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A CLASS OF NON-SHANNON-TYPE INFORMATION
INEQUALITIES AND THEIR APPLICATIONS*

RAYMOND W. YEUNG! AND ZHEN ZHANGH#

Abstract. Information inequalities form the most important set of tools for proving converse
coding theorems in information theory. They are sometimes referred to as the “Laws of Information
Theory,” because they govern the impossibilities in information theory. For a long time, all informa-
tion inequalities we knew were nothing but simple consequences of the nonnegativity of Shannon’s
information measures. Owing to the recent discovery of a few so-called non-Shannon-type informa-
tion inequalities, it is now known that there are laws in information theory beyond those laid down
by Shannon. In this paper, we show that the unconditional inequality discovered by the authors in
1998 in fact implies a class of 2!% non-Shannon-type inequalities, and we show possible applications
of these inequalities in information theory problems. The results thus obtained are not possible
otherwise.
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1. Introduction. Entropy is the most fundamental measure of information in
information theory. We begin by first defining the entropy of a random variable
and then the joint entropy of a pair of random variables. In this paper, all random
variables are discrete, and all logarithms are in base 2.

DerFINITION 1.1. Let X be a random wvariable with support set Sx and probability
mass function p(z) = Pr(X = z),z € Sx. The entropy H(X) of X is defined by

H(X)=— ) p(z)logp(z).

TESx

DEFINITION 1.2. Let (X,Y) be a pair of random variables with support set Sxy
and joint probability mass function p(z,y) = Pr(X =z, Y = y), (2,y) € Sxy. The
joint entropy H(X,Y) of (X,Y) is defined by

H(X,Y)=—= Y plz,y)logp(z,y).
(z,y)eESxy

The joint entropy for three or more random variables can be defined likewise.
Let X,Y, and Z be random variables. From the (joint) entropies, we can define the
conditional entropy of X given YV as

H(X|Y)=H(X,Y)-H(Y),
the mutual information between X and Y as
I(X;Y) = H(X) - H(X|Y),
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and the conditional mutual information between X and Y given 7 as
I(X;Y|Z)= H(X|Z) - H(X|Y, Z).

Entropies, conditional entropies, mutual informations, and conditional mutual infor-
mations are called Shannon’s information measures.

Let N = {1,...,n} and let ® = {X;,i € N} be any collection of n random
variables. Associated with {X;,i € N'} are 2" — 1 joint entropies. For example, when
n = 3, the 7 joint entropies are

H(X1),H(X»), H(X3), H(X1, X2), H(X2, X3), H(X1, X3), H(X1, X2, X3).

Note that all other types of Shannon’s information measures, namely mutual infor-
mations, conditional entropies, and conditional mutual informations are all linear
combinations of entropies.

For any subset a of N, let X, = (X;,i € a) and He(a) = H(X,). For fixed
O, one can then view Hg as a set function from 2V to R with Heo(¢) =0, i.e., the
entropy of the empty set of random variables is equal to zero. For this reason, we call
Hg the entropy function of ©.

It is well-known that all Shannon’s information measures are always nonnegative,
i.e., they are nonnegative for all joint probability mass functions of the random vari-
ables involved (see for example [17, Chapter 2]). These are called the basic inequalities
[5]. In Appendix A, we will formally show that the basic inequalities are equivalent to
the following set of constraints on the entropy functions: for any © and all o, 3 C N,
Hg satisfies

(P1) Ho(s) =0

(P2) He(a) < Ho(pB) if a C f;

(P3) Hola) + Ho(8) > Holan B) + Ho(a U ).
(P1)-(P3) are called the polymatriod axioms.

In the rest of the paper, we will refer to inequalities (identities) involving only
Shannon’s information measures as information inequalities (identities). In fact, an
information identity can be regarded as two information inequalities (see Section 2.1).

Information inequalities form the most important set of tools for proving converse
coding theorems in information theory. They govern the impossibilities in information
theory. In the 1986 SPOC Conference, N. Pippenger gave a talk in which he referred
to constraints on entropies as the “laws of information theory” [1]. He asked whether
there is any constraint on entropy functions in addition to the polymatroid axioms.

During the last ten years, a number of researchers have made much progress in
understanding the properties of entropy functions. So far, these results not only have
revealed the set-theoretic structure of Shannon’s information measures [3] (see Section
2.3), but also have made machine-proving of information inequalities possible [5] (see
Section 2.2). In particular, owing to the discovery of a so-called non-Shannon-type in-
formation inequality [7], Pippenger’s open problem is finally settled: the polymatroid
axioms form an incomplete set of constraints on entropy functions.

Recent findings show that information inequalities not only are intimately related
to certain multiterminal source coding problems [8], but they also have fundamental
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implications beyond information theory, for example, in conditional independence of
random variables and in group theory. We refer the reader to [14] for a list of reference
along this line.

Although non-Shannon-type inequalities originated in information theory, so far
there has not been any application of these inequalities in information theory prob-
lems. Some researchers even doubt whether non-Shannon-type inequalities have any
implication at all in information theory. The current work is a first attempt to explore
possible applications of these inequalities in information theory problems.

The unconditional non-Shannon-type inequality reported in [7] was presented in
more than one form. In this paper, we focus on the following form which is symmet-
rical both in X; and X5 and in X3 and X4, and we will denote it by ZY98.

I(X3,X4) S I(X3,X4|X1) —|— I(Xg;X4|X2) —|— 05[(X1,X2)

+0.251(X1; X3, X4) + 0.251(Xo; X3, X4).  (ZY98)

The results in this paper apply equally well to the other forms of the inequality in [7].
In the next section, we will present the preliminaries for the results to be discussed
in Sections 3 and 4. In Section 3, we will show that ZY98 in fact implies 2'* — 1
conditional non-Shannon-type inequalities. Together with ZY98, they form a class of
2'* non-Shannon-type information inequalities. In Section 4, we will discuss possible
applications of this class of inequalities. Concluding remarks are in Section 5.

2. Preliminaries.

2.1. Entropy Functions and Information Inequalities. In this subsection,
we present the framework for information inequalities in [5]. Recall that Hg is a
function from 2V to R with He(¢) = 0. Let k = 27 — 1. Labeling the coordinates
of R* by h,,a € 2V\é, where h, corresponds to the value of He(a), an entropy
function He can be represented by a vector in IR*. On the other hand, a vector
h € IR is called constructible if h represents the entropy function of some collection
of n random variables. Define the following region in IR:

I = {h € R" : h is constructible}.
For example, when n = 3, the coordinates of R” are labeled by
hi, ha, hs, hia, his, has, hias,

and I'j is the region in IR” of all entropy functions of 3 random variables.

An information inequality (linear or nonlinear) has the form f(h) > 0, where
f :IR* = IR. We consider non-strict inequalities only because these are usually the
inequalities of concern in information theory. For example, the inequality 7(X7; X3) >
0 is written as hy + ha — h12 > 0. Since an information inequality involving n random
variables always holds if and only if i1t is satisfied by the entropy function of any
collection of n random variables, we have the following geometric interpretation of an
information inequality:

f(h) > 0 always holds if and only if T C {h € R" : f(h) >0} .
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f(h)> 0

Fig. 2.1. f(h) > O always holds.

.o
f(h)> 0

Fi1G. 2.2. f(h) > 0 does not always hold.

The two possible cases for f(h) > 0 are illustrated in Figure 2.1 and Figure 2.2.

Note that T’} obviously contains the origin, which is the entropy function of the
collection of n degenerate random variables. In Figure 2.1, T}, is completely included
in the region {h € RF : f(h) > 0}, so f(h) > 0 always holds. In Figure 2.2, there
exists a vector h® which corresponds to some entropy function Hg such that f(h°) < 0.
Thus the inequality f(h) > 0 does not always hold. If T}, is known, we in principle
can determine whether any information inequality always holds.

In information theory, we very often deal with information inequalities with cer-
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tain constraints on the random variables involved. These are called conditional in-
formation inequalities. Such constraints on the random variables can usually be ex-
pressed as linear constraints on the entropies. The following are such examples:
1. X1, X2 and X3 are mutually independent if and only if H (X1, X2, X3) =
H(X1)+ H(X2) + H(X3).
2. X is a function of X if and only if H(X;|X2) = 0.
3. The Markov chain X; — X5 — X3 — X4 is equivalent to
I(X1; X3|X2) =0 and (X7, Xa; X4|X35) = 0.
It turns out that I'}, not only characterizes all unconditional information inequalities,
but also all conditional information inequalities. This is seen by observing that each
linear constraint on the entropies is a hyperplane in IR*. In general, linear constraints
on the entropies can be expressed as a set of homogeneous linear equations Qh = 0.
Defining the linear subspace

(2.1) ® = {hecR":Qh =0}

and generalizing our interpretation of unconditional information inequalities, we have
Under the constraint Qh = 0, f(h) > 0 always holds if and only if
(T N®) C {heRF: f(h) > 0}.

An information identity f(h) = 0 always holds if and only if both f(h) > 0 and
f(h) < 0 always hold. Then we have the following interpretation of a conditional
information identity:

Under the constraint Qh = 0, f(h) = 0 always holds if and only if
Ty N®) Cc {heRF: f(h)=0}.
Unfortunately, '}

» is extremely difficult to characterize, and only partial charac-

terizations of the region have been possible. Let us now define '), as the set of all
h € R* which satisfy the following properties for all o, 3 C N

1. ho <hgif¢#a Cp;

2. hy + hﬁ > hom,@ + hQUﬁ.
These are precisely the polymatroid axioms except that the coordinate hy is degen-
erated since Heg(¢) is always equal to 0. Note that T',, is also the set of all vectors in
IR* which satisfy the basic inequalities (cf. Appendix A). Since the basic inequalities
are observed by all entropy functions, we immediately see that ', is an outer bound
on I'}. The question is whether this outer bound is tight. It turns out that I'; = T's,
but for n > 3, T}, # [',. In fact, it has been found that T is not even closed [6]!

As T} cannot be fully characterized, a more manageable task is to characterize fz,

the closure of I'}. If one is interested in unconditional linear information inequalities,
then it suffices to consider fz because

r: c{heR": f(h) >0}
if and only if
T, c {heRF: f(h) >0}.

This follows from the fact that the region {h € R* : f(h) > 0} is closed. However, if
one is interested in conditional inequalities, a more detailed characterization of I'}, is
necessary.
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The authors proved in [6] that fz is in general a convex cone. In the same paper,
we further proved that Ty = I's (also see [9]). In other words, every unconditional
inequality involving 3 random variables can be proved by invoking the basic inequal-
ities.

Now write ZY98 as g(h) > 0. This inequality is called non-Shannon-type because
it is not a consequence of the basic inequalities, i.e.,

Ty g {heR'™: g(h) >0},
On the other hand, since g(h) > 0 always holds,

I3 C{he R g(h) > 0}.
Taking closure on both sides, we have

T, c {he R :g(h) > 0}.

Thus we conclude that fz is a proper subset of T'y. This is illustrated in Figure 2.3.
From this figure, we see that ZY98 together with the basic inequalities form a tighter
outer bound on I'} than the basic inequalities alone.

g(h)= 0

F1c. 2.3. An illustration of FZ, Iy, and g(h) > 0.

With the discovery of ZY98, Pippenger’s problem is finally settled. However, a
physical interpretation of this inequality is yet to be obtained.

We now summarize what is known about the relation among I}, f;, and I'y,. For
n=2,

*

F;:f =Ts.

V)

For n = 3,
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I ; Ty =Ts.
For n > 4,
- GT.Gr,.
Actually, the first non-Shannon-type inequality, which is a conditional inequality,
was reported earlier by the authors in [6]. We showed that if 7(X1;X3) = 0 and
I(Xl;X2|X3) = 01, then

(22) I(Xl;X2|X3,X4) S I(Xl;X2|X4) + I(Xg;X4|X1,X2).

Since the constraints on the above inequality are obtained by setting two basic inequal-
ities to equality, this inequality means that there is a certain region on the boundary
of T'y which is not constructible. However, this is not strong enough to imply that
T, #T..

For the inequality in (2.2), if we further impose the condition I(Xy; X3|X4) =
I(X3; X4| X1, X2) = 0, then we immediately have I(X7; X2| X3, X4) = 0 because it
is always nonnegative. That is, for 4 random variables X, X5, X3, and X4, if 1) X;
and X5 are independent, 2) X; and X5 are independent given X3, 3) X; and X5 are
independent given X4, and 4) X3 and X4 are independent given X; and X5, then
X7 and X, given X3 and X4 are independent. This is a constraint on conditional
independence relations for 4 random variables which are not implied by the basic
inequalities.

Subsequent to [6] and [7], the open problem of the conditional independence struc-
ture for 4 random variables was finally settled by Matuis [12] by means of a conditional
non-Shannon-type inequality involving 4 random variables which is different from the
one in (2.2).

2.2. ITIP. In the past, information inequalities had to be proved by hand. This
is done by successive invocations of the basic inequalities. When a certain inequality
cannot be proved, we do not know whether the inequality is incorrect, or we just have
not invoked the right basic inequality at the right step. Of course, we now know that
there exist non-Shannon-type inequalities which cannot be proved by this method.

Now information inequalities can be proved by a software called ITIP [18]. The
current version of ITIP runs on MATLAB™ on the Unix System. It can prove all
inequalities involving a definite number of random variables which are implied by the
basic inequalities, namely those provable by the method we used to know. In fact, it
was shown in [5] that all these inequalities are nothing but linear combinations of the
basic inequalities with nonnegative coefficients.

Using ITIP is simple and intuitive. The following examples illustrate the use of
ITIP:

1. > ITIP(’H(XYZ) <= H(X) + H(Y) + H(Z)’)
> True
2. > ITIPCI(Y;Z) »= I(X;U)?, *I(X;Z|Y) = 07,
PI(XY;U|Z) = 07)
> True

11(X1; X2) = 0 and I(X1;X3|X3) = 0 do not imply each other.
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3. > ITIPCI(Z;U) - I(Z;UIX) - I(Z;UlY) <= 0.5 I(X;Y)
+ 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)
> Not provable by ITIP

In the first example, we prove an unconditional inequality. In the second example, we
prove the celebrated Data Processing Theorem (see for example [16, p. 80]). In this
example, the first inequality is what we want to prove, while the second and the third
equalities are the conditions which specify the Markov chain X —Y — Z — U. In the
third example, we try to prove the inequality ZY98. When ITIP returns the clause
“Not provable by ITIP,” it means that the inequality may be true but it cannot be
proved by ITIP. But of course, ZY98 is a non-Shannon-type inequality which always
holds.

ITIP results from the framework for information inequalities presented in the
last subsection. Basically, the geometrical interpretation of information inequalities
allows one to formulate the problem of proving these inequalities (both unconditional
and conditional) as a linear programming problem. We refer the reader to [5] for the
details.

2.3. I-Measure. In this subsection, we give a review of the main results regard-
ing I-Measure. For a detailed discussion of the theory, we refer the reader to [3] (also
see the tutorial [2]). Further results on 7-Measure can be found in [4] and [15].

Let X;,i € N ={1,...,n} be n jointly distributed random variables, and X be
a set variable corresponding to a random variable X. Define the universal set 2 to
be UZ-EN)N(Z' and let F be the o-field generated by {j(l,z € N'}. The atoms of F have
the form N;earY;, where Y; is either )~(Z or Xf Let A C F be the set of all the atoms
of F except for ﬁz’eNXf7 which is equal to the empty set by construction because

= (Us) ==

ieN iEN
Note that |A| = 2" — 1. In this subsection, when we refer to an atom of F, we always
mean an atom of F in A.

To simplify notations, we will use Xy to denote (X;,i € U) and )N(U to denote
Uieu X; for any U C N. Tt was shown in [3] that there exists a unique signed measure
p* on F, called the I-Measure, which is consistent with all Shannon’s information
measures via the following formal substitution of symbols:

H/T — u*
Ty
;=N
|-
(X - Y =XNY°, ie., for any (not necessarily disjoint) U, U, U" C N:
(23) /,L*(XUOXUI —XU//) :I(XU;XUI|XU//).
When U” = ¢, we interpret (2.3) as

/J*(XU n XU/) = [(XU;XU/).
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When U = U’, (2.3) becomes

w(Xu — Xun) = H(Xu|Xpn).
When U = U’ and U"” = ¢, (2.3) becomes
(24) w* (o) = H(X0).

Thus (2.3) covers all the cases of Shannon’s information measures.
We now show how p* is defined. Let

D:{DET|D:UZ'6U)~(¢forsomeUCN,U;éd)}

be the set consisting of the unions formed from X;,1 < i < n. Note that |D| = |A] =
2" — 1. Let kK = 2" — 1. Define arbitrary one-to-one mappings

p:11,2,... .k} > A

o:{1,2,...,k} - D,

and let

u=1[u --- uk]T

v=[wv - v |T

where u; = p*(p(j)) and vy = p*(o(l)) for 1 < j,l < k. Note that u;,1 < j < k are
the values of p* on all the atoms of F, and v;,1 <1 < k are the values of ¢* on all
the unions formed from X;, 1 < ¢ < n, or equivalently, all the joint entropies involving
the random variables X1,..., X, by (2.4). Then

v = Cu,
where C = [¢;;] is a unique & x k matrix (independent of p*) with

:{ 1 if p(j) € o(l)
P00 if ) ¢ ol0).

An important characteristic of C is that it is invertible [3], so we can write
u=C"lv.

In other words, p* is completely specified by the set of values p*(D), D € D, namely
all the joint entropies involving X1, ..., X,, and by virtue of (2.4), p* is the unique
measure on F which is consistent with all Shannon’s information measures. Note that
p* in general is not nonnegative. However, if X7,..., X, form a Markov chain, p* is
always nonnegative [4].

To conclude, the theory of I-Measure enables the use of the language and the rich
set of tools in set theory to study the structure of Shannon’s information measures.
As a consequence of this theory, the information diagram was introduced as a tool to
visualize the relationship among information measures [3]. An information diagram is
a special case of a Venn diagram with Q = U;cx- X;. Figure 2.4 shows the information
diagram for random variables X7, X5, X5. Examples of applications of information

diagrams can be found in [3], [4], [2], [11] and [13].
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X1 X3

Fi1G. 2.4. The information diagram for random variables Xy, X2 and Xs.

3. A Class of non-Shannon-type Information Inequalities. Recall from
Section 2.1 that for 4 random variables, an unconditional information inequality
f(h) > 0 (which always holds) is of non-Shannon-type if and only if

Ty ¢ {heR"™: f(h) > 0}.

Likewise, under the constraint of a linear subspace ® on the entropies (cf. (2.1)), an
information inequality f(h) > 0 is of non-Shannon-type if and only if

(Tan®) ¢ {h € R* : f(h) > 0}.

Since ZY98 (written as g(h) > 0) always holds, it remains valid when certain
linear constraints on the entropies are imposed. The question is whether under these
additional constraints ZY98 continues to be of non-Shannon-type. As we will see
shortly, this would be the case if the additional constraints are chosen carefully.

To fix ideas, we now give an example for which ZY98 is a Shannon-type inequality
when a certain linear constraint on the entropies is imposed. Suppose I(X3; X4) = 0.
Then the left hand side of ZY98 as displayed in Section 1 becomes 0, and the inequality
is trivially implied by the basic inequalities because all the terms on the right hand
side are Shannon’s information measures.

In the course of proving that ZY98 is of non-Shannon-type, it was shown in [7]
that there exists an h' € I'y which does not satisfy ZY98, where h' is defined by

hiy = 4a,hiz = hiy = hy3 = hyy = hyy = 3a

1 _ 31 _ 1 _ 351 _ 31 —
h123 - h124 - h134 - h234 - h1234 =4a

with @ > 0. Since ZY98 is satisfied by all entropy functions, h' is not an entropy
function, or A* ¢ I';. From the theory of I-Measure, we can obtain the set-theoretic
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structure of A', which is shown in Figure 3.1. (Here we use the measure in Figure 5
to illustrate the set-theoretic structure of A', but this measure is actually not a valid
I-Measure because h' is not an entropy function.) It is easy to verify from Figure 3.1
that h' lies in exactly 14 hyperplanes defining the boundary of T4, which correspond
to setting the following 14 Shannon’s measures to 0:

I(X1; X9), I(X1; X2|X3), I(X1; Xa| Xa), [(X1; X3|X4), I(X1; Xa| X3),
I(Xo; X3|X4), I(Xo; Xa| X3), I(Xa; Xa|X1), I(X3; Xa| X2), I(Xa; Xa| X1, Xa),

H(XllXQaX3:X4)a H(X2|X1aX3aX4);H(X3|X1;X2aX4)a H(X4|X1aX2;X3)~

Since I'y is in ]Rls, h' is along an extreme direction of T',.

X2

Voo

e
%ﬁ
o

X4

X1

F1G. 3.1. The set-theoretic structure of hl.

Now for any linear subspace ® in IR'® containing h'!, we have
h'elyn®
and h' does not satisfy ZY98. Therefore,
(T4N®) ¢ {heR:: g(h) >0},

This means that ZY98 is a non-Shannon-type inequality under the constraint ®. From
the above, we see that ® can be the intersection of any nonempty subset of the 14
hyperplanes containing h'. Thus ZY98 is a non-Shannon-type inequality conditioning
on any nonempty subset of the above 14 Shannon’s measures equal 0. Hence, ZY98
implies a class of 2'* — 1 conditional non-Shannon-type inequalities.
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4. Applications. Although non-Shannon-type inequalities originated in infor-
mation theory, so far there has not been any application of these inequalities in in-
formation theory problems. In this section, we give two examples of application of
the class of non-Shannon-type inequalities implied by ZY98. The results obtained in
these two examples are not possible otherwise.

ExAMPLE 1. Consider a fault-tolerant distributed database system consisting of
random variables X1, X9, X3, X4 such that any three random variables can recover the
remaining one, i.e.,

(4.1) H(Xi|X;,j#4)=0, 1<ij<4.

We are interested in the set of all entropy functions subject to these constraints,
denoted by Y, which characterizes the amount of joint information which can possibly
be stored in such a database system. The set T is given as the intersection of I'} and
the 4 hyperplanes corresponding to the 4 constraints in (4{.1). Since each constraint in
(4.1) is one of the 14 constraints specified in the last section, ZY98 is a non-Shannon-
type inequality under the constraints in (4.1).

When ZY98 is written in terms of unconditional joint entropies, it becomes

H(X1) + H(X2) +4H(X3) 4H (X1, X3) +4H (X1, X4)
FAH (Xa) 4+ 2H (X1, Xo) < +AH(Xo, X3) + 4H(Xs, Xa)
+5H(X1aX3:X4)+5H(X2aX37X4) +6H(X37X4)

Upon invoking H (X1|X2, X3, X4) = H(X2| X1, X3,X4) =0 from (4.1) so that
H(X1,X3,Xa) = H(X», X3, X4) = H(X1, X9, X3, X4),
ZY98 becomes

H(X1)+ H(X2) +4H(X3)  4H(Xy, X3) +4H (X1, X4)
FAH (X)) + 2H (X0, Xo) < +AH(X2, X3) + 4H (X2, Xa)
+10H(X1;X2aX3;X4) +6H(X3aX4)

Swince this inequality is symmetrical in X1 and X5 and in X3 and X4, by permuting
the indices, we can obtain five other distinct inequalities. These 6 inequalities together
with the basic inequalities give a tighter bound on Y than the basic inequalities alone.
ZY98 conditioning on (4.1) cannot be proved by ITIP. This is consistent with our
claim that 7Y98 is of non-Shannon-type conditioning on (4.1).
EXAMPLE 2. Consider 4 random variables X1, X2, X3, X4 such that X3— (X1, X32)
— X4 form a Markov chain. This Markov condition is equivalent to

I(X3; X4|X1,X2) =0

which 1s one of the 14 constraints specified in the last section. Therefore, ZY98 is a
non-Shannon-type inequality under this condition.
It can be proved by invoking the basic inequalities (using ITIP [18]) that
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+el(X1; X3, Xa) + (1 — ) [(X2; X5, Xa)

where 0.25 < ¢ < 0.75 (this is the best possible). However, from ZY98, the last two
terms above can be sharpened to 0.251(X1; X3, X4) + 0.251(Xq; X3, X4).

The Markov chain X3 — (X1, X2) — X4 arises in many communication situations.
As an example, consider a person listening to an audio source. Then the situation
can be modeled by this Markov chain with X3 being the sound wave generated at the
source, X1 and X9 being the sound waves received at the two ear drums, and X4 being
the nerve impulses which eventually arrive at the brain. The inequality ZY98 gives
a tighter upper bound on I(Xs; X4) (tighter than what can be implied by the basic
inequalities), which appears to be fundamental. This bound may be useful in proving
certain converse coding theorems in multiterminal information theory.

There 1s some resemblance between the conditional form of ZY98 discussed in this
example and the Data Processing Theorem, but there does not seem to be any direct
relation between them.

5. Concluding Remarks. Owing to the recent discovery of a few so-called
non-Shannon-type information inequalities, it is now known that there are laws in in-
formation theory beyond those laid down by Shannon. Since there exist non-Shannon-
type inequalities for as few as 4 random variables, it is believed that there are many
more such inequalities yet to be discovered. In this paper, we have derived a class of
non-Shannon-type inequalities from the inequality discovered by the authors in 1998,
and we have shown possible application of these inequalities in information theory
problems. The results thus obtained are not possible otherwise.

It is straightforward to see that each of the conditional non-Shannon-type in-
equalities reported in [6] and [12] implies a class of conditional non-Shannon-type
inequalities by means of a slight modification of the arguments in this paper. It is
conceivable that some of these inequalities have applications in information theory
problems.

Our results have shed some light on the role of non-Shannon-type inequalities
in information theory. Further investigation along this line may lead to new territo-
ries in information theory. In particular, the solutions of certain open problems in
multiterminal information theory may be made possible by some non-Shannon-type
inequalities.

Appendix A. The proof for the equivalence of the Polymatriod Axioms
and the Basic Inequalities. We first show that the polymatroid axioms imply the
basic inequalities. Obviously, (P1) and (P2) imply all entropies are nonnegative. For
(P2), by letting v = B\, we have H, < Hquy, or H(X4|Xs) > 0. Here, v and « are
non-overlapping subsets of A'. For (P3), by letting v = f\a, d = an g, and ¢ = '\,
we have Hous + Hyus > Hs + Housuy, or I(Xs; X4|Xs) > 0. Again, 0,4, and v
are non-overlapping subsets of A". When § = ¢, from (P3), we have I(X,; X,) > 0.
Thus, (P1)-(P3) imply that all entropies are nonnegative, and that all conditional
entropies, mutual informations, and conditional mutual informations are nonnegative
provided that the subsets of random variables involved do not overlap. However,
for any conditional entropy, mutual information, or conditional mutual information,
even if the subsets of random variables involved are overlapping, it can always be
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written as a linear combination with nonnegative coefficients of entropies, conditional

entropies, mutual informations, and conditional mutual informations for which the

subsets of random variables involved in any of the latter three types of information

measu

res do not overlap. For example, I(X1, X2; X1, X3, X5| X3, X4) can be written

as H(X1|Xs, X4) + I(X1, X2; X5|X1, X3, X4). This shows that (P1)-(P3) imply the
basic inequalities.

The converse is trivial and its proof is omitted.

[10] F.

[12] F.

[14] H

e
R =2
o =3
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