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DECORRELATION OVER INFINITE DOMAINS: THE ENCRYPTED
CBC-MAC CASE*

SERGE VAUDENAY'

Abstract. Decorrelation theory has recently been proposed in order to address the security of
block ciphers and other cryptographic primitives over a finite domain. We show here how to extend
it to infinite domains, which can be used in the Message Authentication Code (MAC) case.

In 1994, Bellare, Kilian and Rogaway proved that CBC-MAC is secure when the input length is
fixed. This has been extended by Petrank and Rackoff in 1997 with a variable length.

In this paper, we prove a result similar to Petrank and Rackoff’s one by using decorrelation
theory. This leads to a slightly improved result and a more compact proof.

This result is meant to be a general proving technique for security, which can be compared to
the approach which was announced by Maurer at CRYPTO’99.

Decorrelation theory has recently been introduced. (See references [17] to [22].)
Its first aim was to address provable security in the area of block ciphers in order to
prove their security against differential [7] and linear cryptanalysis [10]. As a matter
of fact, these techniques have also been used in order to prove Luby-Rackoff -like
pseudorandomness results [9] in a way similar to Patarin’s “coefficient H method” [14,
15]. All previous cases, however, address random functions over a finite domain, which
is not appropriate for MACs.

The CBC-MAC construction is well known in order to make Message Authenti-
cation Codes from a block cipher in Cipher Block Chaining mode. Namely, if C' is
a permutation defined on a block space {0,1}™, for a message z = (my,...,my) €

({0, 1}™)¢ we define
MAC(z) = C(C(...C(m1) + mg...) + my).

The addition is traditionally the XOR operation but can be replaced by any group
(or even quasigroup) law. In 1994, Bellare, Kilian and Rogaway proved that if C' is
a uniformly distributed random permutation, then for any integer £ and any distin-
guisher between MAC and a truly random function which is limited to d queries, the
advantage is less than 3d%¢?2=™ [6]. This shows that no adaptive attack can forge
a new valid (z, MAC(z)) pair with a relevant probability unless the total number of
known blocks df is within the order of 2% . This, however, holds when all messages
have the fixed length £. If the attacker is allowed to use messages with different length,
it is easy to notice that for any message  and any block @ the MAC of z concatenated

with a — MAC(z) is
MAC(z,a — MAC(z)) = C(a)

which does not depend on z and allows one to forge a new authenticated message by
replacement of z.

In 1997, Petrank and Rackoff addressed the case of DMAC defined by
MAC(Z‘) = 02(01(01( . .C’l(ml) +ms .. ) + mg))
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76 SERGE VAUDENAY

(see [16]). This type of construction does not have any originality since it is already
suggested by several standards [2, 3, 4]. Tts security was, however, formally proved in
[16] for the first time.

If we replace C; by C5 o 01_1 we can obviously remove the last C; application.

We can thus consider the MAC defined by
MAC(Z‘) = Cg(cl( . .Cl(ml) +ms .. ) + mz)

which we call the “encrypted CBC-MAC” in the sequel. In this paper we give a
security proof which is different from [16] and with a slightly improved reduction.
Our proof also happens to be more compact (it is less than two-pages long), thanks to
use of the decorrelation theory tools. Our approach is also more general and can be
applied to other schemes. In this way it can be compared to the information theoretic
general approach which was announced by Maurer at CRYPTO’99 [12].

1. Prerequisite.

1.1. Definitions and Notations. First of all, for any random function F' from
a set M7 to a set M5 and any integer d we associate the “d-wise distribution matrix”
d d
which is denoted [F]?, defined in the matrix set R*1 %Mz by

[F](le,...,xd),(yl,... Yd) = Pr[F(Il) =Y, aF(Id) = yd]'

Given a metric structure D in RM7%M% we can define the distance between the ma-
trices associated to two random functions F' and (. This is the “d-wise decorrelation
distance”. If (G is a random function uniformly distributed in the set of all functions
from My to My (we let F* denote such a function), this distance is called the “d-wise
decorrelation bias of function F” and denoted DecF%(F). When F'is a permutation
(which will usually be denoted C' as for “Cipher”) and G is a uniformly distributed
permutation (denoted C*) it is called the “d-wise decorrelation bias of permutation
F” and denoted DecP%(F). In previous results we used the metric structures defined
by the norms denoted ||.||2 (see [18]), |||-Illcos I|-/as ||-]]s (see [21]). These four norms
RMIxM]

are matrix norms, which means that they are norms on 2 with the property

that
[[A > B|[ <[|A[].||B]l-

This property leads to non-trivial inequalities which can shorten many treatments on
the security of conventional cryptography.

Given two random functions F and G from M; to My we call “distinguisher
between F' and G” any oracle Turing machine A? which can send M -element queries
to the oracle O and receive Ms-element responses, and which finally outputs 0 or
1. 1In particular, the Turing machine can be probabilistic. In the following, the
number of queries to the oracle will be limited to d. The distributions on F and G
induces a distribution on A" and A%, thus we can compute the probability that these
probabilistic Turing machines output 1. The advantage for distinguishing F' from G
is

Advu(F,G) =Pr[A" - 1] —Pr [A% > 1].



DECORRELATION OVER INFINITE DOMAINS 77

For any class of distinguishers Cl we will denote

Advel(F,G) = max Adva(F,G).

We notice that if A is a distinguisher, we can always define a complementary distin-
guisher A = 1 — A which gives the opposite output. There is no need for investigating
the minimum advantage when the class is closed under the complement (which is the
case of the above class) since

Adv 4(F,G) = —Adv4(F, G).

We consider the class Clg of all (adaptive) distinguishers limited to d queries.

1.2. Properties. The d-wise distribution matrices have the property that if '
and GG are independent random functions, F' from M4 to M3 and G from M to M,
then

[FoG]? =[G x [F]°
Thus, if we are using a matrix norm ||.||, we obtain
DecF| || (F o G) < DecF{j |(F).DecF| ||(G).

and the same for permutations.

The ||.||s norm defined in [21] has the quite interesting property that it charac-
terizes the best advantage of a distinguisher in Clg.

LEmMA 1.1 ([21]). For any random functions F and G we have

I[F] = [G)]la = 2.Adveya (F, G).

In this paper, we will use the ||.||, norm only and omit it in the notations.

Finally we recall the following lemma.

LEMMA 1.2 ([21]). Let d be an integer, F1,..., F, be r random function oracles,
and Cy,...,Cs be s random permutation oracles. We let Q be a deterministic oracle

Turing machine which can access to the previous oracles and an input tape x. It
defines a random function G(z) = Q(Fy,...,F,Cy,...,Cs)(x). We assume that
Q 1s such that the number of queries to F; is limited to some wnteger a;, and the
number of queries to C; s limited to b; in total for any o = 1,... r and any j =
1,...,s. We let the F} (resp. C]*) be independent uniformly distributed random
functions (resp. permutations) on the same range than F; (resp. C;) and we let

G*=Q(Fy,...,Fr,Cy,...,C¥). We have

DecF(G) <> DecF**(F;) + » _ DecP’*(C;) + DecF4(G").
i=1

j=1

This lemma actually separates the problem of studying the decorrelation bias
of a construction scheme into the problem of studying the decorrelation biases of
its internal functions F; and C; and studying the decorrelation bias of an idealized

version G*.
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1.3. The Coefficient H Method. Patarin introduced the “coefficient H me-
thod” which enables one to make pseudorandomness proofs more systematic. In the
decorrelation theory setting, this method can be formalized by the following lemma.

LEMMA 1.3 ([22]). Let d be an integer. Let F' be a random function from a set
M to a set My. We let X be the subset of M of all (z1,...,x4) with pairwise
different entries. We let F* be a uniformly distributed random function from M to
Ms. We assume there exists a subset Y C /\/lg and two positive numbers €1 and ¢
such that

o VIFM) 1 >1-¢
eVeeX Vyey [FIf,> (1 —e)(#M2)™?
Then we have Dech(F) < 261 + 2¢4.

This lemma intuitively means that if [F]¢ is close to [F*]ﬁ,y for all z and almost

all y, then the decorrelation bias of F' is snylall. It 1s quite straightforward with
techniques inspired by Patarin [14, 15] and Maurer [11].

As an illustration, Lemma 1.3 can be used in order to prove the famous Luby-
Rackoff Theorem easily as shown in Appendix.

THEOREM 1.4 (Luby-Rackoff 1986 [9]). Let F}, Fy, Fy be three independent

random functions on {0,1}% with uniform distribution. We have
DecF(U(F;, Fy F3)) < 2d%27%
DecP(U(F;, F3, F3)) < 2d%.27%.

The results hold for Feistel schemes defined from any (quasi)group operation.'

2. Decorrelation Biases of Functions over an Infinite Domain. In order
to define decorrelation biases of MACs, we need to address the problem of having
infinite sets. Let for instance F' be a random function defined from M7 to M (M3
is the set of all finite sequences with entries in M7). We define the [F]90 9% matrix
with rows defined on M?" x ... x M and columns defined on M%. Next we define
DecF?9(F) as the distance between [F]%% and [F*]90% where F* has a
uniform distribution. Additionally, we can define

Dech’q(F): ,max DecF - 94 (F).
q1T-.-T49d=9q

We can easily check that all previous results remain valid for these definitions, namely:
e The best advantage of a distinguisher limited to d (adaptively) chosen queries

with a total length of q blocks between F' and F* is %Dech’q(F).
e Asin Lemma 1.2,if G = Q(F4, ..., F, FY, ..., F{) uses functions F; and F}

on fixed input length, but with occurrence numbers of a;f and b; respectively
where £ is the length of the input of GG, we have

DecF49(G) < Z DecF*(F, Z DecF%*(F!) 4+ DecF*(G*).
We can use permutations C; and C" as well and have DecP instead of DecF,
or even mixtures of functions and permutatlons

1Here U(Fy, F¥,FY) is the standard notation for a Feistel cipher with three rounds and round
functions F}*, F¥, F.
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e Lemma 1.3 still holds with DecF%? instead of DecF? and X equal to the set
of (z1,...,x4) with total length q.

3. Security of MAC. Message Authentication Codes (MAC) are functions
which map any binary string onto a fixed length value? with a secret key. In this
paper, we consider functions defined on the set ({0,1}™)* of finite sequences of m-bit
integers.? For instance, given a block cipher Encg which is a permutation on {0, 1}™
defined from a secret key K, we consider the CBC-MAC construction defined by

MACk (my, ... ,my) = Encg (Encg(...Encg(mq) + ma...) + my).

Since the secret key K is unknown by the opponent and chosen at random by the
legitimate user, we can consider equivalently C' = Encg as a random permutation
with a given publicly known distribution, and the MAC itself as a random function.

The purpose of MACs is to authenticate messages. Namely, the legitimate au-
thenticator provides MAC(z) in order to authenticate a message . Saying that a
MAC is (d, q, p)-secure means that for any opponent who can use the legitimate au-
thenticator as an oracle for at most d — 1 chosen messages z1,...,24-1 and issue an
(24, ¢) pair such that z4 # z; for any i and that the total length of z1,...,2z4is of ¢
m-bit blocks, the probability that ¢ = MAC(z4) is less than p. This is the security
against adaptive existential forgery attacks.

We notice that if MAC is such that Dech’q(MAC) =¢, thenitisa (d,¢q,27"+5)-
secure MAC. Namely, for any opponent we can make a distinguisher who just queries

the forged x4 and check whether the output is ¢ or not. Since the advantage must be
3
probability of success against a truly random function, which is 27™. Hence we use

less than 5, the probability of success of the opponent must be less than § plus the
Dech’q(MAC) upper bounds as security evidences.

For instance, we can consider the Bellare-Kilian-Rogaway result which works with
a fixed input length £.

THEOREM 3.1 (Bellare-Kilian-Rogaway 1994 [6]). For any fized integer £, we
consider the function MAC defined on £ m-bit blocks from a uniformly distributed
random function F* as follows.

MAC(my,...,mg) = F*(F*(...F*(m1) + ma...) + my).

For any d we have Dech(MAC) < 6d%0?27™. The result holds for any (quasi)group
addition.
Here is another result which is quite similar to the An-Bellare result [5].
THEOREM 3.2 ([22]). Let Fy and F3 be two independent random functions from
{0,1}24™ t0 {0,1}%. For any £ and any (my,... ,my) € ({0, l}m)Z we define

MAC(ml, ce ,mz) = Fg(Fl( . .Fl(Fl(O,ml),mg) ce ,mg),ﬂ)

2More precisely, the MAC is the output of the function, but we will improperly call the function
a MAC.

3Note that arbitrary bit strings do not always have an integral number of blocks. For this we
must use a padding scheme like the Merkle-Damgéard [8, 13] one in order to transform an arbitrary
string into a string with an integral number of blocks. In this paper we prove the security for padded
messages which induces the security for the whole scheme with the padding scheme.
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where 0 means a b-bit zero string, and £ means an m-bit string which represents the
£ value. Considering distinguishers limited to d queries and a total length of qm bits
we have

DecF®? < DecF?(F;) + DecF?(Fy) 4 q(q — 1)27™.

Finally, here is the Petrank-Rackoff [16] result.
THEOREM 3.3 (Petrank-Rackoff [16]). Let Cy and Cy be two independent ran-
dom permutations on {0,1}™ with the same distribution C. For any £ and any

(mq,...,mg) € ({0, 1}’“)Z we define
MAC(ml, ce ,mg) = 02(01(01( . .Cl(C'l(ml) + mz) Lot mg_l) + mg))

Considering adaptive distinguishers limited to d queries and a total length of qm bits
we have

DecF47(MAC) < 2DecP?(C) 4 4¢%27™.
The result holds for any (quasi)group addition.

4. Encrypted CBC-MAC. Here is our main result.
THEOREM 4.1. Let C7 and Cy be two independent random permutations on
{0,1}™. For any ¢ and any (mq,...,my) € ({0, 1}’”)Z we define

MAC(ml, e ,mz) = Cz(Cl( . .Cl(Cl(ml) + mz) ot mz_l) + mz).

Considering adaptive distinguishers limited to d queries and a total length of qm bits
we have

DecF47(MAC) < DecP?™%(C1) 4 DecP?(Cs)
+d(d—1)27" +q(g +1)(14+¢27™)27™

The result holds for any (quasi)group addition.
This result is slightly better than Theorem 3.3.
Proof. Lemma 1.2 reduces to the case where Cy and C5 are independent uniformly

distributed random permutations.

Using Lemma 1.3, let Y be the set of all y = (y1,...,yq) with different y;s. We
thus have
2md d(d—1)

61:1— <

27,
m2m —1)... (2" —d+1) = 2

Now for any collection of z; = (m;1,...,m; q;) we let
UZ')J' = 01( . .01(01 (miyl) + mi’g) R mi’j_l) + m;.
We consider the event F that all U; 4, are pairwise different. We have

[MAC]Z, 9 > PrIMAC(2z;) = yi;i=1,...,d and F]
= Pr[MAC(z;) = yi;i=1,...,d/E] Pt[E]
1
Coom(2m — 1) ... (2™ —d + 1)

> 274(1 - Pr[E))

q1,.-
z,y

Pr[E]
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therefore we can take €3 = Pr[E] = Pr[3i < 7, U; g, = Uprgq,.]-

The remaining part of the proof consists of upper bounding e; by @(1 +
q27™)27™ and applying Lemma 1.3.

We call a collision an event U; ; = U, ,. This collision is trivial if (m; 1,...,m; ;)
= (my1,...,my ) and non-trivial otherwise. Let Inv be the event that C;(U; ;) = 0
for some 1, 7, and let Coll be the event that we have a non-trivial collision. We can
easily show that the E event is included in Inv U Coll: if U; 4, = U, 4., then either
mi g 7 My g, and it is a non-trivial collision, or it reduces to Uj g,—1 = U4, -1 and
we can iterate... Thus e; < Pr[Inv] + Pr[Coll].

The probability that any adaptive attack against C; finds a preimage of 0 after

q — d queries is obviously less than 2mq_q. Thus Pr[Inv] < qu_q.
We let U be the set of all U; ;-indices, which means the set of all (¢, j) such that

1<i<dand 1<j<gq. For ACU we let ¢(A) be
e(A) ={(,7);3(r,s) € A i=r and j < s}.

Thus ¢(A) is the set the indices of all U; ; which are required in order to compute all
U, s values for (r,s) € A. We define an ordering on M by

A< B <= ¢(A) C ¢(B).

We let Z be the set of all indices pairs of potential non-trivial collisions U; ; = U, 5,
namely the set of all pairs {(¢, j), (r, s)} of U-elements such that (m;1,...,m;;) #
(my1,...,my ). For {(4,7),(r,s)} € Z we let Coll; ;,, be the event of the collision
U; ; = Uy (which is necessarily non-trivial since {(,j), (r,s)} € Z), and we let
MinColl; ; » s be the complementary in Coll; ; » s of the union of all Coll;s ;i 1 5 for
1,7, (", 8} € T and {(¢, ), (+',s")} < {(4,7), (r,s)}, i.e. the event U; ; = U,

with no prior non-trivial collision. We easily notice that

Coll= | J  MinColl; ;.
{(,4),(r,5)} €T

terms 1n Z. Hence

We have at most q(q2—_1)

Pr[Coll] < M max  Pr[MinColl; ; , ,].
2 {(3,4),(r,s)} €T o
For {(4,7), (r,s)} € Z, let us consider the MinColl; ; , ; event. We assume without
loss of generality that s < j. Since we have no prior collision we must have m; ; # m, ;.
Furthermore we must have U; j_1 # U, ;_1 because C; is a permutation (otherwise
C1(Ui j—1) + m; j cannot be equal to C1(Uy s—1) + m, ) and j > 1, and we need to
consider the event

Ci(Uij-1)+mi; =Us,.

If we have a collision U; j_1 = Uy j» with (4,5 — 1) # (¢/,j') and (¢, j') € c(¢, 4,7, 5),
it must be trivial (otherwise the initial collision is not minimal) which means j' =
j—landd =r#iand (mj1,...,mi;-1) = (Mr1,...,myj-1). If s < j we have
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Ui = Uy, and U, ; = U; s thus U; ; = U; , which is non-trivial, which contradicts the
minimality of the initial collision. Thus we must have s = j, but the trivial collision
Ui j—1 = Uy j—1 then contradicts U; j_1 # U s—1. Therefore U; ;_1 is equal to no
U i for (¢, 5") € e(i, j,r,s)\{(4,j — 1)}. This implies that the marginal distribution
of C1(U; j—1) with the knowledge of all previous Uj ;+ is uniform among a set of at
least 2™ — ¢ + 1 elements. Hence Pr[MinColl; ; , ;] < ﬁ.
Finally we obtain
q (g — 1) 1 g(g + 1)

<
e

A

(14q27m)2
Applying Lemma 1.3 now completes the proof. O

5. Extensions. In our result we notice that since d < ¢, the bound is small
until ¢ reaches the order of 2% . This result is tight since usual collision attacks
can break our construction within this complexity. Actually, we can query 2% two-
block messages until we get a collision MAC(m1, my) = MAC(m), m}) then query
¢ = MAC(m1, mg, m3) and output a forged authenticated message ((m}, m,, ms),c).
Wehave d =2% +2and ¢ =2.2% +6andpr 1 —e™ !,

We may think that since we have an m-bit MAC and a security of 2% uses we have
an efficiency loss in term of storage. We can improve this construction by shrinking
the MAC on 7+ bits as suggested in most of standards. More precisely, let F' be a
random function from {0, 1}™ to {0, 1}*. We can define

MAC(my,...,mg) = F(C(...C(C(m1) + ma) ...+ my_1) + my)
and we have
DecF49(MAC) < DecP?(C) + DecF*(F) + q(q + 1)(1 + ¢27™)2™™

(In the proof of Theorem 4.1, we take Y equal to the full set so that ¢; =0.)

If we now want to shorten the two keys, we can replace the independent C' and F
random functions by dependent ones. Let ||[C'F]?—[CyFp)?||, denote the decorrelation
distance between the (C, F') pair and a pair (Cy, Fp) of independent random functions
such that Cy (resp. Fy) has the same distribution than C' (resp. F). This is half of
the best advantage for distinguishing them from ¢ queries. We should still consider
Dech_d(C) and Dech(F). So, even if C' and F are dependent, we still have the
following result.

THEOREM b5.1. Let C and Cy be two identically distributed random permutations
on {0,1}™ and let F and Fy be two identically distributed random functions from
{0,1}™ to {0,1}*. We assume that Cy and Fy are independent. For any £ and any
(my,...,mg) € ({0, 1}’”)Z we define

MAC(my, ... ,mg) = F(C(...C(C(m1) + ma) ...+ my_1) + my).

Considering adaptive distinguishers limited to d queries and a total length of qm bits
we have

DecF*4(MAC) < ||[CF]? = [CoFo)?||a + DecP?™%4(C) + DecF*(F)
+a(q+1)(1+q277)27™.
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The result holds for any (quasi)group addition.

This theorem clearly separates the security issues induced by the probabilitstic
dependence between C' and F', the C algorithm, the F algorithm, and the MAC
scheme.

As an example we can use C'(z) = DESg (z) and F(z) = Trunc(DESgk4.(z)) for
a given constant ¢, and where Trunc truncates a 64-bit string onto its first half and
DES is the Data Encryption Standard [1]. We get a MAC on b = 32 bits with a single
56-bit key and block of m = 64 bits. We obtain

DecF*?(MAC) < f(q) + q(q +1)(1 + ¢27%4)27%

where f(g) is the sum of the best advantages for distinguishing
e (DESk, Trunc o DESk4.) from (DESk,, Trunc o DESK,)
e DES from C*
e Trunc o DES from F*

within a total number of query blocks less than ¢q. Let ¢ = #2% (which is a limit of
3260GB of queries). The advantage of any distinguisher is less than 1) +8” 4hus the

3
probability of success of any adaptive existential forgery attack is less than 2732 4

w. Let us conjecture that f (%) < 277, If we authenticate less than 3GB, the

probability of success of the best attack is less than 1%.
The Advanced Encryption Standard will soon provide better security with m =
128.

6. Conclusion. We have shown that the regular CBC-MAC construction pro-
vides a secure MAC when the output is encrypted. The security analysis suggests
that if m is the block length of the underlying block cipher, then we should not use
the MAC construction on more than 2% blocks in total.

In order to fit to the security, we can even reduce the MAC length down to %
bits, and shorten the key with extra security hypothesis. This enables to prove the
security of existing standards.

These results are quite similar than the Petrank-Rackoff ones. Our technique
based on decorrelation theory is, however, quite systematic and can be applied to
most of current MAC constructions with compact proofs.

Finally, we believe that these techniques will contribute to making systematic
proof analysis of cryptographic schemes and ultimately lead to some automatic secu-

rity validation procedures.
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Appendix A. Proof of Theorem 1.4. Following the Feistel scheme F =
W(F}, Fy Fy), we let

IZ:(ZZO’Z})
5 =4+ Fi(4)

We let E be the event z? = z} + F5(2?) and 2} = 27 + Fj(23) fori =1,...,d. We

K3

thus have [F]¢ = Pr[E]. We now define

V={(y1,...,ya);Vi<j zf’;ézj’}

We can easily check that Y fulfill the requirements of Lemma 1.3. Firstly we have
d(d—1 m
|y| Z (1 _ %2—7) 2md

thus we let ¢ = A%ZQ_%. Second, for y € Y and any z (with pairwise different
entries), we need to consider [F]gyy. Let E? be the event that all zZs are pairwise
different over the distribution of F}'. We have

[Fl2, > Pr[E/E?] Pr[E?).

For computing Pr[E/E?] we know that z3s are pairwise different, as for the z?s. Hence
Pr[E/E?] = 27™4 1t is then straightforward that Pr[E?] > 1 — A%ZQ_% which
is 1 — e5. We thus obtain from Lemma 1.3 that DecF*(F) < 2d(d — 1)2=%. From
Lemma 1.3 it is straightforward that DecF*(C*) < d(d — 1)27™. We thus obtain
DecP?(F) < 2d?2™% for d < 2't%. Since DecF is always less than 2, it also holds
for larger d.
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