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REDUCTION OF COMPLEXITY IN LEARNING DEXTEROUS
MULTI-FINGERED MOTIONS: A THEORETICAL EXPLORATION
INTO A FUTURE PROBLEM C. E. SHANNON RAISED*

SUGURU ARIMOTOf

Abstract. This paper aims at unveiling the secret of the human ability for skilled motion that
a multi-fingered hand with soft fingertips generates for executing a variety of dexterous tasks in his
everyday life. As an elementary process of such dexterous motions, the dynamics of pinching an
object by means of two multi-degrees of freedom robot fingers with soft and deformable tips are
derived and analyzed. It is shown that passivity analysis leads to the effective design of a feedback
control signal that realizes dynamic stable pinching, regardless of a complicated nonlinear structure
of motion equation of the over-all system in which extra terms of Lagrange’s multipliers arise from
holonomic constraints of tight area-contacts between soft finger-tips and surfaces of the rigid object.
It is then shown that a principle of linear superposition is applicable to the design of additional
feedback signals for controlling both the posture (rotational angle) and the position (some of task
coordinates of the mass center) of the object under the condition of stationary resolution of the
controlled position-state variables. It is finally claimed that complexity of learning such an over-all
skilled motion of pinching an object stably and controlling it at a prescribed posture and position
can be drastically reduced from an exponential order to a linear order of the sum of complexities of
learning each resolved motion separately, correspondingly to 1) stable pinching, 2) specification of
the rotational angle for the object, and 3) that of some of position coordinates.

1. Introduction. It is not widely known in the robotics world but noticed
among information theoretists enthusiastically admiring Shannon’s whole works that
Dr. C. E. Shannon, the founder father of information theory, was also extremely
interested in robotics. According to C. E. Shannon Collected Papers [1], he built a
maze-solving machine called “Theseus” in 1950, just a half century ago, which was a
proto-type of maze-solving micro mice built by enough engineers for a variety of micro
mouse maze contests over the world. He wrote a paper “Programming a Computer for
Playing Chess” in 1950 [2], which bore fruit in 1997 when the IBM computer “Deep
Blue” defeated the World Chess Champion. At the same time Shannon enjoyed con-
structing amusing gadgets and machines in his life;, among which Mr. John Horgan,
an interviewer from the Scientific American, recognized Shannon’s seven chess-playing
machines at his house (see page XVTI in [1]). The author himself had the good fortune
to see how one of his chess-playing machines with three fingers picked up, moved, and
placed pieces in the screening of his 8mm film that he brought to Kyoto, Japan, when
in the year of 1985 he was awarded the first Kyoto Prize in the field of basic natural
science. In 1983, Dr. Shannon wrote, “What can we expect in the future? Three
advances in the artificial intelligence area would be most welcome. (1) An optical
sensor-computer combination capable of learning to recognize objects, people, etc., as
our eyes and occipital cortex do. (2) A manipulator-computer combination capable
of the purposeful operations of the human hand. (3) A computer program capable of
at least some of the concept formation and generalizing abilities of the human brain,
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(see page XVTin [1])”. Nevertheless, Dr. Shannon did not show any theoretical inter-
relations between the mathematical information theory and the design of his favorite
brainchildren, though “Shannon himself suggests that applying information theory to
biological systems may not be so farfetched, because in his view common principles
underlie mechanical and living things” (see page XVII in [1]).

This paper attempts to challenge the problem how to explicate human ability of
becoming skillful at pinching things by his thumb and fingers in mathematical terms
(see Fig. 1). To do this, full dynamics of horizontal planar motion of a set of dual robot
fingers pinching a rigid object via soft and deformable finger-tip material are derived
by using Enler-Lagrange’s formalism. By analyzing the dynamics from the viewpoint
of input-output passivity for the overall system, we find two basic physical principles
for synthesizing an overall feedback control signal that realizes a specified skilled mo-
tion. The first physical principle is called a “principle of superposition” of feedback
signals (see Fig. 2), from which the overall feedback control signal realizing the spec-
ified skilled motion is generated as a linear sum of separate feedback signals designed
independently such as 1) a feedback signal designed for realizing stable grasping, 2)
for regulating the rotational angle of the object, and 3) or/and for positioning the
object in cartesian coordinates. It should be remarked however that in order to apply
the principle of superposition the closed-loop system must have a unique stationary
resolution in such a sense that the target state of position variables can be decomposed
into a combination of f; = fa = fq (corresponding to stable grasping with internal
force fg), # = 04 (a desired rotation of the object), z = x4 or/and y = yq and a
solution trajectory to the closed-loop differential system under geometric constraints
of tight area-contacts converges asymptotically to this unique target position-state. It
is shown in more detail that if a set of chosen Jacobian vectors associated with those
feedback signals Af;(= fi—fa), A0(=0—04), Azx(= z—z4) or/and Ay(= y—yaq) are
linearly independent then LaSalle’s invariance theorem assures the unique stationary
resolution. This finding can be interpreted that complexity of learning the overall
skilled motion can be reduced drastically from exponential order of N; x Ng x N; to
linear order of Ny 4+ Ny + N , a linear sum of complexities corresponding to learning
each motion separately, where Ny (or Ng, Ny ) may stand for a number of practices
needed to acquire the ability of grasping stably an object (or that of regulating the
rotation of the object, that of positioning).

2. Dynamics of Pinching Motion. Firstly let us derive the dynamics of pinch
motion by means of dual fingers with soft tips (see Fig.3). There are four equations
of geometric constraint as shown in the following:

(1) Yi=er—rmepr=c—r(r+60—q1— q2)
(2) Yy =g —raps = ca — ro(m — 6 — g21 — q22)
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FiG. 1. Motion of pinching an object

Motor Program

Uy Ux Uy
Motor Program/l\ /l\ /\\
u
T\
Fi1G. 2. The principle of Superposition
l .
r=2x+ icosé’—YlsmH
l
(3) :I‘Q—ECOSQ—YQSina
l
Y=y — isinﬁ—chosﬁ
l
(4) :y2+§Sin9—Yzcosﬁ

where all symbols are defined in Fig.3. The first two equations arise from tight area-
contacts between each surface of finger-tips and the surface of the rigid object. The
left hand sides of eqgs.(1) and (2) should be calculated by the half of state variables,
that is, position variables z = (z,4,0)T, ¢1 = (q11,q12)T, and g2 = (qa1, q22)T as
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follows :
L
| |
x:
oc.m:_:(x, y)
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Op=Cxo1, Yo1)
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O1=(x1, 1) 72, \ 7z
| ‘\}y‘
Fi1Gc. 3. A setup of dual fingers with soft tips pinching a rigid object
(5) Y1 = (xo1 — ) sinf + (yo1 — y) cos
(6) Ya = (xo2 — ) sin§ + (yo2 — y) cos f
where
(7) 201 = —l11 cos q11 — l12 cos(q11 + ¢12)
(8) yo1 = {11 8inq11 + l128in(g11 + ¢12)
9) zo2 = L + 131 cos g1 + 22 cos(qa1 + qa2)
(10) Yoz = l21 8in q21 + {22 8in(g21 + ¢22)

The second two equations (3) and (4) follow from the fact that the loop starting from
the origin O of the first joint center of the left finger and returning to it through Og;,
01, O¢.m, Oz, Ogy and O’ is closed (see Fig.3). Then, it is reasonable to introduce
Lagrange’s multipliers A1, Az, A; and A, for corresponding constraint equations (1)
to (4) and consider the two quantities

Q= Ae{(x1 — @2) +1lcos — (Y1 — Yo)sin}
+Ay{(y1 —y2) — Isinf — (Y1 — Y3) cos 6}
(11) S= 3 X(Yi—ci+ripi)

i=1,2

On the other hand, the distributed pressure arised from the deformation of each finger-
tip can be lumped-parametrized into the single reproducing force f;(Az;) = K;Az?
for i = 1,2, as discussed in appendix of the previous paper [3], which has direction
+(cos, —sin#)T as shown in Fig.3.
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It has been also shown in [3] that both the gradients of @ with respect to (zo;, yo:)
for 7 = 1,2 arise in the same direction as the lumped-parameterized reproducing force
fi(Az;) (that is, (cos@, —sinf)T) and hence the effects of this constraint force on
Lagrange’s equation of the overall sysytem should be merged in f;(Az;) appearing in
it. Thus, the Lagrangian of the overall system can be given as

(12) L=K—-P+S§

where S is defined by eq.(11) and K and P signify the kinetic energy and potential
energy respectively defined as

(13) K= i;; %Q'ZTHi(qz')q'i + %Z'THZ'
7 Az,
(14) P = fi(§)de

where H = diag(M, M,I), M and I denote the mass and inertia moment of the
rigid object, and Az; denotes the maximum displacement of deformation for :=1,2.
Applying Hamilton’s principle for the variational form

2]
(15) / {6(K =P+ S)+uldq +ujdga}dt =0
t1

we obtain the Lagrange equation of the overall system descibed as follows (see [3] and

[4])

d 1. : A - ’
{fh(w)a;4-§fh(w)}qi+n$(m,%J%'+(_1) 1J$’< a )'ﬁ

—sinf
1 T [ sinf _ .
(16) —}—/\Z{m(l)—JZ-(COSa)}_uZ (i=1,2)
cos
Hi4+ > (=)' | —sind | fi(Az;)
i=1,2 }/Z
sin
(17) + E A cos =0

i=1,2 (—1)i(Az; — 30)

Here, eq.(16) denotes dynamics of the left finger for ¢ = 1 and the right one for i = 2
and eq.(17) denotes dynamics of the rigid object. As is shown in [3], the overall
dynamics of eqs.(16) and (17) satisfy passivity, that is, satisfy the relation:

¢
(18) /‘@?U1+dEUQdT==E@)—INO)2-—EUD
0
where F signifies the total energy of the overall system, that is,
(19) E=K+P

Symbols Jo; for i = 1,2 appearing in (16) denote Jacobian matrices of (zq;, yo;) T with
respect to (i1, gia)T for i = 1,2 respectively.
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3. Design of Feedback Signals. Given a desired internal force f; and rota-
tional angle #,, consider the feedback control signal

¢ R A _1yi—1 T cosf _ r; _ 1
(20) s = —huss + (-] fd{Jm(_SM) I Y2><1)}

(21)  ug = (—l)iC‘l(ﬂMJraé){Jg; < 2(6}) ) o < 1 ) }

where AB=80—-64, f>0,a>0 and

(22) C = (l — ACL‘l — ACEQ)

As shown in [3], uy; is designed for realizing dynamic stable grasping and ug, is
designed for regulating the rotational angle # to the target § = 64. Substituting
u; = uy, + ug; + Au; into eq.(16) yields

—sin 6

) i fa 1 s 1 T { sinf o '
(23) +r1—|—r2(Y1 Y2)< 1 )}—I—/\Z{rl ( ] > Jo; < cos 0 )} U = A

At the same time it is important to rewrite the equation (17) into

L |
{0 g+ 5100 i+ (51000 + k) q'”(‘”l_l{‘]g;( IR

(24) Mz — (Afi — Afa)cosf + (A + Az)sinf =0
(25) My+ (Afy — Afa)sinf + (A + Aa2)cosf =0
(26) 16 — Aflyl + Angg - fd(Y1 - Yg) - AlACL‘l + AQA(EQ = —§(A1 — /\2)

By the same way as given in the previous paper [3] it is possible to show that the
input-output pair {(Auy, Aus), (41,4¢2)} of eqs.(23) to (26) satisfies passivity. More
precisely, we obtain

t
/ (41 Aup + 43 Aug)dr =
0

¢
(27) W (t)-W(0) + / {kaallgr|? + koalldsll? + a6 } dr
0
where W 1s defined as
(28) W=K+AP+ L(Yl —Y2)? + N
2(7"1 + Tz) 2
where dz; = Az; — Azy; and Azg = fl-_l(fd), and
Sz
(29) AP =) / {fil + Azg;) — fa} dE
0

i=1,2

Now note that the dimension of the state space of the dynamics of eqs.(23) to (26)
is 14 since there are position state variables ¢q, g2 and 2z and velocity state variables
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q1, g2 and z. However, the DOF of the overall system is not 7 but 5 because the
motion is subject to geometric constraints described by eqs.(1) and (2). Hence, the
set of all states defined by SG = {(ql,qz,z,ql,cj2,é) g1 = 0,42 = 0,2 = 0,0z, =
drg = 0,Y; — Yy = 0, A = 0, together with constraints of eqs.(1) and (2)} becomes
of 1-dimension in the 14-dimensional state space. It is also important to note that
the scalar function W can not be a Lyapunov function for the system of eqgs.(23) to
(26) with Au; = 0 for ¢ = 1,2 even if its time derivative W is non-positive definite,
i€,
2

(30) W(t)=— ki,

i=1

iil|? — af?

because W is not positive definite in the manifold defined by
(31) M = {(q1,92, 7,41, 42, %) : under constraint eqs.(1) and (2)}

Therefore, it is not possible to apply LaSalle’s invariance Theorem [5] for proving

qla qZ’ .Z

Initial State

Yi-Y=0

FiG. 4. A solution to the closed-loop equation converges asymptotically to the 1-dim. stable
manifold SG. Here, M denotes the hyperplane defined by g3 = 0,42 = 0 and z = 0.

the asymptotic convergence of the solution to eqs.(23) to (26) to the 1-dimentional
manifold SG.

Now, we assume that at the initial time ¢ = 0 the object is in the state of being
pinched and magnitudes of all velocity vectors ¢1(0), ¢2(0) and Z(0) are not so large.
In particular, the value of W is small enough satisfying

(32) W(0)</0 - fie)de, i=1,2

Then, it follows that AP(¢) < W(¢) < W(0) and thereby Az; for i = 1,2 are positive.
This implies that both fingers maintain contacting the object. Moreover, it is possible
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to check by taking velocity feedback gains k,, for i = 1,2 appropriately that ¢;(¢) does
not deviate much from ¢;(0) for i = 1, 2,because

4i(7)||*dr

t
(33) A Ml (DI < 4 Higi)ds < 2W (1) < 2W(0) — 2/ ke,
0

which means

(34) lla: @)l < \/@ /000 llg: (¢)||2dt < @

where A, denotes the minimum eigenvalue of H;(g;) for all ¢;. Hence, ¢;(t) €
L2(0,00) for i = 1,2 and ||¢;(#)|| for i = 1,2 are uniformly bounded. Then, it is
easy to check that all state variables (q1(t), q2(t), 2(t), 1(t), q=(t), #(t)) remain in a
neighborhood of its initial state in the 14-dimentional space. Next it 1s improtant to
note that A; and As can be expressed in terms of state variables by using constraint
eqs.(1) and (2) and their first and second derivatives in time (see Appendix B). Thus,
all state variables are uniformly bounded and A; and A, are also uniformly bounded.
Then, according to eqs.(23) to (26), acceleration variables (§1, ¢2, Z) become uni-
formly bounded and thereby (41, 42, #) become uniformly continuous. In particular,
uniform continuity of ¢;(¢) together with the fact that ¢;(¢) € L(0, 0o) implies

(35) ¢i(t) >0 as t— oo for i=1,2

Further, referring to the uniform continuity of §; and the convergence of eq.(35), we
can conclude that §;(t) = 0 as ¢ — oo for i = 1,2, too. On the other hand, eq.(A-1)
shows(see Appendix A)that H(t) — 0 ast — 0 because all zy; and gg; vanish as t — co.
This means that H(t) — 0 as t — oo, because H(t) is also uniformly continuous. Then,
from eqs.(1) and (2) it follows that Yi — 0 and Y5 — 0 as t — oo. Finally it is
important to note that differentiating eqs.(5) and (6) in ¢ yields

(36) zsinf +ycosf — 0 as t — o©

and subsequently

(37) Zsinf +gcosf — 0 as t — o©

since 6§ — 0 as t — oo. On the other hand, eqs.(24) and (25) are reduced to
(38) zsinf +ycosf + A+ Xy =0

which concludes that A\ + Xy — 0 as t — oco.

Since A1 + Ay and the angular velocity vectors ¢1, g2, 0 together with ¢y, g, 0 tend
to vanish as t — oo, the remaining terms of eq.(23) with Au; = 0 except the inertia
and centripetal-Coriolis force terms can be expressed as follows:

(39) Ar =0 as t—= o0

where

n(h) () w(me)  (6)
(40) A=
(1)
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fa 1
A+ r1+r2(Y1—Y2)—ﬂC Af
(41) r= A= BCTIAG
Afi
Afs

It should be noted that the 4 x 4-matrix A is nonsingular. Thus, it follows that »r — 0
as t — oo. Hence, from the last two elements of r defined by (41) it follows that
Afy = 0and Afy; — 0 as ¢ — co. Then, by subtracting the second component of r
from the first one of r, we obtain

(42) Yi—-Ys—=0 as t—o0
On the other hand, note that it follows from eq.(26) that
(43) (Z—Axl—Al‘g))\l _fi(Yl —Yg) —0 as t— o0

Substituting eq.(42) into this yields Ay — 0 as ¢ — oo. Then, from the second
component of r it follows that A — 0 as ¢ — oo. In this way, we could prove the
following theorem:

Theorem 1 For given f; > 0 and 6; > 0, the state vector of the solution to
the closed-loop system of eqgs.(23) to (26) with Au; = 0 and Aus = 0 converges
asymptotically to the 1-dimensional manifold SG of dynamic stable grasping (see
Fig.4), provided that inequality (32) is satisfied at ¢ = 0.

4. Principle of Superposition. According to Theorem 1, the skilled motion
composed of dynamic stable grasping (pinching) and regulation of rotation angle of
the object is realized by the overall control input signal u; = uy, + ug, (1 = 1,2).
It should be remarked at this stage that a single control input uy, (i = 1,2) itself
realizes stable grasping in general. In fact, if u; = uy, (i = 1,2) in eq.(16), then the
closed-loop system satisfies the following relation:

d ¢ .
(44) Sy = _/ AR
dt 0 =172
where
(45) V=K+ AP+ L(Yl — Y2)2
2(7’1 + 7“2)

This means that a solution to the closed-loop system of eqs.(16) and (17) with u; =
uy, (1 =1,2) converges asymptiotically to the 2-dimensional manifold

SGf — {(qlanazaqll == an.2 = O,Z = 0) :
(46) fi(Az1) = fa(Azs) = f4,Y1 = Ya,eqs.(1) and (2)}
This is an extended result of Nguyen’s reasoning (see [6]) of stable grasping from

the static viewpoint to the dynamic one. Then, it is reasonable to say that the pair
{uy,, ¢; for i = 1,2} constitutes a conjugate power pair. Now consider again the input
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signal vg,, + = 1,2, for regulating rotational angle of the object in addition to uy,,
i =1,2. Then, the closed-loop system of eqs.(23) to (26) with Au; = 0 satisfies

0

¢ ¢
(47) / Z —§Fug,dr = AV (t) — AV(0) +/ af?dr
0 j=1,2

where

(48) AV=W-V = §A62

Note that AV is non-negative definite and the right hand side of eq.(47) is bounded
from below. We say that such input ug, (i = 1, 2) together with ¢; (i = 1, 2) constitutes
a conjugate power pair posterior to the stable grasping control input uy, (i = 1,2).
Thus, it is possible to see the linear superposition of ug, (i = 1,2) on uy, constitutes
the conjugate power pair together with ¢; (¢ = 1,2). Tt is then important to note that
according to Theorem 1 the solution trajectory to the closed-loop system of eqs.(23)
to (26) with Au; = 0 converges to the 1-dim. manifold SG (see Fig.4). This can
be interpreted that the half state of position variables is resolved into the stationary
state {f1 = fo = f4,Y1 = Ya(=1n),0 = 04} which, together with constraints of eqgs.(1)
and (2), characterizes the manifold SG. We call such convergence to the 1-dimensional
manifold SG the stationary resolution of position state variables. Next, consider the
problem to regulate position of the mass center of the object in x-axis or y-axis, since
the manifold SG is of 1-dimension and parametrized by n(= Y7 = Y3), which can be
used for determination of the value of z or y in the cartesian coordinates of the object
mass center O¢ . = (2,y). To show this, we assume for simplicity that ry = ro = r

F1G. 5. Pinching by a pair of thumb (2DOF) and indezx (8DOF)

and characteristics of reproducing forces of both the soft finger-tips in maximum
displacements are the same, i.e., fi(Az) = fo(Az). Then, for a given desired position
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x4 1n x-direction, consider the input signal

dzoi
(49) Ug; = lrsin€d< 1 ) — ( gg;ll )] (x/_gjd)7 1=1,2
Bqiz

where

P Y Y
(50) | %2- Toz 1; 2 Gin 0,

Then, it is easy to see that

¢
(51) —/0 Z G ug,dr = %(1‘/ — zq)?

1=1,2

Note that from eqgs.(3), (4), and (A-7) and (A-8) of relations between z; and zg;
(1 =1,2) it follows that

Y + Y-
g(sin 6 —sinfy)

1
(52) r=z — E(Aazl — Azg)cosf —
This means that (ug,, us,) together with (¢1, ¢2) constitutes the conjugate power pair
posterior to the input uy, + ug,, ¢ = 1,2. Since z — 2’ where Az; — Azy — 0 and
A6 — 0, we are now able to state:

Theorem 2 The feedback control signal u; = uy, +ug, +us,, ¢t = 1,2, for eqs.(23)
to (26) renders the trajectory of a solution to the closed-loop system convergent
asymptotically to the SGy = {(ql,qQ,z,ql =0,42=0,2=0) : Y1 = Ya, f(Az) =
f(Azs) = fq4,0 = 64,2 = x4 and egs.(1), (2)}, provided that its initial state lies in
some neighborhood of SGg in 14-dimensional state space. It is interesting to note
that the overall feedback control can be designed by linear superposition of feedback
signals uyf;, ug; and uy; though dynamics of the relevant motion are nonlinear and
subject to geometric constraints. It should be remarked that in this case the following
relation holds :

(53) wE= —{ko a1l + koollgall?} — ab?
where
(54) E=W+ %(1‘/ — zq)?

Note that F is now positive definite in the 10-dimensional manifold constrained by
the egs.(1) and (2) and their time derivatives. Then, it is possible to apply LaSalle’s
invariance theorem [4] and conclude that ¢ and § tend to vanish as ¢ — oo, where
q=(qF,qF,2T)T. Then, from eqs.(24) and (26) it follows that

—cosf sinf Afi —Af, 0
(55) < sin @ cos@)( A+ A )%<0)
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as t — oo, This means that Af; — Afs — 0 and A\y + Ay = 0 as ¢ — co. Then, the
remaining terms of eq.(23) except the inertia and centripetal-Coriolis terms should
tend to vanish as ¢ — co, which is expressed by the form

(56) Av =30 as t—= o0

where

A+ g—i(yl —Yy) — B¢TAl

(58) v = A — BCTIAG
Afi

v(z' — z4)

It is easy to check that the matrix A is of full rank and hence v — 0 as ¢ — co. This
means that Afy -0, 2’ — x4 — 0, Afy — 0 as ¢t — co. Then, by the same way as in
the proof of Theorem 1 it is possible to conclude that A — 0, Y1 — Y5, — 0, Ay = 0,
Az = 0 as t — oo, which completes the proof of Theorem 2.

It is not so difficult to show that if one finger is of 2 DOF and the other is
of 3 DOF (see Fig.5) and both finger-tip characteristics are the same in the sense
that 71 = rq and fi(Az) = fa(Az) for all Az > 0 then it is possible to find two
separate conjugate power pairs uz; and uy; together with velocity vector ¢; posterior
to uf; + ug;. Then, the principle of superposition leads to design of the feedback
control input u; = ug; + ug; + Uz + Uys, ¢ = 1,2, that realizes the stable grasping and
desired posture (§ = 64) and position (z = 24 and y = yq) of the object (see Fig.2).

The principle of linear superposition suggests that learning the overall skill can be
decomposed to learning each of resolved motions step by step in a manner as described
by Fig.2. Then, complexity in learning the skill can be reduced from Ny x Ng X N X Ny,
to Ny + Ng + Ny + Ny if Ny (as well as Ny, N, N,) signifies the number of exercises
needed to acquire the control input signal uy, (i = 1,2) (as well as up,, us,;, uy, (i =
1,2)). Tt can be interpreted that in the case of human learning some geometrical
information on the Jacobian vectors appearing in eq.(20), that is, vectors a;(1,1)T
with a; = r;/(r1 +r2) and J& (cos @, —sin )T must be acquired through the repeated
practices, which in the sequel must be memorized as motor programs in a long-term
memory in the brain. Computer simulation results show the effectiveness of the
proposed design scheme for a class of skilled motions, which will be reported in our
separate papers [7] [8].

5. Conclusions. This paper has shown that in both human and robot learning
two physical principles called “principle of superposition” and “unique stationary res-
olution of position state variables” play an important role in learning a skilled motion
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such as pinching an object stably and regulating it at desired posture and position.
This observation is obtained by strict analysis of nonlinear dynamiks of a mechanical
robot model consisting of a set of two multi-degrees of freedom robot fingers with soft
tips, which are derived on the basis of Euler-Lagrange’s formalism. The two proposed
principles must be one of such physical principles commonly underlying mechanical
and living things as Shannon predicted in 1983 (see page XVII in [1])
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Appendix A. It is necessary to prove the equality

(Zo1 — &o2) sin 6+ (Yo1 — Yo2) cos O — r1(g11 + ¢12) + r2(g21 + ga22) =

(A-1) ({ — Az — Azg)b
To do this, note that two constraint egs.(3) and (4) lead to
(A-2) (z1 —z2) +lcosf— (Y1 — Ya)sinf =0
(A-3) (y1 —y2) —lsinf — (Y1 — Y3) cos =0

which gives rise to
(A-4) (1 — za)sinf + (y1 —ya)cosf =Y, — Vs
Differentiating this in ¢ yields
(21— &2)sinf + (1 — ya) cosf =
(A-5) Vi —Ys — {(¢1 — 22) cos 0 — (y1 — y2) sin 0}
Since the content of brackett {} of eq.(A-5) is equivalent to [ as easily calculated from
eqs.(A-2) and (A-3), (A-5) can be rewritten, by referring to eqgs.(1) and (2), in the
form
(21— &2)sinf + (1 — ya) cos f =
(A-6) —(r1+7r2— 1)9 + 71(g11 + g12) — r2(g21 + G22)
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On the other hand, it is easy to see that
(A-T) Ti = To; — (—l)i(ri — Az;)cosf
(A-8) yi = yoi + (=1)' (ri — Az;)sind
from which it follows that
(21 — &a)sinf + (1 — ya) cosf =
(A-9) (201 — &02) sin O + (Yo1 — Yo2) cos b — (11 + 1y — Azy — Azs)d
Substituting this into the left hand side of eq.(A-6) yields the equality (A-1).

Appendix B. We prove that A; and As can be expressed in terms of state
variables by substituting eqs.(1) and (2) of geometric constraints together with their
first and second derivatives in ¢ into eqgs.(23) to (26). In fact, let us denote

(B-1) S; =Y, —¢; + 704, i=1,2

and multiply eqs.(23) with Aw; = 0 by (8S;/8¢;)TH; ' (i) for i = 1,2 and eqs.(17)
by (8S;/0z)TH=! for i = 1,2. Then it follows that

(B-2) (gj:)qu + Xisi H Yai)si+9:=0 i=1,2
(B-3) (aai) 4 Y NpTH g+ hi=0 i=1,2
1,2

where "
- s =ri(1) = (o)
(B-5) pi = %zl = :E;Z

(=1)(Az; - 31)
where g; and h; denote corresponding remaining terms that are independent of );
(1=1,2),¢; (:=1,2), and Z. Since S; = 0 for i = 1, 2, it follows that

== () i (5" {aee) Yo {5

(B-6) i=1,2
Then, from eqs.(B-3), (B-4), and (B-7) it follows that

(B-7) (041 + /?’1))\1 +9X2 = g}

(B-8) A1+ (az + 52))\2 = 5

where

(B-9) a; = s; Hi'si, Bi = piH 'pi, v =p1H'po

Since a; > 0, 3; > 0, and ¥2 = 3139, it is easy to check that eqs.(B-7) and (B-8) in
A1 and A5 can be uniquely solved. Thus, it is proved that A; and Ay can be expressed
in terms of only state variables.



