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Abstract

This paper concerns the stabilizing effect of viscosity on the vortex sheets. It
is found that although a vortex sheet is not a time-asymptotic attractor for the
compressible Navier-Stokes equations, a viscous wave that approximates the vortex
sheet on any finite time interval can be constructed explicitly, which is shown to be
time-asymptotically stable in the L*-space with small perturbations, regardless of
the amplitude of the vortex sheet. The result shows that the viscosity has a strong
stabilizing effect on the vortex sheets, which are generally unstable for the ideal
compressible Euler equations even for short time [26, 8, 1]. The proof is based on
the L?-energy method. In particular, the asymptotic stability of the vortex sheet
under small spatially periodic perturbations is proved by studying the dynamics of
these spatial oscillations. The first key point in our analysis is to construct an ansatz
to cancel these oscillations. Then using the Galilean transformation, we are able to
find a shift function of the vortex sheet such that an anti-derivative technique works,
which plays an important role in the energy estimates. Moreover, by introducing a
new variable and using the intrinsic properties of the vortex sheet, we can achieve
the optimal decay rates to the viscous wave.
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1 Introduction

The three-dimensional (3D) compressible isentropic Navier-Stokes (NS) equations read,

di =
{6tp+ ivm = 0, reR3 t>0, (1.1)

om + div(pu ®@u) + Vp(p) = pAu+ (1 + A) Vdivu,

where p(z,t) > 0 1is the density, m(z,t) = pu(z,t) € R? is the momentum with u(z,t) € R?
being the velocity, the pressure p(p) is the gamma law, satisfying p(p) = p? with v > 1,
and the viscous coefficients © and A are assumed to satisfy

w>0 and p+A=0. (1.2)

In the case for p =\ =0, (1.1) is the 3D compressible isentropic Euler equations,

reRt>0, (1.3)

orp + div(pu) = 0,
(pu) + div(pu®@u) + Vp(p) = 0,

which admit rich wave phenomena such as shock waves, rarefaction waves and contact
discontinuities, i.e. vortex sheets. A vortex sheet is an inviscid flow in which the velocity
field is discontinuous in a tangential direction across a surface. In particular, a planar
vortex sheet is given by,

T3 < St,

(P, 0”)(z, 1) = {Eﬁ’ o) (1.4)

Ps ﬁ-‘r)v x3 > st,

where p > 0, uyx = (414, U+, u3+) and s are constants, satisfying the Rankine-Hugoniot
(RH) conditions,

ﬂ3+ —Uz_ = 0 and — S(?_Llur - rL_LZ',) + ﬂ3+’ai+ — U3_U; = 0 fori= 1, 2, 3, (15)

which implies that ug, = us_ = s.

It is well known that both the compressible NS equations (1.1) and Euler equations
(1.3) are invariant under the Galilean transformation, i.e. if (p,u) solves (1.1) (resp.
(1.3)), then so does

(p*,u*)(z,t) = (p(z — ct, 1), u(z — ct,t) + ¢ (1.6)

for any constant vector ¢ € R3®. Thus, by selecting ¢ = —(““;rul‘, “2+;“2‘,5), one can

assume without loss of generality that the planar vortex sheet (1.4) has the form,

~vs —vs - (P, _1_1), x3 <0,
(P, u”)(x, 1) = {(p’ﬁ% 20 > 0, (1.7)

where t = (4, U2,0) # 0 is a constant vector.

The stability of compressible interfacial waves is an important issue in gas dynamics.
Different from the nonlinear shock waves and rarefaction waves, the linear degeneracy
makes the compressible contact discontinuities less stable, which may lead to various in-
stabilities such as the Kelvin-Helmholtz instability for vortex sheets and Rayleigh-Taylor
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instability for entropy waves (the other kind of contact discontinuities in which the ve-
locity and pressure are continuous); see |7, 11]. For the 3D compressible Euler equations,
the planar vortex sheets are violently unstable (see e.g. [31]). In two dimensions, the
rectilinear compressible vortex sheets are also violently unstable if the Mach number M
is less than /2, while the supersonic vortex sheets with Mach number M > +/2 are shown
to be linearly stable; see |26, 8, 30]. The nonlinear stability of the 2D supersonic vortex
sheets was then established locally in time by [3, 4]; also see |27, 28] for similar stability
results in the non-isentropic case. However, one cannot expect the global nonlinear sta-
bility of the compressible vortex sheets for (1.3), which was observed by [1] through the
argument of nonlinear geometric optics. We also refer to [35, 2, 36, 38] and [37] for the
studies of the stabilizing effects of the magnetic fields on the compressible vortex sheets
and entropy waves, respectively.

In this paper, we are concerned about the viscosity effect on the stability of the
compressible vortex sheets with arbitrarily large amplitude. Different from the hyperbolic
theory stated above and similar to the meta-stability of the 1D entropy waves for the 1D
compressible NS equations first observed in [39], we are able to obtain a time-asymptotic
stability of the viscous waves associated with the vortex sheets for the compressible NS
equations by the L%-energy method. We remark here that our results hold true in both
three and two dimensions; see Remark 1.4. Due to the viscosity, the discontinuous solution
of (1.3) cannot govern the large-time behaviors of the classical solutions of (1.1), that is,
the inviscid vortex sheet (1.7) is only a meta-stable state for the Navier-Stokes equations.
Thus, the first step in our analysis is to investigate the viscous wave associated with
the vortex sheet (1.7). We refer the readers to [19, 39, 14, 15, 42] for the viscous waves
associated with other wave phenomena such as the shock waves and entropy waves.

Given the vortex sheet (1.7) and a fixed constant A > 1, we consider the Cauchy
problem for (1.1) on {(z,t) : x € R3¢ > —A} with the initial data,

o (p, —a), x3 <0,
(pu)(z,t = —A) = {(p, a). 20> 0. (1.8)

One can observe that the solution (if exists), denoted by (p**,u*), is actually independent
of the transverse variables x;, = (21, x2). Thus, regardless of the transverse derivatives,
the 3D NS system (1.1) reduces to the 1D one,

Oip + 0zsmg = 0,

0 0 = 1o?
i+ Oa(puris) = p st v € R > —A, (1.9)

8tm2 + 83(pu2u3) = u§3u2,

dyms + 03 (pu3 + p(p)) = fd3us,

where i := 2u + A > 0. Tt is noted that (1.9) is indeed the standard 1D compressible
isentropic NS system for (p*®, u¥),

a VS + 6 VS, VS — 07
" vs : (p \:3 )vs 2 Vs ~ A2, Vs T3 € R’t = _A’ (110)
omy + 05 (p° [u|” + p(p*)) = fo3uy’,
coupled with two scalar parabolic equations of u)*,
O (p"ul®) + O3(puuy) = posul®, r3eRt>—-A  for i=1,2. (1.11)



One can first solve (1.10) with the initial data, (p*®, u§’)(zs,t = —A) = (p,0), which gives
the unique solution,

(p°, us)(z3,t) = (p,0), r3 € Rt = —A. (1.12)
Then substituting (1.12) into (1.11) yields that

i =

8tuvs = gaguzsa I3 € Rat > —A for @ = 1’ 2. (113)
p

By the classical parabolic theory, the Cauchy problem (1.13) with the initial data

_77La 07
u®(xs,t = —A) = {_ ! = (1.14)
Uq, x3 >0,
admits a unique solution,
w(zs,t) = w0(w3,t),  w3€RE>—A, (1.15)
where 6 is the solution of
0,0 = %8%9, r3 € Rt > —A,
-1 0 1.16
1, xs >0,
and can be computed explicitly by
9 (2t T
O(x3,t) = O(&) = —J e d with ¢ = 5, 1.17
Note that © is independent of A, satisfying that
—2u0"(&) = pO'(€),  {€eR, 18
lim ©(¢) = 1. (1.18)
E—+o0

Lemma 1.1. The solution 0 of (1.16) is odd and strictly increasing with respect to xs.
Moreover, for any j = 1,2,---, it holds that

2
j -1 p s
H0(xs,t)| < Ot + A)~ {——} Vg e R, 1= 0. 1.19
ot 0] < it + N Fexp { — LY vaae (1.19)
Viscous wave. Combining (1.12) and (1.15), we can define the viscous wave associ-
ated with the vortex sheet (1.7) as

_ _ T3 _
VS(x3,t) = and u“®(xs,t :zéx,tuz@(—)u. 1.20
The viscous wave (1.20) is a smooth solution (for ¢ = 0) to the compressible NS equations
(1.1) and connects the constant states of the vortex sheet, (p, ), as 3 — +oo for all
t = 0. Moreover, for any p € |1, 400), it holds that

WV
o

—vs = >
||(pvs’uvs) . (pvs’u )HLP(R;dz:s) < C |u| [,U, (t + A)] 2p t
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Thus, as the viscosity u vanishes, the viscous wave (1.20) approximates the vortex sheet
(1.7) on any finite time interval, but not time-asymptotically.

In this paper, we first study a spatially periodic perturbation of the viscous wave
(1.20), i.e.
(107 m)(a:, O) = (pVS’ mVS)(x37 0) + (U07 WO)($)7 T e RS; (121)

where (vg, Wo)(z) = (vo, wor, Woe, woe3)(x) is a periodic function on T3 = [0, 1]* with zero
average,

LS (vo, Wo)(z)dz = 0. (1.22)

Then, we will show in Section 6 that the similar arguments can also be applied to study
a localized perturbation on the domain  := T? x R, i.e.

(p,m)(z,0) = (p*°, m")(x3,0) + (¢o, Vo) (x), xe€T?* xR, (1.23)

where (¢g, 1) is periodic with respect to the transverse variables z, = (21, z2) € T? and
belongs to H3(T? x R).

The compressible vortex sheets are contact discontinuities for the multi-dimensional
compressible Euler equations. For the 1D viscous conservation laws with uniform viscosity,
[39] was the first to prove that the inviscid contact discontinuities are meta-stable for the
viscous models, and then [22, 12] constructed an asymptotic viscous contact wave and
established the pointwise stability via the approximate Green function approach. For the
1D NS equations in Lagrangian coordinates, |13, 11, 15, 12| applied the basic L*-energy
method to achieve the asymptotic stability of the contact discontinuities. This paper gives
the first stability results of the contact discontinuities for the compressible NS equations in
Eulerian coordinates. Moreover, we can achieve the optimal decay rates; see Remark 1.6.

Note that for the problem (1.1), (1.21), although the perturbation (p, m) — (p**, m**)
is periodic with respect to x € T? initially, it does not remain periodic with respect to
xy for all positive time, due to the non-triviality of the background wave (1.20) and the
nonlinearity of (1.1). Thus, it is more challenging to deal with the oscillating perturbation
(1.21) than the localized one (1.23). On the other hand, the theories of the compressible
Navier-Stokes equations and Fuler equations are connected to each other very closely,
and the study of periodic perturbations is an important and interesting topic in the
hyperbolic theories. In particular, for the isentropic compressible Euler equations, the
spatially periodic solutions decay to constant states as t — +o0; see [20, 9, 5, 6]. However,
there appears a resonance phenomenon in the non-isentropic case; as a result, the spatially
periodic solutions may oscillate in time simultaneously, which never happens neither in the
isentropic case nor for the BV solutions; see [23, 33, 29, 31]. Recently, the works [11, 10, 15]
also found a new phenomenon of the periodic perturbations in the stability theory of
shocks, that is, a new kind of shock shifts is generated by the periodic oscillations, which
generally depend on the structures of the equations, while in the case for the localized
perturbations, the shock shifts depend only on the initial data.

In this paper, we show that with the initial perturbations in (1.21) and (1.23), the
viscous wave associated with the vortex sheet is time-asymptotically stable in the L*®-
norm. The framework is based on an anti-derivative technique and the L?-energy method,
that is, we need to study the integrated system of the perturbation in addition. The anti-
derivative technique was initiated by [19] to prove the shock stability for the 1D scalar
conservation laws, and then was widely used for more 1D models to study the stability
of both shocks and contact discontinuities; see |25, 10, 21, 32, 22, 14, 15, 12| for instance.



In the multi-dimensional case, as shown by |14, 13|, this method is also effective to prove
the stability of planar viscous shock profiles with spatially periodic perturbations for the
NS equations. A key observation in [13, 11] is that, with the aid of Poincaré inequality, it
suffices to use the anti-derivative technique in the estimate of the zero modes associated
with the multi-dimensional perturbations. It is noted that a premise in the application
of the anti-derivative technique is that the perturbations should be of zero masses for
all time. In the previous works concerning localized perturbations, one can just choose
constant shifts of the background waves to make the excessive masses of the perturbations
vanish; and in the case for the spatially periodic perturbations, the shifts should be some
specific functions of time to cancel the influence of the oscillations; see [10, 17, 16, 13].
However, for the vortex sheets with periodic perturbations, there is a new difficulty in
determining the shift curves. More precisely, the previous analysis relies essentially on the
assumption that crossing the interface of the background wave, all the quantities, i.e. the
density, momentum and total energy, must be discontinuous. However, this assumption
fails for the vortex sheets, whose density and normal momentum are continuous across
the interface. To overcome this technical difficulty, in this paper we have an important
observation that for the problem (1.1), (1.21), the asymptotic behaviors of the solution
at the spatial infinity x5 — +o0 coincide with each other after a Galilean transformation;
see (2.1) and Lemma 2.2. Based on the key property, we are able to find one shift curve
of the vortex sheet such that the perturbation is of zero mass for all time. This is the first
novelty of this paper. The second key element in our analysis is that we introduce a new
variable in terms of the anti-derivatives (see (4.10)), which plays an important role in the
L?-estimates. Furthermore, this new variable is also essential in overcoming the difficulty
caused by the large amplitude of the vortex sheet and helps us achieve the optimal decay
rates without the aid of the Green function.

Now we state the main results of this paper. To the best of our knowledge, this is
the first result about the stabilizing effect of viscosity on the compressible vortex sheets.
Also, this is the first stability result of vortex sheets in a time-asymptotic sense.

Theorem 1.2. Let (p*°,0"*)(x3,t) be the given vortex sheet (1.7) and (p**,u*®)(x3,t) be
the corresponding viscous wave, which is a smooth solution to the 3D compressible Navier-
Stokes equations with the form (1.20). Then there exist Ao = 1 and o > 0 such that if

A=Ay and o, Wollorpsy < €0A7T, (1.24)

then the Cauchy problem (1.1), (1.21) admits a unique classical bounded solution (p, u)(x,t)
globally in time, which is periodic in the transverse variables v, = (11, z3) € T?. Moreover,
the solution satisfies that

sup [ () (3. ) — (0%, ") (23,1)] < Cy/En(t + 1) 4,
h (1.25)
sup [ (0%, u) (2, )] < Cege™,

z€R3

where (p°,0°) and (p*,u') denote the zero mode and non-zero mode of the solution, re-
spectively, namely,

(P 0) (s, 1) = LQ(/), W) (@1, 25, )z,

(pﬁvuﬁ)(x’t) = (pv u)(xvt) - (pbvub)(x?nt);

and C >0 and oy > 0 in (1.25) are some generic constants.

(1.26)
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Theorem 1.3. If in Theorem 1.2, the initial data (1.21) is replaced by (1.23), then there
exist Ao = 1 and g > 0 such that if

A= AO and HQBO’@EOHLg(Q) + ||VQ;07V7~ZOHH2(Q) < €0, (127)

where ||Hi§(9) = {25+ 1)2 |-|* dz, then for the problem (1.1), (1.23), all the results still
hold true, except the decay rate of the zero mode, which is replaced by

VS VS 1
sup |(p", u') (s, £) — (9 u**) (a0, 1) < Ot +1) 2. (1.28)
T3€
Remark 1.4. The results of Theorems 1.2 and 1.3 also hold true in two dimensions, since
we allow the constant 4 in (1.7) to be zero and meanwhile, allow the initial perturbations
to be independent of x;.

Remark 1.5. 1) The zero-average condition (1.22) is just assumed without loss of gener-
ality. In fact, if the average, {1, (vo, Wo)(z)dz := (0, W), is nonzero, then one can rewrite
the initial data (1.21) as

(po, 1’1’10) = (pvs + v, m" + W) + (’UO — U, Wo — W) (129)

Recall that p** = p > 0 is a constant. Then using the Galilean transformation (1.6) with
c = —p 'w, the initial data (1.29) reduces to

(po, m(]) = (pvs + 17, m"s) + (UQ — @,Wg — W)

If |o| is suitably small, (p** + v, m") is actually the viscous wave associated with the
vortex sheet,
b+ 7, —=2-1), x5 <0,

(p+ v, ﬁ%ﬁ), x5 > 0.

2) In (1.27), the L2(Q)-integrability of (do, ) is to ensure that the anti-derivatives of
the perturbations belong to L?(R); see (6.15) for the details.

Remark 1.6. In the special case that the initial perturbations in (1.21) and (1.23) are
independent of the transversal variables, the Cauchy problem for (1.1) reduces to a 1D
one for (1.9), whose associated hyperbolic system,

6tp + 63m3 = 0,
dgmi + 63(%7723771/@) = 0, 1= 1, 2, (130)
oyms + 83(/—1)m§ +p(p)) =0,

has two linearly degenerate characteristics with eigenvalues Ay = Ay = u3 (see Section 6).
One can easily verify that the contact discontinuities of (1.30), associated with A\; or Ag
(see [20]), just coincide with the zero mode of the planar vortex sheet (1.4) and satisfy the
RH conditions (1.5). If the hyperbolic system (1.30) has uniform viscosity, |12] constructed
an asymptotic ansatz that consists of a viscous contact wave and some diffusion waves
propagating in the transversal characteristic fields, and established the pointwise estimates
with the optimal decay rate t~1. Here the viscous contact wave constructed in [12] is just
the same as the zero mode of (1.20). Thus, this paper actually extends the stability results
of [12] to a multi-dimensional and physical model. On the other hand, compared to the
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results in [12], one can see that the rates in (1.25) and (1.28) are both optimal. Indeed,
the spatially periodic perturbations do not generate diffusion waves in the transversal
characteristic fields (see (2.7)), thus we are able to achieve the rate t~1; while in the case
f01r1 the localized perturbations, the rate is at most same as the diffusion waves, that is
2.

Notations. Throughout this paper, we use the following notations.

e () denotes the infinitely long nozzle domain

Q:=T? x R.

[-] denotes the difference of the states associated with the vortex sheet (1.7). For
instance, [u] = uy —u_ and [uymy] = a1.my — @_my_, ete.

e C > lisa generic constant. The conventions A < B, A2 B,A~ Band A =0(1)B
mean A < CB, A>C'B,C'B< A<CB and |A| < C|Bj, respectively.

e ¢; (i = 1,2,3) denotes the i-th column of the 3 x 3 identity matrix Ids.3, and §;;
denotes the Kronecker delta function.

e For any vector v = (v, vg,v3), v, denotes

v, = (v1,09). (1.31)

e For any f(z) € L®(R?) that is periodic in the spatial variables x| = (z1,z5) € T?,
f” and f* denote its zero mode,

fas):=| flzi,zs)dey, (1.32)

TZ

and non-zero mode,
fHx) = fx) = f*(x3), (1.33)

respectively.

Outline of the paper. In Section 2, we construct the key ansatz in our analysis,
which relies on the Galilean transformation and a careful choice of a shift function. In
Section 3, we first formulate the perturbed system, the zero-mode system and the anti-
derivative system, respectively, and then give some useful lemmas. Section 4 is devoted
to the a priori estimates, consisting of three subsections showing the lower-order esti-
mates of the zero-modes, non-zero modes and the higher-order estimates of the original
perturbations, respectively. Finally, in Section 5 we prove the optimal decay rate of the
perturbations and complete the proof of the main result.



2 Construction of Ansatz

As the solution (p, m) to the Cauchy problem (1.1), (1.21) is periodic in the transverse
directions x| € T?, it suffices to consider the problem on the domain Q2 = T? x R. However,
since the perturbation, (p, m) — (p**, m"*), keeps oscillating as |z3| — +00, it is necessary
to construct a suitable ansatz to cancel out the oscillations in order to use the energy
method. Motivated by [10, 43], it is plausible that as |x3| — +o0,

|(p,m) — (p4,my)|(z,t) >0  Vz, e R* ¢t >0. (2.1)

Here (p+,my) = (p+, my+, mog, m3+)(x,t) denotes the periodic solution of (1.1), satisfy-
ing the periodic initial data

(P, my)(x,0) = (p, M) + (v, Wo)(z), zeR’, (2.2)

where (p,m4) = (p, £pu) is the plus or minus constant state of the vortex sheet (1.7)
and (vg, wy) is the periodic perturbation in (1.21). The global existence and exponential
decay rate of (p+,my) can be found in the following lemma, which has been shown in

[16].

Lemma 2.1 ([16]). Consider the Cauchy problem (1.1) with the periodic initial data
(p,m)(x,O) = (ﬁam) + (U07W0)(x)7 IER?), (23)

where (p,m) is any constant state with p > 0 and (vy, Wo) is any periodic function on
T3 = [0, 1]* with zero average. Then there exists €y > 0 such that if

HUO,WoHHHz(Tg) < g for some k=1,

then the Cauchy problem (1.1), (2.3) admits a unique global periodic solution (p,m) €
C((0, +00); H*2(T?)), satisfying

J (p—ﬁ,m—rh)(x,t)dxzo, t>07
T3

and
[0 10) — (7o) ey < o Woll ooy ™ £ 01

Here the constant ¢ > 0 is a constant, independent of ||vo, W(]HHk+2(T3) and t.

It follows from Lemma 2.1 that for € = |[vo, Wol yo(psy < €0 with &o being suit-
ably small, the periodic solution (p4, my) to the Cauchy problem (1.1), (2.2) exists in
C(0, +oo; WH®(R3)) with the constant average (p,m.), and for some generic constant
a > 0, the periodic perturbation,

(U-‘mwiuzi) = (piamiaui) - (ﬁv ﬁliaﬁi)7 (24)

satisfies that

(Vs W, 2) [y oy < €€, t

\%
o

(2.5)

Now we are ready to construct the ansatz. Note that the viscous wave (1.20) can be
rewritten as

€3

(", m*) (s, 1) = %[m ) (1- e(ﬁ)) + (pom) (1+ @(%})} (2.6)
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Asymptotic Ansatz. Inspired by (2.1), (2.6) and [10, 13] we set the ansatz as

et = 5[0 m ) (1~ @(%))
Cemon(ire( )]

where 0 = o(t) is a curve to be determined later. For convenience, denote

@U:=@<I3_U>.

Vit + A
Define also ~
- m
u::= —,
P
which satisfies that .
u= §[u_(1 —0,) +us(l+0,)]
1
+ 4—ﬁ(v+ —v)(uy —u ) (1-62).

Note that (p+, m4) are solutions of (1.1). Then direct calculations yield that

at,ﬁ + leIil = fo,
om + div(a@m) + V(p(p)) — pAa — (u+ A)Vdiva
3

= Z aiFl,’i + f2 =g = (91792793)7
i=1

where fo, F1; = (Fi, Fraz, Flas) and £ := (fo1, fo.2, fo,3) are errors, given by

_ @,a / L3 — U(t)
fo= 5|~ e =) (0 + S ) + s = s |
Fi;, = a,m— %ui_m_(l —-0,)— %ui+m+(1 +0,)
+[0() = 5p(0)(1 = 0,) = Splp )1+ O,)]e,
—ufoi— %&-u(l _o,) - %&-qu(l 10,
— (p+ N\)[diva — %divu_(l —0,) — %divu+(1 +0,)]es,
and
_ 9 sy, T3 —0(t)
fQ = m{ — (m+ — m_) (0' (t) + m)
+uz;my —uz m- — pds(uy —u)
+ [plo) = ploo) = (u+ Ndiv(uy, —u)Jes .
respectively.

Recall that © — 41 as x3 — +00. Then for all z, € T? and ¢ > 0, it holds that

p—pe| + M —my| +[0—us] >0 as z3 > too.
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(2.12)
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Then for i = 1,2,3 and all z; € T? and ¢ > 0, it holds that
|Fyi(z,t)] >0 as x3 — too,

which, together with the dominated convergence theorem, yields that
‘Fbl’i(l'g,t)} — 0 as 3 — *oo.

Thus, by subtracting (2.10) from (1.1) and integrating the resulting equations over T2 x R,
one can get that

%”R (- m’ — mb)dxg] = - fR (£3.8) (x5, t)dws, ¢ >0, (2.14)

where one can obtain from (2.11) and (2.13) that

B = 5[~ 0 = (0 Z= I o, - ) (215)

and

o’ xg — o(t)
fb _ o {_ b b ( '+ 3 )
e S A GG 20t + M)
+ (uzrmy )’ — (uz-m_)" — pds(w’, —u’) (2.16)
b b
F[000)) = (0) = G+ N3 (u = w3 )Jes .
Using the Galilean transformation (1.6), one can prove that the periodic solutions

(p+,uq) of (1.1) satisfy the following coincide-property.

Lemma 2.2. Let (p,+u) = (p, tuy, +us,0) be the constant states in the vortex sheet
(1.7) and assume that (1.22) holds. Then the periodic solutions to the Cauchy problem
(1.1), (2.2) satisfy that

(pr,uy)(z+ut,t) = (p_,u_)(x —ut,t) + (0, 2u) Vre R t>0. (2.17)
Moreover, the zero modes on the right-hand sides of (2.15) and (2.16) satisfy that

(P %) = (p7,u”) + (0, 20),

mi =m’ + 2p_

u
2.18
(ug,m, )’ = (s m ) + 2m} @, (215)

(p(p+))" = (p(p-))"-

Proof. By the Galilean invariance of the NS equations, the pairs (p%,u?) and (p*,u*)
defined by

(0% 0% (1) = (1w, — W)z + 1),
(p*,u*)(x,t) == (p_,u_ +u)(z —ut,t),

are both periodic solutions to (1.1) with the initial data

(o) (.t = 0) = (7.0,0,0) + (vo, wo) ().
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Thus, it follows from the uniqueness (see Lemma 2.1) that

(Put) o) = (pFut)(e,t) Vo e R0,
which yields (2.17).

Now the identities in (2.18) can be verified one by one as follows. First, it follows from
Lemma 2.1 and (2.17) that

Pt )aa ) = | (pro)on,mn ey

= J (p,, u,)(xl — Qﬂlt,iﬁg — 2ﬂ2t,$3,t)d$J_ + (07 21_1)
T2
= (¢, u”)(z3,1) + (0,20) Vas e R,t > 0.

Recall that @ = (@, u2,0). Then one can prove that

-
m’, (z3,1) = 2(p+u+)(:&,t)de = J (p-u)(z — 20t t)dzy + 20" (v5, )0
JT T2
= mbf(x& )+ 2p (Ig, )u7
~
(u3+m+)b(:1:3,t) = 2(p+u3+u+)(:1:L,x3,t)d:EL
JT

r

= | (pus-u )(xy, xs3,t)dx, + 2ﬁf (p_us )z, x3,t)x)
JT?2 T2

= (us-m_)’(zs,t) + 2m} (x3,1)0.

It is direct to prove that (p(p4))’(x3,t) = (p(p_))’(zs,t). The proof is finished. O

Using (2.18) on (2.15) and (2.16), one can get that

(fo:f33) =0, (2.19)
and 0.6
b ’ T3 — 0 b .
1)+ ——— . =1,2. .
sz \/T[ pf(O'()-i- (t—i—A))—i_md]’ 7 ) (220)
Here recall that (p”,m}_) = (0%, m},). Then integrating (2.20) on R yields that
f fii(ws, Dy = (- D(o,0)0'(1) + Mo, 1)),  i=1,2, (2.21)
R
where
1 T3 — 0
D(o,t) = > (13,1)© dxs,
T3 —0 b (T3 — 0O )
t) := t t)|0 .
‘ﬁ(a, ) WJV t_i_A)pf('riiv )+m37(:c3, )] (m)deS
Thus, if we choose the curve o(t) to satisfy that
N(o,t)
"(t) = ’ t 2.2
CRE N (229



then it holds that
J £ (@3 t)das = 0 and f fo(estides =0 V=0, (2.24)
R R
This, together with (2.14) and (2.19), yields that
f (P — o’ — 1) (5, )y — f (P — 7w’ — 1) (5, 0) s
R R
~ [ (.18() - O — o0))Jm)dzs
R
= (0,20(0)m) V¥t = 0. (2.25)
Thus, if the curve o(t) solves the problem (2.23) with the initial data,
7(0) = 0, (2.26)
then one has that
f (P — P’ — ) (s, )y = 0 V> 0. (2.27)
R
The existence and large time behavior of the curve o(t) can be found in the following
lemma.

Lemma 2.3. Under the assumptions of Lemma 2.2, there exists an 9 > 0 such that if
A =1 and € = [jvo, Wol| yos(psy < €0, then the problem (2.23), (2.26), admits a unique
global solution o = a(t) € C*(0, +00), satisfying that

0'(t)| < ee®,  |o(t)| Sehze ™, t=0, (2.28)
where a are the constants in (1.20) and (2.5), respectively.

The proof of Lemma 2.3 is similar to that in [10, 13|. For readers’ convenience, we
also give a detailed proof in Appendix A.

Then based on Lemmas 2.1 and 2.3, the desired ansatz is well constructed by (2.7). If
e < g9 with gp being suitably small, it holds that

p/2 < inf jlr,1) < sup fla, 1) < 2p, (2.20)
$€R3 IER?’
t>0 t>0
and
sup ||V, Vs sy S € + A2 (2.30)
t>0

Moreover, the difference between the background viscous wave (2.6) and the ansatz (2.7)
satisfies that

H(ﬁ’ Ih) B (pvs’ mVS)HW“'““(RB‘) 3 H(ﬁ’ Ih)('7t) - (pvsa mvs)(' — 0, t)HW‘“‘(R?’)
+ [1(0°, m*) (- — o, t) = (0, M) (-, 1) lyyra.e gy

o (8)]
S ||(UiaWi)('at)||w4mf;(r]r3) + m

13



<ee ™. (2.31)
Similarly, one can show that
[0 — u* ||y sy < ge (2.32)

Since the ansatz constructed in (2.7) is time-asymptotically equivalent to the viscous wave
associated with the vortex sheet in the L®(R3)-norm, it remains to study the large time
behavior of the perturbation, (p, m) — (p, m).

3 Reformulated Problems

In the following part of this paper, we always denote A as the positive constant in
(1.20) and ¢ := ||(v0,w0)|\H6(T3).
With the ansatz (2.7), we denote the perturbation as

¢=P—ﬁ, ¢: (¢1a¢27¢3) '=m —m, (31)

and

v —tig.

C:(CDCZ?CS)::u_ﬁ: P

It follows from (1.1) and (2.10) that

(3.2)

019 + divy) = —fo,
Ortp + div(mEm — mID) 4 T(p(p) — p(p)) (3.3)

r ’
—,uA(% — %) (n+ )\)Vdiv(% — %) =—g.

Due to (1.21), (2.2), (2.7) and (2.26), the perturbation (¢, 1)) satisfies initially
(6, 9)(2,0) = (do, %) () =0,  weR% (3-4)

On the other hand, the equivalent system for (¢, () takes the form,

|bx

0y + pdiv( +u - Vo + divag + Vp - ( = — fo,
poiC + pu- V¢ + V(p(p) —p(p)) + p¢ - Va+ ¢(da+a- Va) (3.5)
—pAC = (p+ AN Vdive = —g + fou,

and (3.4) implies that
(¢,0)(x,0) = (¢0,¢0)(x) =0, xR’ (3.6)

For any T > 0, the solution space for (3.5) can be taken as

B(0,T) := {(gb,(’) : (¢, () is periodic in z, = (21, 2,) € T?,
(¢,.Q) € C(0,T;: H*(),
Vo e L20,T; H2(Q)), V¢ € L*(0,T; H3(Q))}.

14



Theorem 3.1. Under the assumptions of Theorem 1.2, there exist Ag = 1 and g9 > 0
such that if A = Ay and eA1 < e, then the Cauchy problem, (3.5), (5.6) admits a unique
solution (¢,() € B(0, +00), satisfying that

6. Oy < Clerie+ 1

L (3.7)
(67, Cﬁ | sy < Ceie™™,

where C' > 0 and oy € (0, ) are some generic constants.

We are going to use the L2-energy method to prove Theorem 3.1. We first integrate
(3.3) with respect to z, € T? to get the zero-mode system,

O + Bs1ly = 0,
Ol + o5 (mam — 1)) 1 il (p(p) — p(7))” es (3.8)

88~ )]~ e VAL ) s = -

where we have used (2.19), and it follows from (3.4) that
(¢b7 wb)(x?n 0) = 07 T3 € R. (39)

In the linearization of (3.8), there appear some zero-order terms (e.g. dsu“sv3) whose
coefficients decay at slow rates, which make it difficult to control their L*-estimates.
Nevertheless, such difficulties can be overcome by considering the integrated system of
(3.8) instead of itself. Thanks to (2.27), it is plausible to write (¢°,¢°) = d3(®, ¥), where

(@, W) () = f (@ ) (o O)dys, w3 e Rt >0, (3.10)

To make sense of the integrated system, we first make the following a priori assumptions
that, for any fixed T > 0, assume that (¢,() € B(0,T) is a solution to (3.5), and the
associated anti-derivative variable (3.10) satisfies that

(®,®) e C(0,T; L*(R)). (3.11)

Anti-derivative argument. With the a priori assumption (3.11), one can integrate
(3.8) and (3.9) with respect to z3 from —oo to x3 to get that

dgq) + 63\113 == O,
0 + w03V + p(p) 05 Des — L05(05 W — u¥030) — A0} Wgey (3.12)
= -G+ N,
and
((I), \Il)(ﬁg, 0) = 0, X3 € R, (313)
where G denotes the anti-derivative variable of g’, i.e
T3
G, 1) = f & (s, 1)y, (3.14)
—Q0
and N is given by
N=-Q] - Q+0(Q; +Q)), (3.15)
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with

Qui= 0 = T - g = S 0+ () — () — F ()0)es,

Qo == (T — w3 + st — Uz + (p'(9) — p'(p)) des,

Q3-—M(?—g—l—5¢+? )JF(/HF)\)(?—?—;%JF? )637
oy, _(a_u® 1.1 us

Q -—u[(ﬁ ﬁ)w (ﬁ ; )o| + (um)[([3 ﬁ)ww ﬁ¢]e3.

One can prove that the errors of the ansatz, i.e. the source terms fy, g and G in (3.5)
and (3.12), decay exponentially fast in time; see Appendix B.

Lemma 3.2. Suppose that the hypotheses of Theorem 1.2 hold true. Then there exist
constants Ag = 1 and €y > 0, such that if A = Ay and € < g, then the source terms fo, g
and G in (3.5) and (3.12) satisfy that

\Y%
o

1 —a
G sy + [ foll gy + 18l ooy S ehie ™, t (3.17)

where A and « are the constants in (1.20) and (2.5), respectively.

Now we show the local existence theorem and the a priori estimates.

Theorem 3.3 (Local existence). Suppose that the hypotheses of Theorem 1.2 hold true,
and the initial data (¢o, o) () is periodic in x, , satisfying that

(¢0,%0) € HJ(Q) and (®o, W) := de Lﬂ (¢0,%0) (w1, y3)dr dys € Lz(R)>

with |[¢o, Vol| sy + [P0, Woll p2r) < vo. Then there eist positive constants Ao = 1 and
go such that if A = Ay and eA < g, then the problem (5.5) with the initial data

(&, 9)(x,0) = (b0, o) (%), (3.18)

admits a unique solution (¢, () € B(0,Ty) for some Ty > 0, which depends on vy and eg.
Moreover, the anti-derivative variable,

3
(q)’\Il)([L’?”t) = f f (¢7¢)(IL7y37t)dedy37
—oo JT2
exists and belongs to C'(0,Ty; LA(R)), and it holds that
sup (H(I)lelHiQ(R) + H@CH?#(Q))
(0. 10) (3.19)
< Co(ll90, Yol + 100, Coll 2y +*A%).
where Cy is a positive constant, independent of A, e and Tj.

The local existence of (¢,() € B(0,T,) for some small Ty, > 0 is standard (see [21]
for instance). The existence of the anti-derivative variable (®,¥) € C(0,Tp; L?*(R)) can
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be derived from a linear parabolic theory. Roughly speaking, given the local solution
(¢,¢) € B(0,Tp) to (3.5), ¥ is the unique solution to the problem,

{atq: — LW — LR Ue; = IV + G e O(0,Ty; HA(R)),  z3€R,1>0, (3.20)
W(x3,0) = Wo(x3), z3 € R.
where
J = M(a?)c - S;b) (1 +A) (53C3 - a3;03)93 - (u3m - u3m) - (p(P) —p(ﬁ))eg
The existence of ® can be proved similarly. We refer to [13, Section 6] for the detailed

argument.

Proposition 3.4 (A priori estimates). Suppose that the hypotheses of Theorem 1.2 hold
true. For any T > 0, suppose that (¢,¢) € C(0,T; H3(Q)) is a solution to the problem
(3.5) and satisfies the a priori assumption (3.11). Then there exist a large constant Ay = 1
and small positive constants €y and vy such that, if

1
A = Ao, 8/\2 < €0,
and

.= sup (Héﬁ\IIHLQ(]R) + H¢awHH3(Q)) < 1o, (3.21)
te(0,T)

then it holds that

T
(I) v 2 =+ J v 22 + v 2 dt
S0 (12, %1 + 119Gl + (V61 p0y + 190y )

S 1@, %), 072y + (0, ) 0)[ sy + AT

The proof of Proposition 3.4 will be given in Section 4.

(3.22)

At the end of this section, we present some lemmas to be used later.

Note that the perturbations ¢, ¢ and ¢ in (3.1) and (3.2) are not always of zero averages
with respect to x; or zo. As stated in [18], these perturbations often do not satisfy the
classical 3D Gagliardo-Nirenberg (G-N) inequalities, since the 1D and 2D cases cannot
be excluded. To overcome this difficulty, we use the following G-N type inequality on the
domain Q = T? x R.

Lemma 3.5 ([18], Theorem 1.4 & Lemma 3.3). Assume that u(z) is a bounded functzon
3

that is periodic in x|, = (x1,x2). Then there exists a decomposition u(x) = Z *) ()

such that
i)
u) = J w(xy, x3)de, = Ub(x:%)a
']I‘Q

(3.23)
u® +u® = u(z) - f u(zy, x3)dr, = uf(z);
T2
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i) if V'u belongs to LP(Q) with an order | = 0 and p € [1, +0], then each u*) satisfies
that

IV a2 oy < [V (3:24)

UHLP(Q) 5
iii) each u®) satisfies the classical k-dimensional Gagliardo-Nirenberg inequality, i.e.

[V ) < [V

o 14 e (3.25)

HLP(Q) L9(Q)”

where 0 < 7 < m is any integer, 1 < p < 400 s any number and 0y € [ , 1) satisfies

1

=it e -0

Lemma 3.6. Suppose that u(x) belongs to WP(Q) with p € [1,+o0]. Then its non-zero
mode ut satisfies that

] ey = (Vo

S IVull gy - (3.26)

ire lrve)

Proof. Note that u* has zero average on the transverse torus T2. Then (3.26) follows

directly from the Poincaré inequality. O]
At last, we present an inequality in [12]|, which is helpful in obtaining the optimal
decay rate. For a fixed constant S > 0, set
1 B3
K{xs,t) = exp s — ) 3.27
(r2:0) = 78 p{ t+A} (3:27)
and

.ZU37 f 937 dy?)
<

Lemma 3.7 ([12], Lemma 1). For 0 < T < +o0, suppose that h = h(xs,t) satisfies

he L*(0,T; H'(R)) and &:h e L*(0,T; H *(R)).

Then it holds that

d
J h2l§2dl’3 + 4ﬁ£ <J h2K2d$3) < Hagh(, t) Hig(R) + <8th, h}C2>H—1(R)xH1(R)- (328)
R R

4 A priori estimates

To prove Proposition 3.4, we first establish the H?-estimates of the anti-derivatives
and the H!'-estimates of the non-zero modes of the perturbations in Sections 4.1 and 4.2,
respectively. Afterwards, we go back to the original system (3.5) in Section 4.3 to deal
with the higher-order derivatives to complete the proof.

Denote

V= sup { 1P, ¥ 2my + 1€, Cll s } (4.1)
te(0,T)
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It follows from Lemma 3.5 that for any h € H?(f2),
1 1 1 1 3 1
Wl ey < 1900y 1ol + (920 2y WbllEncey + [ 92y [y - (42)
Then one has that

sup ”¢7CHW1«I(Q) S sup H¢7CHH3(Q) S (4.3)
t€(0,T) t(0,T)

Similarly, the perturbation of momentum, ¢» = p{ + ¢u, satisfies that

sup HwHWL"f(Q) < sup HwHH?’(Q) < sup H¢>CHH3(Q) S
te(0,T) te(0,T) te(0,T)

It follows from (2.29), (2.30) and (4.3) that if the positive constants A~!, ¢ and v are
small, then

p/A< inf p(zt) < sup p(z,1) < 4p,

(6,7 0.1
and
sup [ Vp(z,t), Vu(z, )| - ) < A2 pevw (4.4)

te(0,T)

Besides, it follows from the Sobolev inequality and Lemma 3.5 that

b b b b
e 10", oy < o 16" 9" || s gy < o 19, ¥l gy = v (4.5)
and t ot tot
tes(%g) H¢ ¢ HWlm(Q) < tes(gg‘) H¢ ¢ HH3(Q) S tes(lolg) 1, CHH?’(Q) <. (4.6)

Then it holds that

sup H(I),\IIHW:;L(R) < sup H(I)7\Il||H4(IR)
te(0,T) te(0,T)

< sup (9] ey + ([0, 8 || oy )
te(0,7)
< v (4.7)

Moreover, using Lemma 1.1, one can choose the positive constant § in (3.27) to be suitably
small (e.g. § = 32.) such that

050 < A3k, |20 < K, |0360] < ATER2 (4.8)

and for j =1,2,---,
. j—1
|3360] < (t+A)"2 k. (4.9)

To carry out the L%-estimate for (3.12), we may encounter a difficulty that the linear
terms such as u**d; W3 and %u"ségfb cannot get controlled due to the large amplitude of the
vortex sheet. Nevertheless, we can overcome this difficulty by introducing a new variable.

New variable. Set

7 = (Zl, ZQ, Zg)([L‘g,t) =W —u”o. (410)
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It holds that

Sup Z 0 < sup Z < sup (I),\Il <.
tE(O,T)H sz e 1€(0,T) 1Z1:ce 1€(0,T) 12 Ll ey (4.11)

Note that u* = uf and 0,0 = £53¢. Then it follows from (3.12) that

0D + 037 —
{t 032 =0, (4.12)

5,52 + (p'(ﬁ)eg — %53611)53@ — %5%2 — M—;)\angeg =—G+ N.
With the aid of (4.10), we can successfully get rid of the bad linear terms in (3.12)y; and
the linear term, —%8301183@ in (4.12)5, has smallness due to the largeness of the constant
A in (1.20). Moreover, the introduction of (4.10) plays an important role in achieving the
optimal decay rate of the zero mode, (¢’, ¢").

Recall the notation “;” in (1.31) and the fact that u = (u,,0). For a later use, we
also decompose (4.12), into

0L, — %ageaﬂm - %agzL -G, +N,, (4.13)

and -
025 + P (p)0s® — B2y = —Gy + Ny with ji=2u+ \. (4.14)
p

Then we give two lemmas that will be needed in the energy estimates later. The
readers may skip them at first reading.

Lemma 4.1. Under the assumptions of Proposition 3.4, there exist a large constant Ay =
1 and small positive constants €y and vy such that, if A = Ay, € < &g and v < 1y, then the
remainders (5.16) satisfy that

Qi + 1Qs| S o + [,
105Qu| + 35Qa| < [ee + (¢ + A) 2] (|9 + [4]*)
+ (|osg] + 1259 ) (Ig] + [¥), (4.15)

k
|05Qu| + [25Qu| < Y e (|0)0] + |ofu
j=0

). k=01

Proof. The estimates (4.15); and (4.15)3 follows from (2.31), (2.32) and (3.16) directly.
It suffices to estimate 03Q; and 03Qjs.
By (3.16), direct calculations yield that

m m i . T
(33Q1=(3377l3(——T—t¢+g¢) +é‘3m(@—@—¢—~3 7?23(?)
p p p b PP
(M3 msm m ms 2m3ﬁ1
— 63,0( 3 T 5 ~_22/}3 ~9 1/} + ~3 ¢)
p P p p

+ O31p3¢ + (3031 — O3p(uzu — uzu)

+ (' (p) — 1 (D)) ds¢es + (¢ (p) — 1’ (B) — " (p)¢) O3 pes.
Using (2.31) and (2.32), one can get that

16sQu] < e ([ol° + [¢[°) + (t + A)72 (8 + [0s]*)
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+ (¢l [os0] + (50| [C] + 9] 0391,
which yields the estimate of d5Q; in (4.15). The estimate of d3Qs in (4.15) can be proved
similarly. n

Lemma 4.2. Under the assumptions of Proposition 3.4, there exist a large constant Ay =
1 and small positive constants g and vy such that, if A = Ay, € < g9 and v < vy, then

+|¢ 2y < T 1052 gy + 1052, @hill oy + v [V L) +eve™, (4.16)
£ [105C°]| oy = H(?ZHMR) 5] gy + (¢ 8)72 (1259, B ey
—l—l/Hng v HL2 + eve ™, (4.17)
£ (| oy < £ NBZ] oy + <t+A (|03 2 s,
+ (t+ A) 7 |05, Bl 2y +u||v2¢, v2<ﬁHL2 +eve ™ (4.18)
and
| VY| gy © 2V 2oy + VO] 2y + Eve™, (4.19)

2 Y
£V gy T NV 2y + 1970l 2y + 23+ 8 (B2 g
7j=1
+(A7E 4 HVngHL2 + eve . (4.20)

The proof of Lemma 4.2 is given in Appendix C.

For convenience, in the following energy estimates, we write “03(---)” and “div(---)”
to denote the terms which vanish after integration with respect to x3 € R and z € ),
respectively. Besides, we use ¢;,,c¢;» and ¢; for ¢ = 0,1,2,--- to denote some positive
generic constants, which are independent of z,t,¢, A and v.

4.1 Estimates of zero-modes.

In this section, we establish the H?(R)-estimates of the anti-derivatives, which is the
key part in the a priori estimates.

Lemma 4.3. Under the assumptions of Proposition 3.4, there exist a large constant Ay =
1 and small positive constants g and vy such that, if A = Ao, € < g9 and v < vy, then

d 1
EA(()Ib) + = H63Z||L2 ~ (A 2+ V) ||63(I)7 (I)"iv ZK}H%/?(R

(4.21)
+v HV(;&”, V(ﬁHLQ +evAie™,
where 5
D ._ (5 2 2 H _
Aoy =1 (0) 1®/l72r) + 2 121 72wy — () fR O30, - Zy Zsds. (4.22)
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Proof. Multiplying p/(p)® and Z on (4.12); and (4.12)y, respectively, and adding the

resulting two equations together, one has that

[+ A
D
—0(-- )+ (-G +N)-z-Laoo0u, -7, .

ﬁz—’¥p

I ~
Iz

1
@[5(19’(5)@2 +|Z? )] + % 05Z)% + ENAk

~/

It follows from Lemmas 3.2 and 4.1 that
1 —
J;R ’G‘ ’Z| dl‘g < ”G“LZ(R) ||Z”L2(R) < evAie t,
and

<

~

_l’_

J(Q? +Q)) - Zdas f (Q) + Q) - 03Zdus
R R

SN2 gy 1Q2, Qull 2 () + 1Zl[w1oey 1Q1; Qsll 11y

Sv H¢7¢Hi2(ﬂ) +evie .

R

Note that ¢’ = d3® and ¢’ = d3¥. Then it follows from (3.26) that
quHiQ(m = H(bb”iZ(lR) T H(bﬁHQLQ(Q) < H&;;CI)H;(R) + HV¢ﬁHiQ(Q)’
11220y < 105 2y + VS -

By (4.10), one can verify easily that

1059|728y < 1105Z, O3, Pr|72 g -
Then it follows from (4.26) to (4.28) that
16, 17210y < 1105, 5Z, Pk |72 gy + HV¢ﬁ7V¢ﬁHi2(Q)'
This, together with (4.19), yields that
J Lidrs < evhie=t 4y |03, 057, @HHiQ(R) +v HVqﬁﬁ, VCuH;(Q) )
R
Now we estimate I5. Using (4.14), one can get that

pp'(p)

= 12,1 + 1272 + 1273.
First, similar to the estimate of I;, one can prove that
J I dry < eve™™ + v]|03®, 052, <I>/€||2LQ(R) +v||Veh, V¢
R

For I, 5, it holds that

[272 - ﬁt (8391_11_ . ZJ_Zg) - 63(%(91_11_ - ZJ_Zg \—6391_11_ . atZJ_Z§ .

T

Is4

22

I, = 030u, - ZL(G3 — Ng) + 0s6u, - 72,0, 75 — %Qgeﬁl . ZLéng

2
HL2(Q) :

(4.23)

(4.24)

(4.25)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)



Using (4.13), one has that
Ly = 007511 (Gu = N1 ) = 2 [l 0s0] Zs0s® — 05 (o0 Zy11 - 0421 )
" it P (4.33)
+ 163963Z31_1J_ : 83ZL + j&%@ZgﬁJ_ : §3ZL.
p p
Collecting (4.32) and (4.33), one can use (4.8) and a similar proof of (4.30) to get that

d 1
J Lodrs < —(J osfuay - ZLZ3d$3) +C (A2 +v) || Ok, Zk, 039, 83ZH2L?(1R)
R R

dt (4.34)
—at 2

+ Cerve —|—C’VHV¢ﬁ,VCﬁHL2(Q).

Moreover, it holds that
i o iy
[273 = 83 — t&gQUJ_ : ZJ_&?,ZS + 1839uL . ZJ_63Z3 + t&gOuL : 63ZL53Z3,
P P P
which, together with (4.8), yields that
f 1273d133 < Aié ||ZJ_HJ, @,ZH;(R) . (435)
R

Then collecting (4.30), (4.31), (4.34) and (4.35), one can obtain (4.21) if A=' > 0 and
v > 0 are suitably small.
[

Let R(xs,t) := §°_x?(y, t)dy, which satisfies that

1Rl e gy < (¢ + A)_% and  [[0:R]| oy < (E+ A)_%, t=0. (4.36)

Lemma 4.4. Under the assumptions of Proposition 3.4, there exist a large constant Ag =
1 and small positive constants g and vy such that, if A = Ny, € < e¢ and v < vy, then

d 1
2 2 2 1 2
| @k, 2wl Fam) S 5 AS) + 1052072z + (A7 + 1) 105®]|7ey

, ) (4.37)
0|V, VG| g + cvhie ™,
where Aéi) denotes a linear combination of the following terms,
f Zs®Rdxs, f Z., | K?dzs, f 0s0u, - 7| ZsK dxs. (4.38)
R R R

Proof. Multiplying ®R on (4.14) and integrating the resulting equation on R, one has
that

L, d
fR 5 (W' (p)@* + Z3)w*dry — — ( fR Zg@ﬁdxg)

i (4.39)
— _J Z3®0, Rdxs + %f 037Z3(05 PR + OK*)dwy + J (=G5 + N3)®Rdxs,
R R R
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here we have used the fact that Z30,®R = —Z305Z38 = —03(3Z3R) + 573k, Similar to
the proof of (4.30), one can show that

JR( G + N3)®Rdus < cve™ + v ||05®, 032, Prl|7) + v ||V, wﬁHLQ(Q (4.40)
Thus, by (4.36) and (4.40), integrating (4.39) over (0,7") yields that
d f
(4.41)
+ (A 2+ 1) ]|05D, 32| gy + v vazsﬁ,vcﬁup +eve o,

To estimate S(? | Z L/iHiQ(R) dt, it firstly follows from Lemma 3.7 that

d
1Z 4]y + dt(8 f 20 Kdas) < 1105Z e f&tzl.zl;cz dvs.  (4.42)
R

Here we have used that h = |Z,|* and 3 = in (3.28). Using (4.13), one can get that

32u
J &tZl : ZLICQ d!l?g
R
2
|z ey 2 [ 202, 2K,
P Jr P Jr

+%J 53663<I>uL-ZLIC2dx3+f (—Gi-i-Nl) 'ZLICQ dCL’3.
R R

Y

I3

Similar to the estimate of I in (4.23), one can use (4.8) and (4.14) to obtain that

dt
+v|| Ve, V¢ HL2 + eve ™.

d
J I&d.ﬁEd = —<J 8391_& : ZJ_ZSICQd.ng) + (Ai% + l/) H(I)I{, Z/ﬁ), 65(1), 65Z|’12(R)
R R

This, together with (4.9) (4.42) and a similar proof of (4.30), yields that
12y + f 2. Kdas)

< HaSZHm(R) + E _Lg osbu, - ZLZ3IC2dCL’3) (4.43)

+ (A72 4 0) 03, Bk, Zhil|F gy + v ||V, V|| gy + evhie ™.

1720

Collecting (4.21), (4.41) and (4.43), one can finish the proof.

Lemma 4.5. Under the assumptions of Proposition 3.4, there exist a large constant Ay =
1 and small positive constants €y and vy such that, if A = Ay, € < g9 and v < vy, then it
holds that

—A% + 7 (0) 105®| 72z

(4.44)
< 1052l 2 gy + v 1962y + v ||V, VE ||L2(Q) +evAie ™,
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where ~
A o= Ll +2 | Zatatdoa (1.45)
R

Proof. Multiplying ‘—;é‘;@ and 03P on 03(4.12); and (4.14), respectively, and adding the
resulting two equations together, one has that

(B BB + Zi0u®) 4 /(7) a0 = u(eoe) + Bl (~Ga+ Na)0ad. (o)
Similar to the proof of (4.30), one can prove that
2 1,
JR(—G;), + N3)0s®das S v |05P, 057, |y + v ||V, V[ oy + evATe .
This, together with , can yield (4.50). O
Collecting Lemmas 4.3-4.5, one has that

d )
%Ao,b + copBoy S v HV&, v ot evAie ™, (4.47)

2
Iz

where A;, denotes a linear combination of Aélb), A and A(()gb), satisfying that

0,b
2 2
Aop ~ @l ey + 1212wy ; (4.48)
and
2
By := |03, 052, Pk, Z|| 2y - (4.49)

Then integrating (4.47) with respect to t yields that

T
sup (HCDHQHl(]R) + ||Z||i2(R)) +J 10:@, O3Z, Ok, ZKHiQ(R) dt
te(0,T) 0

i (4.50)
2 1
< ||®0||?{1(R) + ||‘IIO||§,2(]R) + VJ;) qubﬁ? vCﬁHLQ(Q) dt + evA7.

Lemma 4.6. Under the assumptions of Proposition 3.2, there exist a large constant Ay =
1 and small positive constants €y and vy such that, if A = Ng,e < g9 and v < vy, then it
holds that

d 1 2 2 3r7((2
AL By S (4 A) Has@?ijL?(R) + 1” 1952, 052 e (4.51)
+ v ||V§Z5ﬁ7 VCﬁHLz(Q) +evAie™,

where )
_ 2 2
Aiy = (D) 058 2agey + B2 Ry and Buy = |32 L0y (452)

Proof. Multiplying —p'(p)03® and —d5Z on (4.12); and (4.12),, respectively and adding
up the resulting two equations, one can get that

d (p'(p) 2 1 2 K 2 Pt A ;

= <T 105@l 22wy + 5 1052 caqey | + 2 (052l aqey + == 10525 oy

- £ f 0300300 - 05 Zdx3 + f (G —N) - 03Zdxs. )
P Jr R

~/ o ~/
Y Y

Iy 15
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One can show that
_ 2 H 2
It follows from Lemmas 3.2 and 4.1 that
I; = f (G+ Q) +Q)) - 03Zdas + f (Q} + Q}) 05 Zdx;
R R
1, 2
S€VA4€ t+ ||¢7¢||L4(Q) Hﬁgzqu(R)
Using Lemma 3.5, it holds that
b 25|15 3 L2432
1 ey = 1500ty < 180 100y < 0 3011

and similarly,
1 1
HwbHL%R) SEE H5§‘I’||22<R)-
On the other hand, it follows from Lemma 3.5 that

i k k
k 1—k
Illzacay < 25 IRy Wl oty < Ihllingey Y& H'(Q).
k=1

Then using (4.56) to (4.58), one can get that

16,000y < 09 [acey + 165 0¥ [
< v[|o50, W[ gy + v ||, ¢ i1y

which, together with (3.26), (4.10) and (4.19), yields that

_1
16,91 a0y < v [| 058, BZ|| oy + vt + A) 77 |02, Pl 2y
+v|| Ve, V¢

HL2 + eve™ .

Collecting (4.54), (4.55) and (4.59), one can finish the proof of (4.51).

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

Lemma 4.7. Under the assumptions of Proposition 3.2, there exist a large constant Ay =
1 and small positive constants g and vy such that, if A > Ny, e < g9 and v < vy, then it

holds that

d
aAQ,b + copBap < Biy +v(t+A)” ! |03 @, (I)KHL? tv HVC HL2

+VHV2¢||H1 +evhie .

where By o and By, are given by (4.52) and

Ag,b:2%Ha§<1>||i2(m+JRagzga§q>dx3 and  Bay = |30} g
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Proof. Multiplying %6%@ and 02® on 0%(4.12); and 03(4.14), respectively, and adding up
the resulting two equations, one can get that

d (i 5
4 (2_[3 |22, + JR agz3a§@dx3> +7(0) |85},

- Hagzg}};(m + JR (G3 — N3) 030dx; .

~/

v

I
Similar to the estimate of I5 in (4.53), one can use Lemma 4.1 and (4.19) and (4.59) to
prove that
Iy = j (Gs+ Q5+ Qy3) - BPdas + j (@35 + Q) 5) 05 Pdas
R R
S E,'I/Azeiat + |’¢7¢”i4(9) Hag(I)HHl(R)
1, 2 2
<SevAie ™ v H(9§<I>||H2(R) +v H&P%Z”LQ(R)
_ 2
+u(t+ A) 7|05, Pl gy + v [[VEF V| g,

Note that ”53(1)”}11(11&) < ||v2¢||H1(Q) and Hv¢ﬁHL2(Q) S ||V2¢uHL2(Q) 3 ||v2¢||L2(Q)' Then

the proof is finished.
m

Lemma 4.8. Under the assumptions of Proposition 3.2, there exist a large constant Ay =
1 and small positive constants €y and vy such that, if A = Ng,e < g9 and v < vy, then it
holds that

d _ _ 2
EAS’b +c3pBsy < (E+A)7? 059, (ID"GH?JZ(R) +(t+ Ao, 5§ZHL2(R)

- - ) (4.62)
+v|[v ¢HH1(Q) +v||v CHL?(Q) +eviie
where B,y for i =0,1,2 are given by (4.52) and (4.61) and
Asp = 1'(p) H832)<I>||;(R) + HangiQ(R) and Bz = HagZH;(R)' (4.63)

Proof. Multiplying —p'(p)03® and —03Z on 03(4.12); and 03(4.12),, respectively and
adding up the resulting two equations, one can get that

d

P (p) 1 u A
7 (T 1652 ey + 5 H&?ZHZ(R)) e |2y + R sy

|2omy

-t f 0,(2500,0) 0 - 23Zds + f (05G — 5N - GiZds
R R

. J

ng v~

I Ig

Using (1.19), one has that

2
I < i 1G]y + C D2t + AV (|2, - (4.64)
j=1
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To achieve the optimal rate of ((bb, Cb), we need to deal with the term Ig very carefully.
In this respect, the subtle estimate (4.15)y plays an important role. It follows from

Lemmas 3.2 and 4.1 that

Iy = J (0sG + 05Q) + 33Q3) - 05 Zdxs + f (%5Q3 + %5Q}) %5 Zdwy
R

HaSZHHl ]8 1+ Ig 2) + €VA4€ at,

where

_1
Iy =(t+ M) 9,000y and  Tsz = [V, Vil sy 16, ¥l s

First, it follows from (4.10) that

1052l ey < 10507, 36 | oy + A2 1050 oy

(N7 oy +

Using (3.26) and (4.59), it holds that

Iy S V(t+A) 3| 030, BZ| o+ (E+A) F 1050, O oy + [, VPCH | gy |

To estimate g o, it follows from Lemma 3.5, (3.26) and (4.58) that for j =

IV78l| oy = H@j“CI>IIL4<R + HVW

240

< [l & )H@HL o+ 196 e

7T—4j5

<v'm (\\53‘1’“L + HV3¢’¢HL2(9))

Similarly, one can prove that

7—4;5

"vj¢”L4(Q S (Hag‘yHLQ(R) T Hv3¢ﬁHL2(Q)) J=0.1

This, together with (4.69), yields that
Iss S v |30, 30| gy + 2 V26, V20| 1oy
<Sv |z + l/(t +4) |05, ‘DI’»HLQ(R
vl + 8)7F B oy + v Vo0 T -

Thus, collecting (4.20), (4.64), (4.67), (4.68) and (4.71), one can obtain (4.62).

(t+A)72 105@, P| 2y -

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

]

Then collecting Lemmas 4.6-4.8, there exist generic numbers M;, > 1 for ¢ = 1,2, 3,

such that if A~!, ¢ and v are small, then it holds that

d /< /¢
% ( Z Mw.Ai,b) + 5 ( Z Cz‘,sz‘,sz‘,b)
=1 =1

S (t+ D)7 |05®, Dl Fagy + v [ V20| + ¥ [V 2y + e AT,
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and .
Z My Aip ~ [|039, 83ZH§{1(R) ;
R 2 2 (4.73)
2 CioMisBis ~ (050 ey + B2 s, -

i=1

4.2 Estimates of non-zero modes

The estimate of the non-zero modes is similar to |13, Section 7|. However, if we follow
the analysis of [13] to study the system of (¢*, 1)*), we will encounter a new difficulty in the
energy estimates due to the large amplitude of the background wave (1.20). Nevertheless,
this difficulty can be overcome by considering the system of (¢F, (*) instead of (¢*, ¥*).

To formulate the system for (¢, ¢*), we first subtract (3.3) by (3.8) to get that

0udF + dive = — f¢,
3
agwﬂ + Z 51 (U\i/swﬁ + m"sCf + 1’1172') + V(p'(ﬁ)gbn + TZQ) (474)
i=1
= uAC* + (p+ \)Vdivet — gf,

where
n; = (uim — alrh): - UZSw” - mVSCfa (4.75)
ng = (p(p) —p(p))" — ' (p)&*.
Note that 1 = p( + u¢ + ¢, which implies that
PF = pCt+ u¢f + ng, (4.76)
where
ng = [(5— p)C + (@ —u")g] + ¢f + ¢°¢F + (¢FCF)". (4.77)

Then plugging (4.76) into (4.74) and using the fact that divu*s = 0, the system of (¢*, ¢¥)
can be formulated as

Of + pdiv(? + us - Vg = — ff — divng,
poCE + pu's - VC + p(p) Ve + ou*h — pAC — (p + \)Vdive? (4.78)
=ny — Oing + u"sfg — gt

with ng = — Zle &'nl’i — Vng + u"sdivng —u* - Vng.
Combining (3.26) and (4.58), the remainder (4.77) satisfies that

197m3| 2y ¥ [0, VI ey +eve ' 5 =0,1,2, (4.79)

120
This, together with (3.26) and (4.76), yields that
||Vj1/}ﬁ ’vj@ﬁ)vj(ﬁﬁ

+eve ™™, j=0,1. (4.80)

Iz = | 220

Note that (4.75) yields that
ny; = [(@ —u®)¢ + (m— mVS)Q‘]ﬁ + 0+ QU+ ()Y,
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ny = [ (5 - p)] + (a26)’,
where
0 = f [P+ & + (5 — p) + 56%) —p'(p+ (5 — p))]ds = O(1) (|| + |¢f])
a = f: [P (p+ ¢ +s(5—p) + s¢") —p'(p)]ds = O() (15— pl + || + |]).-
Thus, it holds that

Il iy S v |V ¢H, V! + eve

[n2l| gy S v |V

HL2 ot fori=1,2,3, (4.81)

HL2 + eve ™, (4.82)

which, together with (4.79), yields that

||n4||L2(Q) SV HV&VC” +eve ™. (4.83)

220

Moreover, we claim that

||é‘tn3|\L2(Q) <v Hngﬁ, vt T evAieot, (4.84)

|20
In fact, it follows from (4.78) that
2 L
10:6%, 0:CF 12y < [V, V2| () + 10ims]| 2y + AT
Using the Sobolev inequality and (3.5), it holds that

which, together with (3.5) and (4.3), yields that

——
H@Cb,ﬁﬂbum(m < 19 Cllrsgy + 1fo 8l gy S v +eAie™™.
Then it follows from (4.77) that

10ims ]l 12y < 1106, 08| o gy |9, CFll gy + ¥ 1906, OGP o) + V™
S v||Vef, Vi

HL2 +v ”atn3||L2 Q) + 5VA4€ at,

which yields (4.84).
Now we establish the a priori estimates of (¢*, ¢*).

Lemma 4.9. Under the assumptions of Proposition 3.4, there exist a large constant Ay =

1 and small positive constants g and vy such that, if A = Ao, € < g9 and v < 1y, then
d _ 2 1,
E-Al,ﬁ +eyBiy < (A + ) HV@bu, VQCuHLQ(Q) + evAie ™, (4.85)
where
p(p 2 2 2
Ay =— HL2(Q) T HCﬁHL%Q) and By = HVCﬁHL?(Q)'
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Proof. Multiplying @gbﬁ and ¢* on (4.78); and (4.78),, respectively, and using the fact
that divu*® = 0, one can obtain that

(Z2 3+ 21T ) + 9 G e

= div(---) + (04 — ) - CF — p’fﬁﬁ) divnsd — du* - cte!

p'(p vs
-0 i 4t ) ¢
Then integrating the equality above over Q, and using (3.17), (3.26), (4.83) and (4.84),
one can get (4.85). O

Lemma 4.10. Under the assumptions of Proposition 3.4, there exist a large constant
Ao = 1 and small positive constants €y and vy such that, if A = Ag, € < g9 and v < 1y,
then

d 1
aAz,u +cosBay < Biy+ v Hszﬁ +evAie ™, (4.86)

2
220

where

Az = Qin HngﬁHiQ(Q) + L ¢*-Vifde and By = wai?(ﬂ)‘

Proof. Multiplying %ngﬁ and V¢* on V(4.78); and (4.78),, respectively, leads to
B2 oot ot 1o (5 [Tt
o551V + 9 9F) + 5 () [V

= div(---) — V¢* - Vu*V¢f — pu* - VIV — ¢fou* - Vgt

+ pdiv¢? (ﬁdiYCﬁ +u” - Ve + f§ + divny) (1.87)
to( Pt gt o

+Ve (Vs - )
+ V¢ - (g — Omg) — %wﬁ - Vdivns,

where we have used the fact that for any hg € H'(Q),h = (hy, hy, h3) € H?(Q),
Vho - (AR — Vdivh) = div(Vhy x curlh). (4.88)

To estimate the term —%ngﬁﬁ - Vdivng on the right-hand side of (4.87), one first notes
that

UQ Vot - (¢ V) Vede <v Hvszﬁ”HiQ(m,

1 .
:akLmﬂ”V&Fm

and it follows from (3.26) and (4.2) that

Hv¢ﬁ . ((Cﬂ . V)V(bﬁ)ﬁ‘

S 1V oo 1€ ey V262

V[V ooy 164 2
S V]IV gy IV 2y -

LY(Q
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Thus, using (4.77), one can get that

U V¢t - Vdivnsdz| < I/Hngﬁji V2 + eve™ ™, (4.89)

lz2(0)

This, together with (4.79), (4.83) and (4.84), can yield (4.86) by integrating (4.87) over
Q. O

Lemma 4.11. Under the assumptions of Proposition 3.4, there exist a large constant
Ao = 1 and small positive constants o and vy such that, if A > Ag, € < g9 and v < 1y,
then

%Ag,ﬁ + Cg}uBg}ﬂ < Bl’ﬁ + Bg’ﬁ + EVAieiat, (490)
where
Asy = HV@H;(Q) and  Bzy = Hv2CuHi2(Q)

Proof. Multiplying —A(* on (4.78), and using (4.88), one can obtain that

a(§Ivel") +alac
— diV(- . ) + ﬁ(uvs . V)Cﬁ . Agﬁ + p/(ﬁ)VQbﬁ . Acﬁ + ¢ﬁatuvs ) Acﬁ
~ (- amg) - AC — (wff — ) A

Note that ||ACﬁHiQ(Q) e ||V2CﬁHiQ(Q). Then one can obtain (4.90) with the use of (3.26),
(4.79) and (4.83). O

Collecting Lemmas 4.9-4.11, there exist some generic numbers M; . > 1 fori = 1,2, 3,
such that if A=', e and v are small, then

d 3 1 3
E ( Z Mi7¢AZ’7¢) + 5 (Z Ci7¢Mi’¢Bi7¢> < EI/Aieiat, (491)
i=1 i=1

and

3
Z Mi,#Ai,?ﬁ ~ H¢ﬁ7 CﬁHip(Q) )
i=1
3
2 2
2, it MiBie ~ V6| ooy + 1V 1y

i=1

It follows from (3.26) that

(4.92)

3 3
Z M; Aiy < HVQﬁ”, VCﬁHiQ(Q) < Z Cir M 2B; ».

i=1 1=1

Then there exists a generic constant oy € (0, ) such that

H¢ CﬁHHl(Q) (H%,%HHlm + VA1 ) (4.93)
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4.3 Estimates of higher-order derivatives.

Now we return to the original perturbed system (3.5) to estimate the higher-order
derivatives of the perturbation. It is noted that in the proof of Lemmas 4.12 and 4.13,
we use only the a priori assumption that supier) [[(¢: ()l g2(qy is small. Thus, with a
higher-order assumption (3.21), one can use similar arguments to estimate the third-order
derivatives, i.e. Lemmas 4.14 and 4.15, whose proofs are omitted for convenience.

Lemma 4.12. Under the assumptions of Proposition 3.4, there exist a large constant
Ao = 1 and small positive constants €y and vy such that, if A = Ao, € < g9 and v < 1y,
then

d : —2+4j ‘ 2
EAl + 1By < jz;)(t +A) [V (6, OHLQ(Q) (4.94)

+ 192y + IV

CH;(Q) +evAie ™,

where
3 .
fi
A = ZZ; L (2—,02 Vo> + Voo - é‘iC) dr and B = ]’V2¢||i2(9) . (4.95)

Proof. For i € {1,2,3}, taking the derivative V¢; on (3.5); and multiplying the resulting

at<\V6 il

202 )+ —Vodiv( - Vo = div(- -+ ) + I, (4.96)

where
Iy = —%vaﬁb- {[V&‘i(pdivC) — pVadive] + [Vai(u- Vo) — (u- V)Vae]
+ Vi [diviig + Vj- (] — ;(divﬁ + divQ) Vi + Vo fo .
Using (2.31), (2.32) and (3.17), one can get that

H[g”Ll(ﬂ) HV CbHLZ(Q [ |V¢||L4(Q) Hv2€HL4(Q) + “v2¢“L2(Q) ||VC||L‘7~“(Q)

3 . . 1y, (4.97)
+ Zo(t + A) 32 HVJ¢||L2(Q) +ee ! ||¢7 CHH?(Q) +elie t]'
=
It follows from Lemma 3.5 that
3 1k )
1Vl 10 Z IVl 2, Il oy < V% 926 fagey
h=1 (4.98)
2 ° 3% 2 +||1—%
V¢ gy Z [V 220y V7€ oty
which yields that
IVl gy V€l iy = ¥ 1V 2y + ¥ V¢ 111y (4.99)
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Using (4.2) with h = V( therein, it holds that
HVQ(b”LQ(Q) HVgHLf(Q) Sv ||V2¢HL2 +v HV CHHl(Q)' (4.100)

Then combining (4.97), (4.99) and (4.100), one has that

1
1ol gy < (A% + ) [ V26|32 0, 12t+Ar%wvwmmn

(4.101)
+ v HV2CHH1(Q) +evAie o,
On the other hand, multiplying -V ;¢ on 5,(%)-(3.5)2), one can get that
, .
0(Voip-0¢) + 2 g’) IVoip|? — %va@ - Vdivei¢ = div(---) + Lo, (4.102)

where

hw=—V@¢[@OPVT%+&CﬁP)V¢+8KEQ2%£&2V@-%@@-V@

+ &-(% (@i + - Vi) ) + iff (¢ + (- 2 Veive) + 2,2 _pfOﬁ)]

3
pﬁ Z 0;pNV 3 - (8;0:C — Voi(;) — divei( 0,640,
Here we have used the fact that for any (hg,h) € H'(Q) x H?(Q),

1
“Vhy - (Ah — Vdivh)
p

3 1 1 3
=1

Jj=1

Note that ¢, (|| y2(q) < v, then it holds that

1ollagey < 1926l gy | 192C Loy + IVE Iy + 1961 Facq)
u+ArﬂW¢vmp@+@+AYW¢mp@

(4.103)
#2676, Cllagey + V0l oy | V3C gy + 20T |
+ HV2CHL2(Q) Hvatgb”LQ(Q) :
Using (4.98);, one has that
Vol 50y S v V20 oy amd V¢ a0y < v V¢ 2y - (4.104)
It follows from (3.5); that
HV&%M’LQ(Q) < HVQCHLz(Q) + |’v¢"L4(Q) HV§HL4(Q) + “v2¢“L2(Q)
(4.105)

1 , ‘ )
+ 2+ AT [V oy +eATe™

=0
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Then using (4.99) and (4.103) to (4.105), one can get that

P'(p)
il < (B2 +0) [y + € 19 g + O 9
(4.106)

1
+C Z(t +8) 2V (8, 0|2 + CovAie ™.

Thus, summing (4.96) and (4.102) together and using (4.101) and (4.106), one can obtain
(4.94).
[l

Lemma 4.13. Under the assumptions of Proposition 3.4, there exist a large constant
Ao = 1 and small positive constants o and vy such that, if A > Ag, € < g9 and v < 1y,
then

1
—A2 + By S Z (t+8) 27 [V, O ey + V26, V2|2 +evATe ™, (4.107)

where

Ao = [ViC[faqy  and Ba = ||V [z

Proof. For fixed i € {1,2,3}, taking the derivative ¢; on %-(3.5)2 and multiplying the
resulting equation by -(—Ad;(), yield that

u+/\

1

where

]Hzﬁéi{’-é‘i[ V(o ;p)vmwvmg-vm%(atma-va)]

+ AOC - [uAng (11 + A)Vdive] + AdC - & (g _pfoﬁ)

+ A :
5—divai(Vp - (Adi( — Vdivii().

Here we have used the fact that for any h e H%(Q),
divh

%Vdivh - (Vdivh — Ah) = div[%divh(Vdth — Ah)] —Vp- (Vdivh — Ah).

Then it holds that

1itllgaey < 9% gy [ 192 gy + I9€ @) + 1926 2y + 1960340y
1 1 .
+ 198l 1y V2 gy + 20+ 872 V(6,0 oy (4.100)
j=0

#ee®t sup [0,y + oAt ™|
te(0,T
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which, together with (4.99) and (4.104), yields that

Il < (15 +2) IV%l @ + € 920, 92

16p <!Hi?(Q)

+C Z(t +A) 2| VI8, 0| a0 + CovAie ™.

j=0

By integration by parts, it holds that || AGiC|| 2y = HVQ@(HLQ(Q) . Then one can integrate
(4.108) on 2 to obtain (4.107).
[

With a higher-order a priori assumption that sup,cry [|(¢; Q)| sy is small, one can
prove the estimate of the third-order derivatives of (¢, () similarly. We omit the proofs
for convenience.

Lemma 4.14. Under the assumptions of Proposition 3.4, there exist a large constant
Ao = 1 and small positive constants o and vy such that, if A = Ag, € < g9 and v < 1y,
then

d - —3+j j 2
EA‘O’ + 383 < Zg)(t +A) [ Vo, OHL?(Q) (4.110)

V20l 2y + 97y + 2vTe ™,

where

Ay = ZJ 52 IV oy0|” + Vi - @Jg)dx and Bs = }|v3¢HL2

i,7=1

Lemma 4.15. Under the assumptions of Proposition 3.4, there exist a large constant
Ao = 1 and small positive constants €o and vy such that, if A = Ag, ¢ < g9 and v < 1y,
then

d - —3+j / 2
EALL + BBy < Z(t +A) TV (o, OHB(Q) (4.111)

+ ||V, V? CHH1 +evhie ™

where

Ay = vacni?(m and By = HV%H;(Q)'

Collecting Lemmas 4.12-4.15, there exist some generic numbers M; > 1fori =1,2,3,4
such that if A, ¢ and v are small, then

:11 (4.112)
< HVzCH2 Z<t+A —2+4j ij o, < HL2 +€VA46 at7
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and

4
£ ) MiAs £ £ [[926, V211 0+ 1VC oy -

—_

1=

; (4.113)
Z iMiB; ~ ||V2¢’ VSC”ZI(Q)
Using (3.26) and (4.1 ) one has that
d (v 1/ v
= (Z MA) + (2 ¢M;B,)
(4.114)

<(t+A)7|o3e, aQZHLz + (t+ A) 7 [|05D, 052, Pkl
+ (1832 ey + V7€

HL2 +evAie™™,

Proof of Proposition 3.4. Collecting (4.72), (4.73), (4.91), (4.113) and (4.114), one can
choose a linear combination of A;,, A; » and A; (resp. B;,,B; . and B;) for i = 1,2,3
and j = 1,2,3,4, denoted by & (resp. D), such that

d .
O DS (t+A) H|0s®, 052, Pr||7 gy + evATe (4.115)
and ) )
+& <+ (||¢||H5 + ||5sz||§11(11@) + HCﬁHHl(Q) + HVQCHHl(Q))
+ (t+ N) 7| Phl[ gy + e, (4.116)
D1 ~ Vol + 32l gmy + 1V 10y + 95 o

‘Hl(Q)
Here we have used (4.17) with j = 1 in the proof of (4.116);.

With (4.50) and (4.80), integrating (4.115) with respect to ¢ € (0,7") yields that

S(up)gl f Dy (t)dt < || Do, Wol[72) + Do, Yoll3s 0y + 2% (4.117)
te(0,T

It follows from (4.17), (4.18) and (4.116) that
t& < o, C||?{3(Q) + ||<1>’<0Hi2(11e) +etvtem (4.118)
+D) < #( ||V¢||§{2(Q) + HVCH?{?’(Q)) +(t+A)7 |09, ‘I)HHL? ® + V"

This, together with (4.50) and (4.117), yields that

sup (||(I)7\Il||i2(R) + H¢7CH?{3(Q))

te(0,T)

T
+J (1105®, 052, Pr, Zm||iQ(R) + ||V¢||§{2(Q) + ||vg||§{3(m )di (4.119)

0
1
< H(I)Ov \IIOHi?(]R) + H¢07¢0H§{3(Q) + eAz.

Here we have used the fact that evA1 < eAiv2 + eAd with (4.1) and the smallness of

eAt. Then the proof of Proposition 3.4 is finished.
O
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5 Decay rate

Combining Theorem 3.3 and Proposition 3.4, for the problem (3.5), (3.6), there exist
Ay = 1 and g9 > 0 such that, if A > Ay and eAt < €0, then the global existence of the
solution (¢, () € B(0,4+0) can be proved by a standard argument. To finish the proof of
Theorem 3.1, it remains to prove (3.7).

Since the estimate (4.119) holds for 7" = +oo, then using (3.4) and (3.13), one has
that

2 2
sup (19, @12y + 10 Il )

+ao ) ) ) ) (5.1)
+ J (|’a3(1)7 032, Pk, Z“HLZ(R) + HV(bHH?(Q) + HVCHH3(Q)) dt < ehd,
0
and
+0 )
sup & (t) + Di(t)dt < eAa. (5.2)
t>0 0
It follows from (4.18), (4.116) and (5.1) that
E1 S D1+ (|05®, 0577y + (E+ A) || Phl| oy + e*Ade . (5.3)

With (5.1) and (5.3), multiplying (+1) on (4.115) and integrating the resulting inequality
with respect to ¢, one can get that

t

(t+1)& + f (1 + 1)Dydr

t t )
< &(0) + f Evdr + J 105®, 032, Bk |72y dr + (A7)
0 0

NI,

< eli. (5.4)

Here we have used the fact that & (0) < €A%, which is derived from (3.4), (3.13) and
(4.116);.

On the other hand, collecting (4.62), (4.113) and (4.114), one can choose a linear
combination of Az, and A; (resp. Bs, and B;) for i = 1,2, 3,4, denoted by & (resp. D»),
such that

d
S+ Dy < (E+ A)205®, 057, kg,

dt (5.5)

+(t+ D) | BD, BZ g + (€AT)2e ",

and
+& < _< Hagq)’ a:’%ZHiZ(R) T HV2¢’ VZCHZI(Q))

+ (t+ A) 03P, Bk Fay + P A2e (5.6)
3r7|2 2 312
Dy ~ Ha?’ZHLQ(]R) - HV ¢,V CHHl(Q)'
It follows from (4.18) and (4.116), that

52 < Dl + (t + A)il H63<I>, (I)KJHiQ(R) + €3A%€7at.
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Then multiplying (¢+1)? on (5.5) and integrating the resulting inequality with respect
to t, one has that
t

(t+1)2& + J (7 + 1)*Dydr
0
t

t
< &(0) + J (1 + 1)Ddr + f 105®, 05, D[ 0 5 dr + (eAF) 3
0

0

=

< el (5.7)

Note that ||/f||if‘(]R) < (t +A)~!. Then it follows from (4.118), (5.1) and (5.4) that
2 _ 1,
“be?CbHLz(R) Sgl'i‘(t‘i‘A) 1”(1)”%2(1[@) +€3A46 t
<ehi(t+1) " (5.8)
In addition, it follows from (4.17) and (5.6) to (5.8) that
2 _ 2 _ 2 1,
||63¢b7 63Cb”L2(R) < 52 + (t + A) ! ||¢bHL2(R) + (t + A) 2 Hq)HLQ(R) + 53A4€ t
<ehi(t+1)2 (5.9)
Combining (5.8) and (5.9), one can get that
b o ONTE b b||2 1.1 3
¢, ¢"] Lo®) S 185(¢".¢ )Hz%R) ¢”,¢ H22(R) S (eA%)2(t+1)75,

which yields (3.7);. Using (4.93) and (5.1), one can obtain (3.7); immediately. The proof
of Theorem 3.1 is finished.

Proof of Theorem 1.2. Once Theorem 3.1 is proved, it remains to prove (1.25) to
complete the proof of Theorem 1.2. In fact, using (2.31), (2.32) and (3.7), one has that
H (,Ob, ub) _ (pvs, uvs)‘

> ~b Vs Vs b b
L*(R) S H(p »u ) - (p , U )HLf(R) + H(¢ ag )HL’X(R)
< (eAT)3(t + A)7H
To prove (1.25),, note that (p*,uf) = (5%, %) + (¢*,¢*). Note that if h(z) € L*(R?) is

periodic on T? with the average h = {; h(z)dz, then it holds that h* = (h — h)*. Then it
follows from (2.7) and (2.9) that

p= <[t (1 -6, + vl (1+0,)],

0,) + 7. (1+6,)]

1 : )
[gm — v )| (-6,

where vy and z4 defined in (2.4). Thus, it follows from (2.5) that

o
=
|
+ o=
/i
N
|
—~~
[S—
|

Hﬁﬁ7 ﬁﬁHLI(Q) < ||U—7 Vi 2,24 HL““(Q) S ge_at' (510)
This, together with (3.7), yields that

10 )] o ) < 17, )]
The proof of Theorem 1.2 is finished.

L*(Q) + |’(¢ﬁ7 Cﬁ)HL'/(Q) < 5A%eia0t-
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6 Localized perturbations on T? x R

In this section, we outline the main ideas to solve the problem (1.1) with the initial
data (1.23). In order to use the anti-derivative technique, we first follow [22, 15| to
introduce some diffusion waves propagating along the transverse characteristics to carry
the excessive mass of the perturbation (¢, ).

As the viscosity in (1.9) vanishes, the resulting hyperbolic system takes the form,

o D)+ apwa( P ) =0, (6.1)
where
0 0 0 1
. —U1U3 us 0 Ul
A(p7 LI) N —UU3 0 Uz U (62)

pp)—u: 0 0 2us

This matrix has four real eigenvalues,

Ao = uz — p'(P)a A=Ay =u3, A3=us+~/ p'(ﬂ)> (6-3)

with the associated right eigenvectors,

1 0 0 1
ro(p,u) = “ ry = L ry = 0 r3(p,u) = “ (6.4)
o\ps Us ) 1 0 ’ 2 1 ) 34Ps Us .
o 0 0 A3
For the constant states (p, +u) in (1.7), we denote
A= N(p,+0) and rf:=r1i(p, +u0), i=0,3
. . x2
Diffusion waves. Define ¥(z3,t) = Wﬁ exp{ — m%)} and
19,(.133,t) :19($3—>\8(t+1),t), (6 5)
Then it holds that
O+ Ny O30 = 030, O, + N\ s, = 030,
and
J 19_($3,t)dx3 = J 19+(Z’3,t)dl‘3 =1 A = 0.
R R
Denote o - B
= 0 ol 3y + 190, Tl 5)
Decompose the mass, { (¢o, 1o )dx, into
f (QZ_ﬁo, '(Z())dx = Oé()ra + a1rq + QT 9 + Oégr;:, (67)
Q
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where each o; € R is a constant, satisfying that
zi%,aX,S |O[Z| < H¢O’¢O||L1(Q) < H¢07¢0||L§(Q) S €.
Ansatz. In the case for the H3(Q)-perturbations, we set the ansatz as

(p,m)(x3,t) := (p*°, m"®)(z3,t) + aorg I_(3,t) + asry I (v3,1)

6.8
+ (oqu + 0421'2)19(1’3,75)7 ( )
and (2. 1)
~ mirs,
u(xs, t) .= ——=.
( ’ ) p(l’g,t)

Equivalently, (6.8) reduces to

p=p+ -+ asdy,
7’711- = ﬁﬂlg + ﬂi(agl%r — OZ()’Lg,) + Olﬂ9, 1= 1, 27 (69)

mg = /\606019_ + /\;013194_.

Remark 6.1. The construction (6.8) is different from [15], since we do not shift the back-
ground vortex sheet to cancel the excessive mass in the linearly degenerate characteristic
fields. In fact, we find that the shift is not essential for the contact discontinuities, since
after shifting, the difference between two contact discontinuities decays just same as the
diffusion waves. However, it should be mentioned that the shifts are an essential point in
the stability theory of shocks.

It follows from (6.9) that

{atﬁf divin = O5F, ~ N (6.10)
oym + dlv(@) + Vp(p) = pAu + (p+ A)Vdiva + 05G,
where F' = F(z3,t) € R and G = G(z3,t) = (G1, G2, G3)(z3,t) € R? are given by
F = ay039_ + azdzd,,
Gi = 0udsh + [m;;m —wi(asA{ Vs — oAy ¥ |
+ (30504 — apd30_) — pds(i; — u;0), i=1,2, (6.11)
Gs = "5+ [5(p) — $(0) — #(0)5 — )] — i
+ Ay 20030 + Aj 330
In the following part of this section, we let
coleal? eo|as—ag 1) co|w3=AF (t+1)]?
E=¢ 1 +e T+ +e” T+ (6.12)
for some generic constant ¢y > 0 .
Lemma 6.2. For j =0,1,2,---, it holds that
GIF| + |G| < e(t + 1) 2. (6.13)
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Proof. We prove (6.13) for 7 = 0 only, since the case for higher orders is similar. For
convenience, we write A =~ B if |[A — B| < e(t +1)7'€&. First, it is direct to show that
059 + [0]* = 0, which yields that |F| + |G| = 0. To prove that G; = 0 for i = 1,2, it
suffices to show that
mgm;
F

I :=

ﬂi(aég/\;_’&_;,_ O{[)/\ Y ) =~ 0.

In fact, it follows from (6.9) that

S

I = i6(>\6060197 + )\;Ck319+) + u; (Oéo)\(;ﬁ, — Oé3)\§r19+)

Note that \j = —+/p'(p) < 0. Thus, if 23 > 0, then

—|2 — 2
ot |ms—rg )

I_(0+1)<SI_<e 8 e s

2 2
If 23 < 0, then by (4.9) and the fact that S:'Of‘ e ¥’ dy < e~“T, one has that

T3

0<d_(0+1)=0_ f 0,,0(ys, t)dys

—a0
T3

<9 J V(ys, t)dys
—00

_ 2
|I37>‘0 <t+1)| az%
e 4(t+1) e 20+1)

e

N A

7Cl‘$3‘761t
)

for some ¢; > 0 which depends only on ‘)\6| and «. Similarly, one can prove that

et —calzal® _61123”?(“”\2
0<d,(1-6)<e O(e e i ) z3eR, L= 0.
0
It follows from (1.1) and (6.10) that <£{{,[(p, m) — (p,m)]dz} = 0. This, together

with (6.7), yields that

fﬂ[m m) — (7, 1i)]de = fﬂ[m m) — (5, 10)]|s—pdz = 0. (6.14)

Using the same notations (3.1), (3.10), (3.16) and (4.10), the systems for (¢, () and (P, V)
are almost same as (3.5) and (3.12), respectively, except the source terms on the right-
hand sides, in which the new ones satisfy (6.13) instead of (3.17). Denote

(00, %o)(x) := (¢, ) (x,0)
= (o, o) () + agry ¥ _(w3,0) + asry ¥ (w3,0) + (ayr; + aory)d (s, 0),

(o, Wo)(z3) := (@, ¥)(x3,0)

= Jx (60, ¥o) (y3)dys = — J+w(¢%7¢g)(y3)dy3‘

—Q0 T3
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Then it follows from (1.27) that (¢, 1) € H*(Q) and (®g, ¥y) € L*(R). In fact,

) 0 T3 , 2 +00 +00 ) 2
[Pol|72(x) =J (J ¢o(y3)dy3) dﬂfs+L (J ¢o(?/3)dy3) dxs

. oo o0 \
= H%HLg(Q)L f (y3 + 1) 2dysdz; + €
z3
S € (6.15)

And the L?-estimate of W is similar.

Now we establish the a priori estimates. First, we assume a priorily that for a fixed
T >0,

(@, W) e C0,T; L*(R)) and (¢,¢) € C(0,T; H*(Q)).

Denote

vi=sup (19,9 ) + 16, Ul sy )- (6.16)
te(0,T")

Remark 6.3. The definition of v here is different from (4.1). In fact, same as in [15], due
to the diffusion waves, the L% norm of the anti-derivatives, ||®, ¥/| L2(r) » 8rOWs actually

at rates (¢t + 1)i . Nevertheless, we will show that the L?norm of their derivatives,
105@, 03 || 12y , decays at rates (¢ + 1)~1, which ensures the uniform boundedness of the
L%-norm, [ @, ¥, g -

It is noted that in the anti-derivative system, the estimates of Q; for ¢ = 1,2, 3,4 are
slightly different from (4.15), which read

Qul + |Qs| < |6 + ),
105Qu| + 0:Qs] < [e(t + 1)1+ (£ + M) 2] (o] + [us]”)

+ (1830] + |59 ) (o] + [4]) (6.17)
k .
V*Qu| +|VFQu| < Dlelt+ 1) (| Vg + |Viy]),  k=0,1.
j=0

In addition, the estimates (4.16) to (4.20) still hold true with ¢ = 0.

Lemma 6.4. If A=t ¢ and v are small enough, then

d

EAO,b + copBoy < V||V, VCﬁHia(Q) +e(t+1)7" @, ZHiQ(R) +e(t+1)77,  (6.18)

d N .

E(Al,b + ﬁ-AQ,b) +c1pBip + ﬁczblgzb

2
< (e + (182l ae) + 1V 2oy + 1V°0li10))

+ (L +1)71]|05D, 32, Doy + €t +1)77, (6.19)
d
EA?,,b + c3,Bs3,

< (e + (V20 gy + 19 ay) + @+ D7 (|52, B2

+(t+1)72]|05D, 32, Doy + (1 + )75, (6.20)
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where A;, and B, fori =0,---,3, denote the same notations as in Section 4.1, satisfying
that

2 2 2
Aoy ~ ||(I)HH1(R) + HZHLZ(R)v Boy ~ ||05®, 05Z, P, Z/€HL2(R)>
f 2 2 f 9x A2rpl(2
Ay + 4—p-'42,b ~ ||a3q)HH1(]R) + ||53Z||L2(R) , By + 4_ﬁBQ’b ~ Hﬁ3q>7 a3ZHL2(R) )

Agy ~ 030,32y Bos ~ |32} ey -

Proof. The proof is almost same as those of Lemmas 4.3-4.8. Indeed, the only different
ingredients are the estimates related to the terms (F, G) and (Q2, Qq).
For instance, in (4.24) and (4.25), we use the different estimates,

_ 3
1F, Gl o) 19, 2| oy < €t + 1) [|@, Z| oy
et + 1) |@, Zl[agpy + €t +1)72,

A

and

. 2 2
Qo Q4HL2(Q) HZHHl(R) Se(t+1)7! HZ”Hl(R) e H(bawHLQ(Q)
- 2
< et + 1) B0 + 1105, 5, Ol Fagey + €[ VOE VE Ly

and in the estimate of (4.65), we use the different estimates,
|03 F. 5G| o g [|050, 32| oy < et +1)7 H&%Q),&%ZH;(R) +e(t+1)73,

' 2 _
105Qz, 03Qul L2y [| 52| 1 gy < € 1032 [ 1 ) + €t + 1)~ 16, ¥ [1720
+e(t+ 1) Ve, Vo -

Note that except these estimates, we do not use the boundedness of || ®, ¥| ., elsewhere,
that is, the remaining proof are exactly the same as in Section 4.1. [

Lemma 6.5. If A !, ¢ and v are small enough, then
d
A, + B, <0, (6.21)
dt
where Ay and By are two energy functionals, satisfying that
2 2 2
Ay ~ Hgbﬁ’CﬁHHl(Q)’ By ~ HvéﬁHLQ(Q) - HVCﬁHHl(Q)'

Proof. Note that the ansatz (6.8) depends only on 3, and so are the error terms F' and
G, which implies that (03F)* = 0 and (93G)* = 0. Then the proof is similar as in
Section 4.2. O]

Lemma 6.6. If A ! ¢ and v are small enough, then

d
A+ BN BZ oy + [V ey + ¢+ D)7 052,52,

i (6.22)
+ (t+1)77|05®, O3 Z, Ok Loy + €(t +1)77,
where A and B are two energy functionals, satisfying that
2 2
FAS V2OV Ry H IV ey B~ V20V (623)
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Proof. Note that
. . o e e .
{%p}—l—‘@émg‘—i—!é‘é(ml—mﬁ}Se(t—i—l) 3 , j=12---
The proof is similar to Section 4.3. m

Now we show the decay rate. First, it follows from Lemma 6.5 that
—a1t
16, ¢l gy < e (6.24)

This, together with (6.18), yields that
d . _;
Aoy + 6By, < Coe(t + 1) Agy + Coe(t +1)72. (6.25)

By Gronwall’s inequality, multiplying (t+ 1)~ on (6.25) yields that if € is suitably small,
then

t
Aoy + J Bopdr < et + 1)%. (6.26)
0

Similar to (4.115), one can choose a linear combination of A;, for i = 1,2, 3, A; and
A (resp. B; for i = 1,2,3, B; and B), denoted by & (resp. D;), such that

d
%51 + Dl < (t + 1)_1 H&gq), 532, CI)HHiQ(R) + E(t + 1)_% (627)

and
+61.5 + (0l + 105205 gy + 1y + 1V )

+ (t+ A7 [ PA[ g (6.28)
D1 ~ Vol + 0325w + 1V + 1V ey -
Then it holds that

t t
(t+1)& + f (1 + 1)Dydr < &1(0) + f By ydr + €(t + 1)z, (6.29)
0 0
which, together with (6.26), yields that
1 t 1
E Se(t+1) 2, J (T + 1)Dydr < et + 1)2. (6.30)
0

Also, similar to (5.5) and (5.6), one can choose a linear combination of A3, A; and A
resp. Bs,, By and B), denoted by & (resp. D,), such that
; f

d )
ZE DS (t+ 1) 30, B2, (6.31)

+(t+1) 2|05, 032, Doy + e(1+ 1) 75,

and

£6, < £( (|30, B2 gy + 1926, VA ey ) + (E+ D)7 11062, 05l g (6.3
Dy~ (|32 ey + 1196 V-
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Note that & < Dy + (t + A)72 |05, <I>/<;HiQ(R) . Then one has

t
(t+1)2& + J (7 + 1)*Dydr
0

¢ ¢
< f (1 + 1)Dydr + J Bopdr + €t + 1)%
0 0

<e(t+1)z,

(6.33)

l\)\»—l

which yields that

I\D\W

£ <e(t+1)" (6.34)

Then combining (6.26) and (6.30), one has that
11
1P, @] Lo gy < !|53¢,53‘1’||L2 1P, ‘I’HL2<R> SE A, =L
Using (4.16) and (4.17) with € = 0 yields that
2 1
‘}gbb’Cb}}L?(R) SE+(+ M)Ay Se(t + 1)_§,

and

DJ

|05¢”, 53CbHiQ® SEFU+D)TE +(t+1) 2 A, Se(t+1)73.

Finally, one has that

1

6. Cll ey < 1858 ey |19l s 4178 (639)

Note that the diffusion waves propagating along the transverse characteristics, i.e. 9,9+
n (6.8), also decay at the rate (£ + 1) 2. Hence, one can obtain (1.28); immediately. The
proof of Theorem 1.3 is complete.

A  Proof of Lemma 2.3

Proof of Lemma 2.3. If € is small, then it follows from Lemma 2.1 that the periodic
solutions (p4, m.) to the problem (1.1), (2.2) belong to the C(0, +o0; W4*(T3)) space.
Then the existence and uniqueness of (2.23) can be derived from the Cauchy-Lipschitz
theorem. It remains to show (2.28). In fact, using (2.5) and Cauchy’s inequality, one has
that p” = p+ O(1)ee " and m%_ = O(1)ee~**. Then it follows from (2.22) that

D =2p+ O(1)ee™™, (A.1)

and

ng—a xg—a
2«/t+ t+ A Vi+ A

Here in (A.2) we have used the fact that £0'(¢) is odd with respect to £ (see Lemma 1.1).
Thus, it holds that |o'(¢)] < ee .

)dq;g + O(1)ze™ = O(1)ee". (A.2)
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Now we compute the limit of o(t) as t — +o0. For ¢ = 1 or 2, it follows from (2.10),
that

5tm5 + a:))[(’1’1377%)b + (p(ﬁ))b] = u@gﬁ? + QE- (A.3)

For any fixed ¢t > 0, integer N > 0 and constant a € T = (0,1), define the bounded
domain

Qun(t) :={(z3,7):0(T) = N+a<z3<o(r)+N+a, 0<7 <t}
Integrating (A.3) over B, y(t) yields that

o(t)+N+a N-+a

f gf(xg, T) dxsdr = f MZ(ac3,t)dx3 — J ﬁzg(xg, 0)dxs
Qa,n (1) o(t)=N+a _N+ta

- ~
~"

Iy

rt

- | [@ms)’ + (p()) - pdsit; = o' (D)) (o(7) + N +a,7)dr (A.A4)

J

+ Jf: [(agmi)b + (p(p)) — pési) — 0'(7)7%2](0(7) — N +a,7)dr.

~/

Y

I3

Denote & = \/ﬁ—/\ Then it holds that

I - %j T (s 4 0, 8)(1 = O(9)) + (s + 0, £)(1 + O(€))]das

—N+a ,
I11
N+a N+a 3 (A.5)
+ g o(€)dz —mzf @(—)dm .
o JNJra () ’ —N+a \/K i
Lo

Since w;+ (-, t) have zero averages on T3, then

a

N+a

. %” W (25 + 0, ) (1 — O())drs — j W (25 + 0,)(1 + O(6))dzs
a —N+a

N+a

+Ja w5+(x3+a,t)(1+@(g))dx3—f

ul (w3 + 0, 8)(1 = O(§))das |
—N+a a
By (2.18), one has that w’, = w!_ + 2u;0" . Thus, it holds that
N+a

I =uz-”a Ub_(x3+a,t)(1+@(§))dx3—J

—N+a a

v (25 + 0, t)(1 — @(5))d$3],

which yields that

1 1 a
lim I 1da = ﬂif [j v (254 0,t)(1 + O(€))dxs

N—+wo 0 0 —o

_ f T (s 4 o)1 6(¢))dzs | da. (A.6)

a
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On the other hand, since O(-) is an odd function, then it holds that

[/ et = [ eteyia [ etgar— [ " eterin

“N+a N N N
N+a —N+a
~| et | e
N —N

This, together with the fact that ©() — 1 as £ — 00 and the dominated convergence
theorem, yields that

lim J JNM dzgdazfl[ lim JNM O(§)drs — lim o @(f)d:vg]da
0

N—+o N+a N—+00 N N—+o _N
= 1.
Similarly, one can show that
N+a
lim f J dxgda =1.
N—+w N+a
Thus, it holds that
1
lim Iljgd(l = 0. (A?)

N—+aw J,

For I, it holds that

I = —L [(ugemi ) + (p(ps)) — posul, — o' (tym?, | (o(7) + a,7)dr

¢
— J 1371(0(7) + N +a,T)dr,
0

where Iy = [asmm; — usymiy + p(p) — plps) — pds(@; — wiw) — o’ (7) (M — myy )|, which
satisfies that |3, (o(7) + N + a,7)| < 1 @(\]/Vﬂ) Then one has that

lim Lda = —L L [(u3+mi+)b + (p(p+))b] (o(1) + a, 7)dadT + m;o(t).

N—+00 0
Similarly, one can prove that
1 t el
lim I3da = J J [(us—m;)" + (p(p-))"](o(7) + a, 7)dadT + mo(t).
N—+o Jo 0 Jo

Using (2.18) and (2.26), one has that
1

lim | (Ila+ I3)da = —Qulf J myy_(o(1) + a, 7)dadr + 2m,o(t) = 2mo(t).  (A.8)

N—>-+o0 0

Using (2.12) and (2.13), one can get that g’ € L*(0,¢; L'(R)). Then it follows from the
dominated convergence theorem and (2.24) that

t
lim J f ¢ (x5, t)dzsdtda —J J g (x5, t)dzsdt = f f fy (s, t)dzsdt = 0.
N—+c0 Ba.n(t) R
This, together with (A.6) to (A.8), yields that

1 1 +0o0 a
o(t) = z_pf ” V(w5 + 0, £) (1 — ©(€))dars — f o (2 + 0, 1)(1 + O(€))das |da
0 a —
= O(1)eA?e o
The proof is finished. O
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B Proof of Lemma 3.2

Proof of Lemma 3.2. For convenience, we use the convention A ~ B to denote that

IA = Bl| 20y < eAVte .
It follows from (2.9) that

u =~ %[u(l —0,) +uy(l+0,)],
which, together with (2.7), yields that
[’LL3 m_(1—6,)* +us,m,(1+ @U)Q]
~ —[us—m_(1-6,) + usam (1 + 6,)].
Similarly, one can verify that

§P) — 5p(p )1 = €,) = 2p(p.)(1 +©,)

j (0 +1(7— p))dr(5— p_)(1—©,)

l\')lr—\

+2Lp04+dp p))dr (7~ pi)(1+©,)

~ 0.

(B.2)

(B.3)

1) We now prove the estimate of G. By (2.19) and (2.24), one has that for all z3 e R

and t > 0,
Gi(xfi?t) F1b3z ‘I37 J f2'L Y3, )dy3
FlbgZ (w3, J f21 ys, t)dys for i=1,2,
Gg(l'g,t) = Flb’33(fl,’3,t).
With the aid of (B.1) to (B.3) and the fact that
dsu ~ —[0su_(1 —0,) + dsu,(1+ 6,)]| + uds0,,

diva =~

NN

I:leu,(l — C"‘)g) + leU+(1 + @U)]7

it can follow from (2.12) that

B~ 0,0, — g (0,
1.3 Hucs Vi+ A (\/t+A>

Then one has that G3 = F} 33 ~ 0. For i = 1 or 2, it follows from (2.20) that

zr3—0o

z3 U; NG
f fg,i(y?nt)dy?) p J £0'(§)dE + Ry,
to0
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where
’L_LZ' J\x:i [_( b _ 7) T3 — 0
VA Lo L0050

Since ©’ > 0, then it holds that |R;+| < ce (1 F ©,). It follows from (1.18) that

Riy = — o) + mg_}@;d%.

N

3 +00
§ne'(¢) = =L J ne'(n)dn = L ne'(n)dn  V§eR.

This, together with (B.4) and (B.5), yields that

+00

x3
Flb,?n‘ + J faidys ~ R;— and  — Flb,3i - fg,idy?) ~ Ry,
—00

3

which implies that G; ~ R;_ and meanwhile, G; ~ R;,. Thus, it holds that

o 1 +00 1
HG2||L2(R) § €A1/46_at + (J ’Ri—|2 dl’g) ’ + (J |RZ‘+|2 d!L’3) ’ S 5A1/4€_at.
—0 o
2) Using (2.11) and the fact that (p. — p_,mz, —msz_) = O(1)ee™, one can easily
obtain that || fol| 2y < eA~ie . Then we estimate g. It follows from (2.7) and (2.9)
that for j = 1,2, 3,

o 1
0;(t;m) ~ 5[5j(uj_m_)(1 —0,) + Jj(usmy )(1 + 6,)],
. 1 1
jp(p) ~ 50ip(p-)(1 = O5) + 50ip(p+)(1 + O5),
.1 1 d;30
GHVES §ﬁfu,(1 —0,) + §§?u+(1 +0,) + tiA@g,
1 1
o;diva ~ §6jdivu_(1 - 0,)+ §8jdivu+(1 + 0,).
Using the relations above in (2.12), one can get that
> pua T3 — 0
Fi~— " . .
;8] LS TR (\/t A) (B:6)
On the other hand, it follows from (2.13) that
m T3 —0 ,(T3— 0
gy S (55,
20+ A) Vt+ A \Vi+ A

which, together with (1.18), yields that g = Z?=1 0;F1; + f5 ~ 0. The estimates of the
derivatives of fy and g can be proved similarly. We omit the details. O
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C Proof of Lemma 4.2

Proof. 1) Note that

¢ =2y -
7

S 1 1 b -~ S b 1 b
Co D () e
p pp PP p
Then it holds that

N ey S Nl gy + 10l 2y + €™ + 118l 2oy -
which yields (4.16) directly. Similarly, one has that
t HaSCbHLQ(Q) SRS Ha3wb||L2(Q) + ||a3¢bHL2(Q) +(t+ A)_% HQSbHL%Q)

+eve 4 H@g(b, 53§||L2(Q) )

which gives (4.17). Moreover, it holds that

2
10 s < 180y + 50+ 07 108 s v

SC HL2(R)
1Vl a0y V€ ey + 1970 V] 2
which, together with (4.104), yields (4.18).
2) It follows from (3.26), (4.76) and (4.79);3 that

IV oy = V€ oy + 9% oy + 1IV7ms gy
< || V¢ +v ||V, vzcﬁ

+ eve ™,

(P 220

which yields (4.19).
Using the identity that

Y= pC+ut+ o¢ + [(p— p)¢ + (T —u)g],

one has that

IV 2oy = 11V°C 2y +5Z (t+ 1) 286 gy + 0 1%
J=

C.2

4 6+ ) [Vl gy + 1980 ey 195 e (©2)

+v ||V3§||L2(Q) + ce”™ H¢7 C”H?’(Q) )
It follows from (4.98); that

1960 1y = 16l ey 196 By < 4 196 gy
and similarly,
1
19260 1) = IV gy 196 oy = 72 [9°C gy
Applying these two inequalities to (C.2) and using (3.26), one can obtain (4.20).
[

o1



Acknowledgments. F. Huang is partially supported by the National Natural Sci-
ence Foundation of China No. 12288201 and the National Key R&D Program of China
No. 2021YFA1000800. Z. Xin is supported in part by the Zheng Ge Ru Founda-
tion, Hong Kong RGC Earmarked Research Grants CUHK-14301421, CUHK-14300917,
CUHK-14302819 and CUHK-14300819, the key project of NSFC (Grant No. 12131010)
and by Guangdong Basic and Applied Basic Research Foundation 2020B1515310002.
Q. Yuan is partially supported by the National Natural Science Foundation of China
12201614, Youth Innovation Promotion Association of CAS 2022003 and CAS Project for
Young Scientists in Basic Research YSBR-031.

References

[1] Artola, M., Majda, A.: Nonlinear development of instabilities in supersonic vortex
sheets. I. The basic kink modes. Phys. D 28(3), 253-281 (1987)

[2] Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex
sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal.
187(3), 369-408 (2008)

[3] Coulombel, J. F.; Secchi, P.: The stability of compressible vortex sheets in two space
dimensions, Indiana Univ. Math. J. 53: no. 4, 941-1012 (2004)

[4] Coulombel, J. F., Secchi, P.: Nonlinear compressible vortex sheets in two space di-
mensions. Ann. Sci. Ec. Norm. Supér (4) 4: no. 1, 85-139 (2008)

[5] Dafermos, C. M.: Large time behavior of periodic solutions of hyperbolic systems of
conservation laws. J. Differential Equations 121(1), 183-202 (1995)

6]

: Long time behavior of periodic solutions to scalar conservation laws in several
space dimensions. SIAM J. Math. Anal. 45(4), 2064-2070 (2013)

[7] Ebin, D.: Tll-posedness of the Rayleigh-Taylor and Helmholtz problems for incom-
pressible fluids. Comm. Partial Differential Equations 13(10), 1265-1295 (1988)

[8] Fejer, J. A. and Miles, J. W.: On the stability of a plane vortex sheet with respect to
three-dimensional disturbances, J. Fluid Mech. 15, 335-336 (1963)

[9] Glimm, J., Lax, P. D.: Decay of solutions of systems of nonlinear hyperbolic con-
servation laws, Memoirs of the American Mathematical Society, no. 101 American
Mathematical Society, Providence, R.1. (1970)

[10] Goodman J.: Nonlinear asymptotic stability of viscous shock profiles for conservation
laws, Arch. Ration. Mech. Anal. 95(4), 325-344 (1986)

[11] Guo, Y., Tice, I.: Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ.
Math. J. 60(2), 677-712 (2011)

[12] Huang, F., Li, J., Matsumura, A.: Asymptotic stability of combination of viscous
contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes
system, Arch. Ration. Mech. Anal. 197(1), 89-116 (2010)

52



[13] Huang, F., Matsumura, A., Shi, X.: On the stability of contact discontinuity for
compressible Navier-Stokes equations with free boundary, Osaka J. Math. 41(1), 193
210 (2004)

[14] Huang, F., Matsumura, A., Xin, Z.: Stability of contact discontinuities for the 1-d
compressible Navier-Stokes equations, Arch. Ration. Mech. Anal. 179(1), 55-77 (2006)

[15] Huang, F., Xin, Z., Yang, T.: Contact discontinuity with general perturbations for
gas motions, Adv. Math. 219(4), 1246-1297 (2008)

[16] Huang, F., Xu, L., Yuan, Q.: Asymptotic stability of planar rarefaction waves under
periodic perturbations for 3-d Navier-Stokes equations, Adv. Math. 404, part B, Paper
No. 108452, 27 pp. (2022)

[17] Huang, F., Yuan, Q.: Stability of large-amplitude viscous shock under periodic per-
turbation for 1-d isentropic Navier-Stokes equations. Comm. Math. Phys. 387(3),
1655-1679 (2021)

18]

Stability of planar rarefaction waves for scalar viscous conservation law
under periodic perturbations, Methods Appl. Anal., 28(3), 337-353 (2021)

[19] II’in, A. M., Oleinik, O. A.: Asymptotic behavior of solutions of the Cauchy problem
for some quasi-linear equations for large values of the time, Mat. Sb. (N.S.) 51(93)
191-216 (1960)

[20] Lax, P. D.: Hyperbolic systems of conservation laws ii, Comm. Pure Appl. Math
10(4), 537-566 (1957)

[21] T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem.
Amer. Math. Soc. 56 (1985)

[22] Liu, T.-P., Xin, Z.: Pointwise decay to contact discontinuities for systems of viscous
conservation laws, Asian J. Math. 1(1), 34-84 (1997)

[23] Majda, A., Rosales, R.: Resonantly interacting weakly nonlinear hyperbolic waves.
I. A single space variable, Stud. Appl. Math. 71(2), 149-179 (1984)

[24] Matsumura A., Nishida T.: The initial value problem for the equations of motion of
viscous and heat-conductive gases, J. Math. Kyoto Univ. 20(1), 67-104 (1980)

[25] Matsumura A., Nishihara K.: On the stability of travelling wave solutions of a one-

dimensional model system for compressible viscous gas, Japan J. Appl. Math. 2(1),
17-25 (1985)

[26] Miles, J. W.: On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4,
538552 (1958)

[27] Morando, A., Trebeschi, P.: Two-dimensional vortex sheets for the nonisentropic
Euler equations: linear stability. J. Hyperbolic Differ. Equ. 5(3) 487-518 (2008)

[28] Morando, A., Trebeschi, P., Wang, T.: Two-dimensional vortex sheets for the non-
isentropic Euler equations: nonlinear stability. J. Differential Equations 266(9), 5397—
5430 (2019)

93



[29] Qu, P., Xin, Z.: Long time existence of entropy solutions to the one-dimensional
non-isentropic Euler equations with periodic initial data. Arch. Ration. Mech. Anal.
216(1), 221-259 (2015)

[30] Serre, D.: Systems of conservation laws. 2. Cambridge University Press, Cambridge,
xii+269 pp., (2000)

[31] . Systems of Conservation Laws. 1. Cambridge University Press, Cambridge,

xxii 263 pp. (1999)

[32] Szepessy A., Xin Z.: Nonlinear stability of viscous shock waves, Arch. Ration. Mech.
Anal. 122(1), 53-103 (1993)

[33] Temple, B., Young, R.: The large time stability of sound waves. Comm. Math. Phys.
179(2), 417-466 (1996)

[34] : The Nonlinear Theory of Sound. ArXiv:2305.15623, 76 pages (2023)

[35] Trakhinin, Y.: Existence of compressible current-vortex sheets: variable coefficients
linear analysis. Arch. Ration. Mech. Anal. 177(3), 331-366 (2005)

[36] Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magne-
tohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245-310 (2009)

[37] Wang, Y., Xin, Z.: Existence of multi-dimensional contact discontinuities for the
ideal compressible magnetohydrodynamics. arXiw:2112.085800v3, to appear in Comm.
Pure Appl. Math.

[38] Wang, Y.-G., Yu, F.: Stabilization effect of magnetic fields on two-dimensional com-
pressible current-vortex sheets. Arch. Ration. Mech. Anal. 208(2), 341-389 (2013)

[39] Xin, Z.: On nonlinear stability of contact discontinuities, Hyperbolic problems: the-
ory, numerics, applications, World Sci. Publ., River Edge, NJ, 249-257 (1996)

[40] Xin, Z., Yuan, Q., Yuan, Y.: Asymptotic stability of shock profiles and rarefaction
waves under periodic perturbations for 1-D convex scalar viscous conservation laws.
Indiana Univ. Math. J. 70(6), 2295-2349 (2021)

[41] —: Asymptotic stability of shock waves and rarefaction waves under periodic
perturbations for 1-d convex scalar conservation laws, STAM J. Math. Anal. 51(4),
2971-2994 (2019)

[42] Xin, Z., Zeng, H.: Pointwise stability of contact discontinuity for viscous conservation
laws with general perturbations. Comm. Partial Differential Equations 35(7), 1326
1354 (2010)

[43] Yuan, Q.: Nonlinear asymptotic stability of planar viscous shocks for 3D compressible
Navier-Stokes equations with periodic perturbations. arXiv:2212.15414 (2022)

[44] Planar viscous shocks with periodic perturbations for scalar multi-

dimensional viscous conservation laws, SIAM J. Math. Anal. 55(3), 1499-1523.(2023)

54



[45] Yuan, Q., Yuan, Y.: On Riemann solutions under different initial periodic perturba-
tions at two infinities for 1-d scalar convex conservation laws, J. Differential FEquations
268(9), 5140-5155 (2019)

: Periodic perturbations of a composite wave of two viscous shocks for 1-d full

|46]
compressible Navier-Stokes equations, STAM J. Math. Anal. 54(3), 2876-2905 (2022)

95



	Introduction
	Construction of Ansatz
	Reformulated Problems
	A priori estimates
	Estimates of zero-modes.
	Estimates of non-zero modes
	Estimates of higher-order derivatives.

	Decay rate
	Localized perturbations on T2 R
	Proof of Lem-shift
	Proof of Lem-F
	Proof of Lem-rel

