LOCAL WELL-POSEDNESS OF THE INCOMPRESSIBLE
CURRENT-VORTEX SHEET PROBLEMS

SICHENG LIU AND ZHOUPING XIN

ABSTRACT. We prove the local well-posedness of the incompressible current-vortex sheet prob-
lems in standard Sobolev spaces under the surface tension or the Syrovatskij condition, which
shows that both capillary forces and large tangential magnetic fields can stabilize the motion
of current-vortex sheets. Furthermore, under the Syrovatskij condition, the vanishing surface
tension limit is established for the motion of current-vortex sheets. These results hold without
assuming the interface separating the two plasmas being a graph.
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1. INTRODUCTION

1.1. Formulations of the problems. We consider the free interface problems for ideal incom-
pressible magnetohydrodynamics (MHD) equations, which describe the motions of two plasmas
separating by a free interface (current-vortex sheet problems). If we denote by .Qti C R3 the
fluid domains at time ¢ occupied by two kinds of plasmas respectively, the ideal incompressible
MHD system can be written as

1
dve+ (v -V)ve + —VpE = (hy - V)hy in Q2F, (1.1a)

Joxe
(MHD) d:hy + (v4 - V)hy = (bt - V)ve in 27, (1.1b)
V.vi=0=V- -hy in 2F; (1.1c)

here p4, vy, hy, pt are the densities, velocities, magnetic fields and effective pressures for the
two plasmas respectively (c.f. [LL84] or [Dav17]). The boundary conditions are:

vi Ny =v_-Ny=:0 on [y, (1.2a)
[p] = pt —p~ =a*k4+ on I3y, (1.2b)
(BO) hy Ny =h_-Ny =0 on [y}, (1.2¢)
v_-N=0 on 982, (1.2d)
h -N=0 on 982 | (1.2¢)

where k4 is the mean curvature of Iy with respect to Ny, and 0 < @ < 1 is a non-negative
constant representing the surface tension coefficient.

Here £2 C R3 is a bounded domain with a fixed boundary 982, and 2 = ;f U T} U 2,
Iy = 8.Qt+ is the moving interface with normal speed 6, and 0§2; = 0£2 U I';. Denote by N
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the outward unit normal of 32;" = I, and N the outward unit normal of 3§2. Assume further
that Iy C 2, It N 082 = @, and I} separates §2 into two disjoint simply-connected domains
QF.

I

27

The equations (1.1a) are the Euler equations in hydrodynamics, for which the Lorentz forces
serve as the exterior body forces acting on the plasmas. Note that the displacement currents
are neglected, due to the fact that the scale of the plasma velocities is much less than the speed
of light. The equations (1.1b) are the combination of Faraday’s Law and Ohm’s Law, and
(1.1¢) are the incompressibility of the plasmas and Gauss’s Law for magnetism. The boundary
condition (1.2a) is also known as the kinematic boundary condition, which means that the
free interface evolves with the two plasmas. (1.2b) is derived from the balance of momentum
between two sides of the interface, and (1.2¢) follows from the Gauss’s Law for magnetism and
physical characters of the materials. (1.2d) means that the outer plasma cannot penetrate the
solid boundary, and (1.2¢) follows from the assumption that the solid boundary is a perfect
conductor.

1.2. Physical background. The motion of electrically conductive fluids (e.g., plasma, liquid
metals, salt water, and electrolytes) under the influence of magnetic fields is governed by the
MHD systems. The corresponding mathematical theories have numerous significant applica-
tions (e.g., drug targeting, earthquakes, sensors, and astrophysics). One of the fundamental
differences between MHD and hydrodynamics is that the magnetic fields can induce currents
in a moving conductive fluid, and these currents in turn polarize the fluid and change the mag-
netic and velocity fields in a reciprocal manner. The set of equations is a combination of those
in fluid dynamics and electrodynamics, and these equations must be solved concurrently (c.f.
[LL84, Dav17]). Mathematically speaking, the effect of the magnetic field is governed by the
Maxwell equations and acts as a Lorentz force on the Euler system for the plasma, which can
induce many nontrivial interactions and lead to rich phenomena.

The current-vortex sheet problems describe the plasma motion in a domain whose boundary
evolves with the plasma itself. Such issues are significant not only because they describe numer-
ous physical phenomena thus have significant applications in science and technology, but also
since such studies give rise to profound and challenging theoretical interdisciplinary problems
involving partial differential equations, differential geometry, analysis, mathematical physics,
and dynamical systems.
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1.3. Previous works. In the absence of magnetic fields, the equations are reduced to the in-
compressible Euler system. The free boundary problems in hydrodynamics have garnered con-
siderable interest from the mathematical community. Although water waves are very universal
in reality, from which one can see a vast diversity of phenomena, the corresponding mathematical
theories are still in their infancy, because the full equations describing the motion of the waves
are famously difficult to handle due to the free boundary and intrinsic nonlinearity. We refer
to the works by Wu [Wu97, Wu99], Alazard-Burq-Zuily [ABZ14] for the local well-posedness
of irrotational water wave problems. When the vorticity of the fluid flow is non-zero, one
can refer to Christodoulou-Lindblad [CLO00], Lindblad [Lin03, Lin05], Coutand-Shkoller [CS07],
Cheng-Coutand-Shkoller [CCS08], Zhang-Zhang [ZZ08], Shatah-Zeng [SZ08a, SZ08b, SZ11] for
the local well-posedness of the water wave and vortex sheet problems.

In contrast to the long history of the study on the water wave problems, the free-interface
problems for ideal MHD equations have been studied only in recent decades. Owing to the strong
coupling of the magnetic and velocity fields, it is necessary to deal with multiple hyperbolic
systems simultaneously, making it difficult to establish the nonlinear well-posedness theories.
In particular, how magnetic fields affect the dynamics of a plasma is an important issue. As
most of fluids are electrically conductive and magnetic fields are ubiquitous, the MHD model
is certainly an important physical one with similar significance as the Euler or Navier-Stokes
ones. When the effect of magnetic fields is not negligible, it is significant to study the dynamics
of conducting fluids. Here are some representative works on the free interface problems for the
ideal incompressible MHD.

A current-vortex sheet is a hypersurface evolving with the conductive fluids, along which
the magnetic and velocity fields possess tangential jumps. This sort of problems explain the
motion of two conducting fluids with a free interface separating them. Around the middle of the
twentieth century, Syrovatskij [Syr53] and Axford [Axf62] discovered the stability requirements
for the planer incompressible current-vortex sheets and demonstrated that magnetic fields have
a stabilizing influence on the plasma dynamics. The Syrovatskij stability conditions are (see
Landau-Lifshitz [LL84, § 71)):

P+pP— 2
prhy? + po b > ——|[v]]%, 1.3
parl (13)
(p+ + p)hy xh|* = py|hy x [v]|* + p-fh x [v] [, (1.4)
where [v] := vy — v_ is the velocity jump. If the current-vortex sheet is assumed to be the

graph of a function, there are some studies on the dynamics: Trakhinin [Tra05] proved the a
priori estimate for the linearized equations under a strong stability condition:

by x h_| > max {|hy x [v]|, |h— x [v]]}. (1.5)

Coulombel-Morando-Secchi-Trebeschi [CMST12] showed the a priori estimate without loss of
derivatives for the non-linear problem under (1.5). If the original Syrovatskij condition (1.4)
were replaced by the following strict one:

(p+ + p-)Ibt x b > py [y x [v]* + p-[h x [v]]?, (1.6)

from which (1.3) follows, Morando-Trakhinin-Trebeschi [MTT08] derived the a priori estimates
for the linearized system with loss of derivatives. The nonlinear local well-posedness result under
(1.6) was first proven by Sun-Wang-Zhang [SWZ18]. The above works demonstrate that the
strict Syrovatskij condition (1.6) indeed has a nonlinear stabilizing effect on the free interface (at
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least for a graph surface in a short time period), in contrast to the Kelvin-Helmholtz instability
for pure-fluid vortex-sheet issues due to the lack of surface tension (c.f. [EDbi88] and [MB02,
Chapters 9 & 11] for more detailed discussions). Recently, the methods in [SWZ18] were also
applied to the study for the case with surface tension, see [LL22].

For the plasma-vacuum interface problems, if the magnetic field is parallel to the free bound-
ary and the one in the vacuum is vanishing, we refer to Hao-Luo [HL14, HL21], Gu-Wang
[GW19], and Gu-Luo-Zhang [GLZ21, GLZ22] for the local well-posedness. If the magnetic field
in the vacuum is nontrivial, one can see Mordando-Trakhinin-Trebeschi [MTT14], and Sun-
Wang-Zhang [SWZ19] for the local well-posedness under a stability condition. Hao-Luo [HL20]
also showed the ill-posedness for the plasma-vacuum problems without the Rayleigh-Taylor sign
condition, as indicated by Ebin [Ebi87] for the pure fluid-vacuum case. Concerning the global
well-posedness for free-boundary incompressible inviscid MHD equations, Wang-Xin [WX21]
established it for both the plasma-vacuum and the plasma-plasma problems.

Although these advances are significant, all of the aforementioned nonlinear local well-
posedness results for MHD problems were founded on a crucial premise that the free interface
is a graph. However, in reality, the moving surface cannot be represented simply by a graph
in many significant cases. To remove these limitations seems quite challenging, even for the
pure fluid problems (c.f. [CS07, SZ11]). Using the partition of unity to characterize the general
interface appears feasible, but the analysis of these transition maps is rather involved due to
the intense interactions between the plasmas in different local charts. In view of the strong
coupling of the magnetic and velocity fields (one direct consequence of which is that the vor-
ticity transport formula will change), MHD problems must be analyzed with greater care than
the pure fluid ones. For example, one of the difficulties is that the estimates of the velocity
and magnetic fields must be derived simultaneously, which is much more complex than in the
case for pure fluids. More significantly, the strategies on the local dynamic motion of a general
current-vortex sheet will be indispensable to the study of long-time dynamics, particularly the
finite-time formation of splash singularities from a generic perturbation of a current-vortex sheet
(even of a graph type).

This paper is to establish the nonlinear local well-posedness for the current-vortex sheet prob-
lems in standard Sobolev spaces, without the graph assumption on the free interface. Namely,
we show that for more general physical models, both the capillary forces and large tangential
magnetic fields (the Syrovatskij condition) can stabilize the motion of current-vortex sheets. In
particular, our results can be applied to study the dynamics of free interfaces with turning-over
points, and may be useful to construct splash singularities.

2. MAIN RESULTS

For convenience, we shall use the notation f = f41,+ + f~1g- to represent for functions
t
fe:QF >R

2.1. The stabilization effect of the surface tension. If there exists surface tension on the
free interface, the following local well-posedness result holds:

Theorem 2.1 (a = 1 case). Suppose that 2 C R3 is a bounded domain with a C' N H3k+1
boundary, and k > 2 is an integer. Given the initial hypersurface Iy € H2k*1 and two
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solenoidal vector fields vo,hg € H%k(.Q \ Iv), if Iy separates §2 into two disjoint simply-
connected parts, then there exists a constant T > 0 so that the current-vortex sheet problem
(MHD)-(BC) has a solution in the space:

I e CO([O, T); H%k“) and v,he c"([o, T): H3* (2 \ rt)).

Furthermore, if k > 3, the solution is unique and it depends on the initial data continuously,
i.e. the problem (MHD)-(BC) is locally well-posed.

2.2. The stabilization effect of the Syrovatskij condition. In the absence of surface ten-
sion, we show that the Syrovatskij condition (1.6) can stabilize the motion of the current-vortex
sheet, at least for a short time period, without the graph assumption on the interface.

Due to the hairy ball theorem, (1.6) cannot hold on a hypersurface homeomorphic to a sphere.
Thereby, we assume that 2 = T2 x (=1, 1), and I} is a C' N H? hypersurface diffeomorphic to
T2 (e.g. a surface with shape "G" or "Z", or a portion of sea waves), which separates £ into
the upper and the lower parts.

T2 x {+1}
T2 x {—1}

Accordingly, the boundary conditions (1.2a)-(1.2¢) are modified to
V+'N+=V_'N+=30 Ol’lFt,

[p] = pt — p~ =a?ky4 on Iy,

(Bc/) h+ -N+ =h_ 'N+ =0 on Ft, (21)
vi-Ny=0 on T2 x {%1},
hi'ﬁi =0 on -[|_2X{:|:1},

where Ny = +es, are the outward unit normals of T2 x {£1}.
By Lemma 7.1, the strict Syrovatskij condition (1.6) implies

. . P+ 2 p— 2
0< Yot |v]) = inf inf ———Ja-ho(g)"+ ———la-h_(z
(hy, [v]) af?—l};zer’ p++p_| +(2)| erJr'O_I (@)
P+p-
sl

We prove the following two theorems under the Syrovatskij condition (1.6):

Theorem 2.2 (a = 0 case). Let k > 3 be an integer and 2 := T? x (=1,1). Suppose that
Iy is an H3k+3 hypersurface diffeomorphic to T? separating §2 into two parts (the upper one
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and the lower one). Assume that vo,hy € H%k(.Q \ Io) are two H2k solenoidal vector fields
satisfying

Y (ho+, [[vo]) > 230 > 0.

If Iy does not touch the top or the bottom boundary, namely, for some positive constant co,
dist (Ip, TZ x {£1}) > 2¢o > 0;

then there exists a constant T > 0, so that the current-vortex sheet problem (MHD)-(BC”)
admits a unique solution in the space

r e CO([O, T); H%H%) and v,h e CO([O, T): H3%(2\ r,)).
Furthermore, for 0 <t < T, the solution (I'y,v,h) satisfies
Y(hy, [v]) > s0 and dist (F,,‘[I'2 X {:i:l}) > ¢y,

and it depends on the initial data continuously. That is, the problem (MHD)-(BC’) is locally
well-posed.

Furthermore, the following result on the vanishing surface tension limit holds:

Theorem 2.3 (¢ — 0 limit). Assume that 0 < o < 1,k > 3 and 2 = T? x (-1,1). Fix
Iy € H3k+1 diffeomorphic to T? with dist(Iy, T2 x {£1}) > 2¢o > 0, and solenoidal vector
fields vo+,hot € H%k(.Qa*L) satisfying T (ho, [vo]) = 259 > 0. Then, there is a constant T > 0,
independent of a, so that the problem, (MHD)-(BC’), is well-posed for t € [0, T]. Furthermore,
as o« — 0, by passing to a subsequence, the solution to (MHD)-(BC’) with surface tension

converges weakly to a solution to (MHD)-(BC’) with « = 0 in the space Iy € H3%+3 qnd
vi.hy € H3K(27).

2.3. Main ideas. Inspired by the works of Shatah-Zeng [SZ11], we choose a geometric approach
to analyze the problems. First of all, a reference hypersurface 'y diffeomorphic to the initial one
is taken, and one may choose a transversal vector field v defined on the reference hypersurface of
the same regularity and close to the unit normal in the C !-topology. Therefore, any hypersurface
near the reference one can be expressed uniquely by the height function defined on Iy via:

@r(p)=p+yr(pyv(p) for peli.

Every hypersurface I' in a small C!-neighborhood of Iy is associated to a unique function yr,
and the mean curvature « of I' can be expressed by yr. Conversely, by taking an auxiliary
constant a > 0 determined by [y and v, the height function yr can be determined uniquely
by the function xk o @ + a?yr : I' — R, whose leading order term is the mean curvature
of I'. Hence, the analysis of the evolution equation for the mean curvature x can determine
the evolution of the free hypersurface, which is the crucial part of the settlement of such free
interface problems.

On the other hand, any vector field defined in a simply-connected domain is uniquely de-
termined by its divergence, curl, and normal projection on the boundary (c.f. [CS17]). The
evolution equation for the free interface yields the normal part of the velocity on the boundary,
and the normal projection of the magnetic field is zero (for the current-vortex sheet problems
considered here); thus, the incompressibility of the plasma (V -v = 0) and Gauss’s law for
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magnetism (V -h = 0) imply that one only needs to determine the current (j := V x h) and
vorticity (@ := V x v). The evolution equations for @ and j are given respectively as

0w+ (V- Vio—(h-V)j=(w-V)v—(j- V)h,
0j+ V- V)j—(h-V)o = (j- V)V— (@ - V)h — 2tr(Vv x Vh).

Since h is parallel to the free hypersurface, as indicated in [SWZ18], it follows that v & h are
also evolution velocities of the interface and the fluid domain. Thus, one may use characteristic
methods to transform the above equations into a system of ordinary differential equations,
whose well-posedness is standard to obtain (see [CKS97]).

Once the evolution of the free interfaces, currents and vorticities are known, the original
problem can be resolved via working on the div-curl systems.

Such an approach can not only resolve the free interface problems for general interfaces (in
particular, with no graph assumptions) but also help to understand various stability conditions
more clearly. Indeed, it will be seen in the evolution equations for the mean curvatures that
the surface tension corresponds to a third order positive differential operator on the free inter-
face, which serves as a stabilizer for the surface motion; the strict Syrovatskij condition (1.6)
corresponds to a second order positive differential operator. Thus, concerning the stabilization
effect, surface tensions are stronger than the strict Syrovatskij condition. Moreover, due to the
existence of the unstable term in the evolution equations for the mean curvature (which is a sec-
ond order differential operator resulting in the Kelvin-Helmholtz instability for the vortex sheet
problems), the small tangential magnetic fields (the Syrovatskij conditions can be understood
as a largeness assumption) cannot stabilize the current-vortex sheet in the absence of surface
tension.

2.4. Structure of the paper. In § 3, we introduce some geometric relations and some an-
alytical tools. § 4 - § 6 are devoted to the proof of Theorem 2.1. More precisely, in § 4, we
rewrite the current-vortex sheet problems in a geometric manner, and derive the corresponding
evolution equations. In § 5, we study the uniform linear estimates for the linearized systems;
and in § 6 we consider the nonlinear problems and show the local well-posedness of the orig-
inal current-vortex sheet ones. § 7 is devoted to the proof of Theorem 2.2 and 2.3. In the
Appendices, we prove two technical lemmas.

3. PRELIMINARIES

3.1. Geometry of hypersurfaces. For a family of hypersurfaces Iy C R? evolving with the
velocity v : Iy — R?, consider the local charts for the initial hypersurface F : U — Iy C R9.
Assume that Z; is the flow map induced by v, then one can take a coordinate map of Iy as
F(t) .= E;oF : U — I}y. Standard geometric arguments (c.f. [Eck04]) give that the coordinate
tangent vectors 0;F(¢,z) : U — RY,(1 <i <d —1) form a natural basis of the tangent space
Tyl at p =F(t,z) € Iy for each z € U. The submanifold metric of I'; C R9 is given by

gij =Fi-F

for 1 <i,j <d — 1, where f; represents 9; f for any function f : U — R. The inverse metric
is defined to be

(g7) = (gij)~"
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and the area element of I} is

V8 = y/det(gij).
Furthermore, there is a natural Riemannian connection on Iy, whose Christoffel symbols are

given by

1
rk=g¢M¥;-F; = Egkl (&)1 + &i1j — &ij1):

where the summation convention for tensors has been used. For a tangent vector X € T1%, one
can write ' N
X=X'F; =g"X;F,;,
where X; ;= X - F ;. The covariant derivative of X is defined to be
iy o oyi o pioyk
(D x)" = x] + 1 x*,
Hence, the divergence of X on Iy is defined to be
divp, X := g¥X; - F ;. (3.1)

One can also extend (3.1) to all vector fields defined on I}, not necessarily being tangential.
For a function & : I'y — R, the tangential gradient is defined by

V]‘th Igijh,iF,j, (3.2)
and the Laplace-Beltrami operator on Iy is given by
_ iy 1 .
Arh=divr, Vih = g (hy — TEh ) = ﬁai(\/ggwh,j). (3.3)

For a general vector field Y : Iy — R¥, the notation (DY) T represents a (0,2)-tensor on I
(here D is the covariant derivative on R4, and T is the tangential projection):

[(DY)T] =Y;-F, (3.4)

ij
SO

divr, Y = tr| DY) T].
Denote by N : I'; — $971 the unit normal vector field of I7, i.e.
N-F; =0
for 1 <i <d—1. Since N-N = 1, it is clear that
N, -N=0,

namely, N; € TI} for all 1 <i <d — 1. The second fundamental form I of I} is a (0, 2)-tensor
defined by

Ilij = N’i . F,j =—-N-. F,ij. (3.5)
The mean curvature is defined to be the trace of LI, i.e.
k= tr(M) = Il;jg” = g'N; -F ; = divr, N. (3.6)

Here we mention several useful identities, whose calculations can be found in [Eck04, Appen-
dix AlJ:
AFzHiJ' = K;ij + KIIikIij — |]I|2Hij,
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namely,
Arll = (Dr)%c + (<1 — [HT) - 10, (3.7)
which is called Simons’ identity. Here the dot product of tensors is defined to be
C=A-B, Cij EA;CBkj =A,-lBkjglk.
Furthermore, it follows from the Codazzi equation that

ArN=—[I>N + Vr«. (3.8)

Remark. Derivatives of functions and vector fields on hypersurfaces can also be defined in terms
of the projections from R? onto the tangent space of I';. In particular, for a function f and a
vector field X defined in a neighborhood of I'; C R¥, the tangential gradient of fis

Vi f=Vf-N-V/)N, (3.9)
where V f is the gradient in R?; and the tangential divergence of X is given by
divp, X = divge X — N« DnX, (3.10)

where D is the covariant derivative in R¢. The above definitions are identical to the intrinsic
ones given earlier. The Laplace-Beltrami operator can be calculated in an equivalent way by:

Ar f =divy, Vp, f =divy, Vf —divy, [(N- V £)N]

= Aga f —D*f(N,N) —«N -V, (3.11)
for any C?2 function defined in a neighborhood of I'; C R¥.
Next, we shall derive the evolution equations. For the evolution of N, it holds that
0=9/N-F;)=0,N-F; + N-v;,
which, together with the fact that N has unit length, implies that
9N =—g7(N-v;)F,, (3.12)
in other words,
DN = —[(Vv)*-N], (3.13)
here D; is the material derivative along the trajectory of v. For the metric tensor, observe that
0:8ij=v,;Fj+v;-F;=:24;. (3.14)
One can check that A is a tensor on I;. In fact,
A= Defv)+vtm, (3.15)

where "Def" represents the deformation tensor on I;. In particular, the material derivative of
the area element is:

d 1
E( det(gij)) = £ \Jdet(gi) &M (gia) = @ivr, v)fdet(gy),

[D[ dSt = diVFt VdSl . (316)

The evolution equation for the second fundamental form is

8,Hij =—-N. (V,ij - F/;ij), (3.17)

ie.,
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in particular,
(M7 = -DT[(Dv)*N]' -1 (Dv)". (3.18)
The evolution of k is given by
Dik :=0¢(k o F) = a,(u,-,-g"f)
=N-. [gij (—V,ij + F,?V,k)] — ZHiinj (3.19)
=—-N:-Aprv-2(IA),
where (-]} is the standard inner product of tensors defined by
(AB) := A;; BY = A;; Biy g™ ¢’
The second order evolution equation is:
2
Di2k = — N+ Ap (D;v) + 2N - (Vv) - (A v) T + 4<A(N : (DF,)2V> - K‘[(VV)* : N]T(
(3.20)
4 4(I-A+A-TA)—2(LDrv-Drv) — 2(11)[D(|Dtv)]T).
Here we explain some terms appeared in the last expressions. If one assumes that
N=N%q and v=1v%),
for which e()(1 < a < d) is an orthonormal basis of R¥, then

N- (VW) (Apv)| =) N*Vv*-(Arv)T. N-(Dr)*v=> N*Dr)**"
o o

and
DFZV-D[}V = ZD[‘tva ®Dptv°‘.
a

By using the identity (3.8), one can derive an alternate formula:

D2k = — Ap,(N-Dyv) — [I*(N-D;v) + V- Dv + 2N« (Vv) - (Ap,v) T

2
T —2(Drv-Dprv) +4(I-A+A-TA).

(3.21)

+4{AN-(Dr,)*) = «|[(V9)" - N]

3.2. Reference hypersurface. Let k be an integer with k > 2, and I'x C £2 a compact refer-
ence hypersurface without boundary separating §2 into two disjoint simply-connected domains
.Qf Assume that Iy is of Sobolev class H %k"'l. Denote by Nyt the outward unit normal of
8.(2;" = Iy and Ny_ = —Ny4 the outward unit normal of Iy C 02, . Let L.+ be the second
fundamental form of I'x with respect to N4+, and kx4 the corresponding mean curvature.

As in [SZ11], we shall consider the evolution of hypersurfaces in a tubular neighborhood
of I'x. Although it is natural to take normal bundle coordinates of Iy in classical geometric
arguments, it would be better not to do so. Indeed, if I'y is of finite regularity, N« has one
less derivatives than Iy, hence one needs to take another transversal vector field to obtain the
Fermi coordinates of the same regularity as that of I'x. For example, one can take a unit vector

field v € H2K+1(I,: R2) for which v - Nyy > 9/10 by mollifying Ni.
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It follows from the implicit function theorem that there exists a constant 9 > 0 depending
on Iy and v so that

) Y AR (—80,80) — [R3
(p.y) = p+yv
is an H3k+1 diffeomorphism onto a neighborhood of I'x. Therefore, each hypersurface I' close
to I'x in the C! topology is associated to a unique height function yr : I'nc — R so that

@r(p) =p+vyr(p)v(p) (3.22)

is a diffeomorphism from Iy to I". Thus, one can use the function yr to represent the hyper-
surface I'.

Definition 3.1. For § > 0 and IEL—3 <s<1+ %k, define A(I',s,d) to be the collection of all
hypersurfaces I" close to Ik, whose associated coordinate functions yp satisfy |yr|gsr,) < 9.

As s > % + 1 implies H¥(I'x) = C'(I'y), § < 1 yields that each I' € A also separates £2
into two disjoint simply-connected domains.

3.3. Recovering a hypersurface from its mean curvature. Here, we characterize the
moving hypersurface by its mean curvature x4 := trlI4. Recall that the second fundamental
form is defined by

]I+(T) = DTN+ for T eTrl. (323)

For an H® hypersurface I' € A(I, s, 80) with s > 2, the unit normal N has the same regularity
as Vyr. Then the mapping from yr € H(I) to the mean curvature k4 o @y € H*72(I) is
smooth.

In order to establish a bijection between them, one may consider a modification

Kyrl(p) = xa(p) = k4 o ®r(p) +a’yr(p) for p e Ik, (3.24)

where a is a parameter depending only on I'x and v (c.f. [SZ11]).
For a small constant §g > 0, define

3 1
Ay = A(F*, Ek — 5,80). (3.25)
Then, the following lemma holds:
Lemma 3.2. For I’ € Ay withxy € H5(I'), %k—% <s < %k— 1, the following estimate holds:
INHl sty + M lgsry < Co(1+ Ikt g () (3.26)
for some constant Cx depending only on Ax.

The proof of the lemma follows from the bootstrap arguments and Simons’ identity (3.7).
For the details, one can refer to [SZ08a, p. 719].

If Ay is regarded as an open subset of H%k_%(l”*), then & is a C3-morphism from As C
H%k_%(l“*) to H%k_%(l“*). Furthermore, by taking a > 1, one may deduce from the positivity
of (85?/8)@)‘ r that K is actually a C3 diffeomorphism, and the following proposition holds
(c.f. [SZ11, Lemma 2.2]):
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Proposition 3.3. There are positive constants Cx, 8o, 81,a9 depending only on I'x and v such

that for a > ag, & is a C3 diffeomorphism from Ay C H%k_%(l“*) to H%k_%(F*). Denote by

B(gl = {}ta |}fa _K*+|H%k_%

<81y,
() 1}

where k«4+ 1s the mean curvature of I's with respect to N« , then

o < Cx.

3 1
c3( By 3R

Furthermore, if xa € Bs, N HS™2(I'y) with %k —% <s < %k + 1, then yr,®@r € H5(I'y), and
for max{s’ —2,—s} <s” <s' <s, it holds that
SR 0| (v ey = Cea” ™ 2 (14 Phal e2(r), (3.27)

where K1 is the functional variation of K 1.

3.4. Harmonic coordinates and Dirichlet-Neumann operators. Given a hypersurface
I' € A(I'k,s,6), define a map ‘X,IjE QF > .QI# by

Ay'X,IjE =0 for y € QF,
'X,}E(Z) = &r(z) forz e Iy, (3.28)
X5 =2 for 7/ € 9£2.
Then, it is clear that
+
“vxp ~1d] HHS—%(Q,;) < Clyrlgscr, < C8, (3.29)

where C > 0 is uniform in I" € A(I'k,s,8). Thus there is a constant d¢ > 0 determined by I
and v, for which ‘X}]:'E are diffeomorphisms from 2F to .QI:'E respectively, whenever § < dy.

With the notations in (3.25), we list some basic inequalities, whose proofs are standard (c.f.
[SZ08a, BCD11])).

Lemma 3.4. Suppose that I' € Ax. Then there are constants C1,Ca > 0, depending on Ax, so
that
(1) If uy € H"(.QIjE) foro e [—%k, %k], then
1 +
& slinapy = s 0 XF | 1, g, = Coltslo oy
(2) If f € H(I') for s € [ — 2k, 3k — 1], then

1
C_2|f|HS(F) <Ifo®rlasuryy = Clf lasry-

Lemma 3.5. Assume that I’ € Ax. Then there are constants C1,Cy > 0 determined by Ax
such that

(1) Forugy € H®! (Q?E), w4 € H°2(.Qlj5) and o1 < 03,

. 3 3
lu+ - w| < Cilluxll go, (9%)||w||H02(9%) if op< o 0<op+o0p < Ek.

HO1To273 (o)

W

3
”M:I: * w:l:”Hal ('QI:E) =< Cl“”:l:“HG] (QIZE)”w:I:”HUz(‘QIZLZ) Zf E < 02 = Ek’ 01 + 02 > 0.
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(2) For f € H"(I'), g € H2(I') and s1 < s2,
3 1

|fg|HS1+S2_%(F) <Clflgsiaylglusaary if s2<1, 0=<s1+s2 = Ek -3

) 3 1
| f&lasiry < Col flasimy|8lasaary of 1<s2= Ek —5 S1ts2>0.
For any smooth function f defined on I' € A4, denote by ¥ f the harmonic extensions to
.QIjE, namely
AKX =0 for xeQF,
+/ r (3.30)
Rif=f for xel,

and
AX_f =0 for xeQF,
K_f=f for xel, (3.31)
Dg¥-f =0 for x €052.

The Dirichlet-Neumann operators are defined to be
Nt f:=Ng - (VL) (3.32)

Assume that I' € A C H%k_% and %— %k <g < %k — % The Dirichlet-Neumann operators
Nzt : HS(I') — H*~Y(I') satisfy the following properties (c.f. [SZ08a, pp. 738-741]):

1. N4 are self-adjoint on L2(I") with compact resolvents;
2. ker(N4) = {const.};
3. There is a constant Cx > 0 uniform in I" € A4 so that

1
Cul flasary = N (N gs—1(ry = C_|f|HS(I’)’
*

for any f satisfying [ f dS = 0;
4. For % — %k <s5 < %k — %, there is a constant Cx determined by A, so that

1 K K
7= Ap)? <(I+N2)* <Cul—Ap) 7,

i.e., the norms on H*®!1(I") defined by interpolating (I — A[‘)% and (I + N4) are equivalent;

1 3 3 3
5. Fori—zkfszfik—j,

(Ny)™1 s HP(D) — HP YD),

HSZ(F): {feH”(F)'/ dezO}
r
are well-defined and bounded uniformly in I" € Ax.

Remark. We shall denote by (N+)™! := (N4)~! o @ for simplicity, where

<Pf:=f—][rdeEf—(f>-

is the projection into mean-free functions on I".
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The following notations will be used later:

_ 1
Noi=—Ny +—N_, (3.33)
P+ p-

(o) () =[x (o) T e

At the end of this subsection, we state an important lemma (c.f. [SZ08b, p. 863)):

Lemma 3.6. Suppose that I’ € Ax with k € H%k_%(F). Then for % — %k <s< %k — %, one

has

1
AR — ’ <1 .y , .
‘( r)z — Nz Sy S *( + |K|H§k_3(1“)) (3.35)

where the constant Cyx > 0 is uniform in I’ € Ax.

3.5. Commutator estimates. For vector fields (not necessarily solenoidal) v4.(¢) : .Qti — R3,
denote by
|Dt:l: = at +Dv:i:'
Then one has the following lemma:
Lemma 3.7. Suppose that Iy € Ay, and v4 € H%k(.Qti) are the evolution velocities of .Q,i,

so v+ are both evolution velocities of I'y. Let f(t,x): Iy = R and h(t,x) : 2\ I't = R be two
functions. Then the following commutator estimates hold:

L For 1 =5 = 3K, 10es al ooy S0 1S Ly -l 3 g
1L For 1 <5 < 3k, [Pz, AL Nt | ooty San Ihll o2 gy - Ivll ;30 gy
I For —3 <5 < 3k — 3, [[Dyx. Nl f s (ryy San | f sy - IVingk_%(Ft);
V. For 5 =5 = 3k =5, [[Dess N f | oy S 1 lms=rcmy - IVl gaed
V. For =2 <5 < 5k = 3, [[Dewe. A ] fl sy S 1 f lst2(ry) - Vil 364 )
VI For0 <5 = 3k =1 D1 Dl Lo gy S, Vsl oty Vel 32 e

The proof of Lemma 3.7 follows from the identities introduced in [SZ08a, pp. 709-710] and
standard product estimates.

3.6. Div-curl systems. In this subsection, we list some basic results on div-curl systems (c.f.
[CS17] for details):

Theorem 3.8. Suppose that U is a bounded domain in R3 for which U € H3*=3. Given
f.g e H7YU) withV-f =0 and h € Hl_%(E)U), consider the system:

Vxu=f inU, (3.36a)
Veu=g inU, (3.36b)
u-N=h ondU. (3.36¢)

If on each connected component I' of AU, one has that

/ £-NdS =0, (3.37)
r
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and the following compatibility condition holds true:

/ hdS:/ gdx, (3.38)
U U

then for 1 <[ < %k — 1, there is a solution u € H' (U) such that

lallnrw) = € (001 3001) - (s + el + 0y ) (339
The solution is unique whenever U is simply-connected.

Remark. If £ = V x u for some vector field u, then (3.37) holds naturally (see [CS17, Remark
1.2]).

4. REFORMULATION OF THE PROBLEM

4.1. Velocity fields on the interface. Since the interface I'y separates two plasmas, and v
have the same normal components on [}, it is natural to consider the evolution of k4 with
respect to some weighted velocity

uy = Avy + (1 —A)v_ (4.1)
for some 0 < A < 1.
Denote by
D¢, = 0; + Dy,
then

Dyuy = (3 + ADyy + (1= 2)Dy_)(Avy + (1 — A)vo).
In view of (1.1a), it holds that

1 1
Druy =A% (—;VPJr + Dh+h+) +(1- /\)2(—p—VIJ_ + th—)
+ A1 =2)(Ds4v— + Dy—vy).

Since
1
Dt+V_ = atV_ + Dv+V_ = DV+—V_V— - p—Vp_ + Dh_h_,

and

1
D;—vy =Dy_—v, vy — —VpT + Dy hy,
P+
one may write that

1 1
Di4v— 4+ Divy = —Dyw— (p—VP+ + p—VP_) + Dn, by + Dp_h—,
+ —

where w € TT7} is defined to be
w=[v]i=vy—v_. (4.2)
Therefore,

A 1—A
Dyuy = —p—+Vp+ — p—Vp_ + )LDh+h+ 4+ (1 —=A)Dy_h_ — A(1 — 1) Dyw. (4.3)
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Next, we introduce a useful decomposition of the pressure:

piipi = Py Pin + 7P + piy- (4.4)

Here p;’fb are the solutions to the following elliptic problems respectively:
Ap:b = —tr(Das - Dby) for x € .Q;r, (45)

p::sz for x e Iy; .

Apyy = —tr(Da_-Db_) for x e £,

Pap =0 for xely, (4.6)
Dgpap = La_.b_) for xedg,
where a = a4 1 oF +a_lo- and b = b1 oF + b_1g- are solenoidal vector fields satisfying
a_-N=0=b_-Non d2. p, and pj are given respectively by (c.f. [SZ11]):
1

. 1
p,ci = KN 'Ngks, and p;,t = —Hip, (4.7)
P+p— P+

where p is a function defined on I'y whose expression will be determined later.
With this decomposition, it is routine to check that pé'fv = pflth =0, pt+ p;' = p-pp, and

p+ P — p—pr = K+ hold simultaneously on I';. Namely, (1.2h) is satisfied automatically.
Next, we will derive the explicit formula of p by using (1.1a), (1.2a) and (1.2¢). Indeed,
multiplying (1.1a) by N4, one has
1
N; - |Dt+V+ + p—DN+p+ = N4 -Dh+h+,
J’_
which implies that
1
3t6 + p— DN+p+ =Vi- |Dt+N+ - DV+9 + N+ . Dh+h+.
+
It follows from (1.2¢), (3.5) and (3.13) that
1
3,0 + o Dn,pt =-Ny-(Dvy) vl =Dy, 0 + Ny Dy, hy
+
= —Dy, 0 —D,10 + 14 (vI,vI) ~ U4 (hy. hy).
Similarly,
0,04+ LDy o = T VT -
0:0 + Dn_p =Dy 0+D,7604+0_(v_.,v_ I_(h_,h).
o T

Due to the conventions that Ny +N_ = 0, I + I = 0, and the relation that (v —v_) € TIy,
summing the above two equations yields

1 + 1 - _ T .T
oDNpt 4 Dyp ——[ZDVIQ—]I+(V+,V+)+]I+(h+,h+)]

+ [2 D,r6 — It (vI, vI) + Ly (e, h_)].
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According to the decomposition (4.4) of p* and the relation that
1 _ 1 1 - 1
Dn, p +Dn_pg = (—N+)N—1 (—N_)K+ + (—N_)N—l (—N+)K_ =0,
P+ p— p— P+
it holds that
1 T - + + - — 1 1
—Dnyp"+ —Dn_p” =Dn, (pv,v — Pup Doy T ph,h) | N+ = —N-)p.
o+ o— ’ P+ Po—
Therefore, one gets the formula

Np = — [ZDVIG - ]I+<VI,VI) + ]I+(h+,h+) + DN+ (p‘—,i:v — pl—:h)]
+ [2 D0 — I, (vI, vI) + 1y (b, ho) + Dy, (py, — p;h)] (4.8)
=—g"+g7,
namely,
p=N""(=g"+g). (4.9)
In conclusion, if (I, v,h) is a solution to (MHD)-(BC) with I'y € A«, I} € H3* 1 and v.h e
H %k(.Q \ I}), then the following estimate holds:

b }{ = . 9 = b h = b
w31y el 33 oy IV 3k oy IIHgk(Q\m)

(4.10)
where Q, is a generic polynomial depending only on A, and A. (Indeed, for % <s < %k -2,

}[Dtxu)k‘H%k—z(Ft) < 0x (a|%a|

one has |V pi|gs(r,) SA. [K|gs+1(r,), so the best estimate on (Dy, wp)|r, is its H3k-2 norm.)

Remark. The following formula holds as long as v4 are the evolution velocities of .Qti (which
is, in particular, independent of the MHD problems):

/ gt —g=dSs = —/ (V-v)2dx. (4.11)
Iy O\T;

So (4.8) makes sense whenever vy are both solenoidal. Indeed,

/ gt — g ds,
I

= /F, (IDH_ + DVI)(V+ Ny -4 (VI, VI) + 04 (hy,bhy) + Dny (P::V - Pih) dS;
+ / (ID,_ + sz)(v_ N~ I (vI, vI) +T_(h_h_) + Dn_(pyy — Phu) dS:
Iy

=/ [Dt_|_(V'V+)dX+/ D;_(V-v_)dx
o 27

t

d d
:E(/szj(v'v+)dx)_/_Q;(V'V+)2dx+E(/Kz,—(v'v‘)d’c)_/QI_(V'V—)de

= —/ (V-v)2dx.
[PAV A
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4.2. Transformation of the velocity. As stated in the preliminary, a vector field defined
in a bounded simply-connected domain is determined by its divergence, curl and appropriate
boundary conditions. Since both the velocity and magnetic fields are solenoidal, they are
uniquely determined by the vorticities, currents and boundary conditions.
Therefore, denote by
@at = (V x Vi) 0 XF,, (4.12)

then the velocity field v can be uniquely determined by x,, 6 and @4 via solving the following
div-curl problems:

Veve =0 in F,
VXVve =wsto(XE)! in QF,
+ = @xt 0 (X)) i (4.13)
ve-Ny =6 on Iy,
v_-N=0 on 052.

Next, for a function f : I'y — R, it is natural to pull back Dy, f to Iy via @r,, namely, one
needs to look for a vector field uy4 : I'sx — R3 so that

IDtA*(f ° ¢Ft) = (IDfAf) ° ¢Ft’ (4-14)

where
ID[A* = 8[ + DuA*. (415)
It is necessary that
(Df)o®r, - (3:Pr, + DPr, wp) = (Df) o P, - uy 0 P
On the other hand, it suffices to define

w = (D) (w0 @, — 8:@r,) = (DOr,) ' [wi 0 @r, — Beyr,)v]. (4.16)

Since 1
0 = (dryr,v) o (Pr,) N,

one has
[ux = (dyr,v)o (CDFz)_I] ‘Nt =0,

ie., [uk — (9syr,v) o (@pt)_l] € TI; and uy, € TTlk.

Variational estimates. In order to compute the variation of uy,, one can assume that », and
@« depend on a parameter . By (4.16), it suffices to compute dgvis. Applying d/9B to the
identity
(DPr,) * Vs = v 0 @, — (3ryr,)V,
one has
D(aﬂyptv) “Vis + (DPr,) - 8,gvi* = aﬂ (Vi o (Dpt) — (8?'3)/[3)1),
for which
(v o ®r,) = (35Vi + D(aﬁyftv)°(¢1”,)7lvi) odr,.

Denote by w := (dgyr,v) o (@r,)"! and use the notation

|D/3 = 8/3 + DIL' (4.17)
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Then
3I3V:|:* = (D@pt)_l . [([Dﬁvi) o®r, — (afﬂy[})v — D(aﬂ)/ptv) . Vi*]. (4.18)

In particular, [(D(Dpt) . 83vi*] o 45;[1 N4 =0, s0 85Vi* e Tr.

Applying Dg to (4.13) and utilizing the commutator estimates together with the div-curl

estimates, one can derive that for % <o < %k — %,

‘8/3V:|:* ‘Ho(["*) SA. ‘35 Vr; |Hcr+1(p*) (”w*ﬂ:”H%k—l(Qil:) + [0svr, |H%k—§(1~*))

(4.19)
T 10p0ws] ot g + T Ho(r'
Recalling that yr, = & (%), one can obtain that
dpyr, = 8K " (xa)[0pxal, (4.20)
and
07gyr, = 8R! (4a)[97p2a] + 82K (%a) (0124, Vg %) (4.21)

In conclusion, the linear relations imply the existence of six linear operators B (xg), F+(x,)
and G4 (x4, 0%, @x+) whose ranges are all in Ty, so that

0gVis = Bi(xa)afﬂxa +Fi(%q)0gwst + G (%q,0¢2q, @+)0p%q. (4.22)
Moreover, the following lemma holds, whose proof will be given in the Appendix:

Lemma 4.1. Suppose that a > ag and »x, € Bg, C H%k_%(l“*), where ag and Bs, are given in
Proposition 5.5. If s’ —2 <s" <s' < %k — %, s/ > %, and % <5< %k — %, then the following
estimates hold:

B(t)| (s (s rs' (rsrry) < Cea® 7%, (4.23)
oB < Cy, 4.24
| i(%a)|$|:H%k_g(F*);K(HS_Z(F*);HS(F*))] - (424
F < Cu., 4.25
| i(%a)l,%(Hs_%(ﬂf);Hs(F*)) - (4.25)
and
<G, (4.26)

O0F L (x
168+ ( “)|$[H%"‘%(F*);f(HS‘%(nf);m(r*))}
where Cyx s a constant depending only on Ax.
3
Moreover, if xq € Bs, N Hik_%(F*), O¢xq € H%k_%(F*), and @« € H%k_l(.Q \ I'x), then for
1

o'—-2<0d"<0' < %k + %, o' > 5, and s given above, it holds that

o'—g" =2
|B:i:(%61)|$[H”N(F*);H‘7/(F*)] <a Q(|%a|H%k%(F*))’ (427)

|G+ (%a. 0¢2a, (l)*:l:)|g[Hs—1(p*);Hs(p*)] <0 (lat%alH%k—g(F*)’ oz ”H%k_l(ﬂf))’ (4'28)
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1 3 5
andforifofik—i,

8G (xq. ds2a,
s el w*iﬂf[f"’“(F*)xHo—z(F*)xH"‘i(93);$(H0—‘(r*);m(r*))}

(4.29)
<Q (|8txa|Hgk_g(F*), ”w*i”H%k_l(Qit))’

where Q is a generic polynomial depending only on Ax.

4.3. Evolution of the mean curvature. Suppose that (I'y, v, h) is a solution to the interface
problem (MHD)-(BC) for 0 < ¢ < T with I'; € Ay, It € H3%+! and v(¢),h(t) € H3*(2\ I}).
The hypersurface I is uniquely determined by the function x,(¢) : I'x — R, whose leading
order term is k. Then, it is natural to consider the evolution equation for x4+ under a weighted
velocity uy. Plugging uy into (3.21) yields

Diy’k == A, (Dyup - Ni) + Dyuy - ANy + 2N - (Vuy) - (Aruy) "
+ 4{AL|Ny - (D)) — it | (V) * - N4 |? (4.30)
—2(I4[Druy -Droup) +4 (I - Ay + Ay - T [Ay),
where
Ay = %{(DuA)T + [(DuA)T]*}.
Denoting by Qj a generic polynomial determined only by A, and A, one gets from (4.10), the
product estimates, and Lemma 3.2 that

Do+ Ar (Dour-N4)|gieg

0| |*al [(v. b if k=2, (4.31)

vn)
H2%(82\I7)
(v, )|

3 s
H3(r,)

Ol alxal |24 if k> 3.

3k—1,p 3r-3 ’ 3k
H27(Iy) H2"72(Iy) H?2"(2\I7)

Since w = [v] == vy —v_ € TT}, it is routine to calculate

1 _ 1 1 _
N4 :Dyuy =—Dn_p —k(—DN+P++—DN_P )
p- P+ p-

+ N4 [ADn by + (1 —2)Dp_h_ — A(1 — 1) Dyw]|
= ey + (2 - ) ) )
P+ p—
=Dy [A(Py = pif) + (=D (pey = i) |

- A]I+(h+,h+) - (1 - /\)]I+(h_, h—) + k(l - /\)]I+(W,W)

A 1—2A -
In order to control the H2¥~2 norm of (—N+ — —N_)N_l(g+ — g_)7 it suffices to have
P+ pP—
A 1-2
‘(—N+ - —N_) < Q(I%al 13 ) (4.33)
P+ p- L(HS(I):H5 (I) 22
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for l — %k <5 < 3k-— % and some generic polynomial Q determined by Ax. Thanks to
Lemma 3.6, (4.: ) holds as long as A satisfies
A 1—A
AR S AP Y i (4.34)
P+ p— P+ + p—
Denote by
P+ p—
u:= vy + v—, and D;:=0d; + Dy. 4.35
p++p-  pr+p- T (435)
Then u-Ny = 6 and
257 P+pP—
Ny :Dju= —a“Nky + s (w, w)
(p+ + p-)?
— My by - T (e ho) v,
P+ + p— P+ + p—
where
1 - - P+ + + p— - -
g = —— Ny = NN (" —¢7) —Dn [— Pyy—Ppn)t ———(Pyy— P
e (g% —87) =D | (= pilh) + 5= (0 — i)
(4.36)
satisfies
ol 3y = ©(aly 303y My T30 o )
Define the following two operators:
Q) =—ArN (4.37)
and
R(,J) = Dr);(Dr); (4.38)
for a vector field J € TI'. It follows from Lemma 3.7 that
1A M D) = R Dt 3005 ) = Q(|%a|Hgkg(r*))| P gy (489

where J € TI} is an H k=% tangential vector field and Q is a generic polynomial determined
by Ax.
Thus, by using the following notations:

Ro=a-Ar,Ny +2N4 - (Vu)- (Aru)' + 4(A|Ny - (D)%)
— ket |(Vo)* N4> =2 (I Dryu-Dryu) + 4 (g - A+ A- T4 |A)

(p"jr—_)z{&(n,w)mr Ar, [y (w, w)]} )
P AL (b b — R(T B i) |
P+ + Pp—
b AR ()] - R b))
P+ + p-

— Ao,
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with

5 1 — P+P— P+ —

G=—(Vpt+Vp )+ L _Dyow——F Dy hy——— Dy ho, (441
p++p—( ) (ps +p)2  prtp- T Pt + po (4.41)

and p given by (4.4), (4.8) and (4.9), one can obtain the following lemma:
Lemma 4.2. There exists a generic polynomial Q depending only on Ax, so that for any

solution to (MHD)-(BC) fort € [0,T], k > 2, It € A« N H3%! gndv.h e H%k(.Q \ Iy), the

mean curvature Ky satisfies the equation

ks + 2@y + —HP— @Iy wyks
Pt R by — —P R b )ky = R,
P+ + p— P+ + p-

where Dy is defined in (1.35), and Ry : It — R satisfies

903030y = (el Wl iniaury My dery ) 43)
Furthermore, if k > 3, the estimate of Ro can be refined to

< 3’

0,31 = @@l 3001 Pl 36 0 30 oy Wl ey )+ (145

4.4. Evolution of x,. In order to compute the evolution equation for x,, it is convenient to
pull back @ and R to I'x. More precisely, for I' € Ax, Jx € TIx, and f : I'x — R, define:

A (xa) [ = [QI)(f o @ )]0 P, (4.44)
and
R(ta. ) [ = [RDI)(f o ®FH] 0 &, (4.45)
where J := T®rJi) = [(D®r) - J«] o (@)~ ! € TI'. Furthermore, the following lemma holds
(c.f. [SZ11]):

Lemma 4.3. There are positive constants Cx, 81 depending only on A*, so that for x4 € Bs, C
H*3(I), Je e H3*3(N), 2 <s <3k -1 1<o<3k—Land2 <s < 3k -1, the
following estimates hold:

|fQ7(%a)|g[Hs(p*);Hs—3(p*)] < Cx, (4.46)
|«@(%a,J*)|$[H<’(F*);HU—2(F*)] = C*|J*| 3"‘7(1“ ) (4.47)
and
8./ Cs. 4.48
| (%a)|$|: % % (Iy); j(HYI (Fy);HS1— 3(]"*)):| ( )

Furthermore, if k > 3, it holds for 2 < s, < %k — 1 that

I\)

Wz J < Cy| 1 .
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Proof. (1.46) and (4.47) follow from the definitions. As for the variational estimates, suppose
that {I}; C Ax is a family of hypersurfaces parameterized by ¢. Then by considering the
velocity of the moving hypersurface:

V= (8typtv) o X}tl
and the material derivative
D; := d; + Dy,

one gets

a v —_ o p—
ol (ta) f = [Dt[— ArN(f o d’r,l)] odp = —{[ﬂ),, AFZN](f ° (DF,I)} o dr,.
Thus (4.48) follows from Lemma 3.7.
As for (4.49), one may observe that
ad _
5%(xa,J*)f = D;[DyDy(f 0o @] o @r,
and for ¢ : I'y — R,
[[Dl’ DJ]¢ = D(D[J_DJV)¢‘
Hence for 0 < s’ < %k —2 (here k > 3), it holds that
|[[Dt’ DJ]¢|HA"(F,) < A |ID¢ - (D¢J — DJV)|HS’(['Z)
S blas+1ary DI =Davlp s s
which, together with Lemma 3.7, implies (4.49). O
Next, we shall derive the evolution equation for x,. First, define a vector field W : Iy — R3

by

1 — —
W = [D{u+p—(Vq++Vq_)+LD W p—+Dh+h+—p—Dh_h_

L+ (o4 +p)%> P+t Pt + p-
= [D;u =+ B,
(4.50)
for which
1. - _
gt = pi(pjfv n pgfh) ioﬂE}eiN INgig + HaN"1g,
1
g=—g¢t+g —— (V-v)*dx,
Tt Ja\r,
g* =2D, 70— (vl, vl) . (hl, hl) +Dn, (pjfv . plfh).
Thus, W = 0 if (I}, v,h) is a solution to (MHD)-(BC).
Substituting
1 - P+ P— P+ p—
Du=W-—(Vgt +Vg ) - —""= _Dw+—" Dy hy+——Dy h_
! p++p—( ) (br +p)> " prtp T py + p-
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into (4.30) with A = p4+/(p+ + p—), and pulling back it to I'x via (4.14), one has

D (it 0 Br,) + 0267 (xa) (4 0 Br,) + —L 2= R(otg. wa) (s 0 @)
(o+ + p-)
_ p—+%(xa,h+*)(x+ o®r,) — p—_%’(%a,h—*)(lq odr,) (4.51)

P+ + p— P+ + p—
={"-Ar, (W Ny )+ W-Ar Ny }o®r,,

where p
J’_
Uy = ———V + ———v_%, D=0 —i—D*,
* ,0++,0— + % ,0++,0— * t* t u
his = (DOr) ' (heo®r), wii=(DPr) ' (Wodr,) = Vix—V_u,
and

Ri=—b-Ar, Ny + 2Ny (Vu)- (Aru)| +4({A|Ny - (Dr,) %)
— ikt |(V)* Ny | = 2(I4 [Dr,u-Dryu) + 4 (I, - A + A - I |A)

p+P—
m{(s{(r,, w)ky — A, [y (w, w)]} 52)
b AR (hy b)) — ROy
P+ + p—
b AR (b )] - R b))
P+ + Pp—
— Ao,

with ro given by (4.36).
Due to the relation
Dss* = 87 + Dy, Du, + 2Dy, dr + Dj,u,

and (4.22), the term d,u4 involves 0,4, so (4.51) is a nonlinear equation for 9%%,. In order
to get a equation which is linear for 82,%,, one may drive from (4.22) that

a?,(x+ o®@r,) + Ga(xq, 024, Vs, hi) (k4 0o Pr,)

=+ VT(K+ odr,)- [B(%a)a%t}fa + F(x%q) 01w« + Gxg, 024, w*)at%a] (4.53)

={"-Ar(W-Ny)+W-ArNy}odr,

where the following notations have been used:
o

— ™ B, (resp. F4 or G4) + p—_B_(resp. F_or Go), (4.54)
p p—

B(resp. F or G) :=
e P+ +

and for simplicity,
P+P—

Go (K, 0124, Ve, 1) :=2Dy, 8; + Dy, Dy, + 027 (24) + SR (%a. W)
o o +p-) (4.55)
— T R(xahiy) — ——— R (g, h ).
P+ + p- P+ + p—

Since %, = k4 o @, + a®yr,, one also needs to calculate 3 yr,. Notice that for every
evolution velocity v : Iy — R3 of I, it holds that

dryr,v+-(Nyo®r,) = (v-Ny)oPp,,
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which, together with (3.13), implies
(a%t)/l’, v)o (Q)Ft)_l Ny =Ny - D[(atyrlv)o(QFt)—l—u] [(3t)’1"t v)o (‘pF,)_l]
+ Ny - I:[Dt—ll —Dyu + D(atl/l"t")o((pl“,)*lu]’
that is,

(Nyo®r,)
v-(Nyodr,)

_ (Nyoor) -
= GG e o) [(W—B) o ®r, — Dy, (o &, + a,mv)],

a?tyrt: '[(Dt_u)oqjl“z_Du*(uoq)F,+at)/1’t")]

(4.56)

In particular, 8%y, does not involve the term 92,,.
Combining (3.24) and (4.53) yields

[I + VT(K+ © (DF,) . B(}fa)]agt%a + Ga (%, 0t2q, Vi, i)y

+ VT (kg 0 ®r,) + [F(%a)3: 04 + G(3a, 013a. @4)9:Xa]
Nitoor,

pa2—32 70
v:(Nyodr)

. [B o®r, + Dy, (u odr, + 8,yp,v)] — az‘fa(za, 0¢x%aq, Vs, he)yr, (4.57)

W-N
=Rio®r, + |- Ar(W-N)+W-ArNy +a®————|oop,.
N_,_-(voq?n)

Define a new operator:
B(xg) =V (ks o dr,) - B(xg). (4.58)

It then follows from Lemma 4.1 that

s’—s”—2+e|%a|H (4.59)

L@(%a)|g[Hs”(p*);Hs/(p*)] <AL a %k_l(l"*)’

fors’—2<s"<s' <3k—2,5>1% and0<e <s’—s +2. If k > 3, one may take € = 0, and
2 ) 2

it holds for 6’ =2 < ¢” <0’ < 3k — 3, 0’ >  that
o' —o" =2 .
| B (a)| o[ mo” (ru);m (1)) 4k @ al 33 (4.59)
Letting s’ = s”, 0 <€ < 5 (¢ = 0if k > 3) and ag large enough compared to l}{a'H%k—'(F )
(or ag large compared to |xa|H%k_%(F*) if k > 3), one has
1
|B(xa)| o (s’ (ryy) = 5 < 1, (4.60)
for L </ <3k —2(or L <s' <3k —2if k >3). Namely, [ + %(x,)] is an isomorphism on
2 2 2 2k =32

H¥'(I}). Set
j=Vxh and ji:=joXr,. (4.61)

Then h can be recovered from (xg,j«) by solving div-curl problems. Applying the operator
I+ Z(xa)] ! to (4.57), one can get the evolution equation for x, as (which is, in particular,
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irrelevant to the MHD system):
agt}fa + Co (g, 02q, Vs, h*)}fa - cgz(%a)atw* - g(%a, 0t2a, ®x, jx)

W.N, } } (4.62)
o F[

J— _1 N, -(vod=l)
= I+ B(xa)] Ni-(vodr))

|:— Ar,(W-Ny)+W-ArNy +a®

The operators .% and ¢ defined above satisfy the following lemma, whose proof is given in the
Appendix:

Lemma 4.4. Assume that a > ag and x4 € B, as in Proposition 5.5. For % <s< %k —2 and
€ > 0, there are some positive constants Cx and generic polynomials Q determined by Ax, so
that

<
|g(%a)|$[Hs+€_5(Q\F*);HS(F*)} < Cylxq |H%k_1 oy’ (4.63)
and
19 (a, 0t 2a, @, jx)| 3k 7%(11 )
2 . (4.64)
<a“Q (|%0|H%k—l(r*)’ |3t%a|H%k—%(F*)’ ”w*“H%k_l(Q\F*)’ ”J*”H%k—l((z\r*))'
Furthermore, if k > 3, for % <og < %k % there hold
7 <
|7 (a)l [Ha_f(.Q\F*) HJ(F*)] *l%a|H%k_%(F*), (4.65)
|g(%av at%aaw*v.]*” % %(I—.*) ( )
4.66

< a? .
< a0 (0l e oyl 33 oy Pl 35 g 1030 3 g ) )

|5ff(%a)|$[ 3c_s ( 233 \r.m 3 %(F*))}SC*, (4.67)

and

3k 3k

%
| |$[H%k 3 (MxH 3 (LxH 33 (@\L)xH 3 3 (@\ 1) H 3~ 4(F)}

(4.68)

[l ]l 1

3 N 3 )
353 (r,) H2*Y(@\TI)

2
e (laﬂalH Hg"‘l(sz\r*))'

4.5. Evolution of the current and vorticity. We shall use the vorticity, current and the
corresponding boundary conditions to recover the solenoidal vector fields v and h by solving the
corresponding div-curl systems. Hence, it is necessary to consider the evolution of the vorticity
and the current.
Set
® 4+ Z=VXV:|: and j:t ZIVth:.

Then it follows from taking curl of the equations (1.1a) and (1.1b) that

0@ +(v- Vo —(h-V)j=(w-V)v—(j- V)h, (4.69)

and
Ihj+ v-V)j—h-VIo =(-V)v—(w-V)h —2tr(Vv x Vh), (4.70)
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where in the Cartesian coordinate

3
tr(Vv x Vh) = > Vo! x Vh!.
=1

5. LINEAR SYSTEMS

In this section, we shall study the linearized systems deriving from (4.62), (4.69) and (4.70).
More precisely, the uniform estimates will be shown, from which the local well-posedness of the
linear systems follows.

5.1. Linearized problem for x,. Suppose that I'y € H2k+1 (k > 2) is a reference hyper-
surface, and A, defined by (3.25), satisfies all the properties given in the preliminary. Now,
assume that there are a t-parameterized family of hypersurfaces I'y € Ay and four tangential
vector fields vy, hyy : I'x = TTy satisfying:

%a € CO{[O, T1: H%k—l(r*)} n cl{[o, T]: Bs, C H%k—%(r*)}, (H1)

nd
) Ve hpy € CO{[(), TI: H%k—%(r*)} N cl{[o, T1: H%k—z(r*)}. (H2)

For the sake of convenience, suppose that there are positive constants Lg, L1, L, so that

tes[%PT] ;|%a(t)|H%k—l(F*)’ |at%a(t)|H%k—%(r*)’ I(Vi*(l),hi*(t))ngk_;(F*)§ <Ly, (5.1)
d 1), 0:hg . (2 _ < L,, 5.2
tes[%%]l( Ve (0. 0ch D) 30 ) = L2 (5.2)
and
|(V4+x(0), v—x(0))| Lo. (5.3)

3 <
H32 7)) ~
Using the following notations as in the previous section:
S ST ol
P+ + p— P+ + P—

Wi = Vix —V_x, Ux = V_x,

we consider the linear initial value problem

a%tf + C(a, 0t xq, v+, he)f = g,
f(0) = fo, 9,F(0) =1,

where fo, T1,g(t) : I'x = R are three given functions, and % is given by:

Cg(%a» at%a,v*,h*) = 2D11* at + Du* Dll* + M(%a) + L_z%(%aﬂw*)
P+ + p-)
_ p—+%(}:a,h+*) _ p—_%(xa,h_*),
P+ + p— P+ + p—

which is exactly (4.55) with a = 1.

We shall derive some uniform estimates, from which the uniqueness and continuous depen-
dence on the initial data follow, while the existence can be obtained via the Galerkin approxi-
mations (or the standard semigroup theory as in [SZ11]).
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In order to derive the energy estimates for (5.4), one notes first that < is the highest order
spacial derivative term (3rd order). Then for an integer / € [0,k — 2], if one multiplies (5.4) by

det(Dor,) - {ﬂ[(ﬂ’a,f) o (¢F,)—1]} odr,
and integrates on I, the leading order terms will be obtained:
1d

% F*atf . {J’:f[(ﬂ/latf) o (qjl"'t)_l]} o®r,

4 f {ﬁ[(%lﬂf) o (<Pr,)‘1]} o @r, - det(DPr,) dSi .

The energy is defined as:
2

En(.5.9,) = /

Iy

(5.5)

L~
+ p—“(—ﬁi AF,N%)ZN%[(D}HT) o 07! ds;.

Lemma 5.1. For any integer 0 <[l <k —2, and 0 <t < T, it holds that
El(t’ f? 8tf) - El(oa f()?fl)

t
<0 L) [ (KO 3ieagry + 0O 3k 0O 3s ) )< (s

(IO a2y + B 3114 ) )

where Q is a generic polynomial determined by Ax.
Proof. Denote by
D=0, +Dy. with p:=@yrv)o®; : It >R,
and for any function f : I'x — R and vector field ax : I'x — TT
f=fodp It >R, a:=(Dop, -a)od :I; > TI}.
Thus
(0F) o @ =D;f.  (Da,f) o @' = Daf.
For simplicity, we will use the conventions that
|fls =S as )

and
usL; v
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if there exists a constant C = C(Ax, L) such that u < Cv.
In order to commute D; with the differential operators, one observes first the facts that

| e[pe i as,

| s[Di a1 as: <a lnlyy 1 flilel (5.5)
t

Indeed, it follows from the properties of Nt that

[ eiaarasi= [ xeneosaso+ ([ o)( [ mar)
Iy Iy Iy Iy

= [ ddeatoaras+ ([ 6)( /[ paxar),

where the last equality follows from the self-adjointness of Ny. It follows from the following
commutator formula (c.f. [SZ08a, p. 710] for the derivation):

[D:. N4]f =Dn, AT'(2Dp:D*®y f + VR4 f - Ap) — VR4 f -Dn,v — Dy ;i - Ny, (5.9)
that

<
San rlze-slflilgl (5.7)

and

[ s ds = [ 7D+ NG divr, ) ds,
I Iy

== | Na(f)-divr, pds;
t

== | fNetdivr was:.
t

Thus, the above two relations imply that

/ ¢[Ds. N4 1f S,
Iy

<
San vzl flilgl- (5.10)

As N is defined via (3.34), the estimate (5.7) follows from (5.10) and Lemma 3.7. The relation
(5.8) can be derived via the following formula (c.f. [SZ08a, p. 710] for the derivation):

[Dr, AR ] ==20r)2f - D) =V f+Aru+ x4 Dyt o - Ny, (5.11)

and the integration-by-parts on [I7y. B
Now, it follows from the self-adjointness of N and (— Ar,) that

L
1N\2~1

/F <_ﬂ‘Anﬁ;)éﬁ%(@tﬁDU%)-(—ﬁ%Apt z) N3 (D,f + Duf) dS;

|
4]

~ ~

= / 53 (Df + Duf) N2 (- a8 (-5
I

~

~ -1 _ _
ARNE) RE@f +Dufds  (5.12)

D=

~ _ _ ~\! _ -
= | X@:f +DD)(-2r,%) @ + Db ds:.
t
Observing that
[Dt dSt = (diVFl [L) dSt , (513)
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then, if / = 0, one can calculate that
d _ o _
4 [ @F +D.H)- K@ + D as,
tJr,
= [ (@2 +DiDuf)- Noif + Dufyas,
t

: (D:f + Duf) - N(D/?f + D; Dyf) dS; (5.14)

* /p[ (Df + Duf) - [n),, ff]([th + D) ds;

+ | @:F + D0 X +Duf) - ivr as:.
t
It follows from the self-adjointness of N and (5.7) that

1d ~1 =% 3 £ . N(D.§ g
‘E&(/F, (D,f + Duf)‘ dSt) — (/n (D¢2F + Dy Dyf) - N(D,F + Duf)dSt)

(5.15)
2
Salnlyey - (0 + 1R )
If ] =1 (so k > 3, since [ <k —2), direct computations give that
d ~ _ _ ~ _ _
. / S (D,F + Duf) - (= &) (DT + DyFy S,
=/ N(D:F + Duf) - (= Ar)N(D,F + Duf) dS,
+ [ R@F +DuP)- - 2r)R(©2F + D D) s,
+ [ [De R0 + D) (- 8r) R @:F + Daf s, (5.16)
I

+ [ N(D/f + Dyf) - [Ds, (= A1) JN(D,F + DuF) dS;

\

Iy

+

\

| N@: + D] (- 2[00 X (@F + D) ds,

+ [ N(D:f + Duf) - (= Ar)N(D;f + Duf) - (divr, p)dS; .

\

I

Hence, one may derive from the self-adjointness of N, A r, and the estimates (5.7)-(5.8) that
2
dS;

(-5t A 36) T @/F + D)

(5.17)
- /p N(D¢2f + Dy Dyf) - (= A, )N(D;F + DyF) dS; + ro,

with the estimate:
Irol Sa 13—y % (16T B2y + 1§ 330 )- (5.18)
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Therefore, by using the following relations:

Js

= [ (c2n%)"R@F + 0.0 (-2 7)™ @F + D) dsi.

2

N2(D,f + Dyf)| dsS;

and

2
dsS;

(-X2 an%3) 7 SC@F +Duf)

~\M ~ — -
= [ (~4n%)"R@F + D) (- 2,5) " ©:f + Duyas:.
one can argue as the cases for [ = 0 and for [ = 1 to obtain the following estimate:

2

L~ —_ —_
(—ﬂ% ADNE)ZN%(DJ L DL dS, 1

M\b«‘

+ 19,5 :
*3r) |’ﬂH3’+%<r*))

where

Nl—
m~
>
~
P-4
D=
~—
NI~
P-4
=

I:Z/F (—ﬁ%AF,ﬂi)éﬁ (D% + Dy Dyf) - (

For simplicity, set

D=

D=
(Sl

D= (—ﬂ A[‘tﬁ

)"

The equation in (5.4) is equivalent to

D,f +2DuDif + DuDuf + (= A5 ) +

P+ p- : -
- Dy, Dy f-——Dy D f=4.
p++po— T py A+

(D;f + Dyf) dsS; .

(5.19)

(5.20)

(5.21)

(5.22)
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which implies

I=[ 9'X5(DF+D,f) 9/ N25ds,
Iy
+ [ 9'N3(D; Dyf — 2D4D;f — Dy Dyf) - 9/ X2 (D, F + Dyf) dS;
I;
- @lir%(—ap,ﬁ%) - 913 (D,F + Duf) dS;
I;
PP [ 9IN3 (Dy DyF) - /N3 (D,F + Duf) dS; (5.23)
(o+ +p-)" I
P+ 154 Yol N A (D F :
+——— | 9'N2(Dn, Dn,f) - D'N2(D;f + Dyuf)dS;
P~ [ 9'%3(Dy_Du_f) 9'N3(D,f +Du) ds;
p+tp-Jr,
=h+L+1Iz3+ 14+ 15+ I6.
It is clear that
|11] §L1 |Q|H%1+%(F*) . (|atﬂng+%([,*) + |ﬂH%l+%([‘*))' (5.24)
Note that for two functions ¢, ¢ : I'y — R, the integration-by-parts formula is
| ~upr-vas = [ @w-p+ pviivnwas:. (5.25)
t t
since u: Iy — TTI7} is a tangential field and sz divr, (upy)dsS; = 0.
For I,, observe that
953 (D, Duf) - D'NZ(D,F)dS, = [ NDuDul) - (~ART DS, (5.26)

Iy Iy

Thus, commuting Dy with N and Ar, via the arguments as (5.14) and (5.16), it is routine to
derive that

i 9! N3 (Dy Dyf) - D' N2 (D) + D' N2 (D,f) - 9/ N3 (D,D; F) d, o)
t .
NI |f|H%1+%(F*) - |0, F|

Similarly, it follows from (5.25) that

H3H ()’

—9'N 2Dy Duf) - 9! N2 (DyF) dsS,
r

(5.28)

< 2

and

D' Nz (DD, ) - D' N2 (D,T)ds, (5.29)

<. |9:F) .
Iy <L tﬂH%”%(r*)

Furthermore, observing that

|[|Dt»Du]ﬂ%l+§ = ‘D([D,u—Duu)ﬂ%H_% sQ |f|H%l+%(F*)’ (5'30)
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one can deduce from (5.26)-(5.30) that

2] So [0:F1% .

+ If]

3+5 () "3+
Next, the estimate on I3 can be derived via:
Iy = — &)’ﬂ%(— Ap,ir)% .93 (D,F + Dyf) dS;

Iy

_ /F NF- (= AR T (D,F + Duf) ds; .

which, together with the previous arguments, yield

1d

~1-2
L+ -— [ |91R3F] ds,| <o |F1? .
3+ 2ar Jn, f t| <o |f|H%1+2(r*)
As for I4, in view of the relation
[Du. Dylf = Dpu,mf.
it follows from the integration-by-parts that
I3 5.9/ N2 (MD.F < 2
DDy D) DO S| 52 1717 303

The previous arguments can be used to show

D' N2 (Dy Dyf) - !N 2(D,F) + D' X2 (D, f) - 9/ N2 (DyD,F) dS;

I

St g3 gy % 08l g3y oy
and

[l _ [ - 1d v - |2
' N2 (Dy D) - &' NE@f)dS: + 5 [ |9 N2DLD)| s,
r, 2dt Jr,
<o H:lH%H—%(F*) X (|ﬂ1-1%1+2(1"*) + |atﬂH§H‘£(F*))’

that is,

153 6
D NZ(DW]‘)‘ as;

‘14— P+P— g/
2(p+ + p-)*dt Jr,

<
NTe) |f|H%H‘%(F*) x (|f|H%1+2(F*) + |atﬂH%1+5(I’*))'

Since I5 and Ig have the same form as I4, there hold

P+ d /
Is+—t %
‘ 2(p+ + p-)dt J,

<
S0 W3z, % (IMya0enr,

1571 = |2
5 Ou, )| ds,

+ |3zf|H%,+%(r )),

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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p— d /
6+ ———
2(p+ +p-)dt Jr,

<
S0 W3z, * (ITyarsagy + 10730k ) )
In conclusion, the combination of (5.5), (5.19), (5.24), (5.31), (5.33), (5.38)-(5.40) gives that

| 201302y + BeFl 2001 )

x (|f|H;,+z(m 10l 30ed y * 'Q'H%H%(m)’

which completes the proof of Lemma 5.1. O

and

-1 _ 2
)| as,

(5.40)

ar (5.41)

Based on Lemma 5.1, the following energy estimate for (5.4) holds:

Proposition 5.2. There is a constant Cx > 0 determined by Ax so that for any integer 0 <
Il <k—=2,and0<t <T (T <C for some constant C = C(Ly, L)), it holds that

F0))? IS TREYN + 19,5 (1) RIS P
<Cyexp[Q(L1, La)t]x (5.42)
2 2
|TO|H%I+2([‘)+H1|H21+ b +(L0)12|f0|H%1 / }g(t)|H2H'2(F) t },

where Q is a generic polynomial determined by Ax.

Proof. 1t is clear that for some Cy > 0, it holds that

_2 -
M%Hz + |Dtﬂgl+%
2
SC*El(t»f’atf)'f‘C*(/ fdsS; +‘/ Dt dS;
Iy Iy

2
)+ )

2 2
= = =12
< CLE(t.5.0,F) + c*( /F fas| + /F D, ds, ) b o By + v By T
t t
(5.43)
For the last term above, it follows from the interpolation inequality that
2 2 12 5 0z (Cx)? -2
<|V+|%k—2 * |V—|gk_z)mgz+% = sC., + —(| +|3k 2 HIv —|3k z)mgH%’ (5.44)
with
<
ve(®)]355 Ta. |V:|:*(t)|H%k—2(F*) (5.45)
S A |V:|:*(O)|H%k—2(r*) + Lat.

Now, observe that

%/F £(r)dS; =/F D;f + f divy, wdS;. (5.46)
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Thus

t
smﬂﬂmmwumywwwumpﬂ

Dmm&—AJmM&

To deal with the integral of D;f, one notes that

d ¢ c ra .
a@ D;fdS; = / D> + ('th) divp, pdSe,
tJr, Iy

and (5.22) implies that

/ D,%f dS; =—/ Du(lethDuf)dS,Jr/ Ar, N dS;
Iy

Ft FI

— L_z Dy Dy f dS; + p—+/ Dy, DhJj ds;
(o+ +p-)"Jr o+ +p-Jr,
pP—

+—/ Dh_Dh_]EdSt"f‘/ gdsS; .
o+ +p-Jr, I

Due to the fact that 0y = @, one has

/ Ar,NfdS, =0,

Iy

and

—/ Duu),%ds,z/ (D;f) divp, uds; .

Ft Ft

Thus

d D,fdS;| <z, |D;f f 3

E r tf t ~L1‘ l‘f|0+‘f|1+|g|0’
and

/(mﬂm¢$—/(mﬂ®¢%
Iy Iy

t
L, A }atf(t/)|L2(p*) + H(t/”Hl(['*) + }g(t/)|L2(]"*) dt/

Combining (5.43)-(5.53), (5.6) and the following relation:

H(t)|%l+% SA. |f(0)|H%’+%(F) / |atf(t)‘H2’+2(1") t,

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)
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one can get that
. 2 = 2
|f(t)‘%l+2 + !th(t)‘%H%

< 2 JRTRY 4 (L) 22
Sa.lfol |f1|H%[+%(F*) (Lo) "ol

3 3 1
2'+2(ry) 21%3(r)

t
S n12 NP N ’
10 /0 T, 3rv2gey + B 300d oy + 1805 3004 g (5.55)

t
12 12,12 N ’
(v @12 @) @i [ i,

t
€L [ oW iy + FO sy + 1860 oy

where O = Q(L1, L») is the generic polynomial in the previous lemma. If T < Q4 (L1, L2), it
follows that

FOf5110+ IPFOL,

2 2 12 2
fc*(lfolH +1fi, + (L0) ol 3,4y (m) (5.56)

3 3/41
21421y 21+ 3(ry)

vo [ o) T |5 T la@)| ar',
0

2 2
H32(r,) H33 () H35 ()
where Q = Q(L1, L>) is a generic polynomial determined by Ax. Hence (5.42) follows from

Gronwall’s inequality. O

Then the local well-posedness of (5.4) follows from this energy estimate:
Corollary 5.3. For0 <[ <k—-2,T <C(L1,L3) andg € CO([O, T H%H%(F*)), the problem

(5.4) is well-posed in CO([O, T]: H%H'Z(F*)) N Cl([O, T: H%H%(F*)), and the estimate (5.12)
holds.

5.2. Linearized system for the current and vorticity. Assume still that Iy € H k+1
(k > 2) is a reference hypersurface and consider a family of hypersurfaces {I}o<i<7 C Ax,
for which each I} separates §2 into two disjoint simply-connected domains .Qt:’E Suppose that

vi(t),hy(?): .QfE — R3 are given vector fields solving

Vevz =0=V-hg in.Q,i,
h+-N+:0=h_-N+ onFt,
-1 (5.57)
v+-N+:N+-(8typtv)od>Fl =v_+-N4y on [y,
v_-N=0=h_-N on 052.
Assume further that there is a constant L; so that
o (l}fa(l)ngk_g(F*), 10exa O 303 “(V:l:(t)’h:i:(t))”H%k(Qti)) <L (5.58)

Consider the following linearized current-vorticity system in £2 \ Iy:

3o+ -V@—(-V)j= (@ -V)v—_(j+ V)h, (5.59)
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3j+-V)j—-V)a = (- V)v— (& V)h—2tr(Vv x Vh). (5.60)
Set
E=&—j, n=&+] (5.61)
Then
9:& +[(v+h)-V]E = (£-V)(v+h) + 2tr(Vv x Vh), (5.62)
9+ [(v—h)-V]p =(y-V)(v—h)—2tr(Vv x Vh). (5.63)
Define the flow map Y+ by
%Ui(t y) = (va —hi)(t,yi(t,y)>, y e QF. (5.64)

As indicated in [SWZ18], due to the fact that hy - Ny = 0, Y*£(¢) is a bijection from .Q(:)': to
.Qti for small time ¢. Furthermore, the evolution equation for » can be rewritten as

%(n oY) =[(np-V)(v—h)—-2tr(Vvx Vh)]o Y, (5.65)
or equivalently,
%[(Dy)—l(n 0Y)| = —24r(Vvx Vh)o ¥, (5.66)

which is a linear ODE system. Thus, the local well-posedness follows routinely. Similarly, the
evolution equation for & is also locally well-posed on [0, T'], with the life span 7' depending on
L. Furthermore, the following energy estimates hold:

Proposition 5.4. For 0 <t < T, it follows that

18+ ()]

H%k—l(gti)
< el 0L (14 102 30, o+ O] 30 )
0

where Q is a generic polynomial depending on Ax.

~ 2
+[0],0
O] 301 2) (5.67)

Proof. For 0 <s < %k — 1, observe that

14 5
—— A d
2dt/gy nal? dx

1 2
= /_Q:I: Vsﬂi'vsatﬂi dx+§/9:|: D(vi—hi)|vsn:|:| dx
i

t

= /_Qi Vsﬂ:t . VS[D(hi—vi)”j: + Dni(V:I: —hy)—2tr(Vvy x Vh:t)] dx

7
1
+_/ D(vi h:|:)|V n:l:| dx

V D(hi—vi)]ﬂj: dx + / Vi - VS{D,HE(V:E —hy)—2tr(Vvy x Vhi)} dx
t l‘
(5.68)
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It follows from a similar argument that

d 2 7 2
e O ox) = QL) (14 182017 g ) (5.69)
Therefore, (5.67) holds due to Gronwall’s inequality and (5.61). O

To show the compatibility conditions:

/ a_-ﬁdEEoE/ j—-NdS, (5.70)
082 082
one observes that

d ~ ~

— -NdS

dt Jae -

~

_ /a o+ D)) (1= N) + (5= - ) divag(v- ~h_)d§

_ / N.Dy (v —h_)—2N.tr(Vv_ x Vh_)d§ (5.71)
82
+ / ~N-D,7(v— —h_) + (y_-N)divs(v— —h_)dS
082
=11+ I».
Since V- (V¢ x V) =0and V- (v— —h_) =0,
I = / N-D,r(v——h_) + (y_-N)Dg(v— —h_)-Nd§
82
- / N.D,r(v- —h_)— (n_-N)divag(v_ —h_)d§ (5.72)
82
= — 127
where the geometric relation (3.10) has been used. Thus, the similar arguments yield
d ~ o~
_/ £.-NdS =0, (5.73)
dt Jae

which implies the following lemma;:

Lemma 5.5. Suppose that (&(1).j(t)) is the solution to the linear system (5.59)-(5.60) with
initial data (@9,jo). If
/ ao_-ﬁdﬁ':o:/ jo -NdS, (5.74)
082 a2
then for all t such that the solution exists, there holds

/ a_(t).ﬁdS'zoE/ j_(t)-NdS. (5.75)
082 082
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6. NONLINEAR PROBLEMS

6.1. Initial settings. Take a reference hypersurface I'x € H 2k+1 and 80 > 0 so that
3 1
Asw = A T, =k — =, 8
* ( * ) ) O)

satisfies all the properties discussed in the preliminary. We will solve the nonlinear current-
vortex sheet problems by an iteration scheme based on solving the linearized problems in the
space:

a € CO([O, T); H%k—l(r*)) n cl([o, T): Bs, C H%k—%(r*)) n cz([o, T); H%"—“(r*));
3 3 (6.1)
©ixjis € CO(I0.T) B3N @QF)) N € (10, T): H*2(2F)).

In order to construct the iteration map, we define the following function space:

Definition 6.1. For given constants T, My, M1, M, M3 > 0, define X to be the collection of
(%q, W «, j«) satisfying:

%a(0) = kx| 305 ) =01
|00xa) Oy 35ms oy N0 O 305 o\ oy 13O 305 ) ) = Mo

j <
tes[%pT] (|%a|H%k—1(F*) |01 3¢a| 3k %(F*)’ “w*”H%k_l(.Q\F*)’ ”J*”H%k—l(g\l—'*)) = M,

. < M
tes[l(l)PT] (Ilazw*lngkz(mF*)’ ||at3*”H%k2(9\r*)) =

sup ‘Bft}fa‘ < a?>M3 (here a is the constant in the definition of x,).

t€[0,T] H3%- 4(F) N

In addition, the compatibility conditions

/ ﬁ-w*_dS“:/ N-j_dS =0 (6.2)
082 082
hold for all ¢ € [0, T].

For 0 < € « 61 and A > 0, the collection of initial data

(e A) = {((a)1. Qe2a)1. (@)1 Go)r) }
is defined by:

<€

Gl

|O¢a)) — kx|

|@exat| 355 0 [(@1ll

2 2

3
H3*(1,)

’

3N @\r)’ H¥ '@\ ©

and

/ ﬁ-(w*)l_d§=/ N - (js)r_dS = 0.
082 082

Thus, (e, A) C H2K"1(Iy) x H3%=3 () x H3¥=1(Q2\ Iy) x H2K1(Q2 \ IY).
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6.2. Recovery of the fluid region, velocity and magnetic fields. For (xa,w*,j*) € X,
#4(t) induces a family of hypersurfaces I'y € Ay if M1 T is not too large. Thus @r, and Xr,
can be defined by x4(¢).

For a vector field Y : 2\ I'y — R3, define

(PY)y =Yi— Vo,

for which
Apr =V-Yi in QF,
¢:l: =0 on Fl‘a
Dgo- =0 on 052.
Namely, P is the Leray projection. Set
@ = P(w«(t) o X7). ji=P(x(r) o XT). (6.3)

Thus, V-@ =V-j=0in 2\ I} and

/N-d)_dS:O:/ N.j_dsS,
082 082
since X, g = id|ye-

Now, by solving the following div-curl problems:

V-v=0 in 2\ Iy,
Vxv=w in 2\ Iy,
vy Ny =N+-(8,yptv)oq§;tl on I%, (6.4)
v_-N=0 on 082;
and
V:-h=0 in 2\ Iy,
Vxh=j in 2\ Iy, (6.5)

hy-Ny =0 on [y,
h--N=0 on g,

one can obtain the corresponding velocity and magnetic fields vy, hy : .Qti — R3. Furthermore,
the following estimate holds thanks to Theorem 3.8:

el 3 = QM) 6.6

where Q is a generic polynomial determined by Ax.

6.3. Iteration map. For (}ta(”),w*("),j*(")) € X and {(J{a)l,(8,xa)1,(w*)1,(i*)1} € J(e, A),
define the (n 4+ 1)-th step by solving the following initial value problems:

aft}fa(nﬂ) + %(}fa(n), 3,6, ™ v, @ h*(n))%a(n—i—l)
= 7 (1) 0104 + 9 (2™ 8120, 0,5, 6.7)

1 D0) = (i) 32 "T0) = 0rxa)y:
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and
9@t + Do — Dy i@t = Dyunv® - Dj<n+1)h(n),
3,j*D 4 D i@ *+D — Dy w@+D

= Dj(n-‘rl)v(n) — Dw(n+1>h(n) — 2t1"(Vv(”) X Vh(”)), (6.8)

0®D(0) = P(@)0 %7k ). JT00) = P(Ga)r 0 X7 ).

where (V(”), h(”)) is induced by (%a(”), w*(”),j*(”)) via solving (6.4)-(6.5), the tangential vector
fields v« and h,® on I, are defined by

-1
V*i(n) — (D¢F,(")) [Vi(”) o CDI«t(n) - <3typt(n))v],

) (6.9)
(m) . - (n)
h,t' = (D<Ppt<n)) (h:i: o <Ppt<n)),
and the current-vorticity equations are considered in the domain £ \ Iy O}
Denoting by
w0 D = D %o, and §u D = ;0D X s (6.10)
we will show that (%a("'H), w*("+1),j*(n+1)) € X. Indeed, in view of Lemma 4.4, there hold

7 ()],

o (P | o T
<Q(My) - M;,

3 5
2573

and

‘g(,fa(m, 9,20 w*(n),j*(n))|

SazQ (‘%a(n)
<a’Q(M).

3,_5
H2%72(I%)

s |62 )

35 L [0r
H25 (1Y) ‘ a

Furthermore, by the definition of constants L, Ly in § 5.1 and Lemma 4.1, one has

"= o) ( e g3y 17 33
R (LSS VRS SO IO
EQ(Ml)v

and
n)

— () 2
L2 - Sup (‘atvi* ‘H%kfz(l‘*)’ ‘h:b* H%kz(l"*)) E Q(M15M27a M3)'

t€[0,T]
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Thus, by taking [ = k — 2 in (5.42), it follows that
ol 9ta D) )
su x + [0
eo.T] (‘ V76 0 ST N VL 108!
< Cyexp{Q(M1, My, a®?M3)T} x [Csx + € + A+ (Mo)'* + T - (a® + M2) Q(My)].
If T is taken small enough, and M is much larger than My and A, then there holds
(n+1)‘ ‘a (n+1)| <M 6.11
reloT] (‘%“ a3k, |0 g3 =3,y =" (6.11)
Moreover, choosing M3 large enough compared to M; and M>, one gets from (6.7) that

("“)‘ < a*M;. (6.12)

2
sup )8””0 H%k—4(r) =

t€l0,T]

Similarly, by applying Proposition 5.4 to (6.8), one can deduce that

. (n+1) H
I Hﬁk‘l(fz\m)

(n+1) H )
su (0] 5
0T (“ * H3*\(@\T)

6.13)
) oMNT (
= Q(’%“ c?H%k—i(r*))e (1 +24)
<M,
if T is small and My > |K*+|H%k_%(1“ y Next, by taking M» > M, it holds that
3. @D “
H 1@ Q0 H3*2(@\T)
(n+1) (n+1) (n)
= C*(Ha’w HH%"—2(9\F,(">) + Hw HH%"—‘(Q\F,“”) 01a H%k_g(l"*))
<QO(M;) <M,
for all 0 <t < T. Similarly,
sup [ [|9;0.@FD H , (a ' ("+1)H ) < M,. 6.14
(eo0.71 (H AR V7 LS VSN A PEL VY A (614

The compatibility condition (6.2) follows from Lemma 5.5.
With the following notation:

?{[(%a)l, (at%a)la (0)*)1, (j*)l], [%a(n), w*(n)’j*(n)]} = [%a(n+1)’ w*(n+1)’j*(n+l)]’ (6.15)
one can conclude from the previous arguments that:

Proposition 6.2. Suppose that k > 2. For any 0 < ¢ < &9 and A > 0, there are positive
constants Mo, My, M, M3, so that for small T > 0,

?{[(%a)lv 0rxa)1, (@)1, Ga)il. [%a, w*.l*]} € X,

holds for any [(xa)1, (9t2xa)1, (@)1, (1] € (€, A) and [xa, 0x,j«] € X.
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6.4. Contraction of the iteration map. In this subsection, it is always assumed that k > 3.
Suppose that there are two one-parameter families (%a ") (B), w ™ (B), j*(")(ﬂ)) C ¥ and

(Ca)i(B). @exai(B). @)1(B). ()1(B)) € F(e., 4) with parameter . Define
(%D (B). 0"V (B), 1.V (B) )
= (B, Oux)1(B). @1 (D). ()1(B) ). (%™ (B). 05 (B). () ) |.
Then by applying % to (6.7) and (6.8) respectively, one gets
92,05V + G, D = (9560 ), D 1 95 (F M0, " 44 ®),

(6.16)
952" D(0) = 05 (ea)y(B), 91 (9p2a "+ )(0) = D5 (Bua)r(B),

and
3;|Dﬁw(n+l) + Dv(;z)ﬂ)ﬂw(n+l) — Dh(n)ﬂ)ﬁj("+1) = DIDBw(”‘H)V(n) — D|D6j(n+1)h(n) + g1,

3;|Dﬂj("+1) + D, |D3j(”+1) — Dh(n)lDﬂw('H'l) = Dp, -(n+1)v(”) — Dp, w(n+1)h(”) + g2, (6.17)

Dpo "+ D0) = P{[3p @] 0 X1y o | Dai®FD(0) = P{[35Gu)r] 0 Xl
where
9
Dy i= g5 + D = [ (957w ) 0 @7l |- (6.18)
g1 :=[3r,DgJo ™D + [Dym, Dl ™V — [Dyu, Dg iV 6.19)
+ w(n—l—l) . [Dﬁ Dv(n) _j(n-H) . IDﬁ Dh(n), .
and
G2 = —2Dg tr( Vv x V™) + [3,,D4];" TV + [Dyom, Dg i TV
18 ptx( ) + [9.Dg] [ 8] (6.20)

— [Dpon, DgJo @ 4 @D . Dy DA™ — @+ . pg DR™.

To estimate the Lipschitz constant for the iteration map T, we consider the following energy
functionals:

€)= s (|0, 303+ 0000 3+

H3573(1) 2574
rel0.1] (6.21)

(n) o
+“8ﬁw* H%k—%(g\r*)—i_Haﬂ‘]* H3k 39\1;)
and

(©8) = (1050l 3037+ 108 O] s+

(6.22)

+Haﬂ(m*)l“ Y Tl LI DI ST ) ))
Thanks to Lemmas 4.1, 4.3, and 4.4, it holds that
‘(3ﬁ<g(n)) (n+1)‘ < Q(M1)@(n)

(n+1)‘ < O(M)E™
(r*)_Q( 1)

sz 4(1—~* H2k
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P P

“H3k ~4(@Q\I})

r
and
(n) (n) (n)
(057 )00 +059)| 3,
(n) (n) 2 (n)
= Cx|dpxa” ‘H3k_7(1"*) Gy HH3"‘7(Q\F* Ta”O(M)E

< (CxMa + a*Q(My))E™.
Taking /| = k —3 in (5.42) leads to
p (n+1)‘ ‘3 5 (+)‘
tes[%%](‘ pa 33 (r, BOta k=41,
< Cyexp{Q (M1, M, a? M3)T}

x ((65)I + T [CaMy + (1 +a2)Q(M)]E™ + T - Q(My) sup “a,ga,w*(") H

1€[0.T] 34 @\I)

(6.23)

To estimate (6.17), one can derive that

Q(M1)(

G ) ( () () H
”gl HH%k_j(.Q\F (n)) — ’H%k_“(l’*) + H [DBV ’ [Dﬂh ) H%k—%([z\r[(n}) ’

which, together with (4.19), implies

”gl H % %(_Q\F (n)) - Q(MI)GE(”)
Similarly, one can obtain
1821303 g\ pyomy = QME™.
It follows from the same arguments as in Proposition 5.4 that
< (D w(n+1)0 H (n+1)“ )
relo.T] (H 3@ ) B3 (6.24)
= eQUNTH(©), + TO(M)E™],
and thus
(n+1) o(M\)T (n)
3050 ™| 3oy = €2MVT QM |(©)1 + TOO)ED).
Since
995 ("“)] 0o %7l = 9,Dp0"D + D Dpe ™+,
[ t ﬁ * F[() t /3 R[(atyrt(n)v)o¢;tl(n)j| B
one has
(n+1) omM\)T (n)
0p010. D) o oy =€ O(MD{(E); + TO(M)E™}. (6.25)
Set
R0 — H 05010 H (6.26)

H 4@\
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Then (6.23)-(6.25) imply that
Gt < Cyexp {O (M1, Ma,a® M3)T)
@)+ T+ [M6® + (1 +a2)0M)E™ + 0MF™ ]} (6.27)

+MNT QM) |(©); + TO(M)NE™},

and
FHD < QT 0(My)|(©); + TOM)EM]. (6.28)
Thus, if T is small compared to My, M», M3 and a, then
1
GO+ 4 g0+ < E(G(n) n %(n)) + O(M)(€),. (6.29)

An immediate consequence is that if the initial data is fixed, the iteration map T is a
contraction in a space containing X. Since T is a map from X to X, it follows that T has a
unique fixed point on X. Namely, one obtains:

Proposition 6.3. Assume that k > 3. For any 0 < € < 89 and A > 0, there are positive
constants Mo, My, M>, M3 so that if T is small enough, then there is a map @ : (e, A) > X
such that

T, 601} =6@k) (6.30)
for each ¥ = (o)1, Bexa)r. (@)1, ()r) € (€. ).
6.5. The original nonlinear MHD problem. For any given initial data Iy € H3*+1 and

3
vo.ho € H2¥(£2 \ Iy), one can construct

(%a(0). 314(0). ©4(0).+(0)).

Indeed, for a reference hypersurface I'x € H Sk+1

transversal field v € H %k_l(F %), %q(0) can be given by Iy, and 0d;%,(0) is determined by
0o = vo+ - N4. In addition, let

®s = (Vxv0) o X7, ju:=(Vxhg)oXp. (6.31)

close enough to Iy (or I'x = Ip) and a

Thus, #4(0) € H3¥"1(I'), d,%4(0) € H2K=3 (I}, and 04(0), jx(0) € H2K"1(2\ I).

Let {(xa)1, (0¢2%a)1, (@)1, G2 )1} = {#4(0), 974 (0), ®(0),j%(0)}, and take the corresponding
fixed point {s,(t), w«(t),j«(¢)} € X of the map & : J (¢, A) — X given in Proposition 6.3. Thus,
(I, v,h) can be obtained as discussed in § 6.2. We will show that the induced quantity (I, v, h)
is a solution to the (MHD)-(BC) problem with initial data (I, vo,ho).

Indeed, it is clear that I'(0) = Iy, v(0) = vp, and h(0) = hg by the definition and the
uniqueness of div-curl systems.

First, we claim that

P(w«(t) 0o X7) = @x(t) 0o X7, P(ju(t) 0 X7}) = jult) 0 K. (6.32)
Indeed, taking the divergence of (6.8) and using the fact that V.-v =0 = V - h yield
0;(V-w) 4+ Dy(V:w) =Dnp(V-j),

3/(V+j) + Dy(V-j) = Dp(V - @), (6.33)



CURRENT-VORTEX SHEET PROBLEMS 47

where
@ (1) = @x(1) o X7, j(t) = jult) o X7

Since V- @(0) = 0 = V - j(0), it follows from the arguments in § 5.2 that V-0 = 0=V .j for
all ¢, which proves the claim.
Consequently,

Vxv=w and Vxh=j. (6.34)
Next, as in (4.4), define the pressure functions via
pE=ps (pé'fv — pin + pf) + RN (=g + 7).
with p defined by (4.7) and
g vl +\V4, vy )+l (by by )+ DN\ Py — Pin)-
Inspired by [SWZ18], define
1
Vi =03vy + Dy vy + p—Vpi — Dy, hy, (6.35)
+
and

Hy = 0d;hy + Dvihi — DhiV:I:- (6.36)

It suffices to show that V.= 0 = H for 0 < ¢t < T. Indeed, since 2 are both assumed to be
simply-connected, one only needs to verify for Z =V or H:

V.Zy=0 inQF,
VxZy =0 inQF,

6.37
Z,-NL =0 on [y, ( )
Z_-N=0 on .
Verification of V. Observe that
V.v=0=V-h.
Then it follows from the definitions of p;tb that,
V.-V=0. (6.38)
Taking curl of V and using (6.34) with (4.69) lead to
VxV =00 +Dyw —Dgv—Dyj+ D;sh =0. (6.39)

In addition, it follows from (4.6) that on 942:

V_.N=-I(v_,v_) + T(h_.h_) + Dg(pyy — Piy) = O. (6.40)
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Thus, it remains to show that V4 -N4 = 0. Note that for 6 ;= v+ -N4 and (gi) = th gt ds;,
there hold

Vi -Ny
1 - _ —
=N+-([Dt+v+—Dh+h+) +DN+<p;l:V—p]Ih+p:) — (ZN—F)N 1(g+—g )
= [Dt+8 + N4t - (DV+) . VI + ]I+(h+a h+) + DN+ (pj:v - plth)
~ 1 -
+ Nk —(—N )N—l t_g”

+ ot + (g &) (6.41)
_ + _ 7t
=Ds4+0 + Ny - DVIV+ + 4 (hy,hy) + DN+ (Pv,v ph,h)

- 1 _ 1 .
+ Niy + (p—N_)N_1g+ - (p—N+)N_1g_ —gt+ (g™
+

~ 1 _ 1 .
=D; 40 — D, 76 + Nt + (—N_)N—1g+ + (—N+)N_1g_ +(g™).
+ P P+

and
V_-N_
=—-D; 0 +N_-(Dv_)-v_ +H0_(h_,h_) +Dn_(pyy — Ppy)
~ 1 __ _
— Ny — (p—N—)N 'gt-¢M)
=—-D;-0+N_-Dyrv_ + I _(h_,h_) + Dn_(pyy — Ppp) (6.42)
~ 1 . 1 _
— Ny — (—N_)N—1g+ - (—N+)N‘1g‘ +8 —(g)
- P+
~ 1 . 1 _
= —D,_ 04D, — Nky — (—N_)N—1g+ — (—N+)N‘ g —(&).
- - P+
Hence,

Vi Ny +VoeN_=D;40-D;0 D10 +Dyr6 +(g" —g7)
=Dy, 0D, 10+ (g7 —¢7) (6.43)
=0,

where the last equality follows from (4.11) and the relation that v4 « N4 = v_+Ny. Therefore,
one can define
O = V+ . N+ =V_. N+. (6.44)
For W defined via (4.50), the relation that V v = 0 implies ¢* = p*, that is,
W=—" vi+—" Vv o 1. (6.45)
P+ + p— P+ + p—
Thus,

®=W-Nj. (6.46)
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Because {x,, wx,jx} € X is a fixed point of T, by (4.62), it holds that
W.N,

N: - (o) = (6.47)

~Ar,(W-N;)+W.AprN; +a?

In addition, since VxV =0,V.-V =0, V_. N = 0 and .QtlL are both simply-connected, there
are two mean-zero functions r¥(¢,x’) : I'y — R so that

1
Vi=—VHyrE, (6.48)
P+

which implies that

1
©=Vi-N;y= (—N+)r+
P+

| (6.49)
- V_.N_= —(—N_)r_
p—
It follows from (6.47), (6.45), and the identity (3.8) that
— AR O+ L—mm @+;VT(r++r_)-VTK+:0 (6.50)
t Ny-(wodp)) p+ + p-

2

Ny-(wodp!)
a > agp (indeed, it holds for all I € Ay), then

If ag is taken large enough, so that — |]I_|_|2 > a holds for all ¢ € [0, T] whenever

2 1
T 2 T T(+ o -
vTe Loy T O = 51Ol VTes - VT (4 r7) L
<C*|O|L2([')}r +r ‘HZ(I") | %k_%(]'}) (651)
< C*0(|@|L2(F) + |r +r |H2(Ft )
It can be deduced directly from (6.49) that
1 -1
rE = :I:(—Ni) o,
P+
which implies that
Ci|O
Tl =€ b (6.52)
< v’ Cil®72 1y '
~ 2Cxo ey T O
Thus, for a generic constant Cx determined by A, it holds that
2
T 2
‘V O] o,y T 20— CON2r,y 0. (6.53)

If ag is taken large enough (depending only on Ay), then ® = 0, which yields V(¢) = 0.
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Verification of H. Similar arguments show that
V.H=0, VxH=0. (6.54)
As for the boundary terms, observe that hy - Ny = 0, which implies

Hy-Ny =Ny -Diyhy — Ny - Dy vy
= —h:|: . [DZ:I:N-'r — N+ . DhiV:I:

6.55
:N-I—'DhiV:I:_N—i-'DhiV:I: ( )
=0.
In addition, one can derive from v_ - N =0=h_-N that
H -N=9h_ -N+[h_,v_]-N=0. (6.56)

Therefore, H(z) = 0.
The previous arguments ensure that (I, v,h) is a solution to the original (MHD) system,
with (BC) following from the construction. The uniqueness and the continuous dependence on

the initial data of the original problem follow from those of the div-curl ones. In conclusion,
Theorem 2.1 holds.

7. STABILIZATION EFFECT OF THE SYROVATSKIJ CONDITION

7.1. The strict Syrovatskij condition. Since the free interface is a compact 2-D manifold,
lhy xh_| > 0 on I" implies that hy form a global frame of I". Therefore, for any tangential
vector field a on I', there is a unique decomposition:

a=athy +a"h_. (7.1)
Furthermore, the following relation holds:

Lemma 7.1. If (1.6) holds on a compact hypersurface I' C R3, then for any non-vanishing
tangential vector field a on I, it holds that

P+ 2 P- 2 P+p- 2
———Ja-hy|"+ —Ja-h |"——————Ja-[v][">0 on T. (7.2)
p+ + p— p+ + p- (p+ + p-)*
Proof. For simplicity, we shall use the notations:
g++=hy-hy, g _=h -h, gy =g y:=h -hy, (7.3)
the decomposition (7.1), and
[v]=w hy +w™h_ on T. (7.4)
Thus, (1.6) is equivalent to
lhy x h_|? > ’O—Jr|w—|2|hJr xh_|? + p—_‘w+‘2|h+ x h_|?, (7.5)
P+ + p— P+ + P—
namely,
1> 'O—+|w_|2+p—_}w+|2. (7.6)

P+ + p— P+ + p—
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Hence, direct calculations yield

Pt jan P+ —P ja.np?
P+ + p— P+ + p—
P+ + - 2
= Pt Jatgiptage |+ e g +at g
P Il i
P+ - p— P+
> (—|w >+ ———w?] )—‘a 8+++ta g4 }
P+ + P— P+ + p— P+ +p (7.7)
P+ -2 P— + 2
Tt —w )—a g-——+atgi-
(P++P— P++P—} | p++p | |
Y o ++ - - + 00— 2
> —————latwigi +aTw g +awhg +aTw gy |
(o+ + p-)
P+P— 2
= P e
(p+ + p-)?
which is exactly (7.2). O
Since I' is assumed to be compact, the following corollary follows:
Corollary 7.2. Suppose that (7.2) holds on I". Then it holds that
. . P+ 2 P— 2
T(hy,[v]):= inf inf ———Ja-hy(z)|"+ ——|a-h_(z
(b, [v[) it o8, p++p_| +(2) p++p_| (@)
al=
(7.8)
— e )@
(p+ + p-)?

=:5>0.

Equivalently, the following relation holds on I:

P+ p—
(M+Wm®mwm+wm®m - _¢H®M0mﬁ (7.9)
7.2. Interfaces, coordinates and div-curl systems. From now on, {2 is assumed to be
T2 x (—1,1) and .Q,Jr has a solid boundary T2 x {4+1}. Hence, some statements in § 3.4 and
§ 3.6 need slight changes in order to be compatible to the topology of .Qf': More precisely, the
harmonic coordinate maps introduced in § 3.4 are now replaced by

AyXE =0 for y e QF
XE(z) = @r(z) forze Ik, (7.10)
XE(z) =z for z € T2 x {+1}.

Similarly, the definitions of harmonic extensions of a function f defined on I' are modified to
AR+ f =0 for xeRF,
Kef=f for xel, (7.11)
Dg,®+f =0 for xe T2 x {£1}.

The Dirichlet-Neumann operators are also defined by (3.32) for which ¥4 are given by (7.11).

Therefore, Lemmas 3.4 - 3.6, and those properties of the Dirichlet-Neumann operators intro-
duced in § 3.4 still hold.
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As for the div-curl systems, due to the different topology, we introduce the following modifi-
cation of Theorem 3.8:

Theorem 7.3. Assume that I' is an H%k_%(k > 3) surface diffeomorphic to TZ, with
dist (I, T2 x {£1}) > ¢o > 0 (7.12)

for some positive constant co. Given £, g € H'=1(21) and h € Hl_%(F) with the compatibility
condition
/ gdx = / hdS,
Qt r

V.-f=0in 27, / f.N;dS =0. (7.13)
T2x{+1}

and suppose further that £ satisfies

Then, for2 <1 < %k — 1, the following system:

Vxu=f in 27,
Veu=g in 27, "
u-N;y =h on I, (7.14)

u-N; =0, f-u-zx{+1}ud§=ﬁ on T2 x {+1}

admits a unique solution u € H' (27) satisfying the estimate:

H™2)

lallgr e+ < C(|F|H%k_%,00) X (||f||H/—1(9+) + lgllgi-1(@+) + 1Al oy + |ﬁ‘) (7.15)

One may refer to [CS17] and [SWZ18] for a proof of Theorem 7.3.

7.3. Reformulation of the problem. We shall consider the free interface problem (MHD)-
(BC’) under the assumption that k > 3. Due to the difference between Theorems 3.8 and 7.3,
the velocity and magnetic fields depend on one more boundary condition — their integrals on
the bottom or the top solid boundary. Therefore, when considering the variation, one needs to
assume further that the integrals of v and h4 on T2 x {£1} also depend on the parameter .
More precisely, set

B :=/ v:dS and bi :=/ hy dS. (7.16)
T2x{+1} T2x{*1}

Then, for each fixed ¢, v+ and Bi are constant tangential vectors on T2 x {£1}. With the same
notations in § 4.2, assume that x,, w«+ and V4 are parameterized by . Thus, (4.22) can be
rewritten as

0gVts = Bi(%a)afﬂ}fa + Fi(%4)0pw st + G (a, 012a, @x+)08%q + S+ (%q)0g0+.  (7.17)

It follows from the same arguments that Lemma 4.1 still holds with a subtle modification of
indices, namely, s,s’, 0,0’ > % rather than > % As for the new term S+ (x;)dg0+, they are the
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pull-backs to I'x of the solutions to the following boundary value problems:
V.yrt =0, Vxyir=0 inRF,
y+-NL =0 on [7%,
y+ Ny =0 on T2 x {£1},
Jroxen y£dS =0g5L  on T2 x {£1}.
Therefore, since dgv4 are constant on T2 x {%1} for each fixed B, the following estimates hold:
3 3 3

|Si(%a)|:/(lk2;HS(F*)) < Cy« for 3 <s < Ek ~5 (7.19)

(7.18)

and
(7.20)

| W

sS
| i(%a)|$<H%k_%(F*);f([RZ;HS/(F*))

3 3
)EC* for Efs’fik—

Due to the change of .Qti, we shall also modify the definition of p;l’:b to:
— Ap}, = tr(Dag - Dby) in 2F,
P =0 on Iy, (7.21)
Dﬁipib = ﬁi(ai,bi) on T2 x {1},
for which the solenoidal vector fields at, by satisfy ai - ﬁi =0=Dby- ﬁi on T2 x {£1}.
With all the previous modifications on the definitions of the harmonic extensions, Lagrange

multiplier pressures, and div-curl systems, it follows from the similar arguments that (4.62) can
be rewritten as

2 xa + Cou(ta, 010, Vi, Waet )2tqg — F ()01 @05 — G (g, Ds2q, 0, jx, D, f)) — S (%4)040

7.22
=1+ B(xa)] " (722

W.N
~Ap(W-Np) +W-ApNy +a> ——— oo,
N+-(voq§;t)

Since b4+ and f):t are all constants, Lemma 4.4 holds with £k > 3, = 0 and a slight change of
(1.68) as:

8%
| lz[ﬂ%k—%(r*)xH%"—%(r*)xH%"—Z(Q\r*)xH%k—z(Q\r*)x[szuez;H%"—%(r*)]
(7.23)

2 .
<a Q(|atxa|H;k_g Y N T ||J*||H;k_1(w*)),
whose proof follows from the same arguments. Furthermore, the operator .#(x,) satisfies
|y(”“)|g(R2;H%k—%(p*)) < Q(I%alH%k_%(F*)), (7.24)
and
l(Sy(%a)lff[H%kZ(I‘*);f(uﬂ;H%"Z(r*))] = Q(|%“|H%k—%)' (7.25)

Indeed, the leading order term of .7 (34); 5 is V1 (k4 o ® 1,)+S(2%4)0:9, so the above estimates
follow from the standard commutator and product ones.
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7.4. Linear systems. Similar to the arguments in § 5.1, assume that 'y € H%k"'%(k >3)is
a reference hypersurface, and A, defined by (3.25) satisfies all the properties discussed in the
preliminary. Suppose further that there are a family of hypersurfaces I'y € Ax parameterized
by t € [0, T] and four tangential vector fields vix, hoy : I« — T T satisfying:

Xa € CO{[O T]: sz—*(r*)} N Cl{[O, T): Bs, C H%k—%(r*)}, (H1")
and
0 3k—1 1 3k—3 )
Virhi,eC {[o, T H3 z(r*)} nc {[o, T):H3 z(r*)}. (H2)
Moreover, assume that there are positive constants cg, s¢ so that (7.9) and (7.12) hold uniformly

on [0, T1].
The positive constants L; and L, are defined by:

s fa O] 3003 0O g g e Bs Oy < (120
dvas(t),dhas(®))| 2, 3 < Lo. 7.27
ERARIOR SITGI NI 2 (7.27)
Consider the following linear initial value problem similar to (5.4):
02§ + Go(xa, dr3ta, v, ) = g, (7.28)
F(0) =fo, 9,F(0) =T,
where fo,1,g(t) : I'x = R are three given functions, and % is given by:
Go(%ar 01, Vo Bi) =2 Dy, 3y + Dy, Dy, + —2= B (34, w1)
(o+ + p )?
——%%,h ——%J{,h_ ,
o+ + p_ (a +*) ot + p_ (a *)
which is exactly (4.55) with a = 0.
Thus, for 0 </ <k — 2, the energy (5.5) is replaced by
1 1 L 1 2
~ -1 L 2 1
Bt foud) = [ (=53 A 50) R @rf + Do) o 0]
t
P+p— ~ 1 ~1 é 1 g
3| (-]5 A5 KA Dy F) 0 @7
l 2 ’
P+ ~1 S I\2~1 1
—N2 A, N2 )" N2|(D o
(R a5 T (00, ) 0 07
I 2
p— ~1 N4l
- +p_'(—N2 A N3) R (D, P ooF!]| dS:.
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It follows from the same arguments as in the proof of Lemma 5.1 that there exists a generic
polynomial Q determined by A, such that the following estimate holds:

Ej(t,§,9.5) — E1(0, o, 1)
- - t
<Q(L1, L) /0 (If(S)IHgHg iy FIFON 3001 0 186304 (m)x (7.30)

(KO 3003 gy + 10O 3001 )

Thanks to the uniform stability condition (7.9), one can derive an estimate similar to (5.42), as
long as T < C for some constant C = C(Ly, L3, %9):

2 2
H(t)'H%“F%(F*) + latf([)lH%“r%(r*)

~ ~ t
< O(L1,Lz,55 ")t 2 2 N ’

for any integer 0 </ <k —2,0 <t < T, a generic polynomial Q and a positive constant Cx
depending on Ax. Thus, one has

(7.31)

Proposition 7.4. For0 <[ <k -2, T < C(I:I,Ijz,so) and g € CO([O, TI; H%H%(F*)), the
linear problem (7.28) is well-posed in CO([O, Tl: H%H'%(F*)) nct ([O, Tl: H%l"'%(ﬂk)), and the
energy estimate (7.31) holds.

It is also noted that the arguments in § 5.2 are still valid for the linear systems for the current
and vorticity here.

7.5. Nonlinear problems. As in § 6, take a reference hypersurface I'x € H 3643 and 80 >0
so that

3 1

satisfies all the properties discussed in the preliminary. Furthermore, assume that there is a
constant ¢o > 0 so that (7.12) holds for I'x. We shall solve the nonlinear problem by iterations
on the linearized problems in the spaces:

g € c"([o, T; H%k—%(r*)) N cl([o, T): Bs, C H%k—%(r*)) N cz([o, T); H%k—%(r*));
wsejee € CO(0. TS HIN@F)) N CH (1071 HE*(2F) )
Be,ba € C1([0, T): R?).
7.5.1. Fluid region, velocity and magnetic fields. As discussed in § 6.2, the bulk region, velocity
and magnetic fields can be obtained by solving the following div-curl problems:
Vevi=0 Vxvi=a&4 in 27,
v Ny =Ny @yr,v)o®;! on Iy,
vi-Ny=0 on T2 x {£1},
f'l]'zx{:l:l} Vi dS = Ot on T2 x {£1};

(7.32)
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and -
V.hy =0, Vxhg=js inRF,
hy -NL =0 on Iy,
hy .ﬁi =0 on T2 x {£1}, (7.33)
JroxgenhedS = ba on T2 {£1},

where @+ and j+ are given by (6.3).
7.5.2. Iteration mapping. In order to construct the iteration map, we consider the following

function space:

Definition 7.5. For given constants T, My, M1, M,, M3, co, s¢ > 0, define X to be the collection
Of (Jfa, w*aj*? Bﬂ:’ P)Zl:) Sa‘tiSfying:

|24 (0) — kx| F 3k %(F*)<51’
(0 xa) ()], 34 % IIw*(O)II a3 @y’ 13+ Ol , 34 S\ < Moy,
<
tes[%?T] (I%angk_g(F*),laz%alH;k 5 II(w*»J*)IIHgk_l(Q\F*), v D = My,

3tf)i‘) < M,

s (natw*ank_zm\F*)’ 180l 342 1 1

sup ‘8,2,}{[1‘ 3k < a’*M; (here a is the constant in the definition of x,).

t€[0,T] H¥* 3@y =

For T'(hy, [v]) defined by (7.8),
T (b, [v]) = 50

holds uniformly for 0 <¢ < T. In addition, (7.12) and the compatibility conditions

/ Ni-w*id[s':/ Ni-jerdS =0
T2x{£1} T2x{*1}

hold for all ¢ € [0, T1].
As for the initial data, take 0 < € <« 67 and A > 0, and consider:

F(e. A) = { (o Grxa)r, @)r. Goy). (B2)ye (B2) -
where

)t = ot 3o oy < €

BN @\ry’ [ Gs1ll
Y (hy, [v]) = 2s0,

(Bi>1‘ <4

|@exa)tl 353 f,ye (@l

H2K 3¢

H%k_l(ﬂ\['*)’ |(6:|:)I|’

and
dist (I7, T? x {£1}) > 2cp.
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In addition, (w«); and (j«); satisfy the following compatibility conditions:

T2x{£1} T2x{£1}
Thus, 3 (e, A) C H2F=3 () x H3%¥73 () x H2A"1(Q2 \ I) x H2F"1(2\ I) x R*,
Then, as in § 6.3, one can define the iteration map:

8%1,‘%c1(n—+_1) + %o (%a(n)7 at%a(n), V*:I:(n), h*:l:(n)>%a(n+1)

(7.34)
+7 (% ™) 8,55
% ™0) = (), 306" TP 0) = @)
and
00+t + D, et - Dhim)ji(nﬂ) =D, wtnve® — Dji<n+1)hi("),
rj T DVi(mji(nH) - Dhi(n)wi(”‘H)
(7.35)

e Dji(n+l)v:|:(n) — Dwi(”+l)h:|:(n) _ 2tr(vv:|:(n) X Vhi(n)),
@0 T00) = Pl o (K7 0) 7). 10 = P(Gree (T ™)

where (vi(”),hi(n)) is induced by (Jta(”),w*i(”),j*i("),fl(in),Bil)) via solving (7.32)-(7.33),

the tangential vector fields v*i(”) and h*i(") on Iy are defined by
-1
V" = (Dcpr,(m) [Vi(") °oPp o — (&th(n))V],

hyt ™ = (D¢Fl(n))_l(hi(n) ° <ppt<n)),

and the current-vorticity equations are considered in the domains .Qti(n).
Define
t
S (3 m_ g +® 1) 4T gy’
Y (t) = (v+ +/ / —-D, vy’ ——Vp + D, why"dSde’, (7.36)
+ ( )I o Jroxgrny F P+ hy
t
r+D . (R (n) ™ 45 d¢’
by ()= (bj:) +/ / D, owve™ =D, why™ dSdr’, 7.37
* 1 Jo Jroxgxy " E (7:37)
and
w*(n-i—l) = w(n+1) o ‘xrt(n)’ j*(n+1) = j(i’l+1) o xrt(n), (738)

where pi(n) are given by (4.4) with (%a(”),vi(”),hi(")) plugged in.
In order to show that the iteration map is a mapping from X to X, one may first check that

dist (1,0, T2 x (£1}) = 260 - CT‘atxa(”H) > co, (7.39)

3 5
COH2*=2(Iy)

and
@V W ID = (W) [90])| = TOM, Ma) < 0, (7.40)
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if T is small compared to My and M.

(n+1) and f)gl:’l-‘rl)

Next, for v}, , observe that

S|+ S| = 4+ TOM) < My, (7.41)
and
‘8t5:|:(l)| +

provided that T is small and M, > M;.
Then, with the same notation as in § 6.3, one can define

([ s, Ouxars @)y, G, (B)ye (B) |- [ ™ 042 @ ux @, 5L 5]
— (%a(n-H)’w*i(n-l—l)’j*i(n—i-l)’ Bg:H-l)’ Bg;ﬂ))_

06 (0)] = Q(M1) < Mo, (7.42)

(7.43)

It follows from the arguments in § 6.3 and the linear estimates in § 7.4 that the following
proposition holds:

Proposition 7.6. Suppose that k > 3. For any 0 < ¢ < 89 and A > 0, there are positive
constants My, My, M, M3, co, S0, so that for small T > 0,

q3{[(%‘1)17 (r%a)1. (@)1, Gae)1. (32); (Bi)l] [%a, @ st Jaks Ok, B:i:]} € X,

holds for any ((}fa)l, (0¢2a)1s (@sx2)1, Gt )1 (Bi)l’ (Bi)l) € (e, A) and
(ka,w*i,j*i,ﬁi,f)i) €Xx.

For the contraction of the iteration mapping, as in § 6.4, assume that

(% (B). 02 (B). 3" (8). 5L (8). 5L (B)) € & and
((}{a)I(IB)’(at%a)I(:B)a(w*:l:)I(:B)’(J*:i:)I(ﬂ), (Ui)l(ﬂ), (Ei)l(ﬂ)) C 3J(e,A) are two families of

data depending on a parameter f.
Define (}f D (B), @£ @ TD(B), jur "V (B). ﬁ(nH)(,B) b(nH)(,B)) to be the output of the

iteration map. Then, by applying /08 to (7.34)-(7.37), one has the variational problems
(6.17)-(6.20) as well as:

a%taﬂ%a(n+1) + %(n)aﬂ%a(n+1)
— _(3ﬂ<g(n))xa(n+1) + g (g(n)atw*(n) +@m 4 y(n)atg(n)), (7.44)

Dpxa D) = 9p0ea)i (B), 04 (92D 0) = D (Buxa)(B),

1 ) - (7.45)
=0 Uj: / / D ( v VL ) _ —vpt™ 4D (n)h:t(n)) dsde’,
8 T2x{+1} B = P+ P by

and

t
8,950 = dp (f):i:)l'i‘/ /TZX{ﬂ} Dp(Dy, wve® =D, whe®)aSd’ . (7.46)
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Consider the energy functionals:

Mgy = ‘3 (n)‘ (aa (n>‘
®) tes[l(l)?T]( pa H%k*%(f'*)—i_ pot¥a H%k*%(r*)+

+ (7.47)

).

sl s

3 3
H2*2(2F) H2*"2(2F)

‘8/313(")

‘3;355?)

()

and

©n®) = s ([A0an],, 30

7(1‘)+‘8ﬂ(at%‘1)1‘[{%k—7 +

2(I%)

+H aﬂ(w*:i:)I”Hgk 2 gi) + H aﬁ(j*:l:)IHH%k_z(Qit)'i‘ (7.48)

(@l + g (5<), )
It follows from (7.45)-(7.46), (7.23)-(7.25), and the arguments in § 6.4 that

1
€D < 6™ + 0(M1)(€),, (7.49)

provided that T is sufficiently small. That is, the following proposition holds:

Proposition 7.7. Assume that k > 3. For any 0 < € < 89 and A > 0, there are positive
constants My, My, M, M3, co, S0, so that if T is small enough, then there is a map © : 3(€, A) —
X such that

Tz, 6(0)} = G(a), (7.50)
for each ¥ = ((a)r. @exa)r. (@wt)r, Gu)r (B2);. (Bi) ) € 3. 4).

7.5.3. The original MHD problem. For the fixed point given in Proposition 7.7, one can obtain
(Iy, v+, hy) by solving the div-curl problems (7.32)-(7.33). Observe that (7.36) and (7.37) yield

1 ~
/ 9ve + Dy, ve + —Vp* — Dy, hedS =0 (7.51)
T2x{+1} o+

and
/ d:hy + Dy hy — Dy, vy dS =0, (7.52)
T2x{%1}

which, together with the arguments in § 6.5, shows that (I'f,vi,hy) is the unique solution to
the (MHD) (BC’) problem.
In particular, Theorem 2.2 follows.

7.6. Vanishing surface tension limit. In this subsection, it is always assumed that £ =
T2 x {%1}, k > 3 and the initial data satisfy the assumptions of Theorem 2.2. To derive the
uniform-in-a estimates, we consider the following four parts of the energies:

. 1 2 2 1 2 2 2
8o(t) = 2/+p+(|v+| + |hy| )dx—i—z/gt,o_(|v_| + [h| )dx+ ods (153)

t

(7.54)

81(1) = D> 5, + a2y |? + et 5,

34,5 3 k-1 _3 )
H2K73(Iy) H2"" " (I) H2K73(Iy)
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— 2 .2
B2() = N0l 3y gy T I 300 (7.55)
and
-2 e 12
B3(0) i= [0+ + | (7.56)
It follows from the (MHD)-(BC’) system that
d
—&o(t) =0. 7.57
P (1) (7.57)
Indeed,
55 oo (s meP)dr= [ oy D v+ by —va - ¥y dx
dr 2 'Qt+ Qj‘ +
= / LTV VpT + py Dny(hy - vy)dx
< (7.58)
= /Q+ —V . (pTvi) + 4+ Ve (b [hy - vi]) dx
t
= / —pteds;.
I
Similarly, one can calculate that
—= —(|v= h_|“)dx = —0dS;. 7.59
i3 [, (v PempP)ac= [ pooas, (7.59)
It follows from (3.6) and (3.16) that
d
— ds; = di ds
d[ n t /Ft IVI‘tV t
= / divr, (6N4) + divr, (v — N4 ) dS;
I (7.60)
= [ 6divy, Ny +V'0.N,dS,
Iy
= 9K+ dSt .
I
Thus, (7.57) follows from the above relations and the boundary condition that p™—p~ = a2k

on Ft.
Furthermore, applying the arguments in the proof of Lemma 5.1 to (4.42), (4.43") and (7.9)
yields

€+l 363y IVl 30 g oy 1B (7.61)

d
‘581(” H251 (1)

= Q(“|K+| H%k(.Q\Ft))

for some generic polynomial Q determined by A, co, and s¢. Similarly, (4.69)-(4.70) and the
arguments in § 5.2 lead to:

d
—8s(t
‘dt 2(1)

< 01+l 330y My Il 3 ) (7.62)
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As for 83, it follows from (7.36) and (7.37) that

< Q(IK+| \

3
253y’

On the other hand, if T is small compared to ||(vo+, ho+)||

I

w

d
—85(t
; 3(17)

Vlg3k@vr,y Hﬁk(a\m)'

H%k(.QgE)’ one has
dist (F,,"[I'2 X {:I:l}) > co.

Then it follows from the estimates of div-curl systems and Lemma 3.2 that

2 < K ,Co | X
vl 30 gy <01+l 303,00

X (||wi||Hgk_1(Qti) +ING - AnvVelpaes oot |Bi|),

2

and
sl 3 gy <0161 3030 )<

(Il s gy N+ B, 3

H2K %(Ft)

)

In addition, (3.19) implies

—Ni-Arvye =Drykq + 2<]I+‘(DV:|:)T> = Dy + D(Vi_u)K+ + 2<]I+‘(DV:|:)T>.

Thus, one has

= C*(|D{K+|H%kg(ﬂ) el -3 ) |4 V)l 3 3(1“;))'

It follows from the interpolation inequalities of Sobolev norms that

vl 36 g,

< [D_K ) K l @ ’ 0
< 01Dy sy Wy 2 gy 102130 g

o)

where Q is a generic polynomial determined by A and cg. Similarly,
~Ny - Aphe =Dy, kp + 2<11+)(Dhi)T>

implies that

sl 3e ey = Q{1051 303 gy Bl 301 g [ sl )
In conclusion, setting
&) =8p+81+ 82+ &3,
then one can deduce that,

d
‘Eem < QIE()],

61

(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)

(7.69)

(7.70)

(7.71)
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where Q is a generic polynomial depending on Ax, s and ¢o (in particular, independent of «

and ).
Thus, Theorem 2.3 follows from the above energy estimates.

APPENDIX A. PROOF OF LEMMA 4.1

Proof. (4.23), (4.25), and (4.27)-(4.28) follow from (4.19)-(4.21) and Proposition 3.3. As for the
variational estimates, let f,h : I’y — R, g: 2\ I'x — R3 be given quantities, and wq, wa, w3 :

2\ I't — R3 the solutions to the following div-curl problems respectively:

V-w; =[V.,Df]v in 2\ Iy,
V x w; = [Vx,D]v + [Dr, [P][w* 0 (xpt)‘l] in 2\ I3,
Ny -wix =Ny -bi(xg, 0%, f) on It,
N-wi_=0 on 052,

where

by = D[(8K " () fIv) o (Pr,) ']+ [valr, — (& " () [0¢%a]v) o (@r,) 7]

+ [82K 7! (%a)[0¢%a, fIv] 0 (Pr,) 7,

fr = R [(8R ! (ea)[f]0) 0 (@r,) 7" ]:

V-wy =0 in 2\ Iy,
VXW2=|P(go(XFI)_1) in 2\ Iy,
Ny-wyyr =0 on I7%,
N-woe =0 on 0§2;
and
V-wz3 =0 in 2\ Iy,
Vxwy=0 in 2\ Iy,
Ny -wax = [ (%g)[h]v] o (@r,)~" N4 on Iy,
ﬁ'W3_=0 on 052.
Then

Dgv =wy + wp + w3,

with the substitution f = dgx,, g = dgwx and h = 8?ﬂ%a.
By the definitions, there hold

B (xa)h = D®r,) {waslr, o @, — 8K ! (xa)[M]v}.

Fi(xa)g = D®r,) '(watlr, o @r,),

and

G (%a, 0%, wsx) f =DPr,) Hwislr o (Pr,) — 8*K ™ (%) [0s%a, fIv}

— (D@r,) HYDEK ™ ) [f1v) - v}
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Therefore, if %, and @« depend on a parameter B, then applying d/df to (A.7) yields that
8Bt (xa)[0gxalh
= —(D@r,) ' D@gyr,v)OPr,) {waxlr, o @, — K" (xa)[h]v} (A.10)
+ (D) H(Dpwsx)|r, o @r, — 82K (¢4)[0p%a, h]v},
where
Dg = dg + DR(BB),”,,)O(XD)_L (A.11)

3 3
<s<3k-3

1
2 23

, (A.12)

Thus, one can derive from the commutator and div-curl estimates that for

8B (ea)0pxalh| sy = Cll =2y - [98%al 303

namely, (4.24) holds. (4.26) can be shown in a similar way.
The proof of (4.29) is a little more complicated. Indeed, denote by

r. Hik‘l(rz\r*))’

0= Q(|3t%a|H%k_g( @]l
and note that

0
%[Gi(%a,at%a,w*i)]{] (A.13)

= —(D®r,) ' -D@gyr,v) - D®r,) ' -ay + (D)~ ! - dpay,

where
ar == wit|r o (Pr,) — 82K (a)[0sa. f1v —D(SK ™ (a)[fIV) * Vs (A.14)
It follows from (A.1), (4.16), and Proposition 3.3 that
< .
[kl oty S IVl 301 gy 100kl 3y ) 1 o3
Vel e vy W o3y (A.15)
<
Therefore,
-1 -1
|(D@r,)~! - D(@gyr,v) - (DPr,) -ai}HJ_%(F*) <o \3ﬂ%a\Ha_%(r*)lﬂHa_%(F*)- (A.16)

Next, by observing that
dpayr = (Dgwix)|r, o @r, — 8K (a)[0p%a, 0¢%a. [ v
— 8K (%a)[07g%a, f1v = D{S>K " (xa)[0pa, [I} * Ve (A.17)
—D{8K ™ (xa)[fIv} - DpVr,

one can deduce from (4.19) that

{agai _ (DﬂWl:l:)|Fz ° (pft ‘Ha—é(r*)

(A.18)

<01 o oy (198%l got gy + [0 o5 oy + 195002 Lo )
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As for the estimate of Dgwi, first note that

Dpwizl ot ) S0 [DsWi] o(oz)
<0 ”V : (Dﬂwli)HHo—l(Qti) + HV X (Dﬂwli)HHv—l(sz,i)

+ [Ny - (D'Bwli)‘H"_%(r,)'

The commutator estimates yield that

HV : (Dﬂwli)nyo—l(g,i) + HV X (Dﬂwli)”HU—l(Q,i)

Solflyo-sn, (‘35%‘,{0—5(&) + Haﬂ“’*i”Ha(Qf))'
For the boundary estimate of Dgwi4, due to the relations that
N4 - (Dgwis) — N4 - Dgby
=Ny -D[(@pyr,v) o (@r,) "]+ (wiy —bl),
and

N -D[@gyrv) o @) |-l =bD)| oy
t

S0l yo-3py 198%al yot oy
it is direct to compute that
(Dgbt) o ®r, = dg(bt o Pr,)
= D{8*R ™" (%a)[0pa, [0} - DPr) ™" - {v|r, 0 Pr, — 8K ™" (xa)[91%a]v}
— DK™ (k) S0} - DDr,) ™" - D(dgyr,v) - (DPr,) "
Avelr, o @, — 8K (3¢0)[0s 4]V}
+D{SK ™" () fIv} - (DB~
. {(u)ﬂvi) o ®r, — 6281 () [9pa. 0 a]v — m—l(xa)[afﬂxa]v}
— 8R! (%a)[07g%a, f1v — 8K (xa)[0p2a, D1 2a, £V

Therefore, it follows from (4.19) and Proposition 3.3 that

|9g(bs 0 @r,)| <o |If]

8%3 Xa

|85%a|H0_%(F*) + ‘

HO"2 (I HO"3(I) (

In conclusion,

%[Gﬂxa,m,w*i)ﬂ

1
H72(Iy)

<0yt (15l * [ o3 1 + 1308 Lonry )

which is exactly (4.29).

-3 .
H° 2(F*))

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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APPENDIX B. PROOF OF LEMMA 4.4
Proof. Note that
F(ta)g = 1+ B [V (k4 0 @r,) - Flxa)g). (B.1)
It follows from (4.25) that

|¢gz(}fa)g|HV(r*) S Ay

Vil 09r,) Blag|,,

V' (ks o ®r,) (B.2)

<A |F (%a)8| grs+e(ry)

3
H2572(ry)

<
NA* |%a |H%k—1 (F*) ||g||Hs+e—% (.Q\F*)’

for % < s < 3k — 2, which is exactly (4.63). For k > 3 and % <g < %k — %, similar arguments
lead to (4.65).
To estimate ¢, one observes that
[I + f%(%a)]g(%a, 81‘%(1, (()*,j*)
=—a2&-[go¢ +D (uo<1§p +3ypv)] (B3)
V'(N-{—o@f}) Iy U t trly .
+ az%a'yrt + %Cga%a - VT(K+ [¢] ¢Ft) . [Gat%a] + %1 o ¢Ft’
with # given by (4.52). Thus, (4.64) and (4.66) follow from (4.50), (4.43), (4.43"), (4.59),
(4.59"), Lemma 4.3 and Theorem 3.8.
Next, we consider the variational estimates under the assumption that & > 3. Suppose that
£(xg) and n(xg) are two functionals so that

§=d+2)m. (B.4)
Then, when computing the variation formula, the following relation holds:
9
= % — 4+ —=(# B.5
Therefore, if %, is parameterized by £, then
an (xa)[aﬁ%a] =T+ 93(}((1)]_1{85 (xa)[aﬂxa] —0A (}fa)[a/g}fa]n(}fa)}, (B.6)

where §.2 has the following estimate (by Lemma 4.1):

5% =¢
| (%a)|$|:H%k—g(F*);g(Hs—Z(F*);HS(F*))] =

for % <s =< %k — % and a constant Cx > 0 depending on Ax and s.

Similarly, it follows form (B.1)-(B.5) and (4.26) that

}8{(1 + B(%a))-F (xa)} [aﬁ%a]g|H%k—%(F*)

VTop(cs 0 ®r) Flia)g| 3. 3. + |Vl 0 @r) - 8FCa)Opxale| 30

H3*3(1)

SAs (B.8)

(F)

I8%al 30-3 ) I8l 362 0 1y

which, together with (B3.6), (B3.7), (B.1) and Lemma 4.1, yields (4.67).

NA*
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To derive the variational estimate of &, we suppose that x,, @, and jx depend on a parameter
B. With the same notations as in (4.17), the variational estimate of f; o @, can be given by:

0
‘8,3( 1 O®Ft) H%k“‘([‘* sz Yy (Bg)
For simplicity, from now on, we shall use notations |-[; = ||gs(r,), 9£ls = ||¢:}:||HS(Qt:t), and
- 1 - P+ P— P+ p—
bi=— (Vgt+Vg )+ -~ _pDow——" Dyhy—-—" Dy h.
p++p—( ) (os +p)2  prtp- T p+ + p—

First note that
Dg(B- ArN-) ;

_, SAc Dbl 7 |AR N3 7 + [P A N[y 1Bl 3 3, (B.10)

and one can derive from Lemma 3.7 and (3.13) that
Dp Ar N+ |34y Sa. aﬂxa}H%k,%(r*). (B.11)
As for the term IDﬂb Lemma 3.7, (4.19) and (4.50) lead to
3y SAs DpVa|34_s + |Dp Duh[3,_, + |Dg Duwlz;_,
2 B.12
32y + )atﬂ”" wdesiry T 1080 33 g0 (B.12)
+ 98] ;303

2(2\Iw)'
where Qx is a generic polynomial depending on Ay of the quantities 04| 3,

H3*3 (1)’
[|@ *”H%k*‘(.Q\F*) ||J*||H%k71(9\[‘*) Next, observe that

[D4[N - Du- (D7, Pl 35, <o.

Bﬂka\H%k_g(r*) + !'Dﬂ“‘gk—z

2
R L PE S LC L PE TS PPV
(B.13)
and
|[Dﬂ]I+}%k_4 NTo aﬂ%d‘H%k_“(F*)' (B.14)

Thus, the variational estimates of the first six terms of (4.52) follow easily. To deal with the
terms involving A, I — ®, one can deduce from (3.7), (4.19) and Lemma 3.7 that

|Dg{ A, My (W, w)] — (R(Ft,W)K+}|%k_4

S0- Dpw|ay s + [Pkt |ai s+ |9p%al 3z 1 (B.15)
O Tl Ll PE T Y L ST Py

Similar arguments yield that
IDg{ A, [My(hs, hi)] — R(I7 h )iy} 34

B.16
e (B.16)

0. L TNl Ll PELSE TPV
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For the last term of (4.52), one can deduce from (4.36) and Lemma 3.7 that

Dg AFtr("%k—4

0. |9pxal 3i-g 1y + [DpTol 34
So. |0p%al 3z ) T1P8ET =8 305 + [D8 (Prv = ) [ 35
So. |0pxal 3ieg )+ 1D8V] 363 + [Dph] 563

H%k—zt(r*) + ” ﬂ“’*”H%k—%(Q\F*) + ”aﬂj*”H%"_%(ﬂ\F*).

‘H%k_%(l’*) * | 1pa
(B.17)

Thus, the variational estimate of the last term of (B.3) has been obtained.
Next, for the variation of the first term on the right hand side of (B.3), observe that

ad N+ o(sz "4
%(V -(Nyodr,) [B ©r, + Du.(we &r, + 3:)/1‘,\’)])
. a N+ O¢Ft g
=it pry ) e on ~Dul@oon) + ()]} (B15)
N+ O¢Fl 8

ooy 300 Pr ~Dul(ue @r) + (rrr)v]).

Due to the relations that

<A, |0p%al , (B.19)

D@p7r,)| 33

‘8[3 (Nt o ¢r,)|%k_% SA. 3

35_3
H2%"2(I%)

and

9
%(D“*[(u °Pr) + (atm)v])'H%k—“(r*)
‘ 0

— %(Du* [D@pt s Uy + 2(atVFt)v])

<0.

3%
H24 (T

)+ |3'3%a

2
93503,y * [T FELSI

H%k—a(F*
+ | 9p3« |

351 s
H2%"72(02\Tx)

(B.20)

+ 8,2/3 Xa

3
I T

the estimate of (B.18) can be deduced via (B.12).

Since h can be recovered from (xg,j«) by solving the div-curl problems, the operator %,
can also be expressed as Gy (%q, 0t%a, @, jx). It follows form (4.55), (4.19), (4.22), Lemma 4.1
and Lemma 1.3 that for 2 < s' < 3k — 1, ¥ := H3%=3(I) x H3*4(I,) x H3*¥=3(2\ ) x

H3k=3(2\ I), it holds that

|565a (%a, 8t%a, w*’j*)|;.‘Z[“//;JZ(HS/(F*);HS'_3(F*))]
) (B.21)
= Q*(|at%a| 3k %(I‘*)’ ”w*”H%k—l(Q\F*)’ ”']*”H%k_l(ﬂ\l’*))'
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In particular, by letting s" := %k — 1, one can deduce that

0
%(Cga)/['t + ,@(ga}fa)

0.

H354(r,)
(B.22)

aﬁ”a|H%k—%(1‘*) + 8?53@ T Ha’f}w*HH

+ |9p3s |

3 5
H3**(T,) 2K=3 (@2\I)

3k—2 .
H2"72(2\TIy)

Furthermore, one may derive from Lemma 4.1 that

'%{wm 0 ®r,) - [GDxal

<0,

34T, (B.23)

O8al y3s ) + ‘a?ﬁ}‘“

H355(r,) +| aﬂ"’*HH%k—%(n\r*)'

In conclusion, (4.68) follows from (B.4)-(B.7), (B.3) and (B.9)-(B.23). O
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