COMMUNICATIONS IN INFORMATION AND SYSTEMS © 2001 International Press
Vol. 1, No. 1, pp. 101-112, January 2001 007

OPTIMAL APPROXIMATION OF FUNCTIONS*

YISHAO ZHOU'!, MAGNUS EGERSTEDT?!, AND CLYDE MARTINS

Abstract. In this paper a complete theory of I.2[0, T] approximation for generalized interpolat-
ing and smoothing splines is established. It is shown that under general conditions smoothing splines
both smooth noisy data and recover the underlying function in the sense of L2[0,T] convergence. Tt
is shown that generalized interpolating splines converge to the underlying function in L2[0, T].

1. Introduction. In a series of papers by Egerstedt, Martin and Sun, [11, 12,
13, 14, 16] some of the basic properties of smoothing splines have been established.
However the basic question of approximation for such splines has not been answered
and neither has the same question for generalized interpolating splines been answered,
[1,2,3,4,5,6,7,8,9, 10, 15, 18, 19]. For polynomial splines, both smoothing and
interpolating, there is a considerable literature on approximation properties. For
polynomial interpolating splines any good graduate numerical analysis text will pro-
vide ample references. For polynomial smoothing splines the seminal work of Grace
Wahba, [17], provides the best reference.

In this paper we will consider five problems and their interrelations. Let a data
set Ve be given

and let

Let the system

(1.1) T = Az 4 bu
(1.2) y=cx

be controllable and observable. Furthermore, let
(1.3) ch=cAb=ca’h=---=cA" % =0.

The first problem we consider is just the existence of generalized interpolating splines.

Remark: This condition is not natural from the point of view of control theory.
However, from the point of view of approximation and from the point of view of
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trajectory planning it is an entirely natural condition. We treat y(t) as a position
and if we write the system in terms of y(t) and its derivatives we have a system that
satisfies the conditions of the assumption.

PROBLEM 1. Let

(1.4) LN (u) = /OT u’ (t)dt

and for each point in Vg let a linear equation be given:

(1.5) Ft:) = y(ts) = /tl ceAt=bu(s)ds, i=1,--- N
0

Find a control u (t) € L*[0, T] such that ul) is the solution of

(1.6) HbinLéV (u)

subject to the constraints of Equation 1.5.

The second problem is the problem of smoothing splines for noisy data, i.e., the
data set V..

PROBLEM 2. Let a cost function JV (u) be given as

(1.7) IN () = Z win (y(t;) — f(t:) —e)? + )\/0 u?(t)dt.

Find ui\f}\ that is the solution of
(1.8) min JN (u).
The third problem that we consider is the problem of smoothing splines with

deterministic data.
PROBLEM 3. Let a cost function JV (u) be given as

(1.9) IV (u) :Zw“\r(y(ti) —f(ti))2+)\/0 u?(t)dt.

Find uﬁ\v that s the solution of

(1.10) min]N(u).

u

The fourth problem is a problem of tracking in continuous time.
PROBLEM 4. Let a cost function Jy(u) be given as

T
(1.11) = [0 = 1) + 2l )t
Find uy that is the solution of

(1.12) min Jj(u).
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The fifth problem is a problem of approximation.
PROBLEM 5. Let a cost function J(u) be given as

T

(1.13) s = [ o - £
0

Find u* that is the solution of

(1.14) min J(u).

u

Remark: We prove that the controls in the five problems converge in various senses.
Because the linear operator that maps the control to the output (the generalized spline
function)} is a continuous operator the generalized splines likewise converge.

We must construct the solution to Problem 4 which we will do in the next section.
In Section 3 we will prove the existence of an approximate solution to Problem 5. In
the final section we outline, based on the results of this paper and the results of
[13, 14, 16, 18] the interrelations between the five problems.

2. Derivation of the Basic Approximation of Problem 4. The solutions
to problems 1, 2 and 3 are well established in [18, 16, 14]. In [16] a brief description
of the solution to Problem 4 is given. In this section we will give a rather complete
analysis of the solution to Problem 4. Let the cost function of Problem 4

(2.1) I = [ (eale) = £ + 2 0.

be given. We define the linear constraint to be the minimal system

(2.2) >

The problem we attack is simple: we will show in Section 3 that as A goes to zero

&= Az + bu, z(0) = zg

Yy = czx.

the optimal function cz(t) approaches f(¢) in the Ly norm for appropriate choice of
the initial data . The first problem is the following which is just a restatement of
Problem 4.

Problem: Minimize J(u) subject to the constraint of 3 .

We first construct the Hamiltonian
. 1 9, Ay L
(2.3) H(z,u,p)= E(cm(t) —f@))*+ Pk )+ (Az + bu)~p(2).

From standard theory we must solve the following equations.

) 0 L
(2.4) a—xH(l‘,u,p) =—p
0 a _
(2.5) a—uH(:L‘, u,p) =0
(2.6) QH(I‘, u,p) = zt.

dp
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Calculating the partial derivatives we have

aa—xH(,I‘, u,p) = _p
= (cx(t) = f(t))c™ + Atp

giving us
(2.7) p(t) = —ctex(t) — Atp(t) + ¢t f(t).

Calculating the next we have

I3}
a—uH(:L‘,u,p) =0
— () + b pl1)

giving us

(2.8) u(t) = —%pr(t).

Calculating the last partial derivative we have

aa—pH(a:, u,p) =&t
= (Az(t) + bu(t))*
giving us
(2.9) r = Az + bu.

Writing these in matrix form we have

. d [ =z A _lebJ‘ x 0
o a(0)- (L TG ) (e
with

(2.11) z(0) =z¢ p(T)=0.

We now introduce the Riccati equation. We define the transformation

o) (3= (o 1) ()

Applying the transformation to equation 2.10 we have
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B A— %bbLR(t) —%bbJ' x 0 )
_(—CJ'C—AJ'R(t) —AtL )(w>+<cJ‘)f()

Solving we have
d [ =z
dt \ w

A— LbbLR(1) —Lppt x 0
g s ) (2 )+ ()0
Z(t) —(A = LbbLR(t)) w c

Z(t) = —R(t) — R(t)[A — %bbLR(t)] —cte— AT R(1).

where

Setting Z(¢) = 0 we have the decoupled equations

(213) ()

and the Riccati equation

. 1
(2.14) R(t) = —R(t)[A — Xbbﬂfﬁ(t)] —cte— AL R(t)
Since we have that w(t) = —R(¢)z(t) + p(¢) a natural choice of initial data for w
and R is
(2.15) w(T) = 0 and R(T) = 0.

105

This does present some complications for the solution since now the systems are time
varying. Under the conditions of minimality that we have imposed we can solve the
Riccati equation on the interval [0, 7. Now let ¢(¢) be the semi-group associated with

the equation

. 1
2= (A- Xbb R(t))z
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so that we have
and let

We then can solve for w as
T

(2.16) w(t) :/ o(s, t)tct f(s)ds
¢

and then solving for z(¢) we have

(2.17) z(t)=o(t)zg — %/0 é(t, s)bbJ‘/ o(r,s) et f(r)drds.

We can also replace R(#) by a constant matrix, the positive definite solution of
the algebraic Riccati equation (ARE) but at the expense of some further calculation.

Since R is a solution of the algebraic Riccati equation we have that Z(¢) = 0 and
we have, similar to equation 2.13,

S af e\ [ A-iwR —imiR ’ ’
(2.18) E(w):< 0 _(A_%bbJ-)J-><w>+<CL)f(t)~

Now the initial and terminal data are more problematic. We have
w(t) = —Re(t) + p(t)

and we don’t know either p(0) or 2(7). We make the choice to assume that we can
calculate w(T') and use it as dummy variable for the time being.
Let

- 1
A=A— ZbbtR.
3 R
We then have by solving for w(#)

A T
(2.19) w(t) = ATty (T) _/ A=)l £(5)ds
t
keeping in mind that w(7T) is not known at this point. We solve for z(t) to obtain
z(t) = eAtmo —
1t i it T it
(2.20) X/ eAl=sppL [ ¢ (T_s)w(T) —/ e (S_r)cj‘f(r)dr ds.
0 s

Using the fact that

w(T)=—Re(T) 4+ p(T) = —Rz(T)
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and evaluating z(7") we have

—w(T) = Rz(T)

. 1 /T .
= Re T gy — RX/ eA(T_s)bbJ‘eAL(T_S)w(T)dS
0

1T T
_RX/ eA(T_S)bbJ‘/ e? (s_r)cj‘f(r)drds.
0 s

Rearranging the equations we have

T n 4L
<—I+R§/ eAT=s)ppted <T—3>ds) w(T) =
0

. 1 T T |
ReAT o — RX/ eAT=s)ppt / eAL(s_r)ch(r)drds
0 s

and hence

-1

T i AL
w(T) = (—[—1— R%/ eAT=s)ppleA (T_s)d.s’) X
0

X T T
(2.21) (ReAT:co—Ri/ eA(T_s)bbL/ ed (S_T)CLf(T)drdS)

0

Substituting this into equation (2.20) we then have an expression for cz(t) and
hence an approximation to the function f(t).

3. An Approximation to Problem 5. In this section we will show that for
the cost functions of Problem 4 and 5,

Jy(u) = / (u(t) — F(1))” + (1)t

that for A = 0 that the minimum value of the cost function is 0. We show this by
proving that under suitable conditions on the system the image of the operator

(3.1) H(u) = /Ot ceA(t_s)bu(s)ds

is dense.
We state the theorem.
THEOREM 3.1. Let the controllable, observable system

t=Azx+bu, z€R", uER
y=cx, yeR
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have the property that 1) cb = cAb = cA*b = - = cA"7%b = 0 and 2) the spec(A) C
C~. Under these conditions

H: L*[a,b] = L*[a,b]

and the image of H is dense in L%[a,b] for all choices of 0 < a < b < oo,
Proof: Without loss of generality we let a = 0.

¢
V= {/ ceA(t_s)bu(s)ds . we L?0,0]}.
0
Now V is a linear subspace which may or may not be closed. We will prove that the
closure of V is dense in L?[0,b] We consider here two cases. If b = oo then a classical
theorem that H maps square integrable functions to square integrable functions holds
and we are finished. For the case when b < oo we can use the classical result and
embed L?[0,b] in L%[0, o] by extending each function to be zero outside of the interval
[0, b].
Suppose V 1s not dense. Then there is a linear subspace not contained in the

closure of V and hence there is a function f € L?[0,b] that is orthogonal to V. We
calculate this function. For all u € L%[0,b] we have

(3.2) o:/ob f(t) /Ot ceA =) pu(s)dsdt
(3.3) :/Ob /sb F(t)ee = bu(s)dtds

and hence we have that

b
(3.4) / F(t)eet=bdt = 0

We rewrite this as
b
ce_As/ eAtbf(tydt = 0.

Since this is identically zero as a function of s we can differentiate it to obtain
b
(3.5) 0= —cAe_As/ A f(t)dt — ce™* et bf(s)

b
(3.6) = —cAe™4* / eAtF(t)dt.
Continuing in this manner we obtain
b
(3.7) —cAnT2em At / et f(t)dt = 0.
By differentiating this and using the fact that cA"~2b = 0 we obtain

b
(3.8) —cA”_le_As/ et f(t)dt = 0.
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We now use the fact that the system is minimal to arrive at

b
(3.9) e_As/ et f(t)dt =0
and that
b
(3.10) / e f(t)dt = 0.

Differentiating this with respect to s we have e4*bf(s) = 0 and since b is injective
f(s) =0.

We have thus shown that there cannot be a nonzero vector orthogonal to V' and
hence V is dense in L?[0,b] and the theorem is proved.

This establishes the following result.

THEOREM 3.2. Let f(t) € L*[0,T]. There exists an optimal control u that
munimizes the cost function of Problem 5 if and only if f is in the image of H.
However there exists a sequence of controls such that the limiting value of the cost
function of Problem 5 1s 0. Problem j generates such a sequence as function of A and
Problem 1 generates such a sequence as a function of N.

4. Interrelations. We begin with a simple theorem that shows the relationship
of Problem 3 to Problem 1.

THEOREM 4.1. Let ulY be the solution of Problem 1 and we let N be fived. Let
u} be the solution of Problem 3 and again let N be fizred. Then

(4.1) )1\1_1}% ul = ul

Proof: We first note that

N

IN (u) = Zwm(y(ti) — [(t:))? + ALY (w).

Now
IN (ug') = AL(ud)

and we have that for every A, because of the optimality of uj)\v,

(4.2) JN () = Zwu\r(y(ti) — f(t))? + AL(u}) < AL(ug')

and, because

: N¢, Ny _
)l\li%/\L (ug ) =0,
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we conclude that

N

;IE}JZ win (y(ti) — f(t:))* = 0.

We also have from equation 4.2 that
0 <Y win(yts) = f(t:)* <AL (uf) = LV (u]))

and hence we have for every A
LN (ul)y > LN (ud).
We conclude that there exists a u* € L?[0,7] such that

lim u} = u*.
A=0

Thus we have that LY (u*) > LV (ul’) since ul) is optimal, but on the other hand we

have
LN (uf’) > LN (u)

for every A and so L (u)) = LY (u*) and by uniqueness

In [13] it was shown that indeed the smoothing splines are smoothing under some
fairly gentle conditions on the error. The theorem was proved under the assumptions
of normality but it is fairly clear that these restrictions are unnecessary and that
weaker conditions, in the form of symmetry of the distribution of error, would suffice.
This result establishes that the solution of Problem 2 converges to the solution of
Problem 3 as N becomes large.

THEOREM 4.2 ([13]). Let thet;’s be such that the

1 & T
Iim — wy i) = d
> wis(h) | st

Nooo N 4
1=

for every continuous function, g. Let the errore¢; be identically independently normally
distributed. The optimal solution of

1O T
N _ = ) N — )2 2
TN = N;w“\r(y(tl) i) —1—)\/0 u(t)?dt
converges to the optimal solution of

= [ ) - 1) + a7
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The first result that was obtained was that the solutions of Problem 3 converge
to the solutions of Problem 4 under certain conditions on the eigenvalues of the state
matrix. It is probably true that the restriction on the eigenvalues can be relaxed but
it has not been shown.

THEOREM 4.3 ([16]). Assume that the matriz A has only real eigenvalues and
let f(t) be a C* function on an interval that contains [0,T]. Let the t;’s be such that
the

1 & T
lim ﬁ;wmf(ti):/o g(t)dt

N—oo

for every continuous function, g. Then the sequence of controls {un(t)}°_; converges
to the function ux(t), which is optimal solution of Problem {4, in the Ly norm.

In the following three theorems when we say that a sequence converges to a
solution of Problem 5 we mean this in the sense that if the solution of Problem 5
exists then we have convergence, but if the solution of Problem 5 does not exist then
the convergence is in the sense that the cost function of Problem 5 goes to zero when
evaluated at the points of the sequence.

In this paper we have proved the following result

THEOREM 4.4. Under the assumptions of Theorem 3.1 the solution of Problem 4
converges to the solution of Problem 5 as A goes to 0.

The main conclusion of this paper is that the following theorem holds.

THEOREM 4.5. Under the assumptions of Theorems 4.1, 4.2 and 4.3 the solutions
of Problem 2, ui\f}\ converge in L2[0,T] norm to the solution of Problem 5, u*.

Thus we have that the generalized smoothing splines smooth the data and recover
the underlying function in the limit. As a corollary we also have

THEOREM 4.6. Under the assumptions of Theorems 4.1, 4.2 and 4.3 the solutions
of Problem 1 converge to the solution of Problem 5 in L%[0,T].

The diagram in Figure 4.1 shows the relationship between the various problems.
All convergence is with respect to L2[0, 7.
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