and carry out the
L? estimates directly by studying the equations of A under actions of different vectorfields.

Corollary 8.1. Under the assumptions (x) with § > 0 small, it then holds that for k < 2N — 6,

S ZFtrM|| 2y S ¥4 4 6871 By cpra(tow) + 06 By <pa(tw), (8.31)

where [ is the number of T' in the corresponding derivatives. Furthermore,

(5l||Zk[O/l’r5\||L2(Z?) S (53/2_€Ot_2 + t_l_m\/ E~‘17§]€+2 (f, U) + (5’£_2\/ E~‘27§k+2 (f, ’LL) (832)
5l+1 HZkTﬂ‘}\H[g(Z?) S 53/2750’(71 + tim\/ E1’§k+2(t, u) + (5f71\/ E27§k+2(f, U) (833)

and
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Proof. We first derive (8.31). Without loss of generality, k > 1 is assumed. Z¥~1(pL)tr), Z*1TtrA
and Z*~! Rtr\ will be treated separately as follows.

Step 1. Treatment of Z*~1(oL)tr\
It follows from (4.15) that
8| ZF N (oL)trA| <M | 2™t d| + 61504 0/25t2 |z 0| 4 612 | L 22
4 5l2 ‘dZnQQO’ + t—l(slz |Zn2g0| + 61—80t—3/26l1 ’an L7,| (834)
+ sleo—=3/25lo |£7%0(R)7fi| + §2—c0g=3/25lo |£§0 (T)ﬁﬂ,

where [; is the number of 7" in Z™ (i = 0,1,2), and n; < k — 2 + i. (8.34) and Proposition 7.3 imply

5lHZk_1(Qi)tr5\||L2(zy) ST 7 By e (tu) + Sty By <kra(t ), (8.35)

which, together with (7.5), yields

S ZF (oL trA|| pasyy S 02704 4 671 [ By cppa(tow) + 0T By <ppa(tu).  (8.36)

Step 2. Treatment of Z*~1Ttr)\
Thanks to (4.16), one has

S ZF TN | o2 oo 3260 2T gt | 4 gm0 1251z | 4 61 2 )
+ 612 Zm2 | 4 62| A2 0| + 62| L2 | 4 71621 27 ¢
+ 51750t73/25l1 |Zn1 L2| + 5t726l2 ‘Zn2/~L‘ + 517€0t73/25l0 |£7%0 (R)¢L‘
+ 527€0t73/2610 ‘Z:"%O (T)%Li’7

(8.37)

where the number of T in Z*~1is I, [; and n; (i = 0, 1,2) are given as in Step 1. We now apply (8.30)
to estimate Z™ /Ay and use Proposition 7.3 to handle the other terms in (8.37). This leads to

SN ZF T | gy S 0% + €/ By cppa (b u) + 06/ By < (t ). (8.38)

Thus

S| ZE T ed || pagnpy S 032704 4 6871 [ By cppa(tow) + 0t /By cppa(tu). (8.39)

Step 3. Treatment of Z*~! Rtr)\
Due to ZF "' RtrA = [Z¥~1 RjtrA + RZ*'tr), then

51‘Zk_1Rt1‘5\’ S (’51—80t—3/25lo |[’ZO(R)¢L’ + 52—50t—5/25lo M:ZO(R)#T‘ + t(sll \dZ”ltrM,

which, together with Proposition 7.3, (8.24) and (7.5), implies

(5lHZk_1RtI'5\||L2(Z?) 5 53/2_50f_1 + f_m\/ E~‘17§k+1(f, ’LL) + 5’(_1\/ E27§k+1(t, u)
< 032me0 Tt L S By cpra(tu) + 681 B chya(t ).

Collecting (8.36), (8.39) and (8.40) leads to the desired estimate (8.31). Moreover, (8.32) and (8.33)
are the direct consequences of (8.35) and (8.38) respectively. ]

(8.40)
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9 Estimates for the error terms
With the L2 estimates in Sections 7 and 8, we are ready to handle the error terms § f Do o L‘IJ| and

| [ Dtu @(gzmilll + % 0™~ 1W)| in (6.35), and then get the final energy estimates for . To estimate
[peu ®(0*M LT + L 0>™=1F) for the top order derivatives, the following two lemmas will be needed.

Lemma 9.1. For any smooth functions f and h, it holds that

(fh) = / (L +mgmy+ [ (g

St,u Sto,u

f(Lh+—h) /Ct(if+2lgf)h+/

C£

trA(fh) + /S (fh), .1)

Ci

/ Rih=— [ frn) -t / PR fh). ©2)
St,u 2 St,u

St,u

Lemma 9.2. If f; (i = 1,2, 3) are smooth functions, then it holds that

g risy == [ (v L)+ [ (R g

o 9.3)
+ Ery + Ery + ET3
Dt su o
with
Ery =(tr\) fi- fo- Rfs — Rf1 - fa- Lf3—}(fr Y f1- fa Lf3—f1 (R)ﬁixdxﬁ)'f:a
—(® md h) - fo fs = (@) fr-fo- fs = (L+ 5 )f1 Rfz- f3
~ R+ o) o o= 50 PRE+ )i fo i
ETQZRfl'fQ'f3+§<tr Vi fa fs
Ers=— iRy fs—Riv fo- fs — 3™ B o fo
Proof. Let f = f1- Rfsand h = f5 in (9.1) and then integrate over [0, u] to get
~ [ AheLht g p)RE)
:/ utr)‘{fl fa Rf3}+/ {L+ )(fl Rf3)- f2} (9.4)

—/ {fl'fQ‘Rf3}+/ {fi- fa-Rfs}.
sy o

Denote the last three integrals on the right hand side of (9.4) by I, I] and /11 respectively. Choosing
f=fsandh = fo(Lf + QLQ f1) in (9.2) yields

[=— /D L RUB(LS+ ;an}fg — % /D R (Lf ;anfa}

- 9.5)
+ l)*,'u{fl -fa-RLf3} + /l)£7u{f1 < fo- ((R)?fLXdeg)}
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Treating [, {f1- f2- szg} by using (9.2), one can get from (9.5) that

== [ RR(Lf+ g [ RIRE gAY

Dt,u
1

-5 /Dm u Bt {f(Lf1 + ;Qfl)fg} — /Dt,u f1-Rfs-Lfs

— Rf1-fo-Lfs — ;/Dw tr(R)%‘{fl'fQ‘loffS} (9.6)

Dtu

—/ fl((R)ﬁszsz)fs—/ ((R)ﬁixdxfl)fz-fs
Dtu Dtu
—/Dtu(diV(R)ﬁj)fl'fz'fz-

Similarly,
1= [ nmest [ R gty [ @005 s o)
== [ s [ R g [ @R g ©8)
Thus (9.3) follows from sub(;tituting (9.6)—(9.8)Oint0 9.4). 0 0

Recall the notations in Section 6 that for ¥ = Z’““cp7 =Zy12y - L1y, = @’;H = J{“ + Jé“
is given explicitly in (6.38) with J{“ and Jé“ being the summation and the rest in (6.38) respectively. We
will also use the notation that <p2 = Zn---Z1py forn > 1, and gog = ¢~. Then our main task is to
estimate J§ and J§.

9.1 Estimates for J}

It follows from the explicit form of J{“ that the key is to estimate the derivatives of udiv(z )C';L 0<n<
k). Due to (6.42) and the structures given in (6.43)-(6.45), the treatment involving (2 )D?n? will be given
separately from those for z )D;il and 4 )DTVL’3,
Pry-

(1) We start with the estimates involving Z )D,% and (4 )Df;ﬁ. Substituting (3.23)-(3.25) into (6.43) and
(6.45) yields

since the latter do not contain the top order derivatives of

, L . 1 . 1
MDD =TpLPe? + p(dp + 2¢7 pTpa) - dLT + §tr(T)¢(LLsOZ + 5 uxLyey)
~ o 1 o
+ (dp+ 207 W oa) - ALY — Tudbeply + 5 (= ¢! Te — e 'ule ©9)
+2c 7 uda® - do, — 2utr)\)4&pz,
1 1 - 1 - .
DDz ={teATp + (FutrA + §Mtr9)trg(T)%‘ - §|dul2 — T - dipa } Leo?

1 1. ~
+ (itr(T)yf + 5L — putrA) (dp + 2¢ T pq) - d?,

(9.10)
(@L)Dm | =(2 — pu+ oLp) L2p% — 20(dp + 2¢ T dips) - A L™

N . o ©.11)
+ ot A(LLpYy + Stex L) + o(uteh — L) g7,
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: ] o o
L) pn o =teA{2 — i+ oLy + optrd + igutr)\}Lgpg
+ 20t A\ (dp + 2 T i) - dig,
o o 1 o o 1 .
Rpry =RuL*? — gt - dLel + itr(R)ﬂ‘(LLgo;‘ + SrALgY)

. L .
— By ALyl — Rudol + §H(tr(R)¢)4AS@w

(E) "y ={tARu + %u(tré + %tr)\)tr(R)# + %d,u : (R)y\‘i}iwz + {%tr(R)ﬁ(du

. 1. 1 1 .
+ 2uc T p,) — iLu(R)ﬂ‘i + itr)\(R)ﬁi + §utr)\(R)7f]i} 'd@y-

9.12)

9.13)

9.14)

Note that the term LLQO:’YL + %tr)\chg appears in %) DY, and J{“ contains at most the (k — n)™ order
derivatives of (%) D2, (i = 1,3). Then it can be checked that the L? norms of all the terms involving
(%) D2, (i=1,3)in J¥ can be treated by using the L>-estimates in Section 5 and the related L2

estimates of Proposition 7.3. Therefore, it holds that

k
g2+ | / Z (Ziy1 + (Zk+1)A) o (Zpyoj + (Z”Q*J')A)(ZkJrlfj)D']j_lj
Dtu j:1 7

Lkt

t k ,
<p2AH / Z 1(Zisr + (Zk+1)A) i (Zryaj + (Zk+2fj)A) (Zk+1fj)D"I;_13 L2 (s0) 9.15)

to j=1
NLZM oyl 2 sy dr

¢ t
5547450 + / 773/2E1,§k+2(77 u)dT +5 7.*3/2E2,§k+2(7', U)dT,
to to

Similarly, one can get that

k
§A+L | / Z (Zis1 + (Zk+1)A) o (Zpgo—j + (Zk+2_j)A)(Zk+l_j)D§,?3j
Dbtu 7
7j=1
'LZkJrlSDV |

¢ t
§5373s0 + 52350/ 773/2E1,§k+2(77 u)dT + 5250/ 773/2E27§k+2(7’ u)dT.
to to

The corresponding terms in 6% [, . (o> LW + $0*™~1W)| can also be estimated as

k
52 /Dw | Z; (Zk+1 + (Zk+1)A) o (Zk+2fj + (Zk+2fj)A) ((Zkﬂ—j)D”;_lJ
‘]:

+ (ZkJrlfj)D’]i;sj) (g2m[‘:@k+1 + *Q2m71@§+1) |

(9.16)



k
S52H—1 / { Z Zjs1 _|_ k+1)A) e (Zk+2_j + (Zk+2—j)A) ((Zk-!—l—j)D’I;_lj
Dtu
7j=1

)

i 1
B DI P @ [ (gright 4 e kP

Dtu 2

t t
§(54_4EO + 5/ 7'_2E1’§k+2(7', U)dT + (5/ 7'_3+2mE27§k+2 (7’, u)d’f

to to

u
+(5_1/ FL]C_,_Q(f,’LL/)d’LL/
0
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9.17)

(2) We now estimate the terms involving (% )D;"Q (0 < n < k) in J§. Note that the most special case

is n = 0, which corresponds to j = k in JF.

Indeed, in this case, the order of the top derivatives

n % )D%2 is k, which implies that (%) D2,2 contains terms involving the (k + 1)™ order derivatives
of the deformation tensor. This prevents one from using Proposition 7.3 to estimate the L? norm
of (4 )D%2 directly. Otherwise, the factors Fy <jy3(t,u) and Es <43(t, u) will appear in the right
hand side of the energy estimate (6.35), which can not be absorbed by the left hand side. Thus, we
will examine carefully the expression of (%) DY 5 and apply the estimates in Section 8 to deal with
the top order derivatives of tr\ and p. Indeed, it follows from direct computations that

n ° o 1 n ]- o — Ta n
(T)D%2 =LTu- LeT — §(KE(T)¢L) ol + o div(dp |+ 2¢ LT deoa) Lol

(eL) pn

2
1. B 1 e _ 1 X
+{L( = Te— ¢ pLe+ 2pc ldaz“-d%zggvtg)Jri Y (o

+ 207 WP T pa) Lo — { AT — S £ (dp+2¢7 0T dpa) } - deo?

—_———
+ — (L) Lt

.-lk\»—\ [\D\»—*

no ={L(— ptobp) + SL(owh) — | Vi (of |+ 207 ouT ¥ o) Lo

[\')

+ %i(gm Lo — { £ (odu +2¢ opTdpa) + d(p+ oLps) } - di”
+ d(optr)) - di?,
——

[T 1 1 \ afi
(R)D'yQ —(LRM)LQOW - {iﬁL((R)?\LL) + dRN - im - gabEiL dxb

5 1 . 1 1. .
— v M T, + fcflRXch + icflvdc)} dgoz + ZL(tr(R)ﬂ')Ltp;’

2

!
4

.. .. ~ 1 °
+ gab,uei-’dexma + 2gapued T dab + poe T, + chl,uRXLc

d(2u’eA+20 " + ¢ uTe + C_IMQEC —2¢7 1P (dx) - dipa) - diplt

(9.18)

(9.19)

o o o 1 .
L(2vtr)\ +c¢ YwLe — 2¢ todz® - dp, — c_ch) Loy — - Y x (,uRXtr/\
PN
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1 o 1 .
+ —c tpode + 2udp — QC_IMRgoaanza)chf; +-Vx (RXtr/\
2 2
iy - 1 : 1 =
— gabengdXxb - vcilT“ngoa + 5671RXLC + §cflvch)ch2 (9.20)

1 ,
+ 3 d(2vutr>\ +c YpoLe — 2 poda® - dpg — ciluRc) : dgoz
—_———

It is emphasized that special attentions are needed for terms with underlines, wavy lines, boxes, or
braces in (9.18)-(9.20). In (9.18), due to 3£ ; du = AT+ 3 ud Ly, the corresponding underline part
is { )

ATy — %%u = —fudLuj (9.21)
which can be estimated by using (3 19). For the terms with wavy lines in (9.18)-(9.20), one can use
(4.16) and (4.15) to replace lﬁ A by W i 4+ - -+ which can be handled by (8.30). We also apply
(8.30) and (8.24) to estimate those terms with boxes and braces respectively. Meanwhile, one notes
that in (9. 18) (9.20), there are some terms containing derivatives of the deformation tensors with

respect to L. For example, 5 (ﬁ () v L) ¢‘lg04Y appears in (9.18). However, these terms are not the
“bad” ones and can be estimated by taking into account of (3.19), (4.15), (3.23) and (3.25).

In summary, we can arrive at

52l+1 ‘ /t Z Zk+1 + ZkH)A) . (Zk;_|_2_j + (Zk+2_j)A) (Zkﬂ_j)Df/T?j
D w 71

gkt | (9.22)

¢ t
<gi—deo 4 51—250/ 7_1/2_mE1’§k+2(7’, w)dr + 6 T_1/2_mE27§k+2(7_7 w)dr.
to to

It remains to deal with

. . 1 _
52 | /Dt (Zk+1_|_(zk+l)A).“(Zk+2_j_’_(Zk+27])A)(Zk+lfj)Dk? J( 2mL¢k+1+§Q2m 1¢§+1) I

where j = 1,2, - - - k, which will be done by these steps below.
(a) For Zy1_; =T, according (9.18), one can get from (8.24), (8.30) and Proposition 7.3 that

k
o | /Dt Z (Zk+1 + (Zk+1)A) o (Zk+2—j + (Zk+27j)A) (T)DI,;_QJ (o 2mL90k+1
sU i1

1
+ 2Q2m 1@54_1) |

k
552l+1 / QQm | Z (Zk—l—l + (Zk+1)A) . (Zk’-i-Q—j + (Zk+2—j)A) (T)Dk J |2
Dt j=1 (9.23)

u
+5_1/ Fi o (t, o) du’
0

t t
5567680 + 537480 / 772E1’§k+2(7, u)dT + (537250 / T2m73E27§k+2 (T, u)dT

to to

u
+5_1/ Fi oo (t, u')du
0
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o contains a term 2z kL gtr)\))chﬂ, Then (4.15) implies that
8 ZF L(otr\)| $6%2| 22| + 62 272 (o(hpo + L2 4hpa)) | + 83| LZ™ )|
+ 0T 260 g | 4 47161 23| 4 61Tt 26"2 22 L] (9.24)
4 51*€0t73/26ll ‘£21 (R)#[ﬂ 4 627€0t73/26ll ‘£%1 (T)ﬂLi’,

(b) For Zy41_; = oL, Z*(eL) o

where [; is the number of 7" in Z™ andn; < k —2+1i (1 = 1,2,3). Due to (8.4),

. L. 1. . .
(oo + L2 fpa) =L LLpa + 5 L Lipa — L% Ha

. ) 9.25)
=L(L*Le®) — (LL*) L, + 2—LaLLpa — L°H,.
0

Substituting (3.26) and (4.4) (note that H, = H, — 1Ay ) into (9.25) yields

Ao + f%%

=L+ Lsao + Z {@pa—LYL+5 )L% + L(2p0 — L) L}

a=1
2 1 - (9.26)
+ ¢ N(L%a — Le){ Lo + Z(Qcpa — L") Ly, } + 5671(T“cha ‘
a=1

— dz - dp, — ctr\ — cg_l)zaigpa + C_I(Io/adcpa + BT“dcpa) -dmb(i%)
1 . . o _
+ 5c*l(Lc + 3T L, — 3da® - dq + ctrh)(L* + 2T) Lpg,.

It then follows from (9.26) and Proposition 7.3 that for any fixed constant 5> 2,
52l/£ Q2m79|Zk(Q(4ASO() +[D/a¢90a))|2
Dtu
1
<5213/ 2m E] L 7n3 2 52[3/ 2m—2—>3 7n3 2
st [ b gz [ iz
+ 52—250+2l2/ 7_2m—3—;|Zn2Lz|2 + 62_260+l3/ 7_2m—5—9|Zn3:L,|2
Dtu Dtu
+ 52250+l2/ 7_2m7173‘Zn2tr5\|2 + 62250+2l1/ T2m7379|£7}1 (R)¢L’2 (927)
Dtu Dtu
+ 5472804’2[1 / 2m—3—3| pn1(T) 1 |2
Do T |£Z #L‘
u t _
5/ Fucpia(tu)du’ + 67720 4 52250/ T B <hya(T u)dr
0

to

t
+ 52/ T2m_2_9E2’§k+2(7', U)d’]’

to

In addition, (7.4) implies that for the constant >> %,
/ QQm_952l3‘IO/Zn3(P’2
Dtu
S/ 2m 352lg|(L + )Zn3<p|2 / 7_2m—2—952l3‘Zn3<p|2 (928)
Dtu Dtu

u t
,S/ Fipgp1(t,u')du —1—52/ 7'_2_9E17n3+1(7, w)dr + 52/ 7_2m—2—;E27n3+1.
0 to

Dtu
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On the other hand, applying (8.31), (9.27) and (9.28) to estimate the first line at the right hand
side of (9.24), and utilizing (7.4) and Proposition 7.3 to deal with the other terms, one then can
obtain by choosing 5= 1 in (9.27) and (9.28) that

[ P2 LIl S8 [ 2L )P
Dbu Dtu

t t
553—460 + 52—450 / 7—_2E17Sk‘+2(7—7 u)dT + 52_250 / T2m_3E2’§k+2(7—) u)dT (9.29)

to to

u
+5_250/ F17§k+2(t,u')du'.
0

Therefore, thanks to (9.19), Proposition 7.3 and (9.29), one has

62[ ‘/
Dtu ]

k

(Zk+1 + (Zk+1)A> o (Zk+27j + (Zk+2fj)A) (QE)D’;;’_Zj . (QQWE(plferl
1

1 _
+ §Q2m 1¢§+1) |

7,2

k
5521—1-1 / Q2m | Z (Zk—H + (Zk+1)A) o (Zlc+2—j + (Zk+27j)A) (Qi)Dk*j ‘2
Db j=1 (9.30)

u
61 / Py ot /)t
0

t t
St 53_450/ T 2B <o (T, u)dr + 53_2&0/ T2 By <y (T, u)dr
to to

u
+51/ Fl,k_,_g(t,u/)dul.
0

(c) Finally, we deal with the most difficult case, Z;1_; = R. In this case, it follows from (9.20)
that Z+ (%) D2?2 contains the term %(RZ ktrj\)chfy whose treatment is more subtle and will be
given later in Proposition 9.1. The other terms can be estimated as follows

1 <o
sl z* B DS, — §(RZktr)\)Lgo,7|
SO Y2 63| Lz | +61 720 §%2| 27 LirA| +6=0t /2 62| 272w
—_—— —_——— —_————

(9.28) (8.32) (8.31)
+ 51750t725l2 ’KEQ(R)?LL‘ + 51760{75/26[3 ‘ZHSN’ + 5272€0t73513 |Zn3 Lz|
+ §E0¢—3/2 gl |Zn2Li| 4 5120435l 1 ZMz| + §E0¢—3/2l3 1275 | (9.31)

+ 5—60t—5/2512 |Z7L2,U| + 51—60t—3/26l3 |LG3%0| + 51—2€0t—1513 |dZn390‘
+ 51—26(){—2512 |Z”2tr(R)7ﬂ + 52_260t_3(5l2 |£7Z12 (R)7(,T| + 51—260t—35l3 |Zn3U|
+ 62722041 g2 | 22 DA | 451 =042 612 22 | +61 042 5 | d 22
~—_— —_— ~—_—
(8.33) (8.30) (8.24)
where [; is the number of 7 in Z™ and n; < k —2 +i (i = 2,3,4). To estimate the L2-

norm of §'| Z¥ (%) D2’2 — 2(RZ*ur)) Lgpﬂ over D%“, we can bound the L2-norms of the terms
underlined with braces in (9.31) by the corresponding estimates indicated bellow the braces.
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While the other terms without braces can be treated by using Proposition 7.3 and (7.4). Then
one can conclude that

1 - o 1 _
|52l /Dt (Zk(R)I)S72 _ §(RZktI‘)\)LC,D»y) .(QZmL¢:+1 _|_592m 1()01;-0-1) |

” t
55_1/ Py <ppa(t,u)du' 4 6740 + 53_450/ T 2By <hya(T, u)dr (9.32)
0

to
t ~
—1—53_250/ T2m_3E27sk+2(T,U)d7'.
to

Finally, we turn to the estimates involving the term %(RZ ktrj\)Lgoy, whose L? norm cannot
be estimated by (8.24) directly since the resulting time-decay rate is not enough to close the
energy estimate (6.35) (see also the beginning of Section 10). Our strategy here is based on the
structural equation (8.5). Indeed, (8.5) implies that lol(trj\ — E) admits better rate of decay in
time, which, combined with (9.3) and (9.2), will enable us to obtain the desired estimates for
corresponding terms. Meanwhile, the terms involving E defined by (8.6) can be handled easily
by using Proposition 7.3 and (9.28) directly. Thus we can get

Proposition 9.1. For § > 0 small, it holds that

<o o I o
‘52l /Dt (RZktrA)L(‘p,y(QQmLZk+1S0A/+§Q2m 1Zk+1¢’7’)|
<30 4 5_1/ Fy <ppo(tu))du + 5_1/ OF, ya(t u')du’
) 0 (9.33)

t t
+ 527380 / Tm72E17§k+2 (T, u)dT + (52780 / T2m75/2E2’§k+2 (7’, u)dT
to to

+ 52_3€OE17§;€+2 (t, u) + §2—eo EQ’S]C_A'_Q (f7 u)
Proof. Noting (8.5) for tr)\, one can bound the left hand side of (9.33) by |I| + || with

_ . o o 1
T=6% [ RZMA-E) Loy (@12 g + 5871 2 ),

— o ° ].
II:62I /l)tu(RZkE)L¢7(Q2mLZk+1(P'Y+2Q2mIZk+1(pfy)7

where F is defined in (8.6).
We start with the easy term T1. Note that RZ*E contains Z*(dx? - dR¢,) and

- R o = S0 diu) + (Re") K

Replacing /Ap, with =L (LLg, + 2% Ly, — H,) and applying (4.4) yield

d«ra . dRSQa
1 2 1 1
=(L+ 5 ) Ren+ D (20— I (L + 5 ) Rea + D (da - diga)
a=1
- 3 9.34
> (2pa = L)1 - dipa — Pt - dipo — 5g 0 ©.34)
a=1
1< Ly

~ % 2(4% — LYRpo + ¢ f(Lp) | da® Aoy | Re.
0 a=1 trA



62
It then follows from (8.6) and (9.34) that

u
11557 [ Pl +5750 [ gmoaghjzmagp
0 u

+ o34 /D‘ u 02m765214‘Z"4x|2 + g2 /D o ’Zk(dxa : dRSOa)‘Q

t,u

+ 53—48() / QQm—452l2 ‘£7%2 (R) 7{101 ‘2 + 65—450 / QQm—662l1 |£7%1 (R) #T‘Z

Dtu Dtu
+ 65—460 / Q2m_452l1 ‘Z:Zl (T)¢i|2 + 53_460 / QQm—452l3 |Zn3 L’L|2

Dtu Dtu
+ 52l+17250 / 92m71|iZkRSD|2

Dtu
u
<61 / Py ot )du' + 51720 / P (L + 27)2’%0\2 (9.35)
0

1
Dtu %
+ 53—480 / Q2m—662l4 ‘Zn4$|2 + 63—450 / sz_452l3 |Zn3L’L’2
Dtu D

t,u

+ §53—4eo /D"u QZm—452l2 ‘£7ZLQ(R)¢L|2 + §5—4e0 /D Q2m—652l1 |£7le (R)¢T|2

t,u

+ 557450 / 02m7452l1 ‘1221 (T)¢L’2 + 637450 / Q2m7452l2 ’antr(R)¢|2
Dtu Dtu

+51—280/ Q2m—35213‘2n3¢’2+53—4m/ 92’”_25%2]2”2&5\]2
Dtu D

t,u

+62l+1—260 /;t Q2m_1|iZkR(,0|2,

where [; is the number of 7" in Z™ and n; < k — 2+ (i = 1,2,3,4). Applying (9.28) with
5= 1 to estimate the last term and using Proposition 7.3 to deal with the other corresponding
terms, one then can obtain

u t
I1) <ot / Pyt u)du’ + 5740 4 57740 / T2y <ppo (T, u)dr
0 to

(9.36)
t
—1—53_250/ T2m_3E2,§k+2(7—, w)dr.

to

We now treat the difficult term /. Choose f; = sz_zigov, fo = Z’““(p7 and f3 =
0?Z%(trt\ — E) in (9.3), and define

I_l _ 62[/ IO/(QZZk(trj\ o E))(Q2m_2LQ07)(RZk+IQO»y),
Dtu
L2 = o /Eu (RZkHSDv)(QQmiQLSDV)(QQZk(trj‘ - E))
t
It then holds that

—I_ = _I_l —+ I_2 + 52l E’f'l + 521 ETQ + 52l E’f’3. (937)
Dtu ¢ 27;0
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Note that (8.5) implies that

L(o*(rh — E))
= — 20F + ¢ ' 0*(L*Lp — Le)trh — 0 (trh)? + o%e

0 o o o o (9.38)
=cto(=2dz® - dpy + 2Lc — L%Lg) + ¢ Lo* (LY Lq
— Le)trh — 02 (trh)? + oe,
so I; can be rewritten as
= [ 5.2 - B) (@ L, (RZ)
+ 52[/ L([*, Z¥|(th = B)) (&> * L, )(RZ* ;)
Dtu
+ 6 / 0" ZRL(0*(rX — E)) Loy (RZF )
Dtu
=11 + Lo + 3.
Ii; (i = 1,2, 3) will be treated separately as follows.
i. To estimate I11, one can use the facts that [L, Z*] = Z ZM(L, 21Z% [L, oL] =
~ ki+ko=k—1
Land[L,Z] = (Z)yl‘)ng with Z € {T, R}, and Proposition 7.3 to obtain
| 6% / _ZML, 0L] 2" (¢*(uh — E)) (""" *Lipy) (RZ" (o) 2" Repy) |
D ,U
S [ 2Lz (P = ) (0L ) (RZM. 0L 7 R |
+ | 6% / ZK1 LZ% (0*(trh — E))(0*™*Lepy) (0LRZM Z* Ry, |
Dtu
e [ gz 45| 2 Bl 72 2 (9.39)
Dtu N—

ot 2t (12 Bty |+ £ D)) + 08! LZ5 o] }
~——
t
<SP0 4 g2 / TP2E) cppo(T u)dr
to

t u
—1—52_50/ 7'2m_5/2E27<k+2(7‘,u)d7‘—1—5_50/ Fy o (t,u)dud,
0

to

where the first and second term underlined by braces have been estimated by using (8.31)
and (9.28) with >= % respectively, and by (7.5), and similarly,
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8 [ 2L A2 (P A= D) L (RZ ) |

552—450 / t Q4m_452l1 |£TZLl (2)7(_L|2 + 52—450 / Q4m—25212 |Zn2tr}\|2
Dtu D

t,u

+ 54_660 /Dt' Q4m—752l3 |Zn3x‘2 + 52—450 /D Q4m_452l3 |Zn390|2

t,u
. (9.40)
+64650/t Q4m552l2’Zn2L2‘2+/l 521|de+1@’2
Dtu Dtu

t
555*660 + 547450 / 7—2m74ELSk+2 (7_7 u)dT
to

t u
+ 647450 / T4m74E2,§k+2 (7_7 u)dT + 5*1 / 5F2,k+2 (ty u/)du/7
to 0

where [; is the number of 7" in Z™ withn; < k—2+1i (i = 1,2,3).
Combining (9.39) with (9.40) yields

t u
‘I_H‘ §5373€0 + (52780 / T75/2E1,§k+2 (T, u)dT + (571 / 5F2,k+2(’£, u’)du’
to 0

9.41)

t u
+ (52_50 / TQm_5/2E27§k+2(T, u)dT + (5_80 / F17]€+2(t, u')du'.
to 0

ii. |I12| can be handled similarly as in Case i. Indeed, due to [¢?, QL] f = —20°f and
[0%,T]f = 20f, then as for (9.39), one can get

IWLtUW%%ﬂW%d—@MW”hmeWDW%%H

t
5637380 4 52*50 / 7—75/2E1,§k+2 (7-7 u)d'r 9.42)
to

¢ u
S / T2 Ey cpya(T, u)dT + 570 / Fipsa(t u)du’.
to 0

Meanwhile, it follows from (8.31) and Proposition 7.3 that
8 [ L(ZMATIZR = ) (@ L (RZ ) |

5/ (52”de+190’2 + 52—250 / 7_4m—35212 (‘Zther + |Zn2E’2)
Dtu Dtu

. . ) (9.43)
551/ OF kot u)du' + 557450 —1—54280/ 72m75E1,§k+2(77 u)dr
0

to

t
+ (54_2a0 / T4m_5E2,§k+2 (T, u)d’]’
to

Therefore,
t u
‘I_lg‘ g(sgfggo + (52750 / T75/2E1,§k+2(7', u)dT + (571 / 5F2,k+2(’£, u’)du’
to 0

¢ u (9.44)
+ 52_80 / T2m_5/2E27§k+2(7’, u)dT + o Fo / F17k+2(f, u')du’.
to 0
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iii. We will use (9.38) to estimate ;3. Due to (9.2) and (9.34), one has

52 | ¢ QQm_2Zk (c_lg(2daca g — 2Lc+ i“iwa))L@W(RZkH%) |
Dtu

<® | [ PmPRZF (o2 dat - dipy — 2Le + L7 Lipa)) gy (7 0,) |
Dtu

+ 6% | . o227k (¢t o(2dz® - dipq — 2Lc + i“fkp@)RLgp%Z’““wﬁ |

1 o o o o
+ 507 | . 0¥ 27k (Lo(2da® - dpa — 2Le + LY Lipa)) Lipy (Z¥ 0 )Pt |

~

o 1
< / 61_60Q2m_3/2{51_60+Z4T_5/2|Zn4$| + 7_—15l3|Zn3(p| + 5Z|Zk(L + 27Q)R()0|
Dtu

1ot 2 (| zn2 Bt 4 (L7 Pty | 4 01L7 Dt | + 7| 272w )
+52—60+117—5/2|£%1(R)7{_T| -|—(5l|[O/RZkg0|+(51_€0+13’T—3/2|Zn3[7‘}51’Zk+1g0’,

where [; is the number of 7" in Z™ withn; < k — 2+ (i = 1,2,3,4), and the term
underline with brace can be estimated by using (9.28) for 3= %
This, together with Lemma 7.1, Proposition 7.3 and (9.28), yields

52 | . QQm_QZk (c_lg(de“ Ao, — 2Lc+ IOJO‘l.igoa))Lgo,y(RZkH(pv) ]
t
<gdm2e0 +53‘2‘€0/ 732 cpyo(T,u)dr (9.45)
to

t u
+ 53_260 / 7’2m_5/2E27§k+2(7', U)dT + / F1,§k+2 (f, u’)du’.
to 0

In addition, for /; and n; defined in (9.45), one can get

62 | A (0_192(iaigoa — Lotrh — o?(trh)? + QQS)LQDV(RZIH_IQO,Y) |
Dtu

§ / 52l |de+1S0‘2 + / 52—450 7_4m—462l3 |Zn3§0|2 + / 64_660 T4m—552l2 ’an Lz |2
Dtu Dtu Dtu

+ / 5476&0 T4m7752l3 |Zn3$’2 + / 627450 T4m726212 ‘an tr}\‘Q
Dtu Dtu

t t
oo gt [ IRy (e + 1 [ By a(ra)dr
to to

+5_1/ OF, o (tu')du,
0
(9.46)

where the last integral in the second inequality has been estimated by (8.31). Collecting
(9.38), (9.45) and (9.46) yields

t u
’j13’ 5547250 + 5372&0 / T73/2E17§k+2 (T, u)dT + (571 / (5F27k+2(f, u’)du’
to 0

t ~ w 9.47)
+ (53_280 / T2m_5/2E27§k+2(7’, u)dT + / F1,§k+2 (t, u')du'.
0

to
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We conclude from (9.41), (9.44) and (9.47) that

11| So%730 + 52_60/ TSRE o, u)dr + 67 / §Fy oy (t, u)du/
. 5 (9.48)
+077%0 / 7252 Fy pga (T, w)dr + 5790 / Fy <pyo(t, ) du!
to 0

Next we deal with I5. For any vectorfield Z € {R, T}, it follows from equation (9.38) that

8| L(*RZ* (1l — E))|
<8'[L, RZ*](o*(trA — E))| + 0'|LR[0%, Z*|(tth — E)| + 8'|RZ*L(* (A — E))|
551—5091/2512|R2n2 (tr5\ _ E)|61_50t_1/26l2 W}”Z%I + 51—50t—3/2514|Zn4x’
+ 5170025473 p| 4 610265 2 LY + 06| 272 (da® - dRepa)|
+ 88| ZM | + 01 |LZ" 3 | 4 6203260 | £ (Rt | 4 gLme0gl/ 25tz 2|
+ 600" Z"2 Lir ).

(9.49)

This, together with (7.3) and (8.32), yields

'L (*RZ* (A — B))lr2(sp)
61900125 |RZH (X — B)|| paqsyy + 632750 + 61027 JEy a(tu)  (9.50)
+ 04/ By <pyo(t,u) + 06" (| 2 (dz - dRoa )l 12(sny + t5l3”izn3@||L2(zg)-

On the other hand, applying (7.8) to F' = 0> RZ*(trA— E)(t,u, ) — 02 RZ* (ttA— E)(to, u, 9),
one can get from (9.50) and (9.34) that

0**6' | RZ*(trh — B)| L2 (s

SO 2 50T By (b u) + 682 By cpa(tw)

t
+ / T2{6% 27 (da - dRpa) | 25y + 8% | L2720 2y b

to

N/ P (L 5 L) 20 oy dr + 89/220 112 9.51)

+ 5ot m\/E1 <k2(t,u) + t1/2\/E2 <kt2(t
1/2
<f1_m (/ F1 <k+2(f u )du') (53/2_50{1/2

+ o1l By gt u) + 5t/ By <ka(t

When there is at least one oL in Z¥, that is, Z* = Z¥1(oL)Z" for ki + ko = k — 1, according
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to (8.5), Proposition 7.3, (8.24) and (7.5), one can deduce that
§'|RZ* (L) Z¥2 (th — E)| 2(sy)
<8'|RZ" [oL, Z*2)(tr — E)|| 2wy + 0 | RZ¥ 2% (L) (A — E)|l 2w
<ot T35 £ (Z)?fiHB(zg) + 51 IRZ™ A 2wy + 1ot 1Z™ || L2z
+ 61t 2| ZM N | pa sy + 610262 272 U oy
+ o105 2t ||Zn3$i”L2(27;)

<20t 5o 2 By s () 4 66 By <t ).

Thus, it follows from (5.1) and (5.2) that

(9.52)

N w 1/2
8'|RZ* (e — E)lleem < g L/2mm (/ Fi <i4a(t, u’)du’) + §3/270¢~1
0

+ 01T 2T B o (b u) + 061 By cppa(t ),

which, together with (9.2) and (8.31), yields

(9.53)

Bl =] | (2°416)0%" R{ g, 2k~ F)yda
t

1 o .
+ 2/ sz(ZkH‘Pw)LSOka(U)\ - E) -tr(R)7/fdx|
z¢

SO0 P2 28 | o sy - Y| RZF (X — B)| pagsy) (9.54)
+ 6720?25 25 | sy - 0| ZF (X — Bl 2y
g0 2mm3/2 4 gm0 pm /2 / ' Fy <ppo(t, o) du!
0
+ 52730072 B po(tu) + 6275002 By (ot ).
Recall (9.37). It remains to estimate terms involving Er; (i = 1,2,3) given in Lemma 9.2.

First, one has

52l | ET‘l |
Dtu

t
55—60 / TQm_l(SIHZkJ'_lsoHLQ(Eg){51_60+1Hd2k(tr5‘ - E)”LQ(E?)

to
+ 771252 202N | 2 gy + 80T 200 LY Dt 2
+ 773281 2 || pasy + 6107262 | 2 Ll 2 9.55)
+ 517507_735[3 ”ZnS.TiHLP(E?) }dT
t
+ 51—250 / 7’2m_15l||de+1QD||L2(EZ;)5lHZk(tr)\ - E)||L2(Efﬁ)d7-

to

t
+/ | / 8N (RZM 1 p.) o™ Lp, ZF (X — E)dz | dr,
to 1‘

here one has uscid the identity (L + %@)fl = (2m — 2)@27”_3i<,07 + 0¥ 2(L + %@)Lg@v =
(2m —2)0*™ 3 L, + O (517250 9?™~4) due to (4.3). Notice that the last term on the right hand
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side of (9.55) is just j;; o ! |f2 |dT which can be estimated by (9.54), while the other terms can
be estimated by using (8.24), (8.31), (7.4) and Proposition 7.3. Thus we conclude that

t
82| [ Ery |S 8830 4 623 / T 2By 2 (7, w)dr
- t to ) 9.56)
_'_52_50/ T2m_5/2E2,§k+2(T7 u)dT+5_1/ F17§k+2(f7 u’)du/.
to 0

Next, 0% [, Ers and 6% [, Ers can be bounded by applying (8.31) and Proposition 7.3
t to

directly as

% [ Bro+ 6% | Bry <6330 £ 62 30E) pia(tu) + 020 Ey cpra(tu). (9.57)

5 2i
Then the estimate for I follows from (9.48), (9.54), (9.56), (9.57) and (9.37).This and (9.36)
complete the estimate (9.33) in Proposition 9.1. ]

Based on (9.32) and (9.33), we can end this subsection with

k
o | /Dt Z (Zk-H + (Zk+1)A) o (Zk+2—j + (Zk+27j)A) (R)D”:;J . (QQmIQ/QD?H
5u A:1

I g
+592m ISO?H) |
. 1, [
SIo [ 2D Ek 4 L k) 467 [ Rt )
Dtu 0

k-1
+ Z 51+2l / |Zp (R)D”;7—2j|2 . |Z§k’—1—p (Z)A|2
= D 9.58)

k—1 k
+ ot Z /Df | Z (Zk-H + (Zk+1)A) (Zk+2—j T (Zk+2_j)A) (R)Ds’? *
j=1 Jj=1

u u
<o 4571 / Fi <o (tu)du’ + 67 / OF, oya(t u')du’
0 0

t t
+ 517250 / TmiQEl,Skng (T, u)dT + 52780 / T2m75/2E2?§k+2 (7’, u)dT

to to

+ (52_3€OE1,§k+2 (t,u) + 52_€0E2,§k+2(t7 u).

9.2 Estimates for J}

Recall that J§ = ,udiv(Z’““)Cﬁ + (Zig1 + @A) (21 + PIA) @Y does not contain the top order

derivatives of trA and /Apu. Therefore, according to Proposition 7.3 and the expressions of z )Dly‘: ; in
(9.9)-(9.14) and (9.18)-(9.20), one can get

3
20+1 z ko okt
’ /t |Z( kH)D%J"L‘P'y |
Dtu %
J=1

t t
553_250/ 7'_2E17§k+2(7, w)dr + 6 7'_2mE27§k+2(7', w)dr

to to

u
+(51/ Fl’Sk+2(t,u/)dul
0

(9.59)
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and
1
52l‘ . Z Zk+1 ) QmL(pk—H_‘_ 2Q2m 1()0’134-1)‘
* =1

by ¢ . 9.60
§53250/ T2E17Sk+2(r,u)d7+53250/ T2m73E2’Sk+2(T,u)dT (©.60)

to to

U
s / Fi <t u')do!
0

In addition, CIDg is just pullyp~ which has the explicit form in (3.41). Then, Proposition 7.3 and (6.39)
lead to

s2U+1 / ((Zhy1 + (Zk+1)A) (21 + (Zl)A)CI)O L(karl
Dtu

t t
SOOI 4§70 / T 2R EL oo (7, w)dr + 67790 / 732 By <poya(T,u)dr (9.61)

to to
u
+5_1/ Fy <pya(t,u')du
0
and

m |-
52l|/[)f,u(z’f+1+(Zk+1)A)-~'(Zl+(Zl)A)<I>3 (" Lh ™ + 5™l

t t
St 4 53_450/ T 2B <ppo (1, u)dr + 53_280/ T3 By <pyo(T, u)dT (9.62)

to to

u
+(51/ F1,§n+1(t,u/)du/
0

10 The global existence near C),

We are now ready to prove the global existence of the smooth solution ¢ to the equation (1.6) with initial
data (1.7) near Cj. Indeed, substituting (9.15)-(9.17), (9.22), (9.23), (9.30) and (9.58)-(9.62) into (6.35),
and using the Gronwall’s inequality, one can get that under the assumptions (%) with small § > 0 for
i<m<3,

6By <on—a(t,u) + 0Fs <on—a(t,u) + By <on—a(t,u) + F1 <on—a(t,u) S 52720, (10.1)

Based on (10.1), we are ready to close the bootstrap assumptions (x) in Section 4. To this end, one needs
the following Sobolev type embedding formula.

Lemma 10.1. For any function f € H?(S.,), under the assumptions () for § > 0 small, it holds that

£l zoe (50 S JZHR Fllz2(se.)- (10.2)

a<l

Proof. This follows from Proposition 18.10 of [36]. L]

It follows from (10.2), (10.1) and (7.1) that for £ < 2N — 6,

§51/2
§NZFp,| < \/Z |R*Z* oyllz2 (s S 7 (VE1,<on—1+ /Es<on—4) S 6 o¢-1/2(10.3)

a<l
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which is independent of M. This closes the bootstrap assumptions (), and hence the existence of the
solution ¢ to equation (1.6) with (1.7) in the domain D%* can be proved by the standard continuity
argument (see Figure 3 in Section 3.1).

Finally, let T' € {(t +r)L, L, Q} defined in the end of Section 1. For any (¢, ) € Cys, we will refine
the estimate on | I'®¢ | with better smallness O(§2750)

| Top(t, 2) |< 62750172, Ja| <2N —9, (10.4)

which will be crucial to prove the global existence of the solution ¢ to (1.6) in Bys.
First, we improve the estimates on derivatives of L*Lyq, L%pq and u — (t — 7).
Using (10.2) again, one can get by (7.1) that

100" 28 (L* @) | oo (5.0)
A<J5l+1/2t71/2<||L(QRS12'B(za<Pa))”LQ(Z;L) + HE(QRQZ’B(EO(‘M))”LQ(zf))
55l+1/2f_1/2{||RSIZB(za<Pa)HL2(2y) + oll[L, R1Z%(L%¢a) | 25y
+ ol RSML, Z7)(L*0a) || p2 () + QHRSZ’BL(EQ%)HL2(23)}-

Since L(L%pq) = (LL*)¢a+L" Lpa and LL® is a combination of (3.26) and (3.32), for | 8| < 2N —7,
one then has

106" Z° (L% po) | oo (51,0

SRR 22| oy + 61O 2 L ey
+ 0320 L 702 | oy €Y 2722 2y }
+ 82 D ey + 147 Pl o)

562_5°t_1/2+53/2_60t_1/2 /E1,§2N74+53/2t_1/2 /E2,§2N74

55275(%71/2,

(10.5)

where [; is the number of T"in Z™ and n; < |3|+i (i = 0,1,2). (10.5) implies that in the domain D4¥,
L%, can be estimated more accurately as

SNZP(L%pa)| < 8270732 |8 < 2N —71. (10.6)
Similarly, it holds that
N ZP(L¥Lipa)| S 875047, 8] < 2N 8. (10.7)
In addition, it follows from (3.27) and (10.7) that for || < 2N — 8,

SNZPLe| < §2Fog L, (10.8)

which leads to ,
| Z°(1— =) |S 0% ¢!, |B|<2N -8 (10.9)
0

by (4.41) and the fact @y + piw’ = L% — @i L 4+ @jw'(1 — 7)) = O(8%50¢73/2) + (1 — 2)
It follows from (10.9) that the distance between Cyy and Cys on the hypersurface Y is 45 + O(62750)
and the characteristic surface C,, (0 < u < 46) is almost straight with the error O(627%) from the

corresponding outgoing conic surface.
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On the other hand, note that

L=L+p {01~ g) — gy L'T7 + (g — 1)g; T'T7}T + ggijTi(dxﬂfj)K
L=1 T % — ¢l — ggijTiTj}T _ ggijTi(dX$j)Xa (10.10)
Q=R — p gt LT + p=te tedalp,T.
When |5| < 2N — 7,
T2 (i g0) =[T, Z°)(8pa) + ZPT (')

= Y 2T 2)2% (G0 ) + 20 (el T )
|B1]+]82|=8]—-1
+ 78 (Tacha + gmneijT”TaTgoa),

and then |TZP (e¢xlp,)| < 61720~ (1 is the number of T'in Z#), which implies that
ILZP(efa'p,)| S 017207 |8l <2N -7 (10.11)

due to the second equation in (10.10) and (10.3). Integrate (10.11) along integral curves of L, and use
the zero boundary value on Cj to get

2% (efa' 0a)| S 6277071, |B| < 2N T, (10.12)
Therefore, in D4%, collecting (10.10), (10.9), (10.8), (10.12) and (10.3) yields
| D%y [S 61702 o] <2N -7, (10.13)

where [ is the number of L in I'®.
Recall that ¢ is the solution of (1.6) and ¢, = 0y¢. Thus (10.13) implies that for |a| < 2N — 7,

| LT |< o110t /2, (10.14)
Hence, as for (10.12), one can get that in D% for o] <2N -7,
| T |< 62712012, (10.15)

For any point P(t°,2°) € Cas, there is an integral line of L across this point and the initial point is
denoted by Py(to, zo) on Xy, with |zo| = 1. It follows from (2.11) that

| L(r'/20% L) |< 62720 1ely=3/2 o] < 1. (10.16)
Integrating (10.16) along integral curves of L and applying (2.4) to show that on Cas,
| 9%Lg | < 62207 lalg=1/2 ) < 1. (10.17)
Using (10.17) and (2.11) again gives | L(r'/2L¢) |< 620t=3/2, which implies in turn that
|Lg| < 60t ™1/,

and hence, | LLo |S §2720¢=3/2 holds by (2.11). By an induction argument and (2.11), one can show
that on Coyg,
| T |< 6270t~ Y2 Ja| < 2N —9.

Thus, (10.4) is proved.



72
11 Global existence inside B-; and the proof of Theorem 1.1

In this section, we prove the existence of the solution ¢ to (1.6) inside Bays. To this end, define
Dy = {(E,[E) it — |.’L" > 25,t0 < ES t} C BQ&

to be the shaded part in Figure 4 below. Different from the small value problem inside Bss in [8] and [16],
the solution ¢ to (1.6) in D, remains large here due to its initial data on time ¢( (see Theorem 2.1). Note
that for § > 0 small, the L°° norm of ¢ and its first order derivatives are small on the boundary Cs; of
Bas (especially, I'*¢ admits the better smallness O(627°) on Cos, see (10.4)).

A

\\ t [l .//v

D,

Figure 4. The domain D, inside By

We will adopt the energy method to get the global existence of ¢ in Bog. To this end, getting suitable
rate of time decay of ¢ by the Klainerman-Sobolev type L> — L? inequality is crucial. However, since
D; has finite lateral boundary, then the classical Klainerman-Sobolev type L> — L? inequality cannot
be used directly in D;. Inspired by the works in [15], [26] and [32], we intend to establish the following
modified Klainerman-Sobolev inequalities.

Lemma 11.1. For any function f(t,z) € C®(R*2),t > 1, (t,z) € Dy = {(t,x) : t — |x| > 25,tp <
t < T}, the following inequalities hold:

2

—1g(i—1)s i 1
| f(t, .%') IS ;t L=t HP f(t, ')”LQ(rSt/Q)v ’(IJ‘ < Ztv (11.1)
_ 1
| ft2) SIFEBY) [+ Y 72100 (1t )2 jasr<i—20)s 2] = b (11.2)
a<1,|8|<1

where T € {S, H;,Q}, (t, BF) is the intersection point of the boundary Css and the ray crossing (t, x)
which emanates from (t,0), and s is the any nonnegative constant in (11.1).

It should be remarked that though this Lemma and its proof are similar to those of Proposition 3.1
in [32], yet the refined inner estimate, (11.1) is new (the appearance of factor § (i_l)s) and is crucial for
the treatment of the short pulse initial data here that is not needed for the small data case in [15, 26, 32].

Proof. The basic approach here is similar to those for Proposition 3.1 in [32] by separating the inner
estimate from the outer ones. However, to get the refined inner estimate (11.1), we will use a §-dependent
scaling. Let x € C°(Ry) be a nonnegative cut-off function such that x(r) = 1 fro r € [0, 1] and
x(r) =0forr > 3.
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Define f(t,x) = X(‘?—')f(t,x) and f, = f — f1. Then supp fi C {(t,z) : |z| < £} and supp f2 C
{(t,z) : |z| > %} One can obtain the inner estimate (11.1) and the outer estimate (11.2) separately as
follows.

First, for any point (¢, z) satisfying |z| < it, fi(t,z) = f(t,z). One can rescale the variable as
x = t§®y, and then use the Sobolev embedding theorem for ¥ to get

el =1h) < 3 ([ 105 Py)

la|<2
1
S (/ (t5s)2'“‘!(8§‘f)(t,t5sy)|2dy)2 (11.3)
ajea 7 18°y|<1/2
1/2
< 5\ 2|ce|—2 a
Z / . (t6°) 102 f(t, )] dz> .
|a]<2 <3t
Note that A
o 1 z’ B t ;L'J_ ) . aoa
0 = t—r(t—f—r t+r Hi+ t+r Q) withz) = (—2%, z°) (11.4)

and t ~ ¢ — |z in the domain {(¢, z) : |z| < 3t}. Then, it holds that

10, f(t, 2)| < [(t = |2)0:£(t, 2)| S TF(t, 2)],
PO2F(t IS Y IPUf(t2)]- (11.5)

laf<2

Therefore, substituting (11.5) into (11.3) yields (11.1).
Next, for (t,z) satisfying || > 1t, by the Newton-Leibnitz formula and the Sobolev embedding
theorem on the circle Sf with radius p and center at the origin on ¥, one has

t—26

F2(t2) = £2(t, BY) - /| o)y
5 t—26 1 b
SPWBD+ [ o S 10 s 901 a spyd
|| a,b<1
< A BY) + Z Q0% f(t, - )H%Q(t/4§r§tf25)'
a<1,|p|<1
which implies (11.2). Thus Lemma 11.1 is verified. ]

We also need the following inequality which is similar to Lemma 2.3 for 3D case in [10].

Lemma 11.2. For f(t,z) € C®°(R'*2) and t > 1, it holds that for 1 <t <t — 26,

(t,
( )H\LQKM sy < 201 B e iciorcrsyy + 107t Vizgcoicrsy. (11.6)

Hlth

We will apply the energy method to prove the global existence of solution ¢ to (1.6) in Bgs. To
this end, motivated by the works on global existence of solutions with small data to 3D nonlinear wave
equations satisfying the first null condition in [9,25], we define the energy as

ZTRQLo 2 (),
Epi(t) = [|]OTFQlp(t, - )22 (SenDy) // |1+ - ‘m)g/z}d xdt’, (11.7)
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where Z € {Zz = w'O +0;,i = 1,2}, re {0, S, H1, Hy}. Based on the estimate (2.3) on X, one can
make the following bootstrap assumptions:
For t > tg, there exists a uniform constant M such that

Ep(t) < Mg?5%*, k+1<5 (11.8)

with ag = a1 :2—80,a2:%—80,0,3:%—80,@4:—%—602111(1&5:—%—60.
According to Lemma 11.1, 11.2, and assumptions (11.8), we can obtain the following L estimates.
Proposition 11.1. Under the assumptions (11.8), when § > 0 is small, it holds that

1ZQ=3¢| < Moo/ 16-2043/2(1 4t — ), |ZTO=2¢| < Mo”/8==0¢=3/2(1 4t — 1),

. s (11.9)
|ZT2Q5 g < Mos®/ 1070t =3/2(1 4t — ), |ZDT3¢| < Mos™2/10704=3/2(1 4 — 1),
and
’aQ§3¢| S ]\40525/16—6075—1/27 ’af\Q§2¢| S ]\4059/8—5075—1/27 1o
’af\29§1¢| 5 M055/16_60t_1/2, |af\3¢‘ 5 M05_9/16_€Ot_1/2. (11.10)
Proof. First, for |z| < %, one gets from (11.1) that
120529 + [09=%¢)|
o . . (11.1D)
St 1{5 1109523\ 12(2,0p,) + ITOX=G|| L2 (5,0p,) + 8 IT202=20| 125,000 }-
Choosing s = 1—76 in (11.11) and utilizing assumptions (11.8) yield
|ZQ=3¢| 4 093¢ < Mo?>/ 165041, (11.12)

Next, for & < |z| < ¢t —26, choosing f(t,z) = (1+t— |2)) Y ZQ=34(t, )| in (11.2), and applying
(11.6) to Q=1 ZQ=3¢(t, x), one can get
295t 2)|
1+¢— |z
Q=S19=1 ZQ=3¢ (11.13)
WHB@MQQ—%)

SIQ=IZAS3(t, By )| oo jacr<i—2s) + t /210 ZQ=3| 12 pa<r<s—26)-

<1ZQ=3e(t, BY)| + 1712

Since widy + 0; = W'L + Lwi Q, [QS1ZQS3¢(t, BY)| < §27°0¢~3/2 due to (10.4), then it follows from
(11.13) and (11.8) that

ZOS3p(t

12074(t, 2)] T f_( "aﬁ)’ < Mos?—=073/2, (11.14)
In addition, (11.2) implies directly that

|0Q=39(t, )| < Mos>—e0¢~1/2, (11.15)

Thus it follows from (11.12), (11.14) and (11.15) that
1ZQ=3¢| < M0525/16_50t_3/2(1 +t—r),
’aQ§3¢| < M0625/16_£0t_1/2.
Finally, the other cases can be treated similarly as above except choosing different s such as s = %
for ZT'Q=2¢ and ZT2Q='¢, while s = % for ZI®$. Details are omitted.
O



Corollary 11.1. Under the same conditions in Proposition 11.1, it holds that

02Q=2¢] < Moo=t V2 (1 + ¢ — )71,
0°TQ=1g| < Mpo®/ 1670t V2 (1t — 1) 7!,
|0°T2| < Mod~ /10204~ 1/2(1 4t — )71,
and
’289§2¢‘ S ]\4059/8—5015—3/27
]Z@f(lgld < M055/167€0t73/27
’Z@f%ﬁ‘ S M0(5_9/16_€0t_3/2.

Proof. These results follow from (11.4) and (11.9)-(11.10) directly.
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(11.16)

(11.17)

O

We are now ready to carry out the energy estimates in D; using the ghost weight method in [2]. To
this end, choosing a multiplier Wo,v with W = e2(+t=1)""% ang integrating W 9,vg™? (04)9% 35U over

Dt yleld

/2 ) S {00 + (14206 +1V6P) Vol — 3 0160;000;0 )W
tNDy

]

|Ziv]?
W
//l)t Z 1+T—r3/2

:/E . 2{(3tv) + (1+ 2016 + |V Vo* = > 0:¢0;¢0,00; U}W

7]

ﬂ/ {%(1+28t¢>+ IVol*) ((Lv)? + (92)2) — (Lo +
Ca5NDy r

- % Z 81¢8]¢ZZUZJU}W
2,J

" //D % { 220067 1 0,60,0 — [VP67) ZinZjv — (e

w

- 2000+ 2 B 0w}

/Dt W@tvgaﬂaiﬁv+//[)t [0(20¢-00-0v) + 006 20690 -00) W

+ / D, 3252(,25{(1 - wk(‘)kqﬁ) ZZ:(ZZU)2 + %:wzaquZZvZ]v}W

Note that due to (11.10), the integrand of fEm D, in (11.18) is equivalent to
((0)? + | V)W,

and the integrand of |, Cos D in (11.18) can be controlled by

{(Lv)* + T%(Qv)z + 52750773/2(&51})2}1/1/

(Q¢)*
272

(11.18)

(11.19)

(11.20)
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with the help of (10.4) and Z; = w'L + %Q, here we have neglected the constant coefficients.
Inserting (11.19) and (11.20) into (11.18), and utilizing Proposition 11.1 and Corollary 11.1, one
then can get by Gronwall’s inequality that for small § > 0,

|Zw]?
o) + Vol )W + // — W
Ltth (( tv) | U‘ Dy zz: 14+7— 3/2
5/ ((Br0)* + Vo)W + // | Wowg*?02 v | (11.21)
Yty NDy Dy
+ /~ {(Lv)* + %(QU)Q + 52760773/2(&51})2}1/[/.
CosNDy r

To close the bootstrap assumptions (11.8), we apply (11.21) tov = kOl (k+1<6). By (10.4),
[(LT*QI9)? + L(QTFQl)? + 527207 73/2(9,T*Q!¢)?| < 64~20775/2 holds on Cbs. Therefore,

1
/@ R e R
26 t

In addition, on the initial hypersurface X, N Dy, it holds that |9Q'¢| < 8270 and |aTFQlg| < §3—F—=o
for1 <k <6 —1by(2.3). Hence, (11.21) gives that

Ep(t) S o720 ¢ / / | (BT ¢) (9P 025T%Q'p) |, &k < min{1,6 — I} (11.22)
Dy

Epa(t) < o7 2k280 4 // | (BT ¢) (9P 025TFQp) |, 2<k<6-1. (11.23)
Dy

It remains to estimate [, | (9;T%Q'¢) (9?02 ,T¥Q'¢) | in (11.22) and (11.23).
Theorem 11.1. Under the assumptions (11.8) with 6 > 0 small, it holds that
Epy(t) S 8% t*, k+1<6, (11.24)
where ay, (k =0,1,---,5) are those constants defined in (11.8), ag = —% — €0, and L is some constant

multiple of 0° with 0 < ¢ < 2 — 2¢p.

Proof. Acting the operator Fle on (1.6) and commuting it with ¢g*” o2 5 yield

g*P92,Tr0ly = > G1(8TF 0l g, 92T F2Ql2 )
ki+ ko <k, l1+1l2 <1
ko +1lo <k+1

+ > Go(ATF Q1 ¢, 7202 ¢, 9°TH3 Q013 ),
k1 4+ k2 + k3 <k

l1 +1l2+13 <1
ks +13 < k +1

where (51 is a generic quadratic form satisfying the first null condition, and G is a generic cubic form
satisfying the second null condition. Hence it follows from Lemma 2.2 in [20] that

/ /D | () (P02, T 0lg) |

5// \afmlqs\{ > (2Tl g - 18°TR2 Q2 ¢| + |T*1 Q1 ¢| - | ZOTF2 Q2 ]
Dy ki + ko <k, 11 +12 <1
ko +1la < k+1
+ > (|ZTF Qb g| - 10T*2 Q2 | - |02TF QB ¢| + |OTF1 Q1 ¢| - |OTF2 02 )] - |Zaf’f3913¢|)}.
ki + k2 + k3 < k
I1 +12+13 <1
ks +1l3 <k+1

(11.25)
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Next we estimate the right hand side of the inequality (11.25). In fact, as it can be checked easily that the
last summation in (11.25) has better smallness and rate of time-decay, one needs only to pay attention to
the term involving the first summation in (11.25). This will be carried out case by case below.

Case 1: kK = 0and [ < 6. There are two subcases: [ < Iy and [; > [s.
Ifl; <lo,thenly < 3,ls <[ — 1. Then Proposition 11.1 implies that

‘Zﬂll(ﬂ S/ M0525/167€0t73/2(1 +t— 7“), |8Ql1¢‘ 5 M0525/16750t71/2‘
Thus, one has by (11.4) that
[ 100011200 0110706 + 00261 - 200
Dy

t
M0525/167€07'73/2Han(f’HL?(Eth) I(1 47— 1)0°Q2 || 12 (5., dT

to
t
t M0525/16_5°T_1/2|’89Z¢HL2(ETsz) HZéQlZML?(ETODt)dT (11.26)
0
S/t 773210055132 (5. pydT + ) M2525/8 2032 OT Q=G| (55, oy AT
o 0

t 5 t
N Z /to 7'_3/2E0,a(7')d7' + M02525/8_250 Z /t0 7'_3/2E1,a(7)d7'.
a=0 a=0

If Iy > Iy, then Iy < 2. Then Corollary 11.1 implies that
02002 ¢ < Mos®/8750t=V2(1 4t — )7L, | Z0QR2¢| < Myd?/8—c0473/2,

Thus,
/ / 0006|1290 6] - |07 6] + |00 | - | Z0024)])
Dy

51
§M059/8_80{// —1/2|an¢| ‘ZQ ¢| // 3/2‘an¢’ |8Ql1¢5‘}
Dy

I b2
1150 200/4-2 |ZQh |
§5g/to 02 CbHL? EmD)dT—i_M Y - C// 1+ (r—7)2

+ Mod®/57=0 Z /t 72100622 (5, Dy AT (11.27)
=0 710

t 6t
<6 / T By (r)dr 4+ MgS*/ 420 By, (£) + Mod”3 =0 ) / 732 By o(7)dr.

to

Inserting (11.26) and (11.27) into (11.22) yields

t
ZEOl t) < 64720 4 M2s2/E 2502/ 732E (1 )d7+5</ T B (r)dr,  (11.28)

=0 to to

where one has used s € (0, 2 — 2g() and Grownwall’s inequality.
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Case 2: k = 1 and [ < 5. There are also two subcases below.

If k1 + 11 < ko + 1o, then k1 + 11 < 3. Since the case k; = 0 can be treated as in Case 1, we assume
that k1 = 1. Then applying Proposition 11.1 gives

|ZDOM @) < Mos®/8~20t32(1 4t — 1), |oTQ1 | < Mos*/3~c01/2,
Since k2 + I3 < 5, thus for § > 0 small, one can get that
//D 0Tl p|{|ZTF1 Q1 | - |0’ TR2Q"2 9| + [oT Q1 g| - | ZOTF2Q"2 | }
:
S [[ 1oralel|ZE0t ol 100 + 209 - P10l
t +[oTQM ¢ - | 20922 ¢| + |09 ¢| - | ZOT =102 9| }

i ! (11.29)
¢ ¢
N Z /to 732 o (T)dr + M2§9/4—2%0 Z/ 7732 By o(1)dr
a=0 a=0

to

4t
+ Mo/820 / 72 By o (7)dr.
a=0"to

If k1 + 11 > ko + l9, then ko + I5 < 2. Note that the case ks = 0 can be treated as in Case 1. Thus
we assume ko = 1. Then Corollary 11.1 implies that

1°TQ2 | < Mos®/ 1675047 V2(1 4t — )71, |ZOTQR2¢| < Myo®/16750473/2,

It hence follows from (11.8) that

// 00| {|ZTF1 Q1 | - |0’ TR Q2| + [oT Q1 ¢| - | ZOTH2 Q2| }
Dy

: 6 5 t
<5 / T B (r)dr + MGSS /B0 Y " Eoa(t) + ) / T Bra(r)dr (11.30)
a=0"710

to a=0

6 t 5
RS [ S )
a=0"10 a=0

Similarly as in Case 1, one can substitute (11.29) and (11.30) into (11.22) to get

5
Z Eq,(t)
1=0

6 t t
SO0 4 M8 N / 7732 By o()dr + 6 / LB (7)dr (11.31)
a=0"to

to

6 4 t
MOS0 S B (1) + M2/ 20 S / 732y o(r)dr.
a=0 a=0""0

Case3: 2 < k <5and! < 6 — k. One then needs also to separate two subcases.
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If k1 + 11 < ko + 1o, then ky 4+ I3 < 3. Then Proposition 11.1 implies directly

// TR g|{|ZTF1 Q1 g - [0’ TR Q2| + |OTH Q1 | - | ZOTH Q2| }
Dy
6—k t 8—k t
S Z/ T_3/2Ek7a(7')d7' + M02(5_9/8_250 Z/ T_3/2Ek,27a(7')d7' (11.32)
a=0 "0 a=0 "0
T—k .t 5—k .t
+ M§55/S_2€0 Z/ 7_3/2Ek_17a(7')d7' + M§525/8—2€0 Z/ 7_3/2Ek+17a(7)d7.
a=0"%0 a=0"1t0

If k1 + 11 > ko + lg, then ko + I3 < 2. It then follows from Corollary 11.1 that

// o0k Qlg|{|ZTF1 Q1 ¢ - [0 TR Q2| + |OTH Q1 | - | ZOTH Q2| }
Dy

t T—k 6—k ¢
<6 / T B (r)dr + M0 N "By o () + ) / 732 By o(7)dT
a=0"10

to a=0
—k (11.33)
FMFEE ST B+ MBSy [ (s
a+b<6,a<k—2 a=0"%o
t 6—k
+ MgoTOE N / T2 By (T)dr + M”74 2207y " By o (1),
a+b<6,a<k—271t0 a=0
Substituting (11.32) and (11.33) into (11.23) yields
6—k
> Br(t)
1=0
t
SR e D DI / 2B (7)dr + 6 (1) }
a+b<6,a<k—2 710
e (11.34)
+M855/8_QEOZ{/ 7—_3/2E1€—1,a(7-)d7_Jr(s_gEk—l,a(t)}
a=0 to
5—k ¢ 6-k .t

> / 7L By (1)dr.

- MBS Y / T2 By o(r)dr 4 5
a=0"7t0 1=0 7 to

Cased: k=6and ! = 0.
We start with the subcase k1 < ko. Then k1 < 3. Hence similar arguments as for (11.32) give that

//D |OT0¢| {| 2Tk | - [9°T k28] + [OTF1 | - | ZOT 2|}

t
—3/2
/ T Eap(T)dr (11.35)

to

t
< / 7732 B o(r)dr + Mg s~ 2/8 20
to a+b<6,a<4

1 t
M0 S / 32 By (r)dr.
a=0"t0
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In the subcase k1 > ko, one can get from Proposition 11.1 directly that

//D |O006|{| 201 6] - |9°T 2] + |OT™ ¢| - | ZOT | }

t 1 t
<6 / T B o(r)dr + MGSY /5707y " By o (t) + / 732 Ego(T)dr

to a=0 to

(11.36)

1 t
£ MRS N B () + M2 Y / TY2E, (r)dr
a+b<6,a<4 a=0"7%0

t
Page s S [ s+ MBS B )
a+b<6,a<4 10

Collecting (11.35) and (11.36), and applying (11.22), one gets that

t
Bgo(t) S67°72%0 4 Mgs—2/87200 3~ / 732 Eyp(r)dr
a+b<6,a<4 v 0

1 t t
#3352y [0 (a4 6 [ 77 Bua(r)dr (1137)
a=0"10

to

1
+ M365/8—250—§ ZE5,a(t) + M36—9/8—280—§ Z Ea,b(t)'
a—=0 a+b<6,a<4

Letbg = b1 =0, by = %, by = %andbl€ =2k —3fork =4,5,6. As0 < ¢ < % — 2g(9, we sum
up the inequalities (11.28), (11.31), (11.34) and (11.37) with the weigh 6% for Ey; (k+1<6),and use
the Grownwall’s inequality to obtain

> B (t) S 00,
E+I<6

which proves (11.24). O

As for the My-independent energy estimate in (11.24), we can also obtain the M, independent L™
estimates of ¢ and its derivatives corresponding to Proposition (11.1) and Corollary (11.1).

Corollary 11.2. When § > 0 is small, it holds that in the domain Bsg,

|ZQ§3¢| 5 525/16*50t*3/2+b(1 4t — ’I”), |ZfQ§2¢’ S 59/8*€0t*3/2+L(1 +t— T),
202019 S /T A (et =), (2T S 9T (=),
|aQ§3¢’ S 525/16—80t—1/2+b’ |af\Q§2¢| 5 (59/8_60t_1/2+L, ( : )
‘6f\29§1¢’ g 55/16—80t—1/2+L7 ’8f3¢‘ S 5—9/16—5015—1/2—“7

and

|82QS2¢| 5 59/87€0t*1/2+L(1 4t — T)il, ‘821:\Q§1¢)| S 55/167€0t71/2+L(1 4t 7”)71,
|a2f2¢| S 6—9/16—80t—1/2+b(1 +t— ,r_)—I’ |Zaﬂ§2¢| 5 59/8—€0t—3/2+b’ (11.39)
| ZOTQ=1g| < 65/ e0y =32+, | Z0T2¢| < 69/16-204=8/2+1,
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Compared with (11.8), Proposition 11.1 and Corollary 11.1, though the estimates in (11.24) and
Corollary 11.2 do not depend on M, yet they contain increasing time factors ¢2* or ¢*. To overcome this
difficulty and close the assumptions (11.8), we now study the equation on the difference between ¢ and
¢aq, Where ¢, satisfies

— 0} + Doy = 0,
ba(to, z) = d(to, ), (11.40)
Orba(to, x) = Orp(to, ).

Proposition 11.2. ¢, defined by (11.40) satisfies the following estimate on the hypersurface >y N Dy:

. ZTRQ g, 2 o420k =0,1,
/ \8Fle¢a|2dx+// | ST O ) 4 < o (11.41)
3¢NDy Dy (1 + 7= ‘$|)3/2 0 —2 72507 k> 2.

Proof. Let
DY :={(t,2) : 0 <t — |z| <20,to << t}.

One can estimate ¢, in D by the energy method. Indeed, it is easy to check that
B 2 . 1, 4 .
/ 02 ¢al® + V2 / (ILZ°¢al® + 5102°¢a|?) = / 02°%0a?,  (11.42)
DO 2 JéusnDo r S NDO

where Z € {8,Q, S, Hy, Hy}. The initial data of ¢, in (11.40) satisfy |8Z°‘¢a|2tomDo < =0~ with [
being the number of 0 in Z. Therefore, (11.42) implies

. 2 . 1,5
|10zl V2 [ 2200 + G10200u7) 5 85720 (11.43)
54N DO 2 Jéysnpo r?
By the following Sobolev’s imbedding theorem on the circle S} (with center at the origin and radius )
1
lw(t, )| S WHQSleL%S})a

it then follows that for any point (¢, z) in DY,

|2%¢a(t,2)] S H2NQ5 2% Gul 25,y S 472021095 2% Gal |2 (mnpoy S 77T,
(11.44)
In addition, T®¢, solves

L(r'2LT%¢,) = %r‘l/QLfaqﬁa,

which implies |L(rY/2LT%¢,)| < 627°0¢72 by (11.44) since T € {S, Hy, H>,Q}. And hence, on the
surface Cag, |[LT%¢,| < 62750¢71/2 holds after integrating L (r'/2LT*¢,) along integrate curves of L
on 025. Then,

LT g, | + %|le¢a| < 627504732 on Oy

By an induction argument, one can get
- 1 - -
LTFQ g, | + —|QTFQ g, | < 62750t73/2 on Chy. (11.45)
T ~Y

Therefore,
- 1 -
/ (ILT*Q g |* + < |QTFQ pg|*) < 620, (11.46)
CasNDy r
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It follows the property of the weight function W in (11.18) and (11.40) that

- kaQl¢ |2
W |orka! a2+// AN
/z:tﬁDt ‘ ¢ | Dy (1 +7 - T)3/2

(11.47)
:/ Wiort L, 2 + V2
Sto D 2

- 1 -
W (|LT*Q o) + = QT Q2 o |?).
CasNDy r

Then the estimate (11.41) is a direct consequence of (11.47), (2.3) and (11.46). L]

Similarly as for Proposition 11.1, one can use Lemma 11.1, 11.2 and Proposition 11.2 to get the L>°
estimate of ¢ — ¢, in D;. Indeed, let ¢ = ¢ — ¢,. Then ¢ solves

2 2
— 0} + Nd =2 0:00:0:6 — 20,000+ Y 0i9d;$0,0;6 — [Vo[* g,

i=1 ij=1 (11.48)
d(to, z) = Qy(to, x) = 0.
Proposition 11.3. If 6 > 0 is small and k + 1 < 5, then
kel ZTRYGP(H x) < 52
H@F Q ¢HL2 (S¢NDy) //Dt 15 (- ’$|)3/2d xdt’ < 0%, (11.49)

Proof. By commuting the operator T*Q! with —0? + A\, and noting that the right hand side of the
equation in (11.48) satisfies the first and second null conditions, one then has from (11.38) and (11.39)
that

(=07 + &)IFQl)
S (12T 10 TR + [oTH Ol g| - | 20T 02 ¢))
ki +ka <k
1 +12 <1
+ Y (1Zrhahg|- [orkl gl |9P TR )|

k1 + ko +kz <k

1 +1l2+13 <1
+ [oT*Qlvg| - |aT Q2 ¢| - | ZOT Q' ¢)) (11.50)
SO {4 - )| PTR QRG] + 67kt ZoT R 0 g}
k1 +ko <k
1+ <1
k1+11 <2
+ Y 0T AR Lt — )T ZTR QG|+ §TRen S/ 2 R aT R Qg |}
ki1 + ko <k
1 +1l2 <1
ko +12 <2
where wy = 2 — =2 _ =35 _ dw:= -2 _ 0. And h
0= 16 €0, W1 = S Ep, W2 = 16 Ep and wgy = 16 €p. AN ence,

I(—07 + A)f‘le@BHLQ(Eth)

min{2,k}
Z 5w5t—3/2+L Z Ep,q(t>
5=0 pg?z_%il (11.51)
min{k+1,3} S
o ZPrQig )
+ Z §Fs L/ Z {”m“ﬂ(zm&) +i Ep,q(t)}-
= p+q<5

p<k—-s+1
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On the other hand, by Lemma 11.2 and Theorem 11.1, one can obtain that

ZTrQi¢
I+t—r

Ir2(mnpy S 67750t 4 61 (11.52)

Substituting (11.52) and (11.24) into (11.51) yields

min{2,k} min{k+1,3}
T T T T o T o s
s=0 s=1

<5ak+1/8750t73/2+2L'
(11.53)

Integrate W (9,1 Q) (-0 + A)kalq'ﬁ) over domain D; with W = e2(+t=") "% 45in (11.18). Then
it follows (11.53) that

. 9% .
W{Or Q' é)* + // = | ZT*Q
/EtﬂDt | | Dy (1 + T = T>3/2 | |
s [ jortatip e [[ wiareis)- (-0 + sty
S, NDy Dy
- . 1 . .
+ / LFle¢|2 + = QFle¢ 2
C’Q&ﬂDt (’ 742‘ ‘ ) (1154)
t ~ .
S/t 7-_3/2+2L”8Fkﬂl¢”%2(ETODt)dT+ 61/4—250+2ak
0
§172%0 k< min{1,5 -1},
" 6T 2k=20 9 <k <51

Therefore, (11.49) follows from (11.54) directly since ¢ > 0 is small enough and g9 < % holds. [J

Theorem 11.2. When § > 0 is small, there exists a smooth solution ¢ to (1.6) in Bys fort > tg.
Proof. Since ¢ = ¢, + gi), then Proposition 11.2 and 11.3 imply that
Ep(t) < 6% fork+1< 5, (11.55)

which is independent of My, then the assumptions (11.8) are then improved. ]
Finally, we prove Theorem 1.1.

Proof. Theorem 2.1 gives the local existence of smooth solution ¢ to (1.6) with (1.7). On the other hand,
the global existence of the solution in Ass and in Bygs has been established in Section 10 and Theorem
11.2 respectively. Then it follows from the uniqueness of the smooth solution to (1.6) that the proof of
¢ € C®([1,+00) x R?) is finished. In addition, |V¢| < 61750t~ /2 follows from (2.1), (2.2), (10.3),
and the first inequality in (11.10). Thus Theorem 1.1 is proved.

O]
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