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A POLYNOMIAL-TIME UNIVERSAL SECURITY AMPLIFIER IN
THE CLASS OF BLOCK CIPHERS*

JOHN O. PLIAM'

Abstract. By construction, we establish the existence of an efficient block cipher with the
property that whenever it is composed with any non-perfect cipher, the resulting product is strictly
more secure, against an ideal adversary, than the original cipher. We call this property universal
security amplification, and note that it holds for at least one trivial stream cipher (notably, the
one-time pad). However, as far as we are aware, our construction is the first efficient block cipher
possessing this property. Several practical implications of this result are considered.

1. Introduction. It is often asked in cryptography whether the product of two
ciphers might be more or less secure than one of the ciphers by itself. An ampli-
fication of security doesn’t happen in general and important counterexamples have
been identified. For example, if the permutations of a block cipher form a group (or
more precisely, are uniformly distributed on a subgroup of the symmetric group on
the set of message blocks), then two-key double encryption is no better than single
encryption. Thus, it is important to rule out this pathology in the case of DES (as
was done in [5]). Furthermore, the security of a product cipher may actually be less
than that of the second cipher when the plaintext statistics are ill-behaved with re-
spect to the permutations of the first cipher [16]. Nevertheless, depending on how
security is measured and how the ciphers are modeled, other affirmative results have
been advanced [23, 9, 1].

In this paper, we take a novel approach to this problem, raising a strong exis-
tence question about the security of product ciphers. Specifically we ask: Is there
an efficient block cipher which amplifies the security, against an ideal adversary (one
who has unbounded time and data complexities as described below), of every non-
perfect cipher with which it is composed? By construction, we answer this question
affirmatively.

The constructed cipher, as presented, would not be widely viewed as practical
because it requires a variable length key which grows with the amount of plaintext
encrypted (much like a one-time pad). On the other hand, if a cryptographically
strong substitute for the key were used (such as a key schedule, hash, or pseudo-
random function), then the strength of the security amplification would be no worse
than the strength of the key substitute.

There are other practical implications of our result. First of all, the techniques
used here could facilitate the construction of computationally efficient primitives (such
as dynamic S-boxes) with provably strong security properties. More generally, if we
are to understand, in more than purely heuristic terms, the security convergence
of modern iterated cryptosystems, then our result establishes new limits on what
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can be accomplished in polynomial-time. Our construction might be modified and
compromised to obtain faster ciphers with complementary security results.

2. Preliminaries. A basic familiarity with random variables and probability
spaces [12] is assumed. Some group theory [22] is also assumed, but in the next
subsection, we shall review some important terminology about permutation groups
[8]-

2.1. Permutation Groups. Let 2 be any set. The collection of all invertible
functions on £ forms the symmetric group & . Any subgroup G < & 4 is called a
permutation group, and we also say that G acts on £ and that £ is a G-set. The
subgroup of G which fixes a point z € 2 is called the (point) stabilizer of z, and is
given by Stabg(z) = {h € G |hx = z}.

When studying n-bit block ciphers, the finite set .# = {0,1}" of all n-bit binary
strings (or equivalently the integers {0,1,...,2™ — 1}) is the most natural G-set for
some permutation group G < &_g. In this paper, we will consider two other actions of
G on related sets. By .# (9 we mean the set of tuples of size £ with distinct elements
in .4, G acting elementwise. If p = (p1,... ,p¢) € #Y), the point stabilizer Stabg (p)
is sometimes written as Stabg(pi, ... ,p¢). By #1™} we mean the set of subsets of
M of size m, where g € G acts on S € .#1™} by taking S — ¢S. The point stabilizer
of S € .#4{m} is sometimes written as Stabg{S}.

2.2. Majorization. Given two n-dimensional positive vectors =,y € R}, we
write x < y and say that x is majorized by y or that y majorizes x if

n n
(2.1) dowi=> ui
i=1 i=1

k k
(2.2) g <y, 1<k<n,
=1 i=1

where square brackets in x[;,y[; indicate rearrangements of x;,y; (respectively) into
non-increasing order. Of course, (2.1) holds automatically for discrete probabilities.
Note that here we stray from common notation for majorization. We must reserve the
usual notation z < y for strict majorization which is defined in the obvious way. If
x < y while y A z, then we say that z is strictly majorized by y, and write x < y. Strict
majorization will turn out to be useful for establishing strict security inequalities.

Of fundamental importance are two theorems (see [15]) which, in a sense, char-
acterize majorization algebraically. The Hardy-Littlewood-Pdlya theorem [13] states
that ¢ < y iff z = Dy, for some n x n doubly stochastic matrix D. Birkhoff’s theo-
rem [3] states that every doubly stochastic matrix D is a convex sum of permutation
matrices. Thus majorization z < y is equivalent to

(2.3) T = ijl'[j Y,
J

where p; >0, ) ;pi=1 and each II; is a permutation matrix. In the sequel, we shall
see that majorization fits nicely with Shannon’s model of ciphers.
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2.3. Shannon’s Model and Product Ciphers. Following Shannon [23], we
model an n-bit block cipher as a &_g-valued random variable. If a cipher X only
takes values in a subgroup G < & 4, then X may be called a G-cipher. We may
model a stream cipher in the same spirit (cf. [17]). Let {0,1}* denote the (infinite)
set of finite binary strings, and let H < &(g,1}+ be the subgroup of length-preserving
permutations. We shall call an H-valued random variable a stream cipher'. By a
cipher we mean either a block cipher or a stream cipher.

Given two independent ciphers X and Y acting on the same message space, the
cipher XY is called a product cipher, Y is called its first component and X is called
its second component. The distribution of the product of two block ciphers is given
by the convolution,

(2.4) PrXY =gl =zxy(g) £ > a(gh Yy(h),
heG

where z(g) = Pr[X =g] and y(g) = Pr[Y =g]. This representation of a product
cipher will prove useful in the sequel.

The cipher U which is uniformly distributed on &_y is called the perfect cipher.
For any subgroup G < &_4 the G-cipher Ug which is uniformly distributed on G is
called the uniform G-cipher. Given an infinite sequence of independent and uniformly
random bits, zg, 21, - - -, we may form a simple stream cipher, called the one-time pad,
by mapping plaintext word m into z(|m|) & m, where z(|m|) is the word of random
bits 2o+ - - 2|

2.4. The Computational Model. Shannon’s model is a purely probabilistic
one; it says very little about how a computer might transform plaintext into ciphertext
and back. For a cipher X to be practical, there should be effective procedures for
encryption (computing the action of X on plaintext) and decryption (computing the
action of X! on ciphertext).

One natural choice for the computational model is the standard Turing machine
model [10]. Informally, we have an encryption algorithm Enc, which has as input
arguments the plaintext m and the random key k, and which outputs the ciphertext
c. The corresponding decryption algorithm Dec is similarly defined. Formally in this
model, we require a pair of deterministic Turing machines E and D, such that (under
suitable encoding) m = D(k, E(k,m)), for all m and k. Notice that under this model,
all randomness enters as an argument to the encryption and decryption algorithms, or
equivalently as input data on the Turing machine tapes. Our view is that this model of
computation is unnecessarily restrictive, because it fails to capture the simple idea that
some ciphers (like the one-time pad) are “computationally efficient” even though they
may require impractical amounts of key material to encrypt every possible plaintext.

Alternatively, we consider encryption and decryption algorithms which access key
material as an auxiliary subroutine call. Formally, such a subroutine call is idealized by

!n practice, a stream cipher will typically also have consistent block prefiz action, i.e. for some
integer m, it will be confined to permutations h € H such that when |u| = |u/| € nZ, h(uw) = v'w’
implies that for all v of length |w|, h(uv) = u'v’ for some v'.
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an oracle function f : {0,1}* — {0,1}, and we are thus invoking the computational
model of an oracle Turing machine (OTM) [10]. An OTM is a deterministic Turing
machine augmented by an oracle tape and additional logic so that at any time, the
oracle tape with input « written on it can, in one step of computation, be transformed
to have f(a) written on it. An OTM M with specific oracle function f will be
denoted by M7, and its time complexity is computed in the usual way (with oracle
evaluation counting as one step). We may model uncertainty about the oracle function
by treating it as an instance of a random oracle function F : {0,1}* — {0,1}.

The next two definitions capture our intuitive notion of efficient encryption
/decryption for block and stream ciphers, respectively.

DEFINITION 2.1 (Efficient Block Ciphers). An ensemble of block ciphers {X,},
n € N is called computable in polynomial-time if there exists a random oracle
function F and a pair of polynomial-time OTM’s, E and D, such that for each n € N:
(i). for each p € {0,1}", p = DF(E¥ (p)), (ii). the distribution of E¥ restricted to
strings of length n, is identical to that of X,,, and (iii). the distribution of D,
restricted to strings of length n, is identical to that of X, .

By a mild but common abuse of notation, a block cipher X acting on {0,1}" is
called computable in polynomial-time if it is one of an ensemble of such ciphers, and
any important properties hold for each representative.

DEeFINITION 2.2 (Efficient Stream Ciphers). A stream cipher X is called com-
putable in polynomial-time if there exists a random oracle function F and a
pair of polynomial-time OTM’s, E and D, such that: (i). for each p € {0,1}*,
p = DY(E¥(p)), (i4). the distribution of E¥ is identical to that of X, and (iii). the
distribution of D is identical that of X 1.

Note that by Definitions 2.1 and 2.2, both the one-time pad and the Luby-Rackoff
construction [17] are efficient. In fact, each is computable in linear time. Notice also
that being computable in polynomial-time does not preclude that exponentially many
bits may be necessary to completely describe the cipher’s action on the entire message
space. For example, each round of the Luby-Rackoff construction (a Feistel cipher
with a perfectly random function acting on half-words) takes on one of

(2%)

distinct permutations of an n-bit message space. Thus, for the common 3-round

n
272

version of the construction, there must be 3n2("2%) bits to entirely describe it.

However, neither the one-time pad nor the Luby-Rackoff construction meets our
objective. The one-time pad is not a block cipher. Furthermore, every permutation
of the Luby-Rackoff construction is even and hence is confined to a proper subgroup
(the alternating group, 2.4 < &_4), and we shall see from Lemma 3.2 below that it
cannot be a universal security amplifier.

2.5. Optimal Chosen Plaintext Attacks. We now introduce the measure of
security in terms of which strict security inequalities will be derived. Informally, it
is just the average cost of the optimal (non-adaptive) chosen plaintext attack for an
adversary in possession of an oracle which will answer the question, “is X = g?”.
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Given such an oracle for any random variable Z the average cost of guessing its
value is called the guesswork® of Z which is given by

(2.5) w(z) £ ZP[;’]Z}

where Z takes on n values, and the probabilities of Z have been arranged according
to pr; > ppy) for all i < j. The r.hs. of (2.5) extends to any positive vector p =
(p1,--- ,pn) € RY, thus defining W (p).

Now, there are two stages in the optimal strategy for guessing X in a chosen plain-
text attack. First the adversary discards all permutations which are inconsistent with
the acquired plaintext-ciphertext pairs. Then among the remaining permutations, he
queries the oracle for the exact permutation in order of non-increasing probability.
The adversary will obviously choose the plaintexts such that the average cost of this
strategy is minimized. The difficulty of this attack is a direct and meaningful measure
of the cipher’s security. To formally quantify its cost, let us assume that the adversary
has collected ¢ plaintexts and their corresponding ciphertexts into tuples p,c € .4,
respectively. The ciphertext tuple c is an instance of the random variable C* = Xp,
whose uncertainty is due exclusively to the uncertainty about X.

For fixed p and ¢, the conditional guesswork W (X|c,p) is the guesswork of X
as in (2.5) after discarding all permutations ¢ € G such that ¢ # gp, and then
rearranging and rescaling the probabilities accordingly. Now we must still account
for the uncertainty about C*¢. Evidently, for a particular choice of plaintext tuple p,
the cost of the attack must be weighted by the a posteriori probabilities w(c|p) =
P[C*=c|p], yielding

(2.6) W(X|Ct,p) = Z W(X|e,p)w(c|p)-
ceM®

The minimum value of W (X |C%, p) is the optimal chosen plaintest attack work factor,
which will be denoted

— : 14
(2.7) 0e(X) = min,, W(X|C*, p).

For continuity we take 6o(X) to be W(X).
3. The Main Result.

3.1. The Existence Theorem. We shall prove by construction the following
theorem.

THEOREM 3.1. There is a cipher X, computable in polynomial-time, such that
for each 0 < £ < 2™ and every independent cipherY, 0,(XY) > 0,(Y). Furthermore,
equality holds iff 6,(Y) = 0,(U).

It is easily seen (see e.g. [19]) that no non-perfect cipher Y can have 6,(Y) = 6,(U),
for all £. Thus this theorem tells us in a very meaningful way, that every non-perfect
cipher is brought closer to the perfect cipher by left multiplication by X.

2Guesswork has sometimes been called guessing entropy, cf. [4] and [20].
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The proof of Theorem 3.1 relies on three lemmas which treat different aspects of
the problem. To express these lemmas succinctly, we define the support of a G-cipher
(or indeed any random variable) as supp X = {g € G |Pr[X = g] # 0}.

The first lemma treats the case £ = 0 and establishes an algebraic equivalent
condition for universal amplification with zero data complexity. Thus it is quite
powerful, and for example, can provide a quick way to show that a cipher is not a
universal amplifier.

LEMMA 3.2. Given G < G 4, let X be a G-cipher. Every independent non-
uniform G-cipher Y satisfies W(XY) > W(Y), iff for each g € G and each subgroup
H#G, supp X € gH.

The next lemma provides sufficient conditions for nearly universal amplification
(¢ > 0) for ciphers in any permutation group.

LemMA 3.3. For a permutation group G < & 4, let X be a G-cipher such
that supp X = G. Then for each 1 < £ < 2" and every independent G-cipher Y,
00(XY) > 60,(Y). Furthermore, equality holds iff 0,(Y) = 0,(Ug).

The final lemma asserts the existence of a cipher suitable to translate Lemmas
3.2 and 3.3 into Theorem 3.1.

LEMMA 3.4. There exists a cipher X which is computable in polynomial-time and
satisfies supp X = & 4.

Assuming the validity of the above lemmas, the proof of Theorem 3.1 is immediate.

The three lemmas are proved in sections 4.3, 5.3 and 5.4. Before diving into the
details, we first take a slightly informal look at the ideas underlying the construction
of the cipher X, as the somewhat counterintuitive property of Lemma 3.4 plays a
central role in this paper.

3.2. An Intuitive Glimpse at the Construction. The symmetric group on
the message space is truly enormous. Its size is approximated by

loglog(2"™!) = n +log(n) = O(n).

Because it takes two logarithms to bring 2”! down to the polynomial n, our construc-
tion will exhibit two distinct sources of algorithmic efficiency:

1. Recursion: The cipher X is recursively defined as the product of simpler ci-
phers. More precisely, the encryption algorithm Enc is itself recursive but also
calls another recursive algorithm invSort. The decryption algorithm Dec is
similarly defined. The time complexity and recursion depth of each algorithm
is a polynomial in 7.

2. Oblivious Action®: The cipher X is represented as a product of a large number
of random powers of transpositions (i.e. permutations of message blocks two
at a time). So Enc and Dec, the defining algorithms of X, make use of only
polynomially many transpositions for every block encrypted.

Let G < & 4 be any permutation group. There are many ways to construct a
product cipher P@Q which achieves every permutation in G, even though both P and Q)

3We borrow this term from [18] where it is used in the same context.
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are sparse on G. Indeed for any subgroup H < G, we may take () which achieves every
permutation in H and P which achieves one permutation in every left coset of H in
G. Tt is easy to see that P() achieves every permutation in G. For many large groups,
it is possible to find subgroups satisfying |G| > |H| and |G| > [G: H]. Formally, we
have an amplification of support: |supp PQ| > |supp P|, and | supp PQ| > |supp Q|-
Thus by exploiting the algebraic structure of the group, we may construct a densely
distributed cipher as a product of very sparsely distributed ciphers.
Let’s try to carry this idea even further. Consider a chain of subgroups of G

{1}=Hy<H, <---<H, =G,

and for each i, an H;-cipher P; which contains one permutation in every left coset of
H;_; in H;. Then by simple induction, the product cipher P,, --- P, P;, would have
complete support on G. For example, in the symmetric group on 2™ symbols, consider
the subgroups H; = Stab(1,...,2™ —4), 0 < i < 2™. On the one hand, this choice
of subgroups is promising because the number of cosets in Ga2n of the largest proper
subgroup is the polynomial n. Unfortunately however, there are 2" subgroups in this
chain, and so the number of terms in the product P, --- P, P; grows exponentially
with n. If we are to employ this technique, it may be inconvenient to use a chain of
subgroups which fix collections of words in .#, either as tuples or as sets, because
any hierarchy of such collections would typically be as large as . itself.

It thus makes more sense to define subgroups which fix some feature of the words
in . To that end define K; to be the subgroup consisting of the permutations of
&_ which preserve the first n — ¢ bits of each message block. We shall call K; the
(n — 1)-bit prefix stabilizer subgroup of & 4, and as i ranges from 0 to n these form
the chain of subgroups

(3.1) (}=Ko<Ki < <K,=64.

We will construct, for each 1 < ¢ < n, a K;-cipher P; which contains one permutation
in every left coset of K; 1 in K;. In this way, the cipher of Lemma 3.4 is defined as

(3.2) X =P, - -PP.

Let us compute the minimal support required by P,. That is to say, let us count the
number of left cosets of K,,_; in & 4. Since K,,_; permutes all but the most significant
bit of words in .#, the left cosets of K,, 1 are characterized by the rearrangements
of ./ with distinct patterns of the most significant bit. There are precisely

(S K] = ( =z, )

rearrangements. Observe that while we have reduced the number of permutations by
a large number (by (27~!1)2 in fact), on a doubly logarithmic scale we still have

2n
loglog ( gn—1 ) ~n+1=0(n).
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It may appear that we are right back where we started. But as we shall see, we have
transported the problem onto fertile new ground.

The efficiency in our algorithms for P; has its heritage in the closely related prob-
lem of card shuffling. In fact, both the security of a product cipher [19] and the
fairness of a shuffled deck of cards [2, 7] are related to the uniformity of convolutions
as in (2.4). In their analysis of riffle shuffles, Aldous and Diaconis remarked that “the
lovely new idea here is to consider shuffling as inverse sorting.” [2, Remark (a), p.
344]. Indeed it is quite natural to consider encryption as inverse sorting because the
rearrangements of .# which characterize the left cosets of K,_1 < &_4 correspond
precisely to the permutations which would be used in the first step of the obvious
recursive sorting algorithm. In the reverse order, we may achieve all permutations
of A by first achieving all rearrangements of the most significant bit, and then pro-
ceeding recursively with the less significant bits. What we claim is that sorting and
inverse sorting on the most significant bit can be done in polynomial-time using both
recursion and the oblivious action of transpositions. The rest is gravy.

Let us demonstrate this efficiency in a simple example with n = 3 and thus .#Z =
{0,1,...,7}. We start with a random arrangement (6,3, 5,0,7,1,4,2) of the elements
of #, and attempt to sort this tuple on the most significant bit by the application
of n = 3 rounds of involutions (recall that every involution is a product of disjoint
transpositions). For reasons of efficiency we shall restrict ourselves to transpositions of
the form (4,7 @ 2¢), with i constant for every round. The allowable round involutions
are (01)b1(23)%2(45)%(67)04, (02)5(13)%e(46)b7(57)b and (04)b7(15)be (26)b10(37)b11,
for rounds 0, 1 and 2, respectively. Table 3.1 below shows that we can indeed sort on
the most significant bit of 2™ integers by carefully choosing the powers b; in only n

rounds.
round (transp./arrangemnt.)
0 1 2
7l2=010](67) 100] () 100| () 100
6|4=100| (67) 010 | (46) 111 | () 111
5(/1=001| () o001| () 001](15) 101
4| 7=111| () 111 | (46) 010 | (04) 110
310=000|(23) 101|(13) o11| () o011
2 [5=1011](23) 000| () 000| () 000
1|3=011| () o011 (13) 101 | (15) 001
0|6=110| () 110| () 110 (04) 010
TABLE 3.1
A randomly chosen arrangement of {0,1,...,7} is sorted with respect to the most significant bit

after the application of only 3 rounds of disjoint transpositions. The first two columns indicate the
initial arrangement (position, value). The next three columns give, for each round, the transposition
affecting the value at that position and subsequent arrangement.

To overcome the limitations of having so few permutations, our strategy is as
follows: the goal at the end of round 1, is to collect integers with leading 1 into
the lowest part of the bottom half (those positions < 3), and to collect integers
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with leading 0 into the lowest part of the top half (those positions > 4). Then the
powers of the transpositions in the final round (round 2) are determined by the sorting
requirement. We claim that this strategy will work for all n.

4. The Construction: Lemma 3.4. In this section, we formally describe the
universal security amplifier X and prove Lemma 3.4.

4.1. Algebraic Details. We may encrypt by inverting the sorting procedure
described in the previous section. Formally, for any j, define Rl(j) to be the product
of independent and uniformly random powers of the 27! distinct transpositions of
the form (k, k & 2%), with 0 < k < 2" — 1. Let

Pi=RRY - RY,.

Then, as before, X = P, --- P,P;. Each random involution Rz(j) corresponds to a
“round” as shown in Fig. 4.1 below. Note that while there is repetition (e.g. jo 1 and
Rgh) are i.i.d. random variables), X is not a traditional iterated cryptosystem because
adjacent rounds are not identical and the specific sequence of rounds is carefully
chosen.

RN

SONSNST

ST ST
O G/ANY ¢

O NWRITTO I

P, Py Ps

Fic. 4.1. The structure of the cipher X = P3P>P; for n = 3. The rounds are applied left to
right, and each round corresponds to a random involution shown as a vertical column of butterflies.
Each butterfly in the diagram represents a random transposition of the form (k,k @ 2i)b, where
parallel lines indicate b = 0 and a crossover indicates b = 1.

4.2. Algorithm Details. It is clear that we may recursively affect the actions
of X and X! on any block, if we can carry out the rounds Rz(j ) in the correct order
and in such a way that the powers of all relevant transpositions are independent
and equiprobable. Moreover, if we encounter the the same butterfly in two different
executions, we must be able to reproduce the same random power of the corresponding
transposition. This is easily accomplished if we consider the random bits to be indexed
by # x Z. The resulting function f : # x Z — {0,1} is easily transformed into
a random oracle function F' : {0,1}* — {0,1} appropriate for Definition 2.1. We
employ the convention that the power of any transposition (k, k®2?) is f(m,r), where
m = min{k, k @ 2¢} and r is the round. In other words, f is applied to the lower left
hand corner of every butterfly in Fig. 4.1.
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The next algorithm implements encryption. To encrypt a single plaintext block,
the computational complexity will be n(n + 1)/2 or O (%nz) For a block size of
n = 128, this yields about 8,256 operations.

ALGORITHM 1. This algorithm defines recursive encryption functions Enc and
invSort. The action of X = P, ---PoPy onp € A is affected by (q,7) = Enc(p,n,1)
so that ¢ = Xp. The action of P; on p € A is affected by (q,r) = invSort(p,i — 1, %)
so that q = P;p.

function invSort(p, j,r):

q=p® 27
if p < q then
b= f(p,r).
else
function Enc(p,i,r): b= f(q,r).
if i > 1 then endif
(g,7) = Enc(p,i — 1,7). if b = 0 then
endif q=Dp.
return invSort(q,i — 1,7). endif

if j > 0 then

return invSort(g,j — 1,7 + 1).
else

return (g, + 1).

endif
The decryption algorithm is easily obtained by performing the the transpositions

in the reverse order. The necessary modifications are immediate, and we shall call
the “reverse” of inverse-sorting fwdSort.

ALGORITHM 2. This algorithm defines recursive decryption functions Dec and
fwdSort. The action of X' = P{'Py'---P7' on p € M is affected by (q,7) =
Dec(p,n, in(n + 1)) so that ¢ = X~'p. The action of P, onp € M is affected by
(g,r) = fwdSort(p,i — 1, ¥) so that ¢ = P; 'p.
function fwdSort(p, 7,7):

if j > 0 then
(p,r) = fwdSort(p,j — 1,7).

endif
function Dec(p,i,r): q=p®2.
(g,7) = fwdSort(q,i — 1,7). if p < g then
if > 1 then b= f(p,r).
return Dec(q,i —1,7). else
else b= f(q,r).
return (g,r). endif
endif if b =0 then

return (p,r —1).
else

return (¢,r —1).
endif
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REMARK 1. Notice how the round information is explicitly carried by input—
output argument r through the entire recursion processed. During the execution of
Enc, it is incremented, while during the execution of Dec it is decremented. This is
necessary because encryption and decryption must agree on the random bits f(p,r)
which determine the appropriate powers of the various transpositions involved.

4.3. The Proof of Lemma 3.4. To prove Lemma 3.4 we must first develop
some terminology and prove some preliminary results. Recall that the integers in .#
will have a dual role as n-bit strings. When treating prefixes and other substrings it
is useful to have a padding function m; : Z —s {0,1}! taking j to the binary repre-
sentation of j mod 2! padded up to 4 bits. Also define a prefiz truncation function
7 : {0,1}* — {0, 1} taking binary word w to its first 4 bits (the most significant i
bits).

It is natural for us to recursively partition .# into disjoint subsets which share the
same prefix. For example, let So = {i € A4 |7 (i) =0} and S; = {i € A4 |71 (3) = 1},
so that ./ is the disjoint union Sp U S;. More generally, let Sy, ;) = {k € .4 | Ti(k)}
= 7;(4) with 1 < j < 2! — 1, and again we partition .# into disjoint subsets

2

1
M=) Sy

Jj=0

The prefix stabilizers are naturally expressed in terms of these subsets. For example,
K,_1 = Stabg, {So} N Stabg, {S1}, and more generally

2i-1
K,_;= ﬂ StabKn{Sm(j)}.

=0

The following proposition characterizes the left cosets of K,,_1 < K,.

PROPOSITION 4.1. A left coset of K,,_1 in K, is completely determined by the
image of So under the action of any left coset representative.

Proof. First of all K,,_1 = Stabg, {So} N Stabk, {S1} = Stabk, {So}, because
anything which fixes Sp must also fix S1. Now K,, = &_4 acts transitively on the set
M7} of all subsets of . of half its size. By standard group action arguments
[22, 8], the left cosets {gK,—_1} are in one-to-one correspondence with the images
{950}, in a well-defined way. O

We shall derive presently a similar characterization of the left cosets of K,,_; 1 in
K, ;. First, whenever A C B we will treat &4 to be a subgroup of Gp. Recall [22]
that if a group G factors into product G = HK of normal subgroups H and K, with
HNK = {1}, then G is a direct product of H and K (it is literally isomorphic to the
Cartesian product with the obvious group law). Clearly whenever B is a disjoint union
of A; and A,, &g contains the direct product & 4,8 4,. Visibly, K,,_1 = 65,6s,,
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and if we write &, (;) = 63, ;) , we also have that K,_; is the direct product

2i—1

Ko =[] Smne-
7=0

PROPOSITION 4.2. A left coset of K,,_;_1 in K, _; is completely determined by
the images of Sy, ()0, 0 < j < 2¢ — 1, under the action of any left coset representative.

Proof. Since K,,_; is the direct product given above, a left coset gK,, ;1 factors
into a product of left cosets

21

H gj (Stabew(j){sm(j)o} n Sta’bewi(j){sﬂ'i(j)l}) R

j=0

However, we again have
Stab@"i ) {Sﬂ-l(])()} n Stabg"im {Sﬂ-i (1)1} = Stabgﬂ_i(j) {Sﬂrl(])o}

Finally, 2! invocations of Proposition 4.1 obtains the desired result. O

With this machinery in place, we may now prove Lemma 3.4.

Proof. | of Lemma 3.4.] Recall that in order to facilitate the induction argument
of Section 3.2, thereby establishing that supp X = &_4, we must show that (for each
i) supp P,_; contains a representative of each left coset of K,,_; 1 in K, ;.

What we’ll actually show, by an inner induction argument, is that for every subset
S C  contiguous on each Sy, (j) (0 < j < 2°—1) and every possible image T of S
under the action of K,,_; (i.e., every T of the form ¢S for some g € K,,_;), supp P,—;
contains a permutation g taking S + T. Since each S, ;) is trivially a contiguous
subset of Sy, (), we have the desired result by Proposition 4.2. Note also that if we
can take an arbitrary contiguous set to an arbitrary image, then we can also take an
arbitrary complement of a contiguous set to an arbitrary image.

Induction Base: Clearly K is isomorphic to the direct product of 2"~ symmetric
groups on 2 elements (cyclic groups of order 2), and thus has size |K;| = 22" ™" Since
|supp Py| = 22" " also, the induction hypothesis holds trivially.

Induction Step: Without loss of generality, we consider the case i = 0. By
hypothesis, supp P,_; contains an element of K, _; taking any contiguous subset of
So to a desired image (C Sp, and of the same size), while simultaneously taking any
contiguous subset of Sy to a desired image (again C S1, and of the same size). Choose
arbitrary sets U C Sp,V C S1, let T = U UV, and choose any contiguous set S C .#
of size |T'|. Again without loss of generality, assume that |S N So| > |U| (because
otherwise |[SNS1| > |V| and a completely symmetric argument applies). We must show
that supp P, = supp P,,_1 supp Rﬁb"_)l contains a g such that ¢S =T. Write g = hka,
with h € &g,,k € &g,, and where « is some product of transpositions of the form
(4,7 @27 1). Evidently the real job of a is to send elements of SN S, in excess of |U]
across the most significant bit boundary into S, because h, k € Stabg, {So} cannot

do this later on. The transpositions in supp Rstn_)l,

which flip the most significant bit,
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are perfect for this task. Let a be the product of the transpositions (j,j @ 2" 1), with
j € J, where J consists of the highest |S N Sy| — |U| elements of SN Sy. We claim
that (aS) N Sy is a contiguous subset of Sy, and that (a.S) NS, is either a contiguous
subset or the complement of a contiguous subset of S;. Assuming that is true, then
by the induction hypothesis, we may choose h taking (aS) N So — U and k taking
(aS)N Sy — V, so that gS = hk(aS) =T.

Two cases naturally arise. (Case 1:) If S doesn’t intersect with S; then « takes
J contiguously to some image in the middle of S;, and a leaves S — J contiguously
in the middle of Sy. (Case 2:) If S intersects non-trivially with Si, then because
S is contiguous, J is precisely the highest |S N Sg| — |U| elements of Sp itself, and
furthermore S N S; consists of the lowest |S N S1| elements of S; which are left fixed
by a. Therefore, (aS) N S: consists of the complement of a contiguous set (those
elements between SN S; and aJ). But again « leaves (S N Sp) — J contiguously in
the middle of Sy. This completes the induction step for ¢ = 0.

Applying this same argument within the appropriate direct product subgroups
when ¢ > 0 yields the inner induction step and thus completes the proof. a

REMARK 2. The previous proof seems harrowing with 2 cases nested inside 2
w.l.o.g.’s nested inside of 2 layers of induction. But, it is in essence just a rigorous
form of the more intuitive sorting example given in the previous section (which may
have seemed simpler at first glance).

5. Security Amplification: Lemmas 3.2 and 3.3. With Lemma 3.4, we
have an efficient cipher X which achieves every permutation of its message space with
nonzero probability. It is clear that, for any cipher Y,

suppY Csupp XY =G 4,

with equality only when Y achieves every permutation as well. Based on this ampli-
fication of support, we would intuitively expect the product cipher XY to be strictly
more secure than Y. In this section, we translate our intuition into precise state-
ments about the cost 8,(XY) of the optimal attack against XY defined in Section
2.5. We begin by developing some elementary relationships between majorization and
guesswork inequalities.

5.1. An Elementary Theory of Guesswork. When dealing with guesswork,
it is useful to introduce for z € R}, the marginal guesswork

Wq(z) = min {k

k
Zx[z’] > a||$||1} .

i=1

When ||z||; = 1, wa(x) can be interpreted as the worst case number of guesses nec-
essary to be guaranteed a chance of success a for determining a random variable X,
whose probability distribution is z (see [19, 21]). Because as a function of o, w,(z)
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is piecewise-constant, the area under its curve reduces to the sum
! 1< 1
(5.1) / wa(@)da = —— S iy = ——W(z).
o ° [ER ; RENTE

Also we say that two vectors z,y € R} are similarly ordered if the same permutation
matrix II brings both into the canonical ordering z1 > zo > ... > z,. Finally, let u
be the constant vector with [|ul|s = 1, i.e. u corresponds to the uniform probability
distribution u = (1/n,...,1/n).

PROPOSITION 5.1. With n,m finite, assume j < m, v,w,w; € R, z,y,z9 4y
R}, D,D;, 11 are n X n doubly stochastic matrices with Il a permutation matriz and
S C Y is the positive span of a set of similarly ordered vectors. We have the follow-

ii). (Day, 1972) If y9) € S and £ < y9) | then > z < > y 9.

W (200599 > 5w W ().

. The inequality in (ix) becomes strict if for any j, Dy < y9).

Proof. (i). By definition, W (y) depends only on the values y; and not on their

ing:
(). W is permutation invariant, i.e. W(Ily) = W(y).
(ii). W is linear on S, i.e. W(yz + wy) = YW (z) + wW (y), when z,y € S.
(iii). z 2y = W(z) > W(y).
(iv). z <y = W(z)>W(y).
(v). Dy <y <= W(Dy) > W(y).
(vi). W(Dy) > W (y) with equality iff D acts as a permutation on y.
(vii). W(z) < ||=]|1(n + 1)/2, with equality iff z is constant.
iii)
)
)

order.
(#). For canonically ordered vectors, guesswork takes the form of the linear
function W(z) = a - z, so (ii) follows from (7) and the definition of similar ordering.
(#i). From (2.1) we may assume w.l.o.g. [|z|l1 = ||ly|ls = 1. Equation (2.2) tells
us that for k = wy(z), Zle Yl > Zle z[; > a. Thus we(x) > we(y), and so

/Olwa(x) da > /Olwa(y)da.

Now from (5.1) it follows that W(z) > W (y).

(iv). Again assume w.l.o.g. ||z|l1 = |lyl]ls = 1. If z <y but y A z, then there must
be an m < n for which 71" | @ < DIt ypg- If we take X = 371, yp;), then wy (2) >
m > wy(y). Indeed for some ¢ > 0 and A < a < (A +¢€), we have wy(z) > wa(y).
Thus

/Olwa<m)da>/01wa<y)da,

and so by (5.1), W(z) > W(y).

(v). (=:) Follows the Hardy-Littlewood-Pdlya theorem and (iv). (<:) Assume
Dy £ y. Then D acts as a permutation on y and by (i), W (Dy) # W (y).

(vi). Tautologically equivalent to (v).
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(vii). Assume w.l.o.g. ||z||1 =1, and let J be the doubly stochastic matrix with
1/n in each entry. Then u = Jz < z so by (vi), W(z) < W(u) = (n+ 1)/2, and
equality holds iff .J acts as a permutation on z, which happens iff z = u.

(viii). The result is due to Day [6] (see also [15, §5.A.6, p.121]).

(iz). We may permute the y(¥) into canonically ordered vectors z() = II;4(9)| by
appropriate choices of IL;. Let us define doubly stochastic matrices D = D;II; L so
that 3, w; Dy = 3. w;D;z1). Now by the Hardy-Littlewood-Pdlya theorem, for
each j, D;z() < 2() and thus w; D;2() < w;2() as well. Now applying (viii) to the
similarly ordered vectors w;z(?) we obtain Y, w;D;y) < 3" w;z?). The inequality
of (#ii), the linearity of (ii) and the identity of (i) yield

w ijDjy(j) >W ijz(j)

J J

= ijW(z(j))
=Y wWED).
J

(z). The guesswork of the sum may be manipulated as follows.

(5.2) w ijDjy(j) > Zw] W(D; ym
J
(5.3) > ij (yD),

where (5.2) follows from (iz) using identity matrices, and (5.3) follows from (i) and
at least one instance of (iv). O

REMARK 3. Notice that unlike the simpler case of Proposition 5.1.(v), the suffi-
cient condition Djy(j) <y of 5.1.(x) is not necessary. Indeed if x is nonzero and
uniform on half of its values then it is easy to find II such that u = (z + Ilz)/2. But
then W (Iz/2 + Ilz/2) > W (z) while no strict majorization is present.

5.2. Conditions for Strict Majorization. Our goal is to compare a variety
of expressions involving guesswork, and we saw in Proposition 5.1.(v) that the strict
inequality W (Dy) > W (y) is equivalent to the strict majorization Dy < y, with y €
R} and D a doubly stochastic n x n matrix. Now from the algebraic characterization
of majorization given in Section 2.2, it is clear that D must be a non-trivial convex
sum of permutation matrices (otherwise D is a permutation and y < Dy). However,
the converse is not in general true, because any doubly stochastic matrix satisfies
w = Du and u £ u. Nevertheless, we seek a weakened converse, i.e. when y is not
constant, what group-theoretic properties of the permutation matrices II; are required
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so that
Dol |y <y?
J

Answering this question leads naturally to a proof of Lemma 3.2.

Throughout this section, we treat permutations abstractly as elements of a sub-
group G < &,, with the usual action o - (z1,...,2Zn) = (Tg-11,---Ty-1,). Given
this action, Birkhoff’s theorem tells us that any doubly stochastic matrix can also be
represented abstractly as

(5.4) D= Z d(g)g, with Z d(g) =1, d(g) > 0.

geG geG

Though the decomposition of (5.4) is not necessarily unique, the algebraic properties
of suppd = {g € G| d(g) # 0} play a crucial role in the sequel.
PROPOSITION 5.2. Let d, D be as in equation (5.4) and let x € R} satisfy

1;[1]:__,:,7;'[3]>.’L'[Z+1]Z...Z.’L'[n],

with 7 - x canonically ordered. Then the following two statements are equivalent:
(i). The vector y = Dx satisfies yj;) = 1), for 1 < i < L.
(ii). For some o € G, suppd C o Stabg{n U}, where U = {1,... ,£}.
Proof. We may w.l.o.g. treat only the case in which z has canonical ordering;:

T1=...=Tp>Tpy1 > ... 2 Ty,

and thus # = 1. The general case amounts to renaming things in a straightforward
way (the pedantic details are worked out in [19]).

(1) = (ii): We must show that for some ¢ € G, suppd C o Stabg{1,...,£}. Let
Z ={1,...,n}and U = {1,...,£}. As in Section 2.1, G acts on the set 2 {¢} of
subsets of £ with ¢ elements. The setwise stabilizer H = Stabg{U}, is merely the
point stabilizer of U under this action. Now the j-th component of y is given by

Yi = Z d(g)gz | = Z d(g)(g9z); = Z d(g)zy-1j-

geG j geG geG

If g='j were to lie outside of U for any g € suppd, then Tg-1; < 71, and y; < T1.
So the assumption yj;; = yj; = 71, for all i € U, really means that g~ '4; € U for all
g € suppd and all i € U. Let V = {j1,...,J¢}, so that we have g7V = U for all
g € suppd. Alternatively,

suppd C {g € G|gU =V} =0oH,

where cU = V.
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(i) => (i): We must show that y = Dz satisfies y;; = =1, for 1 <4 < £. By
assumption, suppd C o H, we may write D = o E, where

E=d(oh)h.

heH

Consider z = Ex, whose i-th component is given by

z = E d(oh)zp-1;.
heH
Because H leaves U fixed as a set, xp-1; = x; for all h € H and all ¢ € U. Thus
zi =z forall i € U. But y = cEx = 0z. Since y and z differ by a permutation we
have yj; = 2; = 71, foralli € U. O

Any non-constant vector satisfies non-trivially the condition of Proposition 5.2.
That simple observation leads to the following;:

PROPOSITION 5.3. Given d, D as in equation (5.4), then Dx < x for all non-
uniform x € R} if and only if

suppd ¢ o Stabg{V'},

for each o € G and each proper V. .C {1,... ,n}.

Proof.

( = ): Suppose the support of d is contained in a coset of a setwise stabilizer
of a proper subset V' C {1,...,n}. Writing £ = |V| and U = {1,...,£}, there is
a permutation 7 € &, such that V = 7~1U. Furthermore, there is an = € R}
satisfying

A Z[) 1<i<Y,
B7Y 0 (+1)<i<n,

with 7z canonically ordered. Writing y = Dz, we have by Proposition 5.2, yj; = x|y
for i € U. But also ||y|]lx = ||z||x so that z and y differ by a permutation and thus
yAz.

( <= ): Conversely, suppose there is a non-uniform z € R} such thaty = Dz £ x.
For some ¢ < n, x takes the form

Iy =--- =2y > Tlo+1] > ... Z[n],

and hence for each i, y[; = z[;. Again by Proposition 5.2, the support of d is contained
in a coset of a setwise stabilizer of a subset of {1,...,n} of size £ < n. i

5.3. The Proof of Lemma 3.2. Recall from (2.4) that the probability distri-
bution of a product cipher Z = XY is given by a convolution, which may be thought
of as multiplication by a doubly stochastic matrix. Preferring, as in the previous
section, to work with permutations abstractly, we point out that the convolution z(g)
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is just a way to represent products in the group algebra (the vector space RG with
multiplication extended from the group law [14]):

Y wgg=> wxylgg=| > x(Hf (Z y(h)h> :

9€eG e fea heG

In this way, left multiplication by cipher X can be represented as left multiplication
by the linear operator D = 3 z(g)g, and the random variables ¥ and Z can be
represented as vectors y,z € RG, namely (as linear combinations of the basis vectors
G)z=3,2(9)g and y = 3, y(9)g-

By Proposition 5.1.(iii), we immediately have W(XY) > W(Y). But our char-
acterization of strict majorization in the previous section allows us to establish strict
inequalities, and finally to prove Lemma 3.2.

Proof. [ of Lemma 3.2:] Take Z = XY and z = Dy as above. Then by
definition, W (Z) > W(Y) for every non-uniform Y iff W (Dy) > W(y) for every
non-uniform y. By Proposition 5.1.(v), this can only happen iff Dy < y for ev-
ery non-uniform y. By Proposition 5.3, the desired result follows if we can iden-
tify the set of subgroups H # G with the set of setwise stabilizers (under action
L(G) of left multiplication) of proper subsets of G. In other words, we claim that
{H <G|H # G} = {Stab){U}|U C G}.

(C:) By definition, Stabr(g){H} is the point stabilizer of H under the action
of G on GUHI} by left multiplication. Now because gH = H iff g € H, it follows
that Stabpg){H} = H. (2:) Given any proper set U C G, H = Stabp){U} is a
subgroup, and we must show that it is not identically G. There is an h € G — U,
because U is a proper subset. Since the action L(G) is transitive, there is a k € G
such that kh € U. In other words, k= 'U # U so that k~! ¢ H and H # G. ]

5.4. The Proof of Lemma 3.3. In our general technique for quantifying and
comparing the cost of the optimal chosen plaintext attack, we start by fixing the
data complexity £ and the plaintext tuple p € ). We then study how a cipher’s
statistical and algebraic structure affects the conditional guesswork expression in (2.6).
From that point, we proceed to deduce the desired comparison between two ciphers
in terms their expressions for 6y given in (2.7).

A simple but useful observation is that the conditional guesswork W (Y|c,p) is
completely determined by the distribution of Y on some coset of the stabilizer H =
Stabg(p). This follows from Bayes’ theorem [12] and the standard observation about
group action that {g € G|g-p = ¢} is a coset of H.

To facilitate a security analysis of Y it is again useful to treat its distribution as a
vector in RG, y = >°_y(g)g, with y(g) = Pr[Y = g|. The group algebra RG is rich in
structure, admitting many useful decompositions [7, 11]. For our purposes, we need
only to decompose down to the cosets of H. To that end, let k = [G: H] and fix a set
{gi}%_, of left coset representatives of H in G. There is a well-known decomposition
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of RG which mirrors the group-theoretic structure
k
G= U g@'H .
i=1

A mathematically succinct way to express this decomposition is as a natural isomor-
phism of RG, as a left RG-module, to the induced representation from H to G by RH
given by the tensor product of modules*

k
(5.5) RG = RG ®RHRH=€B9,~®RH,
i=1

where the isomorphism takes g;h — ¢; ® h, and thus takes

k k k
(5:6) Y _y@g=>_ > ylgih)gih—§= Zgi @y =) g:® (Z y(gih)h> :

9€eG i=1 heH heH

Note that Pr[Y = g;h] = y(g;h) = yg), and so the vectors {y()} really describe the
distribution of Y on the cosets of H, even though each y(¥ € RH. Now, it follows
directly from the definitions that

(5.7) W(Y|Ctp) = W(y?).

i=1

Recall from the previous section that the distribution of the product cipher Z =
XY is expressible as the matrix multiplication z = Dy, with D = 3~ z(g)g and
z =), %(9)g- Indeed using the direct sum decomposition of (5.5), we shall derive the
block structure of the matrix D. (To be more precise, we again treat permutations
abstractly in order to work as much as possible in a basis-free way. A true block
structure decomposition for D would follow from a suitable ordering of the basis
H of RH. However, due to the explicit form of (5.7), a choice of ordering of H
will not be required). Using this structure we shall compare the distribution within
the appropriate cosets of H for XY vs. Y. The key is to represent Y and Z by
U,z € RG @ryg RH as in (5.6), but to leave X as a convex sum of permutations.

Now any g € G acts by left multiplication on any g; ® v € RG ®ry RH according
to 9(9; ® v) = g; ® hv, where gg9;H = g;H, so that h € H is uniquely determined by

40ur treatment of induced representations follows Jacobson’s [14] and is aimed at succinctness.
Briefly, given a ring B, a right B-module U, and a left B-module V, one forms the tensor product
of modules T'=U ®p V in a way which is completely analogous to the case of vector spaces, except
that now we have ub® v = v ® bv, b € B. In general, T is only a Z-module, but when U is a
A-B-bimodule for some ring A (i.e. U is a left A-module as well as a right B-module), T becomes a
left A-module with left multiplication defined by a(u ® v) = au ® v. In this way, for any RH-module
V, RG ®r g V becomes a RG-module called the representation induced from H to G by V.
The reader who is unfamiliar with the module approach to representations is encouraged to
begin with a more constructive definition of the induced representation (such as in [11]) and work
out the relatively inelegant details for left multiplication by a cipher X.
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99; = g;h. Thus we have that

k k
2 =Y 0= 299D gey?
=1 geG j=1
k .
=> D =zl9)g ] (g, ®y).
Jj=1 \yg€q

For any particular ¢, we may collect together contributions to direct summand g; RH,

k
9020 =>"" 3" z(g)g(g9; ®y?)

Jj=1 g9;H=9;H

k
=3 2(9)(9: ® hij(g)y™)

Jj=1g€rly;
k .
=g® > | Y z(9hyg) |y
Jj=1 \g€l'i;

where T;; = {g € G|gg;H = g;H} and hi;(g9) = g; '9g;. Thus,

k
(58) Z(Z) = sz’jDijy(j),
7j=1
where
z(g)
. D;; = ”

(5.9) ij Z 2(Ts)) hij(9),

g€ly;

and where the w;; = 2(I';;) represent transition probabilities between the cosets of
H in G, and thus are easily seen to be the coefficients of a doubly stochastic matrix.
Notice that the sum in (5.9) is a convex sum of permutations in H, hence each
D;; takes the form of a doubly stochastic matrix (under a suitable ordering of H).
Also note that for each i, the diagonal sets I';; are subgroups conjugate to H, i.e.
I';; = H% < G. The core of Lemma 3.3 is the following proposition, which reduces
the case of arbitrary data complexity to the case of zero data complexity, namely
Lemma 3.2.

PROPOSITION 5.4. For a permutation group G < & 4, let X and Y be indepen-
dent G-ciphers such that supp X = G. For any p € M9 such thatY is non-uniform
on at least one left coset of Stabg (p), we have W (XY |C¢,p) > W(Y|C%, p).

Proof. Let p satisfy the assumption of the proposition, and let Z represent the
distribution of the product Z = XY as above. Let y¥) be non-uniform and consider
Djjy(j). That is to say, let us focus on this one submatrix block on the diagonal of
the larger doubly stochastic matrix representing the convolution z = x * y.

Since I';; = HY%, we may rewrite D;; as

O N )
o = 2amy? T A

gel;; heH
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Thus by scaling appropriately, Djjy(j) has the form of a product of two indepen-
dent H-ciphers XY, with Pr [)Z' = h] = Pr[X = h9%] /z(H%), and Pr [)N/ = h] =
Pr[Y = g;h] /y(g;H). Since supp X = G and conjugation by g; yields an isomor-
phism of H <— T';;, supp)? is not confined to any proper coset of H, and we may
invoke Lemma 3.2 to obtain W (XY) > W (Y), and thus W (D,;4)) > W (y)). From
Proposition 5.1.(v), we have D;;y) < y0).

Using Proposition 5.1.(ix), we may bound any W (z(9)

k
W(z(Z)) = W(Z wz’mDimy(m)> > szm (m)
m=1

and using Proposition 5.1.(x), we may strictly bound W (7))

k
WD) = W(Zw,-mD,-myW) > Zw,m (™).
m=1

Combining these bounds on W (2(?)) we obtain a strict bound on W (Z|C¢, p) as follows

k&
WD) = SWED) > DY wn W)
i=1 i=1 m=1
k
= Z W(y(m)) Zwim
m=1 i=1
k
=Y We™) = W(|C,p),
m=1
which was to be proved. O

REMARK 4. FEuvidently in the previous proposition, we could have weakened the
condition supp X = G to: For every p € .49, supp X N Stabg (p) is not confined to
a proper coset of Stabg(p). However, for our purposes, this was not necessary.

The next proposition provides an important interpretation of the situation when
a cipher is uniform on every coset of an /-message stabilizer.

PROPOSITION 5.5. Let Y be a G-cipher, for a permutation group G < &_4. For
any p € AV, write H = Stabg(p) and we have

1+ |H
W(chlap) S #7
with equality holding iff Y is uniform on each coset of H.
Proof. For ¢ € .49 with w(c|p) # 0,

1+|H

1<W(Yle,p) < 5

because W (Y|c, p) is the guesswork on a coset of size |H|. Furthermore by Proposition
5.1.(vii), equality in the upper bound is achieved iff Y has constant probability on
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that particular coset. Now since )~ . ,«) w(c|p) = 1, the sum of (2.6) is convex and
therefore achieves its maximum of 1(1 + |H|) iff Y is constant on each coset of H
(Y will of course have the constant probability 0 on those cosets corresponding to
w(clp) = 0). =

By tying together the previous two propositions, we may finally prove Lemma
3.3.

Proof. [ of Lemma 3.3.] Again we write Z = XY, and let us denote the size of
the smallest /-message stabilizer of G by

2

Mg(€) min |Stabg (p)|-

peA®
From Proposition 5.1.(vii), it is easy to see that 6,(Ug) = 1[1 + Mg(¢)].

Now suppose there is a p € .49 such that 8,(Z) = W(Z|C*,p) and Y is non-
uniform on at least one coset of Stabg(p). Then we may invoke Proposition 5.4 to
obtain

0:(Z) = W(Z|C4,p) > W(Y|CY,p) > 6u(Y).

On the other hand, suppose that for every p € .#9 satisfying 8,(Z) = W (Z|C*,
p),Y is uniform on each coset of Stabg(p). Let H = Stabg(p) for any such p. By
(5.8), Z is uniform on each coset of H as well, and by Proposition 5.5,

_1+|H]|

642) = W(ZIC",p) = —

Now choose any p with |Stabe(p)| = Mg(£) and hence

1+ Mg(¢)

0:(2) 5 ;

- cwizietp <
forcing |H| = Mg(€), and thus 0,(Z) = 6,(Ug). Then, either ,(Y) # 6,(Ug), in
which case 64(Z) > 6,(Y), or 6,(Y) = 8,(Ug)-

To summarize what we have proved thus far, 8,(Z) > 6,(Y") and if equality holds
then 6,(Y) = 6,(Ug). However conversely, if ,(Y) = 6,(Ug), then 0,(Ug) > 0,(Z) >
0,(Y) = 6,(Ug), forcing equality 0,(Z) = 0,(Y), which completes the proof. O

6. Conclusion. The issue of security amplification by product composition re-
mains a complex one. In this paper, we have added to the number of situations where
a definite answer can be given. Specifically, Theorem 3.1 asserts that there exists an
efficient cipher X such that the security of XY is strictly greater than Y unless Y is
perfect. There is room for further improvement in this result. For example, a more
efficient cipher might be constructed which makes use of a weakened form of Lemma
3.3 as discussed in Remark 4. Additionally, our implementation might be optimized
for bulk encryption.
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The cipher we construct to prove Theorem 3.1 is costly in some ways but has other
desirable properties. Unlike a one-time pad, if the key were replaced by a pseudo-
random source, a known plaintext-ciphertext block would not trivially betray the key
used for that block. This property could be useful in constructing provably secure
practical encryption systems. Also observe that our construction is not an iterated
cryptosystem but rather a product of independent rounds with a carefully chosen
order. The techniques employed here might be a useful new paradigm for practical
cryptosystems with key schedules instead of a truly random source of key material.

Finally we note that due to Lemma 3.3 and the nature of our existence question we
have been content to focus on strict inequalities and strict amplification of support
alone. While an infinitesimally small increase from 6,(Y) to 6,(XY) is possible,
techniques beyond the scope of this paper have been developed to establish much
stronger claims of amplification. Ongoing research suggests that the cipher X of
Lemma 3.4 has stronger security properties than required by Theorem 3.1.

Acknowledgments. I would like to thank Serge Vaudenay for his many insight-
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Section 2.
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