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COMPUTING MDP COST FUNCTION FOR HIGH SPEED
NETWORKS WITH SAMPLE-PATH AND QUANTIZATION*

XI-REN CAOt, JUNJIE WANG!, AND CHIN-TAU LEAf

Abstract. The theory of Markov decision process (MDP) is a promising tool in many network-
related problems, including routing, admission control, and capacity planning. One problem often
encountered is the lack of exact information about the state transition rates. In addition, the
application of MDP in a high-speed network environment is hindered by a large state space and
consequently a prohibitive computational complexity.

In this paper, we apply two techniques to solve the problem mentioned above. The sample-path-
based performance potential theory removes the need of knowing the exact system parameters. Cost
quantization, on the other hand, can reduce the state space to a manageable size. By combining the
two, we are able to obtain the efficient solution to the cost computation problem in a high-speed
network. Numerical results show that considerable computational resources can be saved without

degrading the performance significantly.

Keywords: Cost-based routing, Markov decision process, Performance poten-

tials, Quantization.

1. Introduction. The theory of Markov decision process (MDP) [1]-[4] is a
promising tool in many network-related problems. For example, cost-based routing
has been widely studied in networking research in which the cost function of adding
a new connection can be captured by MDP theory [5]-[9]. Cost-based routing at-
tracts research attention not only because of its high throughput, but also because
of its ability of removing the unstable conditions inherent in non-hierarchical routing
networks [10]. Tt can be implemented in a centralized or distributed fashion.

In spite of the advantages offered by MDP-based schemes, there are several major
hurdles to overcome before MDP-based techniques can be applied to solve high-speed
network problems. The hurdles are all related to the basic task in cost-based routing
by the MDP approach: cost computation. First, the specific information about the
system, such as transition rates and steady state probabilities that are required for
computing the cost function, is sometimes missing or varying with time. Second,
the conventional cost computation methods have a high complexity because they rest
on the computation-based MDP approaches, which involve large recursive equations
or the inverse of large-dimensioned matrices. Third, the computational complexity
is determined by the number of states. In a high-speed network the state space is
generally enormous , thereby making the cost computation and the implementation
of MDP-based schemes an impossible task. (As an example, a 1 Gbps link can sustain
5 x 105 calls, and thus the same number of states will exist.)

Contrary to the traditional computation-based approach in MDP theory, the
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performance potential theory [11][12] provides a sample-path-based approach. This
methodology received more and more attention recently for its promising application
against some of the aforementioned difficulties in the conventional computation-based
MDP approaches. The single-sample-path-based potential theory can be an appealing
candidate for cost computation in cost-based routing in the sense that it can elegantly
alleviate the first two problems mentioned above. The concept of performance poten-
tial offers a desirable property that the potential can be measured in a single sample
path without any particular knowledge about the system parameters. Therefore, the
online estimation can adapt to the dynamic features of the systems such as high-
speed networks. Some simple and efficient algorithms have been developed for online
implementation [12].

Another development related to cost computation in MDP routing is the con-
cept of cost quantization. In high-speed network related problems, the cost function
changes little among adjacent states. In a sense, the cost function is like a continuous
function. Tt was shown in [13] that we can quantize the cost function into a small num-
ber of levels without sacrificing the accuracy significantly. The result of quantization
is a considerable reduction in the number of states required in cost computation. This
technique can solve the third problem mentioned above. But quantization described
in [13] was developed based on the conventional cost computation schemes which still
requires system information like arrival rates, and steady state probabilities.

In this paper, we combine the advantages of the two, sample-path-based MDP
approach and quantization, to remove the major obstacles mentioned above. We will
show that this technique will not degrade the estimation accuracy much, but save
computational resources significantly. The paper is organized as follows. In Section
2, we briefly review the MDP model and the potential theory. We will explore the
notion of performance potential in order to acquire the basis of understanding the
cost quantization. In Section 3, we discuss the cost quantization by the method of
state aggregation. We will focus on the sample-path-based approach and develop
some algorithms to estimate quantized costs. Some numerical results are shown in
Section 4. Tt is illustrated that a significant amount of computational resource can
be saved by state aggregation without effecting the estimation accuracy. Finally, we

conclude the paper in Section 5.

2. Markov Decision Process and Potential Theory. In this section, we will
briefly review the performance potential theory in MDP model. We assume that the
Markov chain, denoted as X = {X,,,n > 0}, has a finite state space S = {1,2,..., M }.
At any state ¢ € S, an action « is taken from an action space .A(7) and is applied to the
Markov chain. We assume that the number of actions is finite, and we only consider
stationary policies. A stationary policy is a mapping £ : S — A, which determines
the underlying transition probability matrix P% = [P'C(i)(i,j)] f‘ilbj‘il Let ¢ be the
policy space, for simplicity, we assume the Markov chain under any policy £ € ¢ is
ergodic.

Accordingly, the steady state probability corresponding to policy £ is denoted
as a vector & = [W'C(l), ...,W'C(M)]. Suppose that at each stage with state i and
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control action a € A(7), a reward f(i,«) is received, and we define vector fﬁ =
[F(1,£(1)),.., F(M, L(M))]T. The long term expected reward corresponding to policy
L is then

1=
(1) 7t = Jim NE{; S1Xn. £(X)]},

where “E” denotes the expectation. For ergodic chains, the above limit exists and
does not depend on the initial state.

It is shown in [11] that, the concept of performance potentials leads directly to the
solution of MDP. Most results in infinite-horizon, average-cost MDP can be derived
from this notion. Formally, the performance potential vector g is defined by Poisson

equation (the superscript indicating the policy is dropped for simplicity)

(2) (I—P+em)g=f

where I is the identity matrix and the M-dimensional vector e = (1, ..., 1),

The potential can be derived by solving the above equation, which is usually re-
ferred to as computation-based approaches. Unfortunately, we notice that a matrix
inverse 1s required, which may be highly computationally complex, especially when
the cardinality of the state space § is large. Moreover, in real systems, some elements
in the transition probability matrix P may be unknown, thereby making the compu-
tation even impossible. For example, in the call admission and routing problems, the
transition probabilities depend on the arrival rate and the holding time of the call,
which may be unknown or time-varying.

The most appealing characteristic of the performance potential lies in its desirable
physical property. That is, performance potentials can be measured in a single sample

path during the system evolution. It is proved in [11]

N-1

(3) g(i) = lim E{Y " [f(Xa) —n]lXo=i}.

Therefore, potentials can be measured according to (3) along a sample path.

Furthermore, let

and D = eg? — geT. In [11], d(i,j) is called realization factor and D is called
realization matriz. Let X and X’ be two independent Markov chains with the same
transition probability matrix and the reward function, but different initial states Xq =
i, X4 =j. Wedefine N;; = min{n :n > 0,X,, = X}, 1.e. at stage N;; the two chains
merge for the first time. We have [11]

Nij
d(i,§) = B{Y_ (X)) = F(Xa)|Xo = 1, X = j}



150 XI-REN CAO, JUNJIE WANG, AND CHIN-TAU LEA

This equation provides a physical interpretation of the relative factors. That is, d(3, j)
measures the effect of the change from state ¢ to j on the system performance.

Now consider a Markov chain X = {X,,n > 0} starting with Xq = j. Let
L;(i) = min{n : n > 0, X, = i}, when the Markov chain reaches state i for the first
time. Tt is proved in [11] that

Lj(i)—1
() d(i,j) = E{ Y [f(Xa)—nllXo=j}.

Eqn. (5) offers another explanation of d(¢, j) based on a single-sample-path-based
observation. It also suggests another method to estimate the performance potential
in addition to (3). The estimation based on (3) or (5) requires no knowledge about
the system structure (such as transition probability matrix) as long as the sample
path is observable. This characteristic essentially converts the computation-based
methodology to a sample-path-based approach. Some simple and efficient algorithms
for estimating potentials based on Eqn. (3) and (5) were developed in [12]. In this
paper, d(i,7) is also called relative cost or simply cost, which represents the conse-
quence imposed on the system performance because of the transition from state j to
i

The performance potential plays an important role in optimizing the infinite-
horizon, average-cost MDP. After it is derived by computation or online estimation,
it can be applied in policy making to achieve the optimal policy. Some algorithms
are developed to perform the optimization in iterative procedures [12]. It is also
guaranteed that the iteration will converge to the optimal policy with probability
one. Interested readers can refer to [11] and [12] for details. In this paper, however,
we don’t consider the optimization. Instead, we focus on the efficient derivation of
the potentials in large state space, which can be straightforwardly applied to the

optimization of cost-based routing problems.

3. Cost Quantization. As in almost all routing problems in a large net-
work, the link-independent assumption is always used to tame the complexity of the
problem. With this assumption, we can focus on a single link in the routing network
to investigate the cost computation problem.

Let us assume that the arrival of the call requests is governed by Poisson process
with rate A and the holding time of a call is exponentially distributed with the mean
1/p seconds. Take the number of the existing calls on the link as the state variable,
the behavior of the link can be well formulated as a Markov chain X with a state
space S = {1,2,..., M }.

In network problems, like routing and admission control, we are interested in the

specific cost function defined as
(6) Cli) = d(i+1,1) = g(i) — g(i +1),

fori =1,..., M—1. Hence, C(i) measures the effect of accepting a call at state 7 on the

long-term system reward. The combined cost of all links along a particular path will
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be compared with the reward of establishing a call to determine the action. Clearly,

the problem of cost computation is equivalent to the computation of potentials.

The sample-path-based technique described in section 2 allows us to obtain g(7)
using online estimation, thereby removing the requirement of knowing the transition
rates and steady-state probabilities. But the enormous number of states make the ap-
proach impossible to implement in a high-speed network environment. For example,
a 1 Gbps link can have as many as 0.5 million states for supporting voice channels.
An intractably long sample path is required to guarantee that all the states are suf-
ficiently visited for an acceptable estimation accuracy. This, however, conflicts with
the requirement of real-time control in high-speed networks.

Quantization is a concept proposed to tackle this problem [13]. It can be per-
formed at two levels. One is called rate quantization, where the continuous band-
width requirement of various calls is discretized into several levels. A customer of
a quantized-rate network will be forced to subscribe to the next higher rate if his
required rate is not supported. The result is a considerable reduction in the number
of dimensions. Past studies have shown that rate quantization can be done with only
a handful of rates without significantly degrading the throughput of the network.

The second level is cost quantization which leads to a significant reduction in the
number of states in each dimension by state aggregation. In this paper, we consider
the case where the network supports only one rate (thus one dimension in the Markov
model), thereby focusing on the level of cost quantization. We will demonstrate
that cost quantization can be combined with sample-path techniques to reduce the
computational complexity. It is illustrated in [10] that multi-rate problems can be

solved in a similar manner.

3.1. State Aggregation. Fig. 3.1 shows a graph of performance potentials
under a particular policy. A close look reveals that the potential has a wide flat
region and can be closely approximated with a quantized function with m levels.

ffffff Exact potential
— Quantized potential

Performance potential

State

Fi1G. 3.1. Performance potentials
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Quantizing potentials into m levels is equivalent to assuming the potentials of all
states ¢, where ji < ¢ < jgy41, are the same and equal to that of the state jg41. These

states are then aggregated into a single state as shown in Fig. 3.2.
4 - 7 - - \ 44/ - - N
O=0=0-=0x=0=0)
\ / \ / \ /
Fi1G. 3.2. State aggregation

Considering the quantized potentials (as plotted in solid line in Fig. 3.1), we can
construct a new Markov model by grouping all states with the same potential into
one without changing the long term reward. After that, the original cost function can
be reconstructed with linear interpolation done for the quantized cost function. The
original theory of cost quantization was developed for a conventional computation-
based MDP approach [13]. In the following we will show it can be applied in the same
way to the sample-path based approach.

Let’s suppose that the performance potentials are the same in a certain range, that
is, g(¢) = g(j), where i, j € K and K = {1,2, ..., k}. Therefore, we can aggregate state
1, ..., k into one state called 0, then we construct an aggregated Markov chain Y with
a state space Sy = {0,k+1, ..., M} of cardinality of (M —k+1). ! Here, we refer to k
as the aggregation ratio to indicate the extent of the state compression. Accordingly,
we have the aggregated potential vector gy = [gv(0),g9v(k + 1),...,9v(M)] and the
steady state probabilities 7y = [7y(0), 7wy (k + 1), ..., 7y (M)]. By the conservation

law of transition rate, the transition probability matrix Py is defined as:

(8) Py (0,4) = 2om=1 Px ”;,J) mx (m)

S me1 Somey Px (m,n) mx (m)

9 Py(0,0) = =
(9) (0,0) S )

forj=k+1,...,M,and
(10) PY(Z:j):PX(Z:])a

fore,j=k+1,..., M.
The reward function of chain Y is defined as:
E';:lk’fX(M)fx(m)
(1) Jei) =1 Ehamx(
Ix (i), when i =k+1,...,. M

, when i =0

1To avoid confusion, we use the subscript X and Y to indicate the variables based on the

definition of the original and aggregated Markov chain, respectively.
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It is easy to verify from Eqn. (11) that the long-term reward ny = nx.

Next to the above formulation, we have the following theorem.

153

Theorem: Assume that the potential of the Markov chain X satisfies: gx (i) =

gx(j), for i,j = 1,..., k. We construct a new Markov chain Y by aggregating state

1,2, ...,k into one state denoted as 0 according to (7)-(11), then we have:

(12) gx(i) = {HY(O), when i =1,2,... k

B gy (i), when i=k+1,..., M.

Proof: To simplify the notation, we let gx (i) = g, for i = 1,...,k, and nx =

Ny =1.
From the Poisson equation

(13) (I—Px +emx)gx = fx.

We expand the first k& equations as

(14) §-3 Y Px(ii)— Y Pxl(i.d)ax(i)+n=fx(i).
=1 j=k+1

fori=1,.. k.
Multiplying the i-th equation by 7x (7) and add them up, we have

ﬁzﬂx(i) —ﬁZZPX(i,j) mx (1) — Z Z[Px(iaj) mx (1)) 9x (7)

j=k+1i=1

k k
(15) +n Y mx(i) =Y mx(i) fx (i)

i=1 i=1

Dividing (15) by Zle 7(7) and applying Eqn (7)- (11), we have
M
(16) g—Pv(0,00g— Y Py(0,i)gx(j) +n=fr(0).
j=k+1

Considering the other (M — k) equations in (13),

(17) gx (i) =g Px(i,5)— > Px(i,5)gx(j) +n = fx(i),
j=1 j=k+1

fori=k+1,....M.
Applying (9) and (10), (17) can be written as

M

(18) gx (1) = Py(i,00g— > Py(i,i)gx (i) +n = fr(i).
j=k+1

Putting (16) and (18) in matrix form, we have

(19) (I—Py+emy)gy = fr.
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where gy = [7,gx(k + 1), ..., gx(M)]T. Hence we have (12).

Following this theorem, we can convert the quantized potentials gy to the original
gx. After that, we can compute the cost function according to (6). The potential
of the aggregated chain can be obtained by online estimation using the algorithms
developed in the next section.

Note that in the theorem, we assume that gx (i) = gx(Jj) in a range of i,j € K.
However, this may be not absolutely true in practice. Therefore, the state aggregation
based on the theorem will introduce some error, which is called quantization loss in
[13]. The point is, the quantization loss under a proper grouping scheme is acceptably
small compared with the computational savings [13]. We will evaluate the performance

of quantization schemes in terms of the quantization error.

3.2. Aggregated Potential Estimation. In computation-based approach, we
can simply obtain the potential gy by solving Poisson equation (19). In this paper,
however, we will mainly discuss the sample-path-based approach for potential estima-
tion. Furthermore, we will demonstrate that the potential for aggregated chain Y can
be measured directly by observing the sample path of X. With the state aggregation,
we will significantly reduce the number of states and make the storage and database
management tractable.

Considering Eqn.(3) and (12), it clearly follows that

S {th%o E[SN2) fx(Xn) =0 Xo € K], when i =0
(20) o (i) = limyoseo BN fx(Xa) —nlXo =],  when i=k+1,..., M.

This equation offers a similar method to (3) to online estimate gy. From (20), we

choose an integer L and define
L-1

(21) gy (i) = B[Y_ fx(Xa)|Xo =] — Ly
n=0

for simplicity, we force X = 0, if Xq € K. Hence we have

N-L . L-1 N-1
2y () = Jim (Znz0 (g’jv)__[?;f;f)x ol LS pa) wn

fori =0,k+1,..., M. I;(.) is the indicator function, that is, I;(X,) = 1, if X,, = ¢;
or I;(X,) = 0, otherwise. Consequently, we have the following algorithm.
Algorithm 1
1. Choose two fixed integers L and N.
2. Estimate giL,’N(z') by

N-L L-1 N-1
23) giV (i) = Lot B Bomat Il L7 ()

oo Ii(Xa)

fori=0k+1,.... M.
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From (3) and (22), it follows

(24) lim lim giL,’N(i) = gy (9), w.p.l.

L—soo N>

Furthermore, we define the realization factor in Y

dy (i,0) = gy (0) — gv (i)
= gx(j) —9x (i)
(25) - dX(iaj)a

fori=k+1,.... M and j € K.

Similarly to the estimation based on (5), we observe a sample path starting from
Xo =i. Let pg = 0 and pgq1 = min{n :n > pg, X, = i}, k > 0. Then pg, k > 0 are
regenerative points. We define vy (0) = min{n : ygy1 > n > px, X € K}.

Based on Eqn. (5) and (25), we have

1 K-1 Hr41—1
26 dy i,O :hmf kO XXn
(26) 60 = Jim et { | S w0 3 sl
- [Z_ Xk 0) k1 — vkm)]] 77} ,

fori=k+1,..., M, where

Loif {pgpr >n > e, Xn €K} £ @
xx(0) =

0, otherwise.

Therefore, we have the following algorithm. In the algorithm, we assume that the
Markov chain starts from X = i. (if i € K, we denote X = 0.)

Algorithm 2

1. Create six (M-k+1)-dimension vectors a,b,c,d, h,l and w, set a := 0,b :=
0,c := 0,h := 0,{ := 0, and w := 0, denote their jth components as
a(j),b(4),¢c(7),d(7),h(4),1(7) and w(j), = j = 0,k + 1,..., M, respectively.
Set a scale variable u := 0.

2. At the nth transition of the Markov chain, do:

(a) Set u:=u+ fx(Xn);
(b) If X,, € K, set Y := 0; otherwise, Y := X,,.
(c) Y # 4, then

i.ifa(Y) =0, set a(Y) := 1;

ii. for j = 0,k+1,...,M,if a(j) = 1, then b(j) := b(j) + fx (Xn), h(j) :=
h(j) + 1;
(d) Y =4, then for all j # 1,

i set o(j) 1= c(j) + b(j) and 1(j) = L(j) + h(3);

ii. if h(j) > 0, set w(y) := w(j) + 1;

i, for j =0,k + 1, ..., M, set a(j) := 0,b(j) := 0, and h(j) := 0;
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3. At the last stage NV, set n = & and g(i) =0, forall j =0,k+1,..., M, and
J# i
gY(j) — C(]) — 1(3)77
w(j)

From this algorithm, we can see that the estimation based on the aggregated
state space need only six (M — k + 1)-dimensioned vectors instead of M-dimensioned
vectors. It can be easily extended to the case where we further aggregate the states
to m levels. Clearly, the less the m, the less is the storage required. In addition to
the memory savings, state aggregation is also expected to increase the steadiness of
the estimation against the length of the sample path. Generally, the estimation errors
result from the insufficient length of the sample path. However, by state aggregation,
hitting any element of an aggregated state will contribute to the estimation, thereby
enhancing the accuracy of the estimation, especially under short sample paths. This
intuition is verified by the numerical results in Section 4.

Note that in the practical state aggregation, the states within a group are not
necessary to have exactly the same potentials. Therefore, the ideal conversion from
gy to gx according to (12), which is based on the assumption of perfectly flat region
of potential values, cannot be performed. In order to recover the original potential

from the quantized value, we apply the linear interpolation as shown in Fig. 3.3.

—— Quantized Potential

—\—\— Linear Interpolated Potential

Performance potential

State

Fi1a. 3.3. Linear interpolation

Accordingly, the interpolated potential can be yielded as

(27) gx (i) = lgy (Gr—1) jr — gY(jk).jk_ﬂ +ilgy (k) — !]Y(jk—l)].
Jk — Jk-1

4. Examples. The example presented below is a common routing problem in a
connection-oriented network such as ATM. One class of routing algorithms is cost-
based. In such a routing algorithm, whether a connection is rejected or not is based
on the sum of the ”cost” of all the links of the entire path. When the cost exceeds
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its reward” of the connection, the connection will be rejected. The cost and reward
of a connection in a connection-oriented network, like ATM, are normally defined
and computed from the concept of MDP. Cost-based routing has many advantages-
like high efficiency and high stability. But the main problem is two fold: (1) the
complexity of the cost computation is proportional to the number of states, and (2)
the traffic pattern is not totally stationary. The technique proposed in this paper is
intended to solve the two problems. QQuantization can solve the first problem and the

sampling path (measurement) technique solves the non-stationary problem.

We give an example below to illustrate our technique. A network consists of
many nodes and links (Fig. 4.1). Although all links and nodes are dependent, a
necessary technique to make the problem tractable is to assume all links and nodes
are independent. Since a connection’s bandwidth is usually much smaller than the
total bandwidth of a link, this assumption has been shown to be a good approximation
[7]. With this link-independent assumption we can derive the total amount of traffic
generated in each node from the routing policy we use [7] and the cost computation
in network routing is reduced to cost computation for one link. Thus the example

below, although for one link, is applied to the whole network routing problem.

/ Node C
| NodeA

NodeE ————

1 NodeB

Node D

FiG. 4.1. Link and nodes are normally assumed to be independent in network routing.

Consider the example shown in Fig. 4.2. The link has a capacity of 1000 units
and each call will take one unit. Call arrivals are assumed to be Poisson, but the rate
is not known and will be measured on line. Although the discussion is only for one
link, keep in mind the cost computation in a network is similar since link-independent

assumption is normally used; otherwise, the problem becomes intractable.

4.1. How to Measure the Accuracy of the Algorithm. To measure the

error in online estimation, we evaluate the ratio of mean squared cost (MSC) to
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\ Statistical

/ Mux Capacity = 1000 units/sec

Fi1Gg. 4.2. Example of a statistical multiplezer

mean squared error (M SE) as the performance metric. That is,

MSC =" rx(i) C*(i)

i=1

MSE = Zﬂx(i) [C(i) = C(i)?

where C(i) and C(i) are the theoretical and the estimated cost functions, respectively.
Similar to the signal-to-noise ratio (SNR) used in signal detection and estimation,
we define the cost-to-quantization error ratio (CQER)
MSC

CRER=3rep

as the performance measure to investigate the quantization error. The CQFER will
be represented in dB (i.e. 10 x log1oCQER).

We need to point out that, the error measured by C'Q E'R results from two different
sources: one is the quantization loss, the other is the estimation error attributed to
the insufficient sample path?. We separate these two kinds of errors in our study to
examine the effectiveness of (i). single-sample -path based technique, and (ii). cost

quantization under particular aggregation schemes.

4.2. Aggregation Strategy. In [13], an aggregation strategy named Backward
Uniform Quantization (BUQ) was proposed for its simplicity. In this paper, we de-
velop another grouping strategy called Difference Dependent Quantization (DDQ).
This scheme is motivated by the observation that the difference of potentials is mono-
tonically decreasing (as can be seen from Fig. 3.1). The basic idea of DDQ is to select
a high aggregation ratio at the flat region and a low aggregation ratio at the steep re-
gion. Intuitively, this scheme will cause less quantization loss and it is verified by our
simulation results. In the simulation, we assume the link capacity is 1000 units/sec
and the bandwidth requirement of a single call is uniformly 1 unit/sec. Hence the orig-
inal state space holds 1001 states. We adopted two DDQ methodologies to compress
the state space to 39 states and 60 states, respectively. By applying Algorithm 2, the
memory required in potential estimation is reduced by 96% and 94%, respectively.
Fig. 4.3 contains a sample result of the DDQ scheme.

2In a computation-based cost quantization, we don’t have the this source of error.
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Load=0.9, CQER=20.95dB
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F1G. 4.3. Quantized cost function (quantization level = 39)

We found that DDQ scheme yields a smaller CQFE R than the BUQ procedure.
Some sample results are shown in Table 1. For comparison, we also list the perfor-
mance of estimation with no quantization. Note that the length of the sample path

is measured by the number of arriving calls.

TaBLE 4.1
Performance of estimating quantized costs (DDQ scheme)

Length of sample CQER (dB)

Load path (x10%) m=239 | m=060 | m=1001 (no quantization)
0.9 150 20.95 22.31 21.42

0.9 50 15.4 15.92 15.86

0.9 10 8.7 8.16 8.02

1.0 150 9.95 15.96 31.32

1.0 50 9.95 15.96 26.33

1.0 10 9.93 15.54 21.28

1.0 2.5 9.85 14.63 17.06

1.0 0.5 10.03 11.14 10.29

From Table 1, we can investigate the effects of two factors on the CQFER. The
first is the performance of online estimation approach, which can be found in the last
column. Here we remove the effect of quantization in order to separate two kinds of
errors mentioned in Section 4.1, i.e. we select quantization level m = 1001. It can be

seen that online estimation produces accurate results. For example, under the load

of 1.0, a sample path of the length of only 0.5 x 10° yields a CQER of 10.29.
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The second is the effect of cost quantization on the CQFER. It can be found that
under the load of 0.9, the cost quantization yields nearly the same performance under
two different quantization levels (i.e. m = 39 and m = 60). Moreover, even with no
quantization (m = 1001), the estimation performance doesn’t increase considerably.
In other words, a moderate quantization can yield a similar performance as in the non-
quantization case, while a considerable amount of memory can be saved. The reason
is that, under the load of 0.9, the flat region of the cost curve is relatively wide,
therefore the high quantization level doesn’t necessarily reduce the quantization loss.
In contrast, we will show that this observation does not hold true under the load of
1.0, where the flat region is relatively short. Hence, the higher rate of compression

will cause more quantization loss.

Under the load of 1.0, we can find that the quantized cost estimation is more
robust than the non-quantized estimation. That is, the CQFE R degrades quite slowly
with the truncation of the sample path while it degrades very fast under no quanti-
zation. This is intuitively true because in the aggregated state, visiting to any of its
elements will contribute to the estimation, thus making it less sensitive to the length
of the sample path. For example, if a CQFER of 10 dB is acceptable, the performance

of a sample path as long as 5 x 10® can even outweigh the non-quantized estimation.

To choose the length of sample path is a key issue in the estimation. Naturally,
a longer sample path will yield more accurate results. However, it is not realistic in
practical systems, especially in the dynamic environments with parameters changing
relatively fast. The basic approach is to select the length of sample path such that
the traffic characteristic in a single sample path remains consistent. Take an example
in the telephone network, if the time scale can be approximately divided into several
segments (say every one hour) such that the traffic load within each interval can be
assumed constant. Thus we can set the sample path (measured in time scale) to be

as long as one hour.

5. Conclusion. MDP theory has a wide range of applications to networking
problems. The sample-path-based performance potential theory allows us to online
compute the cost function in the cost-based routing. It relaxes the requirement of
system identification, therefore 1t is very attractive from a practical point of view in

the dynamic systems.

The main obstacle to overcome in a high-speed network environment is the enor-
mous number of states. We overcome this difficulty by applying the concept of quan-
tization by state aggregation. We developed algorithms and a theorem in the paper
to establish the foundation for combining quantization and potential theory. Numer-
ical results showed that this technique yields satisfactory accuracy and saves great

computational resources as well.
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