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HOMOTOPY FOR THE ν-GAP∗

THOMAS S. BRINSMEAD† AND BRIAN D. O. ANDERSON†

Abstract. The main result of this paper is to show that a “winding number condition” which

relates to two strictly multivariable linear operators, and which is used in the definition of the

Vinnicombe (ν-gap) metric, is equivalent to the existence of a multivariable homotopy in the same

metric between the two operators. This allows a characterisation of the Vinnicombe metric which

is independent of the linearity of the underlying operators, and suggests possible extension of the

metric to nonlinear operators.

1. Introduction. This paper presents a result that provides a building block
for the development of a control-relevant metric for nonlinear operators. Metrics
on operator space define notions of distance between input-output maps and allows
the quantification of concepts such as modeling approximation error and behavioural
robustness.

Here we investigate a particular property of a specific metric on linear operators,
known as the Vinnicombe (Nu-gap or ν-gap) metric [24], which is closely related to
the gap metric [12, 13] that was introduced into the control literature as early as [8].

The Vinnicombe metric has an advantage over the gap metric in that it is less
conservative in the following sense. Let [P0, C0] be a stable plant-controller intercon-
nection. Then there exists upper bounds ḡ and ν̄ in, respectively, the gap metric
δg(P0, P) and the Vinnicombe metric δν(P0, P), between plants with transfer function
P0 and P such that if the bounds are not met or exceeded, then [P,C0] is guaranteed
to be stable. In the case of the Vinnicombe metric, for any prescribed ε > 0, one can
find a P such that δν(P0, P) ≤ ν + ε ≤ 1 and [P,C0] is not stabilising. Such a result
is not available for the gap metric (see page 104 Chapter 4, [26]).

Motivated by the superior control relevant characteristics of the Vinnicombe met-
ric to the gap metric in the case of linear operators, an ultimate goal, not achieved
in this paper, is a nonlinear extension of the Vinnicombe metric. However, the defi-
nition of the Vinnicombe metric involves checking a property known as the “winding
number condition” [24, 26] related to counting encirclements of the origin of a partic-
ular frequency domain function. Because it is defined in terms of an operator in the
frequency domain, such a condition is an inherently linear systems concept. If the
Vinnicombe metric is to be extended to nonlinear systems, then an obvious stepping
stone is to characterise the winding number condition in a way that does not depend
upon the linearity of the underlying operators.

There have been several candidate functionals proposed to extend the Vinnicombe
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metric to apply to nonlinear operators. In [3] a time-domain definition of the Vinni-
combe metric was proposed, which would be suitable to apply to nonlinear operators,
although a complete characterisation was lacking due to the challenges of defining the
equivalent of a winding number. There, it was hypothesised that the winding number
condition is equivalent to the existence of a particular multivariable homotopy, an
hypothesis which this paper shows to be true, although for the case of scalar plants,
the particular homotopy in question is multivariable, and arises by embedding the
scalar plants in a higher-dimensional operator space.

In [1] a nonlinear metric is defined in terms of the linearisations of the operators
about all operating points. This is similar in character to the extension of the (linear)
gap metric to a nonlinear version in [14] based on earlier work on the parallel projection
operator for nonlinear systems [7] and its relationship to the differential stabilisability
of nonlinear feedback systems [11].

Reference [18] studies various alternative definitions for nonlinear operator metrics
and presents some results on the relationship between them. Feedback stability and
performance are characterised in terms of the well-posedness and norms of the parallel
projection operators of [7]. It presents a formula for the nonlinear gap metric involving
a product of left and right graph representations of nonlinear operators, but since that
definition is for a generalisation of the classical (traditional) gap [13] rather than the
Vinnicombe gap, the nonlinear equivalent of winding numbers is not touched upon.

Another definition of a metric which reduces to the linear Vinnicombe metric in
the case of Linear Time Invariant (LTI) systems was also given in [25]. The definition
was given in terms of a directed distance between the graph spaces of the two nonlinear
operators to be compared. It was also shown that the existence of a gap-metric
homotopy is a sufficient additional condition for closeness in the metric to guarantee
closeness of closed loop performance. It was also asserted that in the case of LTI
systems, the existence of such a homotopy can be determined by a simple winding
number test.

The main result of this paper is to demonstrate that indeed the “winding number
condition” for linear operators is equivalent to the existence of a homotopy between
the two operators of interest. The existence of the homotopy is proved by explicit con-
struction. This alternative characterisation of the condition, involving the existence
of a homotopy, hence does not require the operators to be linear. This allows for a
nonlinear version of the winding number condition to be developed, and consequently
completes the task begun in [3] of defining one possible nonlinear extension of the
Vinnicombe metric.

The rest of the paper is organised in the following manner. We first give a
definition of the Vinnicombe metric for linear operators, as well as some alternative
characterisations of the quantity. We then state the main theorem that the winding
number condition used in the definition of the Vinnicombe metric is equivalent to
the existence of a particular homotopy and prove that falsity of the winding number
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condition implies that such a homotopy cannot exist. Before proving the converse
by construction, we introduce a number of results related to the problem of all-pass
embedding and Nevanlinna interpolation which are derived from well-known results
in the H∞ literature [6, 15, 17, 23, 27]. Using these results, we then proceed at length
to construct a homotopy and show that it satisfies the conditions in the statement of
the main theorem, before finishing with some concluding remarks.

2. Preliminaries.

2.1. Notation and Terminology. For a transfer matrix G, the paraconjugate
transfer matrix will be denoted by G∗, and is to be interpreted as G(−s)T . For real
rational transfer matrix G, the paraconjugate is the Hermitian conjugate (or conjugate
transpose) on the imaginary axis. The notation ‖ ·‖∞ will refer to the L∞ norm. The
H∞ norm will be explicitly distinguished as ‖ · ‖H∞ . Transfer function matrices will
usually be denoted in standard font X, although in Theorem 5.4 and its proof, they are
denoted in bold X, in order to provide notational distinction from a (static) complex
matrix. Dimensions of matrices will sometimes appear as superscripts: Xp×m has p

rows and m columns. While the notation for the maximum and minimum singular
value of a matrix X is standard (and is given by σ(X) and σ(X) respectively), in this
paper we also use the same notation to apply to a transfer matrix, in which case

σ(G) :
def
= sup

ω
σ[G(jω)]

= ‖G‖∞
σ(G) :

def
= inf

ω
σ[G(jω)]

The notation Fl(P, K) represents the lower feedback interconnection
P11 + P21K(I − P22K)−1P21 of compatibly dimensioned transfer matrices P and K

as in [27].
The spaces H∞ and L∞ denote the set of transfer matrices which are respectively

analytic on the closed right half-plane and bounded on the imaginary axis. The spaces
RH∞ and RL∞, denote subspaces of respectively H∞ and L∞ with elements that are
matrices that can be expressed as finite dimensional rational transfer functions with
real coefficients.

As in [27] (see page 365) a transfer matrix U ∈ RL∞ is called paraunitary if
U∗U = I. A transfer matrix Π ∈ RH∞ is called inner if it is paraunitary in addition
to being stable, that is Π∗Π = I. A transfer matrix Ω ∈ RL∞ is called all-pass if it is
square and paraunitary so that Ω∗Ω = ΩΩ∗ = I and therefore Ω−1 exists and equals
Ω∗ on the imaginary axis. A p×m, (p ≤ m) transfer matrix in RH∞ is called outer if
it has full row rank in the open right hand plane, that is, if it possesses a right-inverse
that is analytic and in the open right-hand plane (that is, the right-inverse is stable,
but possibly marginally stable and not necessarily proper). It is strictly outer if it
possesses a right-inverse that is analytic and bounded in closed right-hand plane (that
is, the right-inverse is proper and strictly stable). A transfer matrix is called co-inner
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(respectively co-outer) if it is the transpose of an inner (respectively outer) transfer
matrix.

2.2. Transfer Matrix Factorisations. Transfer matrix factorisations will be
used extensively in the following development. In this section we recall the existence
of particular factorisations, appearing mainly in [19], [23], [27] for later use in the
paper. The factorisations are numbered in order that we will be able to refer to them
by number later on.

1. Every “tall” (p × m with p ≥ m) transfer matrix T(s) ∈ RH∞, such that
T∗T > 0 on the imaginary axis, has a factorisation [27]

T(s) = Π(s)T̄(s)(2.1)

where T̄ is square and strictly outer (and stable) and Π(s) is (tall, p × m)
inner, and contains all the (strictly) right-hand-plane zeros of T . Such an
inner-outer factorisation is unique up to a constant orthogonal factor.

2. Similarly (by duality) every “fat” p × m, (p ≤ m) transfer matrix F(s) ∈
RH∞, such that FF∗ > 0 on the imaginary axis, has a factorisation

F(s) = F̄(s)Ξ(s)(2.2)

where F̄ is square and strictly outer (stable) and Ξ(s) is (fat, p × m) and
co-inner.

3. Every full-rank “fat” p × m, (p ≤ m) transfer matrix F(s) ∈ RH∞ can
be factorised as

[
F̂ 0

]
H where F̂ is square and H is square, stable and

minimum-phase.
This can be easily seen [19] from the Smith form of F over the principal ideal
domain of proper stable transfer matrices. If F̂ has full rank and no imaginary
axis zeros, then we can use the above inner-outer factorisation (2.1) to express
F̂(s) = Θ(s)F̃(s) where Θ is square and inner (and therefore all-pass) and F̃ is
outer. It then follows, that if FF∗ > 0 on the imaginary axis, then it may also
be factorised as

F(s) = Θ(s)F̄(s)(2.3)

where Θ(s) is stable and all-pass (square) and F̄ = F̃H is fat (p × m) and
outer.

4. Similarly every “tall” p×m(p ≥ m) transfer matrix T(s) ∈ RH∞, such that
T∗T > 0 on the imaginary axis, has a factorisation

T(s) = T̄(s)Θ(s)(2.4)

where T̄ is “tall” (p×m) and co-outer, and Θ(s) is stable all-pass (square).
5. Any “tall” transfer matrix T(s) ∈ RL∞ may be expressed as a right coprime

factorisation [23] over the ring of proper stable transfer matrices as T(s) =



HOMOTOPY FOR THE ν-GAP 337

N(s)M(s)−1. Inner-outer factorisation of M(s) = ΘM(s)M̄(s) is in equation
(2.3) results in T(s) = N(s)M̄(s)−1ΘM(s)−1, where Θ is stable all-pass. We
can further define N̂(s) = N(s)M̄(s)−1 ∈ RH∞ so that

T(s) = N̂(s)ΘM(s)∗(2.5)

is a right coprime factorisation where the denominator matrix is stable all-
pass.
If we further assume that T∗T > 0 on the imaginary axis then N̂(s) is also full
rank on the imaginary axis. The tall matrix N̂(s) may be further factored
as a co-outer-inner factorisation N̂(s) = N̄(s)ΘN(s) (see equation (2.4)) with
ΘN(s) stable and all-pass, and N̄(s) co-outer, so that

T = N̄(s)ΘN(s)ΘM(s)∗.(2.6)

Here ΘN(s) contains the right hand plane zeros of T(s) and ΘM(s)∗ contains
its right hand plane poles.

6. Similarly, a fat transfer matrix F(s) ∈ RL∞ has a factorisation

F(s) = ΘFp(s)∗F̂(s)(2.7)

where ΘFp(s) is stable and all-pass and F̂(s) is outer. If F(s) is full-rank on
the imaginary axis, then

F(s) = ΘFp(s)∗ΘFz(s)F̄(s)(2.8)

where ΘFz(s) is stable and all-pass and F̄(s) is outer.
7. If an all-pass matrix Ω ∈ RL∞ is factorised in the above manner then

Ω(s) = Θ̃p(s)−1Θ̃z(s)(2.9)

= Θ̃p(s)∗Θ̃z(s)

where both Θ̃p(s) and Θ̃z(s) are stable and all-pass and Θ̃p(s)∗ contains the
right half-plane poles and Θ̃z(s) contains the right half-plane zeros of Ω.

8. Alternatively

Ω(s) = Θz(s)Θp(s)−1(2.10)

= Θz(s)Θp(s)∗

where Θp(s)∗ contain the right half-plane poles and Θz(s) contains the right
half-plane zeros of Ω(s), and Θp(s) and Θz(s) are each stable and all-pass.
These factorisations (which are coprime factorisations, with constituents
which are stable and all-pass) are also unique up to a constant orthogonal
factor.
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9. Finally, the paraconjugate of a full-rank fat transfer matrix F ∈ RL∞ may
be factorised as an inner-outer factorisation F∗(s) = ΠF(s)F̂(s) where ΠF(s)

is inner and F̂(s) is square and outer. We can perform factorisation as in
equation (2.5) on the square transfer matrix F̂∗ = F̃(s)ΘF(s)∗ where F̃(s) is
stable and ΘF(s)∗ is anti-stable and all-pass.
Setting ΠFp(s) = ΠF(s)ΘF(s) gives us a factorisation of the original fat trans-
fer matrix F as

F(s) = F̃(s)ΠFp(s)∗,(2.11)

where F̃(s) ∈ RH∞ and square, and ΠFp is inner (so that ΠFp(s)∗ is anti-
stable and its transpose is paraunitary). If F is full rank on the imaginary
axis then so is F̃(s) which can be factorised as in equation (2.3) or (2.4) to
give

F(s) = ΘFzRF̄R(s)ΠFp(s)∗,(2.12)

F(s) = F̄L(s)ΘFzLΠFp(s)∗,(2.13)

where F̄R(s) and F̄L(s) are square and outer and ΘFzR and ΘFzL are stable
and all-pass.

3. The Linear Vinnicombe Metric.

3.1. Definition. Let P
p×m
α , P

p×m
β be two real rational transfer functions matri-

ces of the same dimension. The Vinnicombe metric [26] (also known as the Nu-gap
or ν-gap metric) is a measure of the distance between Pα and Pβ. It can be defined
as follows. The chordal distance between Pα and Pβ at a frequency ω̂ is given by

κ(Pα, Pβ, ω̂) :
def
= lim

ω→ω̂
σ̄

{
[I + Pβ(jω)Pβ(jω)∗]−

1
2 [Pβ(jω) − Pα(jω)] ,

[I + Pα(jω)∗Pα(jω)]−
1
2

}
,

and

κ̄(Pα, Pβ) :
def
= sup

ω
κ(Pα, Pβ,ω).(3.1)

In the definition of the chordal distance, the inverse square root X− 1
2 is understood to

be a matrix square root of the inverse square matrix X−1, where X is positive definite
Hermitian. The reason for the limit operation in the definition is to account for the
possibility that either Pα or Pβ has poles on the imaginary axis.

The Vinnicombe metric distance between Pα and Pβ is then defined as

δν(Pα, Pβ) = κ̄(Pα, Pβ)

provided the following two conditions are satisfied:

det[I + PαP∗β](jω) 6= 0, ∀ω, and(3.2)

wno
[
det(I + PαP∗β)

]
+ η̆(Pα) − η̄(Pβ) = 0.(3.3)
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If the conditions of equations (3.2) and (3.3) are not both satisfied then
δν(Pα, Pβ) = 1. In the above, η̆(Pi) denotes the number of poles of Pi in the open
right half complex plane Re(s) > 0 and η̄(Pj) is the number of poles of Pj in the closed
right half-plane Re[s] ≥ 0, counted according to multiplicity. indented, if necessary,
into the right half-plane around any imaginary axis poles of Pα and Pβ.

The symbol wno[f(·)] denotes the winding number of holomorphic complex func-
tion f(·), defined as the number of net encirclements of the origin in the clockwise
direction of f(s) as s as traverses the clockwise Nyquist D-contour from −j∞ to j∞
on the imaginary axis, indented, if necessary, into the right half-plane around any
imaginary axis poles of Pα and Pβ, and then around at infinity in the positive com-
plex plane [26].

Remark 3.1. For the clockwise Nyquist traversal, the net change in the argument
of f(s) will be 2π rad in the clockwise direction for each non-minimum-phase zero and
in a counter-clockwise direction for each unstable pole of f(s) [9]. The winding number
is therefore the number of right half-plane zeroes of f(s) minus the number of right
half-plane poles.

There are various equivalent expressions for the Vinnicombe metric. We draw
attention here to some. Let Pi = NiM

−1
i = M̃−1

i Ñi denote normalised right and left
coprime fractional descriptions [23] of Pi. Define

G
(p+m)×m
i =

[
Ni

Mi

]
,

and G̃
p×(p+m)
i =

[
−M̃i Ñi

]
.(3.4)

It follows that
[

Gi G̃∗
i

]
is all-pass. The chordal distance at a frequency ω is given

by

κ(Pα, Pβ,ω) = σ̄
[
G̃β(jω)Gα(jω)

]
(3.5)

= σ̄
{

M̃β(jω) [Pα(jω) − Pβ(jω)]Mα(jω)
}

where the last equality holds only for jω not a pole of either Pα or Pβ. The Vinnicombe
metric may then be alternatively expressed as

δν(Pα, Pβ) = ‖G̃βGα‖∞ = ‖G̃αGβ‖∞(3.6)

(where ‖ · ‖∞ represents the L∞ norm), provided that

det
[
G∗

βGα(jω)
]
6= 0 for all ω and(3.7)

wno
{
det
[
G∗

βGα

]}
= 0.(3.8)

Otherwise δν(Pα, Pβ) = 1. Note that conditions (3.2) and (3.7) are provably equiva-
lent, as are conditions (3.3) and (3.8).
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A third equivalent characterisation of the ν-gap metric is as follows. For
Ĝβ =

[
N̂∗

β M̂∗
β

]∗
where Pβ = N̂βM̂−1

β is any right coprime fractional descrip-
tion of Pβ, that is, one which is not necesarily normalised, we have [24]

δν(Pα, Pβ) = inf
Q, Q−1∈RL∞
wno[det(Q)]=0

‖Gα − ĜβQ‖∞.

Of course, it is a nontrivial fact that the metric properties hold for δν(Pα, Pβ)

[24, 26], although the triangle inequality is the only property which requires much
attention to prove.

3.2. Properties of the Vinnicombe Metric. We now give two simple but
useful results which relate the maximum and minimum singular values of various
transfer matrices derived from the normalised coprime fraction descriptions of the
two plants.

Lemma 3.2. Let Pα and Pβ be two transfer matrices with respective right nor-
malised coprime factorisations, Gα and Gβ defined by equation (3.4). The chordal
distance between Pα and Pβ of equation (3.1), is related to the minimum singular
value of Gβ(jω)∗Gα(jω) as follows.

κ(Pα, Pβ,ω)2 + {σ [Gβ(jω)∗Gα(jω)]}
2

= 1.

Proof. Since
[

G̃∗
β Gβ

]
is all-pass, G̃∗

βG̃β + GβG∗
β = I and so[

G̃β(jω)Gα(jω)
]∗

G̃β(jω)Gα(jω) + [Gβ(jω)∗Gα(jω)]
∗
Gβ(jω)∗Gα(jω) =

Gα(jω)∗Gα(jω) = I.

Then it follows that{
σ̄
[
G̃β(jω)Gα(jω)

]}2

+ {σ [Gβ(jω)∗Gα(jω)]}
2

= 1.

The lemma statement follows from equation (3.5).
Corollary 3.3. The condition that the square matrix G∗

βGα(jω) has the prop-

erty that det[G∗
βGα(jω)] = 0 for some ω, is equivalent to κ(Pα, Pβ,ω) = σ̄

[
G̃β(jω)

Gα(jω)] = 1 at that ω and hence κ̄(Pα, Pβ) = 1.

4. Main Result. The main result in this paper is to show that the winding num-
ber condition (equations (3.3) and (3.8)) is equivalent to the existence of a homotopy,
parametrised by, say λ, from Pα to Pβ, such that the Vinnicombe distance δν(Pα, Pλ)

is arbitrarily close to monotonically non-decreasing and hence always strictly less than
unity.

For the case that Pα = pα and Pβ = pβ are scalar, the equivalence only holds if
multivariable homotopies are allowed, by embedding the scalar operators pα and pβ in

a higher dimensional operator, in for example, the obvious way by pα → [
pα 0

]T
.

This is formalised in the following theorem.
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If only scalar homotopies pλ from pα to pβ are considered, then in addition to
the satisfaction of the winding number condition, an extra condition is necessary for
the existence of a homotopy, namely, that the pα and pβ end-points must share the
same Cauchy index (see below). If they have a different Cauchy index, then no scalar
homotopy between them exists, irrespective of whether the winding number condition
holds.

Theorem 4.1. Let real rational p × m transfer functions Pα and Pβ be given,
with at least one of p and m strictly greater than one and with δν(Pα, Pβ) < 1. Then
for any given η (which will provide an upper bound for departure from monotonicity),
there exists a Vinnicombe metric homotopy, parametrised by λ ∈ [λα, λβ], given by
Pλ, varying from Pα to Pβ such that the following properties hold.

• Endpoint properties: Pλ = Pα for λ = λα, and Pλ = Pβ for λ = λβ.
• Vinnicombe Continuity Property: For every λ̂ ∈ [λα, λβ] and ε > 0 there

exists δ such that δν(Pλ̂, Pλ) < ε for all λ ∈ [λα, λβ] with
∣∣λ̂ − λ

∣∣ < δ.
• Subunitary Property: κ̄(Pα, Pλ) = supω κ(Pα, Pλ,ω) < 1 for all λ ∈ [λα, λβ].
• Monotonicity Property (Arbitrary Closeness to): κ̄(Pα, Pλ) ≥ κ̄(Pα, Pλ̂) − η

for all λ̂, λ ∈ [λα, λβ] such that λ̂ ≤ λ.

Conversely, if there exists a homotopy with the Endpoint and Vinnicombe Con-
tinuity properties as well as the Subunitary property, then δν(Pα, Pβ) < 1, which is
equivalent to saying that if δν(Pα, Pβ) = 1 then no homotopy satisfying those three
properties exists.

Remark 4.2. If Pα = pα and Pβ = pβ are single-input single-output (that
is, if p = m = 1) and strictly proper, then a homotopy satisfying the above four
properties can exist only if δν(pα, pβ) < 1 and I+∞

−∞[pα] = I+∞
−∞[pβ], where Iu

l [f(·)]
is the Cauchy index [10] of a real rational function f(x) : R → R over an interval
[l, u] of the real line (where either or both l or u can be at infinity) and is defined
as Iu

l [f(·)] = Pu
l [f(·)] − Nu

l [f(·)]where Pu
l is the number of (positive) jumps that f(x)

makes from −∞ to +∞ as s increases in the open interval (l, u) and Nu
l is the

number of (negative) jumps that f(x) makes from +∞ to −∞ over the interval. This
is demonstrated in the proof of Theorem 4.1 in [2]. It remains an open question
whether equality of the Cauchy index of the end-point scalar plants is sufficient to
deduce the equivalence between the winding number condition and the existence of a
scalar homotopy.

Before giving a detailed proof of the theorem, quite some development will be
required. However, it is reasonably straightforward to prove the converse part of the
theorem, both for multivariable and scalar plants, which we do in the immediately
following text. The sufficiency part of the theorem statement will be proven by lengthy
and detailed construction in Section 6.4 and following.

Proof. [Converse part of Theorem 4.1] In this part of the proof we show that
if there exists a homotopy with the Endpoint and Vinnicombe Continuity proper-
ties as well as the Subunitary property, then the Winding Number and Determinant
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Conditions hold and hence δν(Pα, Pβ) < 1.
We will first show that for an arbitrary λ̄θ ∈ [λα, λβ] with δν(Pα, Pθ) < 1, there

exists an open λ ball around λ̄θ such that det[G∗
αGλ] 6= 0 and has the same winding

number as det[G∗
αGθ] for all λ in the intersection of the open ball and the interval

[λα, λβ] (note that det[G∗
αGθ] 6= 0 because δν(Pα, Pθ) < 1).

To demonstrate this, let λ̄θ be any scalar in the interval [λα, λβ] with δν(Pα, Pθ) <

1 and define the positive scalar ε(θ) by 1 − 2ε = δν(Pα, Pθ) < 1. Assume that Gλ is
a Vinnicombe metric homotopy in λ passing through Gθ so that there exists a δ > 0

such that the conditions
∣∣λ − λ̄θ

∣∣ < δ and λ ∈ [λα, λβ] implies that δν(Pθ, Pλ) ≤ ε.
Now define

∆θλ :
def
= Gλ − GθG∗

θGλ.

We can bound the magnitude of ∆θλ because

∆∗
θλ∆θλ = I − G∗

λGθG∗
θGλ

= (G̃θGλ)∗(G̃θGλ),

so that

‖∆θλ‖∞ = δν(Pθ, Pλ) ≤ ε.

By Lemma 3.2 we can see that

inf
ω

σ {[Gθ(jω)]∗Gλ(jω)} =

√
1 − δν(Pθ, Pλ)2,

σ̄
[
(G∗

θGλ)−1
]
≤ 1√

1 − ε2
.

Now let us investigate the winding number of det(G∗
αGλ).

G∗
αGλ = G∗

α(GθG∗
θGλ + ∆θλ),

= G∗
α(Gθ + ∆θλ(G∗

θGλ)−1)G∗
θGλ,

wno{det[G∗
αGλ]} = wno{det[G∗

α(Gθ + ∆θλ(G∗
θGλ)−1)]} + wno{det[G∗

θGλ]},

= wno{det[G∗
α(Gθ + ∆θλ(G∗

θGλ)−1)]},(4.1)

and note that ‖∆θλ(G∗
θGλ)−1‖∞ ≤ ε(1 − ε2)− 1

2 . By the pointwise-in-frequency con-
tinuity of the right hand side of equation (4.1) with respect to λ, there exists an
open ball around λ̄θ such that det[G∗

αGλ] 6= 0 and has the same winding number as
det[G∗

αGθ] (where det[G∗
αGθ] 6= 0 because δν(Pα, Pθ) < 1). Note that these properties

hold for arbitrary λ̄θ ∈ [λα, λβ].
We now specify a particular value of λ̄θ. Specifically, we define λθ as

λθ :
def
= sup

{
λ̄ ≤ λβ : det[G∗

αGλ] 6= 0 and wno{det[G∗
αGλ]} = 0, ∀λ ∈ [λα, λ̄]

}
.

It is obvious that λθ exists because clearly det[G∗
αGλ] 6= 0 and wno{det[G∗

αGλ]} =

0 for all λ in the singleton set [λα], and indeed, by the Vinnicombe continuity property,
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for some finite interval close to λα so that the set in the definition of λθ is non-empty.
Furthermore, because of the Subunitary property, it also follows that δν(Pα, Pλ) < 1

for λ = λθ.
From the definition of λθ it follows that det[G∗

αGλ] 6= 0 and wno{det[G∗
αGλ]} = 0,

for all λ on the semi-open interval [λα, λθ). We now show, by contradiction, that
λθ = λβ. If it were the case that λθ < λβ, then at λ = λθ either det[G∗

αGθ] = 0,
which contradicts the Subunitary Property, or the Winding Number Condition fails.
The failure of the Winding Number Condition at λ = λθ is in contradiction with
the argument in the previous paragraph, that establishes the existence of an open λ

ball around λθ, with det[G∗
αGλ] 6= 0 having the same winding number as det[G∗

αGθ].
Therefore, λθ ≥ λβ and the Determinant and Winding Number Conditions must
hold for G∗

αGλ for all λ on the semi-open interval [λα, λβ). In addition, since the
Vinnicombe Continuity and Subunitary Properties also hold at λ = λβ, we have the
Determinant and Winding Number Conditions holding on the closed interval [λα, λβ].

The Subunitary and Endpoint properties imply that κ̄(Pα, Pβ) < 1, which, with
the Winding Number and Determinant Conditions, gives δν(Pα, Pβ) < 1 as required.
The contrapositive statment is that if δν(Pα, Pβ) = 1 then no homotopy satisfying
the Endpoint, Vinnicombe Continuity and Subunitary Properties exists.

We will demonstrate the sufficiency part of the theorem statement by construc-
tion. However, we first need several results which are important for solving the Nevan-
linna interpolation problem, which will turn up in the procedure to construct this
homotopy.

5. Some Mathematical Machinery. We present several results reasonably
well understood in the H∞ literature, which will be required in the construction of
our homotopy.

Lemma 5.1. Let T11, T12, T21 be given with respective dimensions p × m, p × p

and m×m such that T11, T12, T21, T−1
12 , T−1

21 ∈ RL∞. We consider only tall (or square)
T11 with p ≥ m. Consider the model matching problem

γ? = inf
Q∈RH∞ ‖E‖H∞

where E is defined as

Ep×m = T
p×m
11 − T

p×p
12 Qp×mTm×m

21 .

Then an optimal Q ∈ RH∞ exists, call it Q? and it results in an error function
E = T11 − T12Q?T21, which is a scalar multiple γ? of an paraunitary function [27],
that is E∗E = γ?2I. Furthermore, if the minimum achievable norm is γ? then for any
γ ≥ γ? it is possible to find Q ∈ RH∞ such that the error E = T11 − T12QT21 has the
property that E∗E = γ2I.

Proof. This is proved using a standard solution [23] to the model matching prob-
lem by converting it to an all-pass embedding problem [17]. See Appendix A.1.
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We will next show the equivalence of the above H∞ model matching problem to
a corresponding Nevanlinna interpolation problem. First however, we will present a
lemma about the properties of certain all-pass transfer matrices with prescribed zeros
and zero directions.

Lemma 5.2. Let a set Z of K distinct complex numbers zk for k = 1 . . . K, with
Re(zk) > 0 be given, as well as a set L of p× 1 unit norm direction vectors lk, where
if zk is real, then lk is real and if zk is not real, then there is some zj = zk ∈ Z with
corresponding unit norm direction vector lj = lk ∈ L.

Then the following is true.

1. There exists ΘZ(s) ∈ RHp×p∞ , a stable real-rational all-pass (square) transfer
matrix of McMillan degree [19] K such that l∗kΘZ(zk) = 0 for all zk, that is,
with zeros zk, k = 1 . . . K with output zero directions l∗k.

2. (a) Furthermore, ΘZ can be factored, for each k, as

ΘZ(s) = Θzk(s)ΘZ/k(s),

where

Θzk(s) =
[

lk Lk

] [ s−zk

s+zk
0

0 I

][
l∗k
L∗k

]

and Lk is a (constant) unitary completion of lk so that
[

lk Lk

]
is a

constant unitary matrix. Also ΘZ/k(s) is a rational (though not neces-
sarily real rational) stable matrix with zeros zj for j = 1, . . . , k − 1, k +

1, . . . , K.
(b) Furthermore, if zj = zk for complex zk it holds that

Θzj(s) =
[

lk Lk

] [ s−zk

s+zk
0

0 I

][
lTk
LT

k

]
,

that is, lj = lk and Lj = Lk.
3. (a) An alternative factorisation of the following form exists.

ΘZ(s) = Θ̃Z/k(s)Θ̃zk(s),

where

Θ̃zk(s) =
[

l̃k L̃k

] [ s−zk

s+zk
0

0 I

][
l̃∗k
L̃∗k

]
.

Here
[

l̃k L̃k

]
is a constant unitary matrix (in general, not equal

to
[

lk Lk

]
) and again, Θ̃Z/k(s) is a rational (though, again, not

necessarily real rational) stable matrix.
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(b) Furthermore, if zj = zk for complex zk it holds that

Θ̃zj(s) =
[

l̃j L̃k

] [ s−zk

s+zk
0

0 I

][
l̃Tk
L̃T

k

]
,

that is, l̃j = l̃k and L̃j = L̃k.
4. Finally let G be a p×m complex matrix and choose zk ∈ Z not real, with j as

the index corresponding to the complex conjugate of zk, that is zj = zk ∈ Z.
Define

Tkj(s) = Θ̃Z/k(s)Θ̃−1
Z/k(zk)G + Θ̃Z/j(s)Θ̃

−1
Z/j(zk)G.

Then Tkj is real rational.
Proof. A procedure for constructing an all-pass matrix with the first three proper-

ties is given in Chapter 6 of [27], see also [5] or pages 329-331 of [4]. See Appendix A.2
for proof both of the fact that ΘZ(s) can be chosen as real rational, and of Property
4.

We are now able to present the following corollary of Lemma 5.2 and Lemma 5.1.
Corollary 5.3. Let a set of distinct complex numbers zk for k = 1 . . . K, with

Re(zk) > 0 be given, as well as a set of interpolation conditions on an unknown p×m

transfer matrix F(s) such that l∗kF(zk) = gT
k for prescribed 1×m complex vectors gT

k

and p× 1 unit norm direction vectors lk, where p ≥ m and all such conditions occur
in complex conjugate pairs or are real.

If there exists F(s) ∈ RH∞ satisfying the interpolation conditions with ‖F(s)‖∞ ≤
1 then there exists an inner matrix Π(s) ∈ RH∞ with ‖Π(s)‖∞ = 1 which also satisfies
the interpolation conditions l∗kΠ(zk) = gT

k.
Proof. Here we exploit the equivalence of H∞ model matching and the Nevanlinna

interpolation problem (see [6] for the scalar case). Let ΘZ be a stable real-rational
all-pass (square) transfer matrix of McMillan degree [19] K such that l∗kΘZ(zk) = 0 for
all zk, that is, with zeros zk, k = 1 . . . K with output zero directions l∗k, as in Lemma
5.2. We then define

T11(s)p×m =

K∑
k=1

[
Θ̃Z/k(s)Θ̃−1

Z/k(zk)lkgT
k

]
,

T21(s) = Im×m,

and T12(s) = ΘZ(s)p×p.

From the last claim of Lemma 5.2 we can deduce that T11 is real rational. If zk is
real, then by the lemma hypothesis, the corresponding l̃k and gT

k are real. If zk is
complex then there is a corresponding zj = zk ∈ Z with corresponding l̃j = l̃k and
gT

j = gT
k = g∗k. We now claim that any F ∈ H∞ satisfying the interpolation conditions

is necessarily of the form

F = T11 − T12QT21(5.1)
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for some Q ∈ Hp×m∞ , and conversely. This is established as follows.

Since l∗kΘZ(zk) = 0, it is readily seen that l∗j Θ̃Z/k(zj) = 0 for j = 1, . . . , k −

1, k + 1, . . . , K. This is clear since ΘZ(zj) = Θ̃Z/k(zj)Θ̃zk(zj) and the second term
in the product is nonsingular for k 6= j. It is obvious that the condition that F may
be expressed as (5.1) with Q stable is sufficient for F to satisfy the interpolation
conditions. For necessity, consider Q̂ :

def
= F − T11 ∈ RH∞ and note that l∗kQ̂(zk) =

l∗k[F(zk − T11(zk)] = 0 for each k. Since l∗kQ̂(zk) = 0 for Q̂ ∈ RH∞ it follows [27]
that it may be factorised as an inner-outer factorisation Q̂(s) = ΘZ(s)Q(s) for some
Q ∈ RH∞. The proof now follows immediately upon application of Lemma 5.1.

In the proof of Lemma 5.1 it is shown that the H∞ model matching problem can
be converted to the Nehari problem of approximating an RL∞ function G by an RH∞
matrix Q̄. By Lemma 5.1, given any γ ≥ γ? it is possible to find, using the all-pass
embedding method in [17] (see also [15]), a Q̄ ∈ RH∞ which results in E∗E = γ2I.
In order to prove the continuity property for the homotopy that we will construct, we
will also need to know that for γ? < 1, if we take γ = 1, then this all-pass embedding
algorithm gives a result (the all-pass transfer matrix E) which is H∞-norm continuous
in the input data (the plant data G.)

Theorem 5.4. Let an L∞ norm homotopy Gλ
p×m ∈ RL∞ (with dimensions

p×m, with p ≥ m) be given as a function of λ ∈ [0, 1]. Provided that for each λ the
following conditions hold:

• The (real rational) Gλ has a finite dimensional state-space representation,
with state-space parameters bounded and continuous in λ;

• The Hankel norm γ?
λ of Gλ is strictly less than unity;

then there exists an L∞ homotopy of paraunitary error functions Eλ = Gλ −Q̄λ (that
is, one which satisfies Eλ

∗Eλ = I), where Q̄λ ∈ RH∞ is stable for each λ, which may
be obtained by the all-pass embedding method in [17].

Furthermore, suppose that there is a finite number J of λ interpolation conditions
on the homotopy, that is, there are given J specific values of the Gλ homotopy param-
eter λ, namely λ̂j for j = 1 . . . J as well as corresponding paraunitary error functions
Êj, and the homotopy Eλ of paraunitary error functions is required to interpolate Êj

at each λ = λ̂j.

This is possible provided the following conditions are true

• For each j there exists some Q̄λ ∈ RH∞ such that Êj = Gλ − Q̄λ when
λ = λ̂j.

• Either the transfer matrix Gλ is strictly tall (p > m), or, in the case that Gλ

is square, both the winding numbers of the determinants of Êj and the signs
of det

s→∞[Êj(s)] are equal for each j.

Proof. See Appendix A.3.

An immediate consequence of the above theorem is that the solution to the model
matching problem in Lemma 5.1 is continuous, provided the problem data are. This
is formalised in Corollary 5.5 following. A similar conclusion follows in Corollary 5.6
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for the Nevanlinna interpolation problem, which was introduced in Corollary 5.3.

Corollary 5.5. Assume there is given a set, parametrised by λ, of model match-
ing problems as in Lemma 5.1, where T11(λ), T12(λ) and T21(λ) are each parametrised
by λ. Suppose that each of T11(λ), T12(λ) and T21(λ) have state-space realisations with
state-space parameters that are continuous in λ. Suppose the value of the optimisation

γ?(λ) = inf
Q∈H∞ T11(λ) − T12(λ)QT21(λ)

is strictly less than unity for all λ of interest, that is γ?(λ) < 1. Then there exists a
paraunitary Eλ = T11(λ) − T12(λ)Q(λ)T21(λ) (that is E∗λEλ = I) where Q(λ) ∈ H∞
and Eλ is an H∞ homotopy.

Furthermore, suppose that there is given a finite number J of λ interpolation con-
ditions on the homotopy. That is, there are given J specific values of the homotopy
parameter λ, namely λ̂j for j = 1 . . . J as well as corresponding paraunitary error func-
tions Êj, and the homotopy Eλ of paraunitary error functions is required to interpolate
Êj at each λ = λ̂j.

This is possible provided the following conditions are true

• For each j there exists some Q(λ̂j) ∈ RH∞ such that Êj = T11(λ̂j) +

T12(λ̂j)Q(λ̂j)T21(λ̂j).
• Either the transfer matrix T11 is strictly tall (p > m), or, in the case that T11

is square, both the winding numbers of the determinants of Êj and the signs
of det

s→∞[Êj(s)] are equal for each j.

Proof. The equivalence of the model matching problem of Lemma 5.1 to the
Nehari problem of Theorem 5.4 is demonstrated in the proof of Lemma 5.1. The
requirement that E∗λEλ = γ2I corresponds choosing γ = 1 and the condition that
γ?(λ) < 1 ensures that an appropriate Q(λ) ∈ RH∞ exists.

Corollary 5.6. Assume that there is given a set of interpolation problems,
parametrised by λ, as in Corollary 5.3, where gi(λ)1×m, li(λ)p×1 and the s-domain
interpolation points zi(λ) are each parametrised by λ. Then provided each of gi(λ),
li(λ) and zi(λ) is continuous in λ, it is possible to solve the interpolation problem to
give a (continuous) paraunitary Uλ(s)p×m homotopy.

Furthermore, suppose that there is given a finite number J of λ interpolation con-
ditions on the homotopy. That is, there are given J specific values of the homotopy
parameter λ, namely λ̂j for j = 1 . . . J as well as corresponding paraunitary functions
Ûj, and the homotopy Uλ(s) of paraunitary error functions is required to interpolate
Ûj(s) at each λ = λ̂j.

This is possible provided the following conditions are true

• For each j the paraunitary transfer matrix Ûj satisfies the s-domain interpo-
lation conditions li(λ̂j)

∗Ûj[zi(λ̂j)] = gi(λ̂j).
• Either p > m, or, in the case that p = m, then both the winding numbers of

the determinants of Ûj and the signs of det
s→∞[Ûj(s)] are equal for each j.
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Proof. The equivalence of the interpolation problem to the model matching prob-
lem is shown in Corollary 5.3. Because each of the interpolation conditions is con-
tinuous in λ, the transfer functions T11(λ), T12(λ) and T22(λ) corresponding to the
resultant model matching problem have representations that are continuous in the
state-space parameters. The equivalence of the model matching problem to the Ne-
hari problem of Theorem 5.4 is demonstrated in the proof of Lemma 5.1.

6. Homotopy Construction. We prove the existence of a homotopy that sat-
isfies the required conditions in Theorem 4.1 by construction. We first describe a
construction, and then we show that it satisfies the required conditions.

Our multivariable homotopy construction procedure is as follows. Without loss of
generality we investigate the “tall” plant case and take plants P

p×m
α and P

p×m
β with

p ≥ m and δν(Pα, Pβ) < 1. We make the simplifying assumptions that Pα −Pβ is full
rank and has no zeros on the imaginary axis or at infinity. We may also assume that

the set of poles in the normalised coprime fraction representation Gα =
[

NT
α DT

α

]T
of Pα = NαM−1

α are distinct.
If either or both of these simplifying assumptions is not true, then we can make

an abitrarily small perturbation of Pα, of magnitude no more than some positive
scalar ε such that both ε < 1 − δν(Pα, Pβ) and ε < 1

2η, where η is the monotonicity
perturbation upper bound parameter of Theorem 4.1, to give P ′α such that P ′α − Pβ

is full rank and has no zeros on the imaginary axis or at infinity, and the normalised
coprime representation of P ′α has distinct poles. We then construct a homotopy Pλ

from P ′α to Pβ using the methods presented in this section and complete with a
homotopy from Pα to P ′α. By the triangle inequality it follows that δν(P ′α, Pλ) ≤
δν(Pα, P ′α)+δν(P ′α, Pβ) will remain strictly subunitary, and will not violate the desired
property of the perturbed homotopy being arbitrarily close to monotonic. Note that
this is just a perturbation of the end point Pα, and not a perturbation of the Pλ

homotopy en route.
We proceed to define the Pλ homotopy as follows. First we define Rm×m =

G∗
αGβ and Wp×m = G̃αGβ. Because δν(Pα, Pβ) < 1 it follows that for every ω,

det[R(jω)] 6= 0, and wno[det(R)] = 0; moreover R has no poles on the imaginary
axis. Furthermore, we know that W = M̃α(Pα − Pβ)Mβ is stable and full-rank, with
‖W‖∞ = δν(Pα, Pβ) < 1. We also know that R∗R + W∗W = I.

We now proceed to construct homotopies Rλ and Wλ and define a homotopy Gλ

as

Gλ = GαRλ + G̃∗
αWλ.(6.1)

We later show that Gλ defines a homotopy for a normalised coprime factorisation of
a plant Pλ satisfying the requirements of the theorem statement.

As in equation (2.1) of Section 2, perform an inner-outer factorisation to factorise
W ∈ RH∞ as ΠWzŴ where ΠWz is an inner transfer matrix and Ŵ is square and
outer. Also, factorise the square transfer matrix R as R = Θ∗

RpΘRzR̂ (see equation
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(2.6)), where ΘRp and ΘRz are stable all-pass transfer matrices (chosen so that the
signs of their determinants at infinity is the same), and R̂ is outer. Note that R∗R +

W∗W = R̂∗R̂ + Ŵ∗Ŵ = I. We will be able to apply the results of Corollary 5.3 to
interpolation conditions at the right half-plane poles of Θ∗

Rp, since we have assumed
that the poles of Gα and hence of G∗

α, are distinct. Note that each unstable pole of
Θ∗

Rp is also an unstable pole of G∗
α, that is, the set of unstable poles of G∗

α forms a
superset of those of Θ∗

Rp.
We will define the homotopies for Rλ and Wλ as products Rλ = Θ∗

RpΘRλR̂λ and
Wλ = ΠWλŴλ. We do this in two distinct stages, one from λ ∈ [0, 1] and one for
λ ∈ [1, 2], so that λ = 0 will correspond to Pα and λ = 2 will correspond to Pβ. For
λ ∈ [0, 1] the stable minimum-phase factor R̂λ is transformed from I to R̂, while the
stable minimum-phase factor Ŵλ is transformed from 0 to Ŵ, with ΘRλ and ΠWλ

fixed respectively at ΘRp and ΠαpΘVp (where Παp and ΘVp are to be defined below).
Then, for λ ∈ [1, 2] we keep the factors R̂λ and Ŵλ fixed at R̂ and Ŵ, while ΘRλ is
transformed from ΘRp to ΘRz, and ΠWλ is transformed from ΠαpΘVp to ΠWz. All
the time it has to be ensured that the resultant Gλ defined by (6.1), is stable, coprime
and normalised, the winding number condition wno [det (G∗

αGλ)] = 0 is satisfied, and
the monotonicity property holds.

6.1. Homotopy for λ ∈ [0, 1].

6.1.1. Homotopy for the Minimum-Phase Factors R̂ and Ŵ for λ ∈ [0, 1].
For λ ∈ [0, 1] we specifically define the homotopy for a stable and minimum-phase
R̂m×m

λ via a spectral factorisation

R̂∗λR̂λ = λ2R̂∗R̂ + (1 − λ2)I,(6.2)

and note that the right hand side of the above equation has no imaginary axis poles,
so that R̂λ is bounded in the H∞ norm. Although the R̂λ so defined is unique only
up to a constant orthogonal factor, it is a trivial matter to select this factor to find
a R̂λ such that it is H∞ continuous in λ. In fact if R̂ has a minimal state space
realisation [AR̂, BR̂, CR̂, DR̂], then R̂λ can be found with realisation [AR̂, BR̂, CR̂λ, DR̂λ]

(note that the AR̂ and BR̂ state space parameters may be taken as fixed). The spectral
factorisation and construction of CR̂λ, DR̂λ depends on solving a Riccati equation [27].
The coefficients in the Riccati equation are analytic in λ and the resultant CR̂λ and
DR̂λ are also analytic in λ.

It then follows that if we define

Ŵm×m
λ = λŴ,(6.3)

then the following holds:

Ŵ∗
λŴλ = λ2(I − R̂∗R̂)

= I − R̂∗λR̂λ.(6.4)
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6.1.2. The Inner Factors ΘRλ and ΠWλ Held Fixed for λ ∈ [0, 1]. Still
for λ ∈ [0, 1], we define an all-pass homotopy for ΘRλ by simply holding it fixed at
ΘRp. In order to reveal its right half-plane pole and zero structure, we also perform
a factorisation of G̃∗

α as in equation (2.6) as

G̃∗
α =

[
−M̃∗

α

Ñ∗
α

]

=

[
−M̄α

N̄α

]
Θ̃αzΘ̃

∗
αp

= ḠαΘ̃αzΘ̃
∗
αp.(6.5)

In the above, Θ̃αz and Θ̃αp are stable and all-pass, and Ḡα is co-outer. The zeros of
Θ̃αp are the right half-plane poles of G̃∗

α, the same as the poles of G∗
α: these poles

form a superset of the unstable poles of R which are the zeros of ΘRp. These facts
will be exploited later in proving particular stability properties of the homotopy.

In order to define a fixed ΠWλ for λ ∈ [0, 1], we introduce several ancillary quan-
tities. This will result in a choice of fixed ΠWλ for λ ∈ [0, 1] such that the resultant
Gλ in equation (6.1) is stable and so that the resulting ΠWλ can be continuously
connected to the homotopy that will be defined for λ = [1, 2]. First we introduce
Xm×p, Yp×p, X̃m×p and Ỹm×m, which are RH∞ transfer matrices, satisfying the dou-
ble Bezout identity [

X̃ Ỹ

−M̃α Ñα

][
Nα −Y

Mα X

]
=

[
I 0

0 I

]
.(6.6)

Such transfer matrices exist because the fractional descriptions M−1
α Nα = ÑαM̃−1

α

of Pα are coprime. We define a transfer matrix Zm×p as

Z = ỸÑ∗
α − X̃M̃∗

α(6.7)

and as in equation (2.13) of Section 2, we factorise Z as

Z = Z̄m×mΘm×m
αz (Πp×m

αp )∗(6.8)

where Παp is inner, Z̄ is stable, minimum-phase, and Θαz is all-pass and stable
(inner). For the purposes of the following construction, we must assume that Z̄ is also
full rank and possesses no imaginary axis or infinite zeroes and Z̄−1 ∈ RH∞. Since Z

is uniquely defined by the homotopy end-point Pα, if this is not case for the originally
given Pα, we can find an arbitrarily small perturbation P ′α such that it is true, in
the same way that it is possible to ensure the perturbed end-point has normalised
coprime fraction representation with distinct poles, and such that P ′α −Pβ is full rank
and has no imaginary axis zeros. (See the third paragraph of Section 6.)

We can now define a homotopy for ΠWλ by holding it fixed at ΠWλ = ΠαpΘVp for
λ ∈ [0, 1], where ΘVp is a stable, all-pass matrix to be defined later in the development
in Lemma 6.2. With these assignments, that is, Rλ = R̂λ, Wλ = λ · ΠαpΘVpŴ and
Gλ defined in equation (6.1), we will later show that Gλ is stable.
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6.2. Homotopy for λ ∈ [1, 2]. We now construct the homotopy for λ ∈ [1, 2].
In this part of the homotopy, we hold R̂λ fixed at R̂ and allow ΘRλ to vary from ΘRp

to ΘRz. Note that this homotopy must be such as to preserve the winding number
of Rλ, that is, ΘRλ must have the same number of non-minimum-phase zeros as ΘRp

for all λ. Note that ΘRz has the same number of non-minimum phase zeros as ΘRp,
because R has zero winding number. In the construction of the homotopy we also
hold Ŵλ fixed at Ŵ and allow ΠWλ to vary from ΠαpΘVp to ΠWz.

6.2.1. Homotopy for ΘRλ for λ ∈ [1, 2]. In order to efficaciously construct
ΠWλ below and in order to satisfy the winding number condition for Rλ, we make
the ΘRλ homotopy in a special way. In fact, for each λ, we make ΘRλ such that
l∗pkΘRλ(pk) = [λ − 1] · l∗pkΘRz(pk) for each unstable zero pk of ΘRp with normalised
(output) zero direction [19] lpk.

Such a stable all-pass ΘRλ exists by Corollary 5.3 because [λ − 1] never exceeds
unity, that is, a stable function with less than unity norm and that satisfies the
interpolation constraints exists (namely [λ− 1] ·ΘRz) and hence there exists an stable
all-pass (that is, with exactly unity norm) transfer matrix, that also satisfies the
interpolation constraints.

We can see that ΘRλ = ΘRz at λ = 2 and that ΘRλ = ΘRp at λ = 1 are solutions
for the above (s-plane) interpolation constraints. It is also clear, since det(R) has zero
winding number that det(ΘRz) and det(ΘRp) share equal winding numbers, and recall
that ΘRz and ΘRp have been chosen so that the signs of their determinants at infinity
are the same. We note that by the Corollary 5.6, it follows that ΘRλ can be defined
in such a way is an H∞-norm homotopy, and such that it is equal to ΘRp and ΘRz at
λ = 1 and λ = 2 respectively.

6.2.2. Homotopy for ΠWλ for λ ∈ [1, 2]. Having defined the homotopy for
Rλ for the interval λ ∈ [1, 2] using R̂ and ΘRλ, we now define the homotopy for
ΠWλ, guided by the need to find an inner transfer function which will make Gλ in
(6.1) stable. We can now recast the requirement that Gλ be stable in terms of the
following equivalence result.

Lemma 6.1. Let Gα correspond to a normalised right coprime factorisation
NαM−1

α of Pα and let G̃α correspond to a normalised left coprime factorisation
M̃−1

α Ñα. Define Z by equation (6.7) above where X, Y, X̃ and Ỹ satisfy the Bezout
identity (6.6). Suppose that a transfer matrix Rλ ∈ RL∞ has been constructed and
transfer matrix Wλ is sought. Make the definition

Tm×m = Rm×m
λ + Zm×pW

p×m
λ .

Then the pair Wλ, T ∈ RH∞ if and only if Gλ = GαRλ + G̃∗
αWλ ∈ RH∞.
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Proof. The lemma is demonstrated by the observation that[
X̃ Ỹ

−M̃α Ñα

]
Gλ =

[
Rλ + (ỸÑ∗

α − X̃M̃∗
α)Wλ

Wλ

]

=

[
T

Wλ

]
.

We also see that

Gλ =

[
X̃ Ỹ

−M̃α Ñα

]−1 [
T

Wλ

]

=

[
Nα −Y

Mα X

][
T

Wλ

]
.

The expression for the inverse matrix is a consequence of the Bezout identity (6.6).
Because the product of two stable transfer matrices is also stable, the lemma statement
holds.

In the light of the above lemma, and the fact that for λ ∈ [1, 2] we require that
Wλ = ΠWλŴ for some p × m paraunitary ΠWλ, we shall work with T and seek to
ensure, through appropriate choice of ΠWλ, that T ∈ RH∞. The unknown stable
matrix T is a free quantity at our disposal.

Let us for the moment define T(UWλ) for an arbitrary (that is, not necessarily
paraunitary) U

p×m
Wλ ∈ RH∞ as

T(UWλ)m×m = Rλ + ZUWλŴ

= Θ∗
RpΘRλR̂ + Z̄m×mΘm×m

αz (Πp×m
αp )∗Um×m

Wλ Ŵm×m.

Our task is to show that there is an inner UWλ, (continuous in λ), that will ensure
that T(UWλ) (and therefore Gλ,) is in RH∞. We can then identify UWλ with ΠWλ.
The quantity Π̂Wλ, defined and existence proven in the following lemma, defines the
required ΠWλ homotopy for λ ∈ [1, 2]. Observe also that the following lemma defines
the quantity ΘVp that is used in the definition of the homotopy for inner ΠWλ for
λ ∈ [0, 1].

Lemma 6.2. Let Θm×m
Rp , R̂m×m and ΘRλ ∈ RH∞ be as defined at the beginning

of Section 6.2 and in Section 6.2.1. Also let Π
p×m
αp , Θm×m

αz and Z̄m×m ∈ RH∞
be defined according to the factorisation of Z following equation (6.7). Finally let
Ŵm×m ∈ RH∞ be as defined from the inner-outer factorisation W = ΠWzŴ =

G̃αGβ. Recall that Παp is inner and ΘRp, Θαz are stable and all-pass and Ŵ is of
full rank and possesses a stable inverse. Define

T(UWλ) = Θ∗
RpΘRλR̂ + Z̄m×mΘm×m

αz (Πp×m
αp )∗Up×m

Wλ Ŵm×m(6.9)

where UWλ ∈ RHp×m∞ .
Then
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• If UWλ is set to UWλ = (λ−1)ΠWz then this ensures that T(UWλ) ∈ RHp×m∞ ,
and

• there exists an inner Π̂
p×m
Wλ such that UWλ = Π̂Wλ ensures that T(UWλ) ∈

RH∞.
• Furthermore, such an inner Π̂Wλ can be chosen such that it is an H∞ ho-

motopy in λ, which interpolates ΠαpΘVp at λ = 1, for some stable, all-pass
transfer matrix ΘVp, and ΠWz at λ = 2.

Proof. We define T̂λ as being the T that results from the choice of UWλ =

[λ − 1] · ΠWz in equation (6.9). We claim that the T̂λ ∈ RH∞. To see this note
that the only possibility of instability in equation (6.9) arises from the unstable poles
of Θ∗

Rp and Π∗
αp. Each unstable pole of Θ∗

Rp and Π∗
αp is also an unstable pole of Θ̃∗

αp

(defined in equation (6.5)).
In order to demonstrate that T̂λ is stable, we evaluate the residuals of T̂λ in

equation (6.9) at each potential unstable pole pk. This can be done pole by pole,
since by assumption all the unstable poles of Gα∗ and thus zeros of ΘRp are distinct.

First recall that for each k, there exists a factorisation of ΘRp as

ΘRp =
[

lk Lk

] [ s−pk

s+pk
0

0 I

][
l∗k
L∗k

]
ΘRp/k

where ΘRp/k has no zeroes at pk. This results in the following equality. Recall that
have defined ΘRλ so that l∗pkΘRλ(pk) = [λ − 1] · l∗pkΘRz(pk).

lim
s→pk

{[s − pk][ΘRp(s)−1ΘRλ(s)R̂(s)}

= lim
s→pk

{[
lk Lk

] [ s + pk 0

0 (s − pk)I

][
l∗k
L∗k

]
ΘRp/k(s)−1ΘRλ(s)R̂(s)

}

=
[

lk Lk

] [ 2Re(pk) 0

0 0

][
l∗k
L∗k

]
Θ−1

Rp/k(pk)ΘRλ(pk)R̂(pk)

= [λ − 1]Θ−1
Rp/k(pk)

[
lk Lk

] [ 2Re(pk) 0

0 0

][
l∗k
L∗k

]
ΘRz(pk)R̂(pk)

= [λ − 1] lim
s→∞{[s − pk] ·ΘRp(s)−1ΘRz(s)R̂(s)}.

We can thus determine residuals of T̂λ(s) at pk for each k as follows.

lim
s→pk

{[s − pk]T̂λ(s)} = lim
s→pk

{[s − pk][ΘRp(s)−1ΘRλ(s)R̂(s) + Z(s)U(s)Ŵ(s)]}

= [λ − 1] lim
s→∞{[s − pk][ΘRp(s)∗ΘRz(s)R̂(s) + Z(s)ΠWzŴ(s)]}

= [λ − 1] lim
s→∞{[s − pk][R(s) + Z(s)W(s)]}

= 0.

The last equality is due to the fact that R(s)+Z(s)W(s) is stable due to the stability
of Gβ(s) and Lemma 6.1. This proves the first lemma statement.
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In order to prove the second lemma statement we shall find an expression for the
set of UWλ which give rise to a particular T . The first part of the lemma in addition
to Theorem 5.4 and its corollaries, will then allow us to identify an all-pass UWλ that
will guarantee that T ∈ RH∞.

Since Παp is inner we can find an inner Παpc which is an all-pass completion of the
columns of Παp, that is, such that

[
Παp Παpc

]
is all-pass. It is then immediate

from (6.9) that we can write[
T

Q̂Ŵ

]
=

[
Θ∗

RpΘRλR̂

0

]
+

[
Z̄ΘαzΠ

∗
αp

Π∗
αpc

]
UWλŴ.(6.10)

where Q̂(p−m)×m, is not necessarily stable. In the above T and Q̂ are given as
functions of the variable UWλ, with the other terms in the equation known. We can
now rearrange this to make UWλ the subject– a function of T and Q̂.

UWλ = ΠαpΘ∗
αzZ̄

−1
(
T − Θ∗

RpΘRλR̂
)
Ŵ−1 + ΠαpcQ̂(6.11)

=
[

ΠαpΘ∗
αzZ̄

−1 Παpc

]p×p
[

T

Q̂Ŵ

]p×m

(Ŵm×m)−1 − ΠαpΘ∗
αzZ̄

−1Θ∗
RpΘRλR̂Ŵ−1

Our goal is to find UWλ that satisfies the conditions in the second Lemma statement.
In order to do so, note that T = T̂λ ∈ RH∞ and Q̂Ŵ = [λ − 1] · Π∗

αpcΠWz ∈ RL∞
substituted in equation (6.11) gives UWλ = [λ−1] ·ΠWz ∈ RH∞. We now introduce a
change of variables in equation (6.11), as T = T̂λ+Q1 and Q̂Ŵ = [λ−1]·Π∗

αpcΠWz+Q2

to give

UWλ = (λ − 1)ΠWz +
[

ΠαpΘ∗
αzZ̄

−1 Παpc

] [ Q1

Q2

]
Ŵ−1

= (λ − 1)ΠWz +
[

ΠαpΘ∗
αzZ̄

−1 Παpc

]
QŴ−1(6.12)

where Qp×m :
def
=
[

QT
1 QT

2

]T
and Q1 ∈ RH∞ is equivalent to T ∈ RH∞.

Equation (6.12) gives us an expression for UWλ in terms of unknown variables
Q1 and Q2 where it is sufficient that Q1 is stable for UWλ substituted in (6.10) to
give a stable T . (That is, it is not necessary for Q2 to be stable to give a stable T .)
Consequently, defining UWλ as in (6.12) by choosing a particular stable Q is sufficient
to ensure that T in (6.10) is stable.

One way to choose a particular (stable) Q is to temporarily ignore the inner-
constraint on Uλ and to consider the following H∞ minimisation of Uλ (thus retaining
the stability constraint on Uλ) over stable Q.

µλ :
def
= inf

Q∈H∞
∥∥∥[ ΠαpΘ∗

αzZ̄
−1 Παpc

]
QŴ−1 + (λ − 1)ΠWz

∥∥∥
H∞ .(6.13)
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By considering the case where we set Q = 0 to give UWλ = [λ − 1] ·ΠWz it is obvious
that (6.13) admits a finite value with µλ ≤ (λ − 1) ≤ 1. By Lemma 5.1 there will exist
a Q? ∈ RH∞ such that[

ΠαpΘ∗
αzZ̄

−1 Παpc

]
Q?Ŵ−1 + (λ − 1)ΠWz = µλΠ?

Wλ

where Π?
Wλ is inner. Also, by Lemma 5.1, it is possible to choose a stable Q̄ such that

UWλ = Π̂Wλ =
[

ΠαpΘ∗
αzZ̄

−1 Παpc

]
Q̄Ŵ−1 + (λ − 1)ΠWz(6.14)

where Π̂Wλ is inner and hence has unity norm as required for the second lemma
statement.

For the third lemma statement we check the λ-interpolation conditions of Π̂Wλ

at the end points of λ ∈ [1, 2]. Rearranging (6.12) in terms of Q gives

Q =

[
Z̄ΘαzΠ

∗
αp

Π∗
αpc

]
{UWλ − (λ − 1)ΠWz} Ŵ.(6.15)

At λ = 2, we can set UWλ to ΠWz in equation (6.15) to yield a stable Q = Q̃(= 0)

and hence Q̄ = Q̃(= 0) in (6.14) gives back Π̂Wλ = ΠWz. Hence ΠWz is a potential
solution for the inner dilation (6.14) when λ = 2. It can also be confirmed that for
λ = 1, setting UWλ = ΠαpΘVp makes Q stable in (6.15) for any all-pass ΘVp. Hence
UWλ = ΠαpΘVp is also potential solution candidate for (6.14).

Note that (λ−1)ΠWz in the H∞ model matching problem (6.13) is a λ-homotopy,
and the other transfer matrices in the model matching problem are fixed. By Corollary
5.5 of Theorem 5.4, it follows that we may construct Π̂Wλ to form a homotopy as well
as to interpolate ΠαpΘVp for any ΘVp at λ = 1 and ΠWz at λ = 2, provided that
ΠWz is strictly tall.

Also for the the case where ΠWz is square it is possible to find a ΠWλ homotopy
via the minimisation problem (6.13) for λ ∈ [1, 2] by Corollary 5.5. In order to prove
the third lemma statement, we will now demonstrate that, at λ = 1, all inner solutions
of (6.14) can be written as ΠWλ = ΠpαΘVp for some stable all-pass ΘVp. Consider
once again, equation (6.14) for the case that λ = 1 and note that stable Q̄ ensures
that T = T̂λ + Q1 is stable. If we observe equation (6.9) and note that for λ = 1 we
have ΘRλ = ΘRp so that Rλ = R̂ is stable, we conclude that the term Z̄ΘαzΠ

∗
αpΠWλŴ

is also stable. Since the inner transfer functions Θαz and Παp are coprime, it follows
that any cancellations of unstable poles in Π∗

αp must occur in the product Π∗
αpΠWλ

so that ΠWλ = ΠαpΘVp for some particular (square) stable inner ΘVp.

6.2.3. Summary: Homotopy for λ ∈ [0, 2]. For our ΠWλ homotopy for λ ∈
[1, 2], recall that we simply set ΠWλ = Π̂Wλ, where Π̂Wλ is defined by the previous
lemma, Lemma 6.2. It then follows by Lemma 6.1 that stability of ΠWλ and the
stability of Q1 (the submatrix of Q̄ used in the construction of ΠWλ), ensures the
stability of T = T̂λ + Q1 and hence the stability of Gλ. This specifies the homotopy
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for λ ∈ [1, 2]. A particular ΘVp is chosen that corresponds to the second half of the
ΠWλ homotopy, that is, for λ ∈ [1, 2]. It is at this particular value that we hold ΠWλ

fixed for the first half of the homotopy, that is, for λ ∈ [0, 1], and hence we can ensure
continuity of the ΠWλ homotopy over the entire interval λ ∈ [0, 2]. Recall also that
Rλ = Θ∗

RpΘRλR̂ and Wλ = ΠWλŴ, for λ ∈ [1, 2], and that this clearly matches the
homotopies Rλ and Wλ for λ ∈ [0, 1] defined in Section 6.1. Substitution of these
component homotopies back in equation (6.1) gives Gλ.

Now we can show that an arbitrarily small perturbation of a homotopy produced
by the the above construction enjoys the three properties specified in the statement
of Theorem 4.1 for the entire interval λ ∈ [0, 2], by identifying λα with λ = 0 and λβ

with λ = 2.

6.3. Coprimeness Recoverable by Perturbation. The following lemma

demonstrates that for normalised stable transfer matrices Gλ =
[

NT
λ MT

λ

]T
where

Mλ is square and the number of rows in Nλ is greater than unity, even if Gλ itself is
not coprime, there exists arbitarily small perturbations G ′

λ of Gλ, that are coprime.
Lemma 6.3. Suppose that

Gλ(s) =

[
Nλ(s)

Mλ(s)

]

is a homotopy with Nλ,Mλ stable rational transfer function matrices where the co-
efficients of the transfer function elements of the transfer matrices have a piecewise
rational dependence on λ. Assume that Gλ is normalised, that is, G∗

λGλ = I, that Nλ

either has more than one row and that Mλ is square.
Then, even if Gλ is not coprime, given any perturbation bound η, there exists a

coprime normalised homotopy

G ′
λ(s) =

[
N ′

λ(s)

M ′
λ(s)

]

such that ‖Gλ − G ′
λ‖∞ < η for all λ.

Proof. See Appendix A.4.

6.4. Proof of Sufficiency. Proof. [The Sufficiency part of the statement of
Theorem 4.1.]

If δν(Pα, Pβ) < 1, then construct a family of transfer matrices Gλ, parametrised
by λ as in Section 6. If at, at most, a finite number of intervals in the λ interval the
transfer matrix Gλ is not coprime, we produce a perturbation G ′

λ which is normalised
and coprime, and differs from Gλ by no more than 1

2η, by appeal to Lemma 6.3. The
construction in Section 6 ensures that Gλ fulfills the conditions of the Lemma, namely
that the coefficients of the transfer function elements of the transfer matrices have a
piecewise rational dependence on λ. We now show that P ′λ corresponding to G ′

λ is a
homotopy enjoying the three properties specified in the statement of Theorem 4.1.
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Normalisation Property: Firstly, we check that Gλ =
[

NT
λ MT

λ

]T
defined by

(6.1) is normalised.
First note that

G∗
λGλ =

(
R∗λG∗

α + W∗
λG̃α

)(
GαRλ + G̃∗

αWλ

)
= R∗λRλ + W∗

λWλ

= R̂∗λR̂λ + Ŵ∗
λŴλ

= I.

This is due to the properties of the right and left normalised coprime factorisations
Gα and G̃α and equation (6.4). That Gλ is stable follows from care taken in its
construction. In particular, when λ ∈ [0, 1], Rλ = R̂λ ∈ H∞ and Wλ = λΠ̃αpΘ̄VpŴ

so that G̃αWλ ∈ H∞ and hence by equation (6.9), T is stable. When λ ∈ [1, 2] we
have that Ŵλ = ΠWλ

Ŵ ∈ H∞ where ΠWλ also corresponds to T = T̄ ∈ H∞. Hence
by Lemma 6.1, it follows that Gλ is stable for all λ ∈ [0, 2].

Coprime Factorisation Property: While the numerator-denominator pair Nλ, Gλ

may not be coprime at some points in homotopy, our appeal to Lemma 6.3 shows
that, for multivariable plants, that is, with either more than one input or output,
there exist the desired perturbations N ′

λ and M ′
λ within 1

2η of Nλ and Mλ in the
H∞-norm, which ensures coprimeness whilst preserving the normalisation property.

Endpoint Property: When λ = 0, then by equations (6.2) and (6.3) we get
Rλ = I and Wλ = 0. This gives Gλ = Gα as required. Furthermore, when
λ = 2 we get Rλ = Θ∗

RpΘRzR̂ = G∗
αGβ and Wλ = ΘWŴ = W = G̃αGβ. Hence

Gλ = GαG∗
αGβ + G̃∗

αG̃αGβ = Gβ.
Subunitary and Monotonicity Properties: For any Pλ where Nλ and Mλ are co-

prime, we have that κ̄(Pα, Pλ) = ‖G̃αGλ‖∞ = ‖G̃α(GαRλ+G̃∗
αWλ)‖∞ = ‖Wλ‖∞. For

the unperturbed homotopy, this is may be evaluated as λ · ‖W‖∞ = λ · δν(Pα, Pβ) < 1

for λ ∈ [0, 1] and ‖W‖∞ = δν(Pα, Pβ) < 1 for λ ∈ [1, 2]. Except at values of λ where
the coprimeness of Nλ,Mλ, the monotonicity property is also obvious from the previ-
ous expressions. Since we recover coprimeness by arbitrarily small perturbations N ′

λ,
M ′

λ, of magnitude at most 1
2η, we hence ensuring that the deviation κ̄(Pα, P ′λ) from

κ̄(Pα, Pλ) is abitrarily small, and hence that κ̄(Pα, P ′λ) is arbitrarily close to mono-
tonic in the sense made precise in the theorem statement. Since δν(Pα, Pβ) < 1 and
δν(Pα, P ′λ) can be made arbitrarily close to monotonic, it follows that it can also be
made to fulfil the Subunitary Property.

Vinnicombe Continuity Property: We first determine that Rλ = ΘRλR̂λ and
Wλ = ΠWλŴλ are continuous in the H∞ norm, because the products of H∞ norm ho-
motopies are also homotopies in H∞ and each of ΘRλ, R̂λ, ΠWλ and Ŵλ is continuous
in the H∞ norm. The transfer matrix R̂λ is derived from (6.2) as a spectral factorisa-
tion of a rational parahermitian transfer matrix depending smoothly in λ and which
has no imaginary axis poles or zeros, and Wλ is defined as Wλ = λŴ for λ ∈ [0, 1]
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in equation (6.3), and as Wλ = Ŵ for λ ∈ [1, 2]. The all-pass matrix ΘRλ and the
inner matrix ΠWλ are constructed using the inner homotopy construction method in
[17] with continuous input data. Hence, by Theorem 5.4 (and its corollaries), they
are also continuous. This implies that Gλ is continuous, that is, an H∞-homotopy.
Furthermore, if any perturbation G ′

λ is required in order to recover coprimeness, then
the perturbation can be made to ensure that G ′

λ is also an H∞-homotopy.
For Pλ̂ and Pλ with λ̂, λ ∈ [0, 2] we have that

G∗
λ̂
Gλ = R∗

λ̂
Rλ + W∗

λ̂
Wλ

= I + R∗
λ̂
(Rλ − Rλ̂) + W∗

λ̂
(Wλ − Wλ̂)(6.16)

From the above expression, it can clearly be seen, by the continuity of Wλ and Qλ that
wno(G∗

λ̂
Gλ) = 0 for λ̂ and λ sufficiently close. Since the winding number condition is

satisfied for sufficiently close λ̂ and λ, it then follows that

δν(Pλ̂, Pλ) = ‖G̃λ̂Gλ‖∞.

Note however that from equation (6.16) we have

σ2(G∗
λ̂
Gλ) ≥ 1 − 2σ̄

[
R∗

λ̂
(Rλ − Rλ̂) + W∗

λ̂
(Wλ − Wλ̂)

]
≥ 1 − 2σ̄ (Rλ − Rλ̂) − 2σ̄ (Wλ − Wλ̂) .

The second inequality in the above follows from the fact that both ‖Rλ̂‖∞ ≤ 1 and
‖Wλ̂‖∞ ≤ 1. Furthermore, since

δν(Pλ̂, Pλ)2 + σ2(G∗
λ̂
Gλ) = 1,

then δν(Pλ̂, Pλ)2 ≤ 2‖Rλ − Rλ̂‖∞ + 2‖Wλ − Wλ̂‖∞.

Therefore δν(Pλ̂, Pλ) is continuous in λ at λ = λ̂ and hence by the triangle inequality
δν(Pλ̂, Pλ) is continuous in λ for all λ̂, λ ∈ [0, 2].

Remark 6.4. For case of scalar plants with the homotopy constrained to also be
scalar, it remains to demonstrate that we can draw a similar conclusion provided that
I∞
−∞[pα] = I∞

−∞[pβ]. This issue is not addressed in this paper, and is left as an open
question.

7. Conclusion. We have proven a conjecture of [1], also stated in [25], by show-
ing that the winding number condition on two linear operators is equivalent to the
existence of a homotopy in the Vinnicombe metric between them, although in the
case of scalar plants, a multivariable homotopy must be permitted. We recall that a
Cauchy index condition being fulfilled is necessary for the existance of a scalar ho-
motopy between two given scalar plants, even if they are separated by a Vinnicombe
metric distance of less than unity. Note that the Cauchy index is not well defined for
general multivariable transfer matrices, but only for square symmetric multivariable
transfer matrices.
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This equivalence result enables us to give a characterisation of the winding num-
ber condition that is not specifically dependent on the fact that the operators are
linear and enable the finalisation of the definition of a metric for nonlinear operators,
originally given in [1], that reduces to the standard Vinnicombe metric for the case of
linear operators. Further research in this area involves a more complete treatment of
the scalar case. In particularly, it remains to deal with the case of scalar plants with
differing Cauchy indices, and also to investigate whether equality of Cauchy index
is sufficient to recover the equivalence of the winding number condition with scalar
homotopy existence.

It remains to further investigate the properties of the nonlinear operator metric
of [1], in order to investigate whether its robustness properties are as similarly non-
conservative as they are in the linear case. It also remains to develop approximations
and error bounds on the nonlinear Vinnicombe distance between nonlinear plants and
their linear approximations.
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Appendix A. Proofs.

A.1. All-Pass Embedding: Proof of Lemma 5.1.
Proof. [Proof of Lemma 5.1] First factorise T12 into inner-outer factors T12iT12o

(as in equation (2.1) for the square case) and similarly T21 into outer-inner factors
T21oT21i (as in (2.2): again for the square case, and using the fact that for square
transfer matrices, co-inner and inner are equivalent, as are outer and co-outer.) Since
multiplication by inner factors preserves the H∞ norm the optimisation problem is
equivalent to

inf
Q∈H∞ ‖T∗12iT11T∗21i − T12oQT21o‖H∞(A.1)

Decompose T∗12iT11T∗21i = G + H into a strictly antistable part G and a strictly stable
part H and then reparametrise T12oQT21o − H = Q̄. Neither T12o nor T21o has
imaginary axis zeros and it follows that Q̄ ∈ RH∞ ⇔ Q ∈ RH∞. The above problem
(A.1) can be seen to be equivalent to

inf
Q̄∈H∞ ‖G − Q̄‖H∞

where G = T∗12iT11T∗21i − H ∈ RH−∞. This is equivalent to a Nehari problem of
approximating an RH∞ function G by an H−∞ function Q̄.

Using the all pass embedding method in [17], Section 10.3.1, given any γ (not
necessarily greater than γ?), it is possible to find a Q̄

(p+m)×(p+m)
a (not necessarily

antistable, that is, not necessarily in RH−∞) which results in Ēa = G
(p+m)×(p+m)
a

−Q̄
(p+m)×(p+m)
a where Ē∗Ē = γ2I. In the previous expression, Ga is an augmented

version of Gp×m defined by

G(p+m)×(p+m)
a =

[
Gp×m 0p×p

0m×m 0m×p

]
.



HOMOTOPY FOR THE ν-GAP 361

All Q̄p×m ∈ RH−∞ such that Ē = G − Q̄ has the property Ē∗Ē = γ2I are then given
by Q̄p×m = Fl(Q̄

(p+m)×(p+m)
a , γ−1Up×m) where U ∈ RL∞ is paraunitary, that is

U∗U = I (see Theorem 10.3.2 in [17] and its proof.)
In the set-up of [17], G is taken to be stable, that is, in RH∞, and for γ ≥ γ?, this

results in antistable Q̄ ∈ RH−∞. In our problem, by looking at the conjugate systems
the same method can be used for antistable G ∈ RH−∞ to result, for γ ≥ γ?, in stable
Q̄ ∈ RH∞. We define the optimal Q̄? as the Q̄ ∈ RH∞ which results from γ = γ?

and the optimal Q? in the Lemma statement can be defined as T−1
12o(Q̄? + H)T−1

21o.
Substituting Q = T−1

12o(Q̄ + H)T−1
21o back into the original system gives

E = T11 − T12QT21

= T12i

(
G − Q̄

)
T21i

= T12iĒT21i

Since T12i, T21i and γ−1Ē are paraunitary functions, then E has the properties de-
scribed in the Lemma statement.

A.2. All-Pass Transfer Matrices with Prescribed Zeros: Proof of
Lemma 5.2.

Proof. [Proof of Lemma 5.2] A procedure for constructing an all-pass matrix with
presribed zeros and zero directions appears in Chapter 6 of [27], see also [5] or pages
329-331 of [4]. The recursive procedure in [27] results in a rational ΘZ(s) that satisfies
the first three properties in the lemma statement.

We now argue that ΘZ(s) so constructed can be chosen as real rational. That the
factors of ΘZ(s) corresponding to simple real zeros are real rational is fairly obvious.

To understand the case of complex zk pairs we first consider the comparatively
simple situation where we have only a single pair of complex numbers z and z and
corresponding unit norm zero input direction vectors l̃ and l̃. Decompose z as α + jβ

with α > 0 and α and β real so that z = α − jβ ∈ Z.
We can easily find a stable all-pass real rational matrix Θzz̄(s) with only two zeros

such that both Θzz̄(z)̃l = 0 and Θzz̄(z̄)̃l = 0. In [4] (equations (14)-(16), Chapter 11)
this is achieved as follows.

Define

η =
α

z
(̃lT l̃),

t =
1√

1 − |η|2
,

M(s) = 2αt2
[
−(s + α)(̃l̃lT + l̃̃l∗ − ηl̃̃lT − ηl̃̃l∗) + jβ(̃l̃lT − l̃̃l∗ + ηl̃̃l∗ − ηl̃̃lT )

]
,

Θzz̄(s) = I +
1

(s + α)2 + β2
M(s).

Then Θzz̄(s) satisfies the desired properties Θzz̄(z)̃l = Θzz̄(z̄)̃l = 0. In addition the
polynomial matrix M(s) is linear (a polynomial) in s, with real coefficients. Because
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ΘZ(s) is recursively constructed as a product of factors which are real rational, due
to the fact that either each factor has a simple real zeros, or has a pair of complex
conjugate zeroes, it follows that ΘZ(s) itself is a real rational transfer matrix.

We can now show that ΘZ(s) enjoys Property 4 considering the case of complex zk

pairs. Note that if zk and zj are complex conjugate pairs then Θ̃zk(zj) = Θ̃zk(zk) =

Θ̃zj(zk). Note that Θ̃(s) = Θ̃Z/k(s)Θ̃zk(s) = Θ̃Z/j(s)Θ̃zj(s) is real rational. This

implies that Θ̃(s) = Θ̃(s) and hence Θ̃Z/k(s)Θ̃zk(s) = Θ̃Z/j(s)Θ̃zj(s). Substitution of

s = zj in the previous equation gives Θ̃Z/k(zj)Θ̃zk(zj) = Θ̃Z/j(zk)Θ̃zj(zk). It then

follows that Θ̃Z/k(zk) = Θ̃Z/j(zk). We then have

Tkj(s) = Θ̃Z/k(s)Θ̃Z/k(zk)−1G + Θ̃Z/j(s)Θ̃Z/j(zk)−1G

Tkj(s) = Θ̃Z/k(s) Θ̃Z/k(zk)−1G + Θ̃Z/j(s) Θ̃Z/j(zk)−1G ∈ Rp×m

= Θ̃Z/k(s)Θ̃Z/j(zj)
−1G + Θ̃Z/k(s)Θ̃Z/k(zk)−1G

= T(s).

It then follows that Tkj(s) ∈ Rp×m is a real rational transfer matrix of s as required.

A.3. All-Pass Homotopy: Proof of Theorem 5.4. Before proving Theorem
5.4, we need several lemmas. One that we need is a lemma about the existence of
a paraunitary homotopy connecting arbitrary compatibly dimensioned paraunitary
transfer matrices. After proving some results regarding the existence of paraunitary
homotopies in Section A.3.1, we then derive some properties of lower fractional trans-
formation homotopies, recall a useful lemma from Reference [27] and finally prove a
result showing that transfer matrix homotopies can be decomposed into stable and
antistable homotopies, before finally presenting the proof of Theorem 5.4 in Section
A.3.5.

A.3.1. Existence of Paraunitary Homotopies. We will eventually build up
to some results regarding the existence of paraunitary homotopies by first presenting
a homotopy result for constant orthogonal matrices and then extending that result to
square and inner transfer matrices.

Lemma A.1. Let Dα and Dβ be square and constant real orthogonal matri-
ces. A real orthogonal homotopy Dλ from Dα and Dβ exists if and only if the
determinants of Dα and Dβ are equal (of the same sign).

Proof. We first prove that a homotopy Dλ exists for the case where the determi-
nants of Dα and Dβ are both positive. Given an arbitrary real orthogonal matrix Dξ

with positive determinant, all the eigenvalues have unit magnitude and there exists a
(real) orthogonal transformation matrix V , such that VT

ξ DξVξ = Λξ where Λξ is a
block diagonal matrix with diagonal elements consisting of matrices of the form[

cos θ sin θ

− sin θ cos θ

]
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and
[

+1
]

and
[

−1
]
. Because det[Dξ] = det[Λξ] = 1 there are an even number

of
[

−1
]

blocks which may be expressed as

[
cos π sinπ

− sinπ cos π

]

Noting that [
cos θ sin θ

− sin θ cos θ

]
= exp

[
0 θ

−θ 0

]
[

1
]

= exp
[

0
]

it follows that we can express Λ as Λ = eS where S is a real skew matrix (S+ST = 0).
It follows that Dξ = VξeSξVT

ξ . If the determinants of Dα to Dβ are both positive,
we may then construct a homotopy from Dα to Dβ for λ ∈ [0, 2] as follows. Define

Dλ =

{
VαeSα(1−λ)VT

α for λ ∈ [0, 1]

VβeSβ(λ−1)VT
β for λ ∈ (1, 2]

(A.2)

Note that at λ = 0, 1 and 2 we have Dλ = Dα, I and Dβ respectively, and for λ ∈ [0, 2]

the matrix Dλ is real orthogonal with positive determinant. Thus we have shown that
a real orthogonal homotopy Dλ exists for the case where det[Dα] = det[Dβ] = 1.

For the case where det[Dα] = det[Dβ] = −1 define a diagonal matrix
J = J−1 = diag{I, −1} so that D̄ξ = JDξ is orthogonal with determinant +1. We
can use equation (A.2) to give a homotopy D̄λ from D̄α to D̄β and form a homotopy
Dλ = JD̄λ.

To prove that for a real orthogonal homotopy Dλ to exist it must be that
det[Dα] = det[Dβ], note that the determinant of a constant unitary matrix, not nec-
essarily real, has unit magnitude and the determinant of a constant real matrix is also
real. Therefore a real orthogonal matrix has determinant either +1 or −1. If Dλ is a
homotopy, then so is det[Dλ], and so it must be constant.

We now use the above result to show that there exists a homotopy connecting
arbitrary stable all-pass (square) transfer matrices provided they possess the same
number of non-minimum-phase zeros. We first present a slightly reworded version
Theorem 8.4 of [27] as a lemma about the properties of state-space representations of
all-pass transfer matrices.

Lemma A.2 (Properties of all-pass transfer matrices). If Ω(s) ∈ RL∞ is an
all-pass transfer matrix, not necessarily stable, then the state-space parameters of a
minimal state-space realisation given by

Ω =

[
A | B

C | D

]
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satisfy the following. There exist P = PT and Q = QT such that

DTD = DDT = I,

AP + PAT + BBT = 0,

ATQ + QA + CTC = 0,(A.3)

PQ = I,

DTC + BTQ = 0,

DBT + CP = 0.

Conversely, if the state-space parameters of a particular realisation of a square trans-
fer matrix satisfy equations (A.3), then the transfer matrix is all-pass, though not
necessarily minimal. For minimal balanced realisations of stable systems P = Q = I.

Proof. See Theorem 8.4 of [27], and note that for a balanced realisation the
controllability and observability Gramians are equal, and so for a balanced minimal
realisation of an all-pass matrix they are equal to the identity.

Lemma A.3. Let Θα(s) and Θβ(s) be two stable all-pass (square) trans-
fer matrices with the same number n of non-minimum-phase zeros, and where
det[ lim

s→∞ Θα(s)] = det[ lim
s→∞ Θβ(s)]. Then there exists an RH∞ norm homotopy Θλ(s)

from Θα(s) to Θβ(s), where Θλ(s) is stable and all-pass, with n non-minimum-phase
zeros and det[ lim

s→∞ Θλ(s)] = det[ lim
s→∞ Θα(s)] = det[ lim

s→∞ Θβ(s)].
Proof. Minimal state-space representations of Θα and Θβ will be of equal state-

space dimension n, the number of non-minimum-phase zeros, where n = 2m + 1 or
n = 2m for some integer m. Let balanced and minimal realisations of Θα and Θβ be
given by

Θξ =

[
Aξ | Bξ

Cξ | Dξ

]
,

with ξ = {α, β}. By Lemma A.2 since Θξ are all-pass, and because the realisation is
balanced, then Aξ, Bξ, Cξ and Dξ satisfy equations (A.3) with P = Q = I.

We will form a state-space homotopy which satisfies the equations in Lemma
A.2 and is also minimal. However we first investigate the observability properties
of particular skew transition matrices. Let S be an n-dimensional skew matrix with
distinct eigenvalues, and of the form

S = diag

{[
0
]
,

[
0 ω1

−ω1 0

]
,

[
0 ω2

−ω2 0

]
, · · · ,

[
0 ωm

−ωm 0

]}
.(A.4)

The zero block may be absent but all the eigenvalues ±jωi lie on the imaginary axis
and are ordered with 0 < ω1 < ω2 < . . . < ωm. To determine whether or not [S,C]

is observable, partition C compatibly with S as

C =
[

C0 C1 C2 · · · Cm

]
,



HOMOTOPY FOR THE ν-GAP 365

where C0 may be absent or consists of a single column and for i = 1 . . .m each Ci

consists of two columns. Then it is easy to show that [S,C] is an observable pair if and
only if each Ci (with, of course, the possible exception of nonexistent C0) contains at
least one non-zero entry.

Note that an orthogonal change of coordinate basis preserves equations (A.3),
so without loss of generality we may assume that the skew part of Aξ, namely
1
2 (Aξ − AT

ξ), is in the form of (A.4) where the zero matrix may be absent or of
any size and ω1 ≤ ω2 ≤ . . . ≤ ωm (there may also be other repeated imaginary
eigenvalues).

If the number n, of non-minimum phase zeros of Θα, is odd, so that there is
necessarily at least one zero eigenvalue, assume that the first non-zero entry in the
first column of C0 is positive (this may be ensured by the appropriate choice of
orthogonal basis transformation).

Now form a homotopy for the skew part of Aλ as follows.

1

2
(Aλ − AT

λ) =(A.5)

diag

{[
0
]
,

[
0 ωλ1

−ωλ1 0

]
,

[
0 ωλ2

−ωλ2 0

]
, · · · ,

[
0 ωλm

−ωλm 0

]}
.

In the above, for λ 6= 0, λ 6= 1, we set 0 < ωλ1 < ωλ2 < · · · < ωλm so that the
eigenvalues jωi are distinct and so that the zero matrix is absent in the case that
the dimension n of Aλ is even. Also may we choose Aλ − AT

λ to correctly interpolate
Aα − AT

α or Aβ − AT
β at λ = 0 and λ = 1 respectively.

We may also form a homotopy C̃λ as

C̃λ = (1 − λ)Cα + λCβ.

It follows that [1
2 (Aλ − AT

λ), C̃λ] is observable provided that with C̃λ partitioned
compatibly with (A.6) as

C̃λ =
[

C̃λ0 C̃λ1 C̃λ2 · · · C̃λm

]
each C̃λi contains at least one non-zero entry. Even if this is not the case, there will
exist a perturbation Cλ of the above C̃λ, which will preserve the homotopy property
but ensure the required non-zero property for each Cλi. This is obvious for each
of the two column Cλi for 1 ≤ i ≤ m. For Cλ0, the requirement that the first
non-zero entry of the first column of Cα and Cβ is positive, is sufficient to ensure
that an appropriate perturbation Cλ exists. We then define our homotopy Cλ as a
(homotopic) perturbation of C̃λ such that [1

2 (Aλ − AT
λ), Cλ] is observable.

At this point we have established that for λ ∈ (0, 1), every pair [1
2 (Aλ − AT

λ), Cλ]

is observable. Now define the symmetric part of Aλ as

Aλ + AT
λ = −CT

λCλ.
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Since for ξ = α, β the feedthrough terms Dξ = lim
s→∞ Θξ(s) share the same sign (equal)

determinants, it is possible, by Lemma A.1 to find a orthogonal homotopy Dλ con-
necting Dα to Dβ. We may then define

Bλ = −CT
λDλ

so that Aλ, Bλ, Cλ, Dλ satisfy the properties (A.3) with P = Q = I, that is, they form
a balanced realisation of a stable, all-pass transfer matrix Θλ, which is a homotopy
connecting Θα to Θβ.

We now demonstrate that the realisation is minimal. Since [Aλ−AT
λ , Cλ] is observ-

able then, because output feedback preserves observability [19], so is
[1
2 (Aλ − AT

λ− CT
λCλ), Cλ], that is [Aλ, Cλ]. Since [Aλ, Cλ] is observable, by dual-

ity we have that [AT
λ , CT

λ ] = [AT
λ , BλDλ] and [AT

λ , Bλ] is controllable. Because state
feedback preserves controllability so too is [AT

λ + BλBT
λ , Bλ] controllable and by equa-

tion (A.3) also [−Aλ, Bλ] and so [Aλ, Bλ]. It follows that the state-space parameters
Aλ, Bλ, Cλ and Dλ form a minimal realisation. Since the realisation is minimal and
all-pass, the poles of Aλ can never cross the imaginary axis and therefore Θλ with
state-space dimension n possesses n non-minimum-phase zeros.

We now extend Lemma A.3 to prove the existence of homotopies for more general
paraunitary transfer matrices, which may or may not be square.

Lemma A.4. Assume that we are given two p × m dimensioned (p ≥ m) real
rational paraunitary matrices Uα(s) and Uβ(s). Then if p > m then there exists
an RL∞ homotopy Uλ(s)p×m such that Uλ(s) is paraunitary for each λ. If p = m

then there exists an RL∞ homotopy Uλ(s)p×p such that Uλ(s) is paraunitary for
each λ if and only if the winding numbers of det[Uα(s)] and det[Uβ(s)] are equal and
det[ lim

s→∞ Uα(s)] = det[ lim
s→∞ Uβ(s)].

Proof. For p > m, we can express a p×m paraunitary matrix Uξ as a product

Uξ(s) =
[

Uξ(s) Uξc(s)
] [ Im×m

0

]

= Ωξ(s)p×p

[
I

0

]
,

where Uξc(s) is a paraunitary completion of Uξ(s) so that Ωξ(s) is all-pass. For the
case where p > m it is possible to choose all-pass completions Ωα and Ωβ of Uα and
Uβ such that both the winding numbers and signs of the determinant at infinity for
each are equal. To see this, observe that

Ω
p×p
ξ (s)

[
I

0

]p×m

= Ωξ(s)p×p

[
Im×m 0

0 Ω̃ξ(s)(p−m)×(p−m)

][
I

0

]p×m

where Ω̃ξ(s) can be chosen as all-pass and both wno{det[Ω̃ξ]}and det[ lim
s→∞ Ω̃ξ(s)] can

be chosen arbitrarily.



HOMOTOPY FOR THE ν-GAP 367

Hence, it will be sufficient to show that arbitrary all-pass Ωξ(s) are homotopically
equivalent, provided the winding numbers of their determinants are equal and that the
signs of det[ lim

s→∞ Ωξ(s)] are also equal. Since Ωξ(s) is real rational, then lim
s→∞ Ωξ(s)

is (real) orthonormal, so that det[ lim
s→∞ Ωξ(s)] is either +1 or −1. Without loss of

generality, we will assume that it is +1.
As in equation (2.10) factorise Ωα and Ωβ, with equal winding numbers, as

ΘzαΘ∗
pα and ΘzβΘ∗

pβ respectively, where Θzα, Θpα, Θzβ and Θpβ is each stable all-
pass. By exploiting the freedom to adjust Θzξ and Θpξ by a constant orthogonal
matrix we can assume that the determinants at infinity are each +1. Without loss of
generality assume that the number of zeros in Θzα is less than or equal to that in Θzβ

and form an augmented stable all-pass Θzα ′ = ΘzαΘn where Θn is a stable all-pass
transfer matrix with n = wno{det[Θzα]} − wno{det[Θzβ]} non-minimum-phase zeros
and so that Θzα ′ and Θzβ have the same number of non-minimum phase zeroes and
sign of the determinant at infinity. Similarly define Θpα ′ = ΘpαΘn. It can easily be
seen that Θpα ′ and Θpβ also have the same number of non-minimum-phase zeros and
sign of determinant at infinity.

We can then construct a homotopy Θzλ from Θzα ′ to Θzβ and a homotopy Θpλ

from Θpα ′ to Θpβ. Such a homotopy exists by the previous lemma, Lemma A.3. The
product Θλ = ΘzλΘ∗

pλ is a homotopy from Θα to Θβ which preserves the winding
number at each λ.

So we have shown that if the winding numbers and signs of the determinants
of two all-pass transfer matrices are equal, then there exists an all-pass H∞-norm
continuous homotopy. We complete the proof by arguing that these conditions are
necessary.

Suppose that we have an all-pass homotopy Ωλ(s), from Ωα to Ωβ, then
|det[Ωλ(s)]| = 1 for all s on the imaginary axis, for each λ. Since for fixed jω we
have that det[Ωλ(jω)] is a continuous function of λ it then follows that wno{det[Ωλ]}

is constant for all λ. A similar continuity argument applies for det[ lim
s→∞ Ωλ(s)] since

lim
s→∞ Ωλ(s) is real.

A.3.2. Properties of Lower Fractional Transformation Homotopies. We
now present a result regarding the preservation of winding numbers and determinants
at infinity, when a paraunitary transfer matrix undergoes a lower fractional transfor-
mation.

Lemma A.5. Assume that we are given a real-rational square 2p × 2p all-pass
matrix

G(s) =

[
G11

p×p G12
p×p

G21
p×p G22

p×p

]

and a square p× p all-pass matrix Q. Assume that the maximum singular values of
the block diagonal elements G11 and G22 are strictly less than unity (that is σ̄(G11) =

σ̄(G22) < 1).
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Then the winding number of the determinant of the feedback interconnection

Ē = Fl(G,Q) = G11 + G12Q(I − G22Q)−1G21

obeys

wno
{
det[Ē]

}
= wno {det[G]} + wno {det[−Q]} .

Furthermore det[ lim
s→∞ Ē(s)] = det[ lim

s→∞ G(s)] · det[ lim
s→∞ −Q(s)].

Remark A.6. Note that det[lims→∞ −Q(s)] = det[lims→∞ Q(s)](−1)p, where p

is the size of the matrix Q(s). Note also that wno {det[−Q]} = wno {det[Q]}, but that
in order to be consistent with the determinant at infinity condition we use −Q.

Proof. We first note that

Fl

([
G11 G12

G21 G22

]
,Q

)
) = Fl

([
G11 G12Q

G21 G22Q

]
, I

)
,

and let a minimal state-space realisation of

E :
def
=

[
G11 G12Q

G21 G22Q

]

=

[
G11 G12

G21 G22

][
I 0

0 Q

]
be given by  AE | BE1 BE2

CE1 | DE11 DE12

CE2 | DE21 DE22

 .

We can see that wno[det(E)] = wno[det(G)] + wno[det(−Q)] and
det[ lim

s→∞ E(s)] = det[ lim
s→∞ G(s)] · det[ lim

s→∞ Q(s)]. Because E is the product of two pa-
raunitary transfer matrices, it is itself paraunitary. Hence the minimal state-space
realisation above obeys the properties in equation (A.3), with controllability and ob-
servability Gramians PE and QE, with PE = Q−1

E . A state space realisation of

Ē = Fl(G,Q) = Fl(E, I)

=

[
Ā | B̄

C̄ | D̄

]

is given in Chapter 10 of [27] as

Ā = AE + BE2(I − DE22)−1CE2,

B̄ = BE1 + BE2(I − DE22)−1DE21,(A.6)

C̄ = CE1 + DE12(I − DE22)−1CE2,

D̄ = DE11 + DE12(I − DE22)−1DE21.
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As in Lemma 4.3.4 of [17] we consider the zeros of det(Ācl(ε) − sI) where

Ācl :
def
= AE + εBE2(I − εDE22)−1CE2,

det[Ācl(ε) − sI] = det[AE − sI + εBE2(I − εDE22)−1CE2]

= det[AE − sI]det[I − ε(sI − AE)−1BE2(I − εDE22)−1CE2]

= det[AE − sI]det[I − εCE2(sI − AE)−1BE2(I − εDE22)−1]

= det[AE − sI]det[(I − εDE22)−1]det[I − ε{CE2(sI − AE)−1BE2 + D22}]

= det[AE − sI]det[(I − εDE22)−1]det[I − εE22(s)].

Using similar arguments as in Lemma 4.3.4 of [17] we can deduce that for small enough
ε, the polynomial det(Ācl(ε) − sI) has the same number of right half-plane zeros as
det[AE − sI]. Furthermore, we can deform det(Ācl(ε) − sI) continuously as ε moves
in the interval [0, 1], and because σ̄[E22(s)] < 1, the polynomial det(Ācl(1) − sI) also
has the same number of right half-plane zeroes as det[AE − sI].

Because the inverse Ē−1 has a state-space realisation (Lemma 3.15 [27])

Ē =

[
Ā − B̄D̄−1C̄ | −B̄D̄−1

D̄−1C̄ | D̄−1

]
,

we also investigate the eigenvalues of the matrix Ā − B̄D̄−1C̄. From the fact that
D−1

E = DT
E it is straightforward, though tedious, to show that

D̄−1 = DT
E11 + DT

E21(I − DT
E22)−1DT

E12.

We can then determine, by using equations (A.6), the fact that D−1
E = DT

E and after
much algebraic manipulation, that

Ā − B̄D̄−1C̄ = AE −
[

BE1 BE2

]
[

DT
E11 + DT

E21(I − DT
E22)−1DT

E12 DT
E21(I − DT

E22)−1

(I − DT
E22)−1DT

E12 DT
E22(I − DT

E22)−1

][
CE1

CE2

]
.(A.7)

In proving the above assertion, it is useful to note that

(I − DE22)−1DE21

[
DT

E11 + DT
E21(I − DT

E22)−1DT
E12

]
= (I − DT

E22)−1DT
E12,[

DT
E11 + DT

E21(I − DT
E22)−1DT

E12

]
DE12(I − DE22)−1 = DT

E21(I − DT
E22)−1,

and

(I − DE22)−1DE21

[
DT

E11 + DT
E21(I − DT

E22)−1DT
E12

]
DE12(I − DE22)−1 − I

= DT
E22(I − DT

E22)−1,

= (I − DT
E22)−1DT

E22.

From equation (A.3) we can also establish that[
BE1 BE2

]
= −PE

[
CT

E1 CT
E2

]
DE,
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and substitution of the above into (A.7) gives

Ā − B̄D̄−1C̄ = AE + PE

[
CT

E1CE1 + CT
E2(I − DT

E22)−1(DT
E12CE1 + CE2)

]
= AE + PE

[
CT

E1CE1 + CT
E2CE2 + CT

E2(I − DT
E22)−1(DT

E12CE1 + DT
E22CE2)

]
= AE + PE

[
CT

ECE − CT
E2(I − DT

E22)−1BT
E2QE

]
= PE(QEAE + CT

ECE − CT
E2(I − DT

E22)−1BT
E2QE)

= PE(−AT
E − CT

E2(I − DT
E22)−1BT

E2)QE

= −PEĀTP−1
E

where the last string of equalities is also due to (A.3). It then follows that the number
of right half-plane eigenvalues of Ā − B̄D̄−1C̄ is the same as the number of left half-
plane eigenvalues of Ā. By the homotopy argument involving Ācl appearing in the
previous paragraph, this is the same as the number of left half-plane eigenvalues in
AE, that is, the number of stable poles of E. For an arbitrary real rational paraunitary
transfer matrix E(s) the poles and zeroes occur in complementary pairs, reflected in
the imaginary axis. The number of right half-plane eigenvalues of Ā − B̄D̄−1C̄ is
therefore equal to the number of right half-plane zeros of E.

Hence there exists a state space realisation of Ē where the state-transition matrix
Ā has the same number of right half-plane eigenvalues as that of AE (the number of
unstable poles of E) and the state transition matrix Ā − B̄D̄−1C̄ of the inverse Ē−1

has the same number of right half-plane eigenvalues as the number of non-minimum
phase zeros of E. Now, not necessarily all eigenvalues of Ā and Ā − B̄D̄−1C̄ are
poles and zeros respectively of Ē, but even if there are some pole-zero cancellations
in this particular state-space realisation of Ē, it would still hold true that wno{det[Ē]}

is equal to the difference between the number of right hand plane eigenvalues of
Ā − B̄D̄−1C̄ and Ā. By the immediately preceding arguments, this is exactly the
difference between the number of right half-plane zeros and poles of E(s) which is
wno[det(E)] = wno[det(G)] + wno[det(−Q)]. Hence the winding number result is
proved.

The proof for det[ lim
s→∞ Ē(s)] follows similarly as follows. Note that the determi-

nant of the following matrix is equal to det[DE].[
D̄ 0

DE21 DE22 − DE21D̄−1DE12(I − DE22)−1

]

=

[
I DE12(I − DE22)−1

0 I

][
DE11 DE12

DE21 DE22

][
I −D̄−1DE12(I − DE22)−1

0 I

]
.

Using the fact that D̄−1 = D̄T , it is possible to show that the matrix in the lower
right block of the above evaluates to

DE22 − DE21D̄−1DE12(I − D−1
E22)−1 = (DE22 − I)(I − DT

E22)−1.
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So that

det[DE] = det[D̄]det[DE22 − DE21D̄−1DE12(I − DE22)−1]

= det[D̄]det[DE22 − I]det[I − DT
E22]−1,

det[D̄] =
det[I − DT

E22]

det[DE22 − I]
· det[DE]

= (−1)p det[DE].

Hence,

det[ lim
s→∞ Ē(s)] = (−1)p det[ lim

s→∞ E(s)]

= (−1)p det[ lim
s→∞ G(s)] · det[ lim

s→∞ Q(s)]

= det[ lim
s→∞ G(s)] · det[ lim

s→∞ −Q(s)]

as required.

A.3.3. Inertia Properties: Lyapunov Equation Solution. The reference
[27] establishes the following useful result on the inertia of the solutions to the Lya-
punov equation.

Lemma A.7. Consider the Lyapunov equation

AP + PAT + BBT = 0

where P is constrained as P = PT . Let π(X), ν(X), ζ(X) denote the number of positive
real part, negative real part and zero real part eigenvalues of a matrix X. Then:

• ζ(P) = 0 implies that π(A) ≤ ν(P) and ν(A) ≤ π(P) and
• ζ(A) = 0 implies that π(P) ≤ ν(A) and ν(P) ≤ π(A).
• As a trivial consequence we see that ζ(P) = ζ(A) = 0 implies that π(A) = ν(P)

and ν(A) = π(P).
Proof. See reference [27].

A.3.4. Stable-Unstable Decomposition of Transfer Matrix Homotopies.
We will soon introduce a lemma showing that a real-rational transfer matrix homo-
topy, with continuous state-space parameters, can be decomposed into a strictly stable
and an unstable part, each also with continuous state-space parameters. In order to
do so, we first demonstrate that a particular operator, that arises in [16, 22] in discus-
sion there of the Schur decomposition factorisation of matrices, has a non-zero lower
bound, given certain conditions on its arguments.

Lemma A.8. Assume that we are given two equally dimensioned square matrices
R and S, such that real parts of the eigenvalues of each of the matrices are bounded
away from each other, that is, there exist real numbers r and δ such that Re(λi(R)) <

r − δ and Re(λi(R)) > r + δ. Suppose also that the matrices are norm bounded by M

so that ‖R‖F < M and ‖S‖F < M. It then follows that the separation [16, 22], between
the two matrices defined by

sep(R, S) = inf
X

‖RX − XS‖F

‖X‖F
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is bounded below by a non-zero bound.
Proof. Consider the optimisation problem

µ = inf
R∈R̄,S∈S̄

sep(R, S)

= inf
R∈R̄,S∈S̄,‖X‖F=1

‖RX − XS‖F

R = {R| Re(λi(R)) < r − δ, ‖R‖F < M}

S = {S| Re(λi(S)) > r + δ, ‖S‖F < M}

R̄ = clos(R)

S̄ = clos(S)

Because the sets R̄ and S̄ are compact sets, it follows by Theorem 2.5.18 [21] that the
infimum is actually a minimum, that is, it is attained by some R? ∈ R̄, S? ∈ S̄, ‖X?‖F =

1. Let Y? be defined by the Sylvester equation

Y? = R?X? − X?S?.

It is clear that ‖Y?‖F 6= 0 since by Lemma 2.7 [27], since R? and S? have no common
eigenvalues, the unique solution in X to

0 = R?X − XS?

is X = 0 6= X? where ‖X?‖F = 1. Therefore, for all R ∈ R ⊂ R̄, S ∈ S ⊂ S̄ we have

0 < ‖Y?‖F = sep(R?, S?) :
def
= η ≤ sep(R, S).

The above property of the sep operator is needed to prove the following lemma.
Lemma A.9. Assume that we are given finite dimensional homotopy Gλ ∈ RL∞

where the poles of Gλ are bounded away from the imaginary axis, and with a contin-
uous and bounded state-space parameter realisation Gλ(s) = Cλ(sI − Aλ)−1Bλ + Dλ.
Then we can decompose Gλ = Gλu +Gλs where Gλs ∈ RH∞ and Gλu ∈ RH−∞, each
with continuous state-space parameters.

Proof. Since the eigenvalues of Aλ are bounded away from the imaginary axis.
Then there exists an orthogonal transformation Qλ on Aλ such that

QT
λAλQλ =

[
Asλ A12λ

0 Auλ

]
,

where all the eigenvalues of Asλ are in the open left half-plane and all the eigenvalues
of Auλ are in the open right half-plane. It can be shown that because the eigenvalues
of Asλ and Auλ are bounded away from each other, that Qλ may be chosen to also be
continuous in λ. This can be seen on consideration of Lemma A.8 and the discussion
in [16], (pages 341-351) and [22]. (Discussion of the continuity of eigenspaces of
continuous (holomorphic) Aλ is also dealt with in [20]. See Chapter 2, Section 5.3 on
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page 110.) This implies that Asλ, Auλ and A12λ are also continuous. Furthermore,
we can define a matrix Xλ, also continuous in λ, as the solution to the Lyapunov
equation

AsλXλ + Xλ(−Auλ) = A21λ,

where in fact, X =
∫∞

0
exp[Asλτ]A21λ exp[−Auλτ]dτ. The solution to the Lyapunov

equation is unique and finite because the none of the real parts of the eigenvalues of
Asλ and −Auλ will sum to zero [27]. Because Asλ, Auλ and A12λ is each continuous
in λ it follows that Xλ is also continuous in λ. We can now define a (continuous)
state-space transformation Tλ = QλX̂λ where

X̂λ =

[
I Xλ

0 I

]
,

so that T−1
λ AλTλ = diag{Asλ, Auλ}. Hence, if we define Csλ, Cuλ, Bsλ and Buλ by

CλTλ =
[

Csλ Cuλ

]
and T−1

λ Bλ =

[
Bsλ

Buλ

]
,

then it easily follows that

Gλ = Csλ(sI − Asλ)−1Bsλ + Cuλ(sI − Auλ)−1Buλ + Dλ

= Gλs + Gλu

where the state space parameters of {Asλ, Bsλ, Csλ, 0} of strictly stable Gsλ are con-
tinuous in λ, as are the state space parameters {Auλ, Buλ, Cuλ, Dλ} of unstable Gλu.

A.3.5. Proof of Theorem 5.4. With the four lemmas A.4, A.5, A.7 and A.9
in place, we are now in a position to prove Theorem 5.4.

Proof. [Proof of Theorem 5.4] This proof is based on the all-pass embedding
method of [17], which, given a stable real rational Gp×m ∈ RH∞ determines a cor-
responding error function E = G − Q̄, such that E∗E = I with Q̄ ∈ RH−∞ anti-stable.
To prove the theorem, we will first consider the case where G

p×m
λ is stable and show

that given an n-dimensional state-space realisation of a stable G
p×m
λ ∈ RH∞, which

is continuous in λ its state-space parameters, and has no imaginary axis eigenvalues
in the state transition matrix A, then there exists a state-space realisation of an all-
pass error function Eλwith Eλ = Gλ − Qλ and Qλ ∈ RH−∞ anti-stable, where the
state-space parameters of Eλ are also continuous. It will then be a simple matter, at
the end of the proof, to extend the result to Gλ

p×m ∈ RL∞ and Qλ ∈ RH∞.
Let a not necessarily minimal realisation of a stable Gp×m be given by

G =

[
A | B

C | D

]
,
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where all of the eigenvalues of A lie within the open right half-plane (this is possible
because Gλ ∈ RH∞) and the corresponding non-negative definite controllability and
observability Gramians P and Q satisfy

AP + PAT + BBT = 0,(A.8)

QA + ATQ + CTC = 0.

Define an augmented transfer matrix Ga
(p+m)×(p+m) as

Ga =

[
Gp×m 0p×p

0m×m 0m×p

]
.

This has a state-space realisation (not necessarily minimal) given by

Ga =

[
A | Ba

Ca | Da

]

where

Ba =
[

B 0
]
,

Ca =

[
C

0

]

and

Da =

[
D 0

0 0

]
.

As in [17] we define a state space realisation of Qa
(p+m)×(p+m) as

Qa =

[
AQ | BQ

CQ | DQ

]
,

where AQ, BQ, CQ, DQ are defined below. We then show that Qa ∈ RH−∞ and that
Ea = Qa −Ga enjoys the property that Ea

∗Ea = I. In [17] this is done for a minimal
realisation of Gλ. Here we show that the construction is also valid for non-minimal
realisation. We first define

E = QP − I,

We note that the inverse E−1 = (PQ− I)−1 is guaranteed to exist because the Hankel
norm of G is strictly less than unity so that the corresponding Hankel singular values
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are given by σ̄(QP) < 1. We can then define

BQ = E−1(QBa + CT
aDe)

= (QP − I)−1
[

QB −CT
]
,

CQ = DeBT
a + CaP

=

[
CP

−BT

]
,

AQ = −AT − BQBT
a

= −E−1(ATE + CT
aCQ)(A.9)

= −AT − (QP − I)−1QBBT

= −(QP − I)−1(ATQP − AT − CTCP),

and

DQ =

[
D I

I 0

]
.

We next show that Ea = Ga − Qa is paraunitary. We first note that a state-space
realisation of Ea is given by

Ea =

[
Ae | Be

Ce | De

]

where

Ae =

[
A 0

0 AQ

]
,(A.10)

Be =

[
Ba

BQ

]
,

Ce =
[

Ca −CQ

]
,

and

De = Da − DQ

=

[
0 −I

−I 0

]
.

We then note that Pe and Qe defined by

Pe =

[
P I

I E−1Q

]
,

Qe =

[
Q −E

−ET PE

]
,
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satisfy the Lyapunov equations

AePe + PeAT
e + BeBT

e = 0,

QeAe + AT
eQe + CT

eCe = 0,(A.11)

and that furthermore

PeQe = I,

DT
eCe + BT

eQe = 0,(A.12)

DT
eDe = I.

By Lemma A.2 (and as noted in [27], without assuming observability or controllabil-
ity), equations (A.11) and (A.12) are sufficient to establish that Ea

∗Ea = I.
Next we establish that Qa has no imaginary axis poles. In fact we prove by

contradiction that ζ(AQ) = 0. As in [17] the (2,2) block of the second equation of
(A.11) gives

PEAQ + AT
QPE + CT

QCQ = 0.(A.13)

Temporarily assume that ζ(AQ) 6= 0 so that AQ has an eigenvalue jω 6= 0 with
AQx = jωx for some nonzero eigenvector x 6= 0. Pre- and post- multiplication of
equation (A.13) by xT and x implies that CQx = 0. Consideration of the expression
for AQ in equation (A.9) allows us to conclude that ATEx = −jωEx. Because A has
no imaginary-axis eigenvalues we must have that Ex = 0 and because E is nonsingular
we have that x = 0. This is a contradiction, so ζ(AQ) = 0 and hence Qa has no
imaginary axis poles.

We now prove a stronger result on the poles of Qa by showing that they are all
in the open left half-plane. It is easy to verify that QET = EQT so that E−1Q and
hence Pe is symmetric, and therefore has only real eigenvalues. We note that Pe is
nonsingular, since P−1

e = Qe so we can conclude that Pe has no eigenvalues on the
imaginary axis, that is ζ(Pe) = 0. Now consider

P̃e =

[
P I

I E−1Q

]
+ ε2I

where ε is a small scalar introduced so as to ensure that P + ε2I is positive definite.
Since P̃e = Pe + ε2I, with both P̃e and Pe symmetric, we can conclude that the real
eigenvalues of P̄e must be more negative than those of P̃e. Because Pe is symmetric
and nonsingular, we can choose a sufficiently small non-zero ε so that the inertias of
Pe and P̃e are equal. By using an invertible similarity transformation we define P̄e as

P̄e =

[
I 0

−(P + ε2I)−1 I

]
Pe

[
I −(P + ε2I)−1

0 I

]

=

[
P + ε2I 0

0 (E−1Q + ε2I) − (P + ε2I)−1

]
.



HOMOTOPY FOR THE ν-GAP 377

This establishes that P̃e and P̄e have the same inertia. Clearly the eigenvalues of the
top-left block of P̄e, given by P + ε2I, are all positive. Now we consider the lower-left
block. We can show that (the symmetric)

(E−1Q + ε2I) − (P + ε2I)−1 = (QP − I)−1(I + ε2(Q + EP) + ε4I)(P + ε2I)−1.

Since (QP − I) < 0 we see that that (E−1Q + ε2I) − (P + ε2I)−1 has all negative
eigenvalues for some sufficiently small ε. It then follows that ν(P̃e) = π(P̃e) = n and
ζ(P̃e) = 0 for ε sufficiently small. Because of our choice of small ε it follows that
ν(Pe) = π(Pe) = n and ζ(Pe) = 0 also.

Since ζ(Pe) = 0, Lemma A.7 leads us to conclude that ν(Pe) = π(Ae) = n and
hence that ν(Ae) = n. But all the eigenvalues of A are in the open left half-plane
so that from (A.10) we see that all the eigenvalues of AQ are strictly in the right
half-plane, so that Qa ∈ RH−∞.

Thus we have shown that even if {A,B, C,D} is a non-minimal realisation of
Ga ∈ RH∞, so long as Re[λi(A)] < 0, the Qa(s) constructed by [17] with σ̄(PQ) < I,
has a realisation {AQ, BQ, CQ, DQ}. Since {A, B, C,D}, the state space realisation of
Gλ is continuous in λ, we also have that P, Q and E are continuous and hence by
equations (A.9) it follows that {AQ, BQ, CQ, DQ} are continuous in λ. Finally, because
ζ(AQ) = 0, we may conclude that Qa is H∞ norm continuous.

By Theorems 4.3.2 and 10.3.2 in [17], all Qp×m ∈ RH−∞ such that E = Q − G

enjoys the property that E∗E = I, are given by the feedback interconnection

Q = Fl(Qa
(p+m)×(p+m),Up×m)(A.14)

where the paraunitary operator U satisfies U∗U = I. Notice that because Qa12 and
Qa21 are each square and have full rank in a half-plane, as functions of s, they are
invertible. This means that, given Q(s) and Qa(s), the function U(s) is uniquely
determined by (A.14). In fact, by Lemma 10.4 of [27], U(s) = Fu(Qa

−1,Q).
We have shown that Qa is H∞ continuous in its state-space parameters. As in

Section 10.4.3 of [17], we can deduce that Qa12 = Ea12 and Qa21 = Ea21 have
respectively full column and row rank in the closed left-half complex plane. Because
Ea is all-pass, it follows that this is equivalent to σ̄[Ea11(s)] = σ̄[Ea22(s)] < 1. Since
Ea22(s) = Qa22(s) we can deduce that provided that we choose a paraunitary U

which is H∞-norm continuous, it follows that Q = Fl(Qa,U) = Qa11 + Qa12U(I −

Qa22U)−1Qa21 ∈ RH−∞ will also be continuous in λ.
We have considered the case where G ∈ RH∞ and Q ∈ RH−∞. By considering

conjugate systems, it is a simple matter to see that the continuity results hold for
G ∈ RH−∞ with the constraint that Q ∈ RH∞. For the more general case where
G ∈ RL∞ with a continuous state-space parameter realisation, we can decompose
Gλ = Gλu + Gλs where Gλs ∈ RH∞ and Gλu ∈ RH−∞, each with continuous state-
space parameters, by Lemma A.9. We then find continuous Qλ ∈ RH∞ corresponding
to Gλu and use continuous Qλ + Gλs to give Eλ = Gλ − (Qλ + Gλs).
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To prove the assertion that Eλ can be chosen to interpolate given Êj at any
finite number J of homotopy parameter values λ̂j, note that all possible Q ∈ RH∞
satisfying G−Q is paraunitary is given by equation (A.14) for some appropriate choice
of paraunitary Uλ so that for each j, we have Êj = Fl(Eja,Uj) for some paraunitary
Uj. This gives rise to a set of Uj that the homotopy Uλ must interpolate at each
λ = λ̂j. If Gλ is strictly tall then Uλ is also strictly tall and by Lemma A.4, it is
straightforward that such a paraunitary RL∞ homotopy may be constructed.

In the case that Gλ is square, note that wno{det[Ej]} = wno{det[Eja]} + wno{det[
−Uj]} by Lemma A.5 and since Eλa has continuous state space parameters and is pa-
raunitary, it is H∞ norm continuous and its determinant has constant winding num-
ber. The winding numbers wno{det[Ej]} are equal for each j by the lemma hypothesis
and therefore, so are the winding numbers of the determinants of the required Uj. By
Lemma A.5, a similar statement can be made about the determinants of −Uj(s) at
s = ∞. From Lemma A.4 it then follows that the required RL∞ homotopy Uλ may
be constructed.

A.4. Existence of Coprime Perturbations: Proof of Lemma 6.3.
Proof. Since Nλ has more than one row, we can decompose Nλ as

Nλ =

[
nλ

N̄λ

]
where nλ is a row vector of transfer functions. Suppose that Gλ is not coprime for
a particular value of λ = λ̂. This means that for some s = sj in the open right
half-plane, the matrix Gλ̂(sj) is not full rank. This is equivalent to

ker[Nλ(sj)]
⋂

ker[Dλ(sj)] 6= ∅

where ker[·] is the right kernel of a given matrix. Because Gλ is rational with bounded
order, we have that det[Dλ̂(sj)] = 0 for at most a finite number of points sj in the
open right hand plane. Consider the reduced transfer matrix[

N̄λ(sj)

Dλ(sj)

]
.

Even if the lack of coprimeness occurs for finite interval of values of λ, and even if
N̄λ(sj) vanishes over a finite λ interval, it is possible to choose an arbitrary real matrix
H of dimension compatible with N̄λ such that ‖H‖ = 1 such that for any ε > 0 and
any fixed λ̂ in the interval, the columns of H are not in ker[N̄(sj)]

⋂
ker[Dλ(sj)] and

hence

ker[Nλ̂(sj) + εH]
⋂

ker[Dλ̂(sj)] = ∅

Consequently, by invoking the rational dependance of the transfer function coefficients
on λ, we can determine that as λ moves from one endpoint to the other, even if[

N̄λ(sj)

Dλ(sj)

]
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has a loss of rank in the interval, it is the case that[
N̄λ(sj) + εH

Dλ(sj)

]

will have loss of rank for some sj with Re(s) ≥ 0 at most at only a finite number
of values of λ. By allowing ε to be a function of λ near the end of the interval, we
can ensure that for arbitrary 1

2η, that there exists a real constant (in the s-plane)
perturbation Hλ of N̄λ(s) such that[

N̄λ + Hλ

Dλ

]

is coprime for all but a finite set of λ ∈ [0, 1] and ‖Hλ‖ < 1
2η. Denote the finite set of

points λ where we lose coprimeness by Λ̄. Now consider the full-dimensioned transfer
matrix  nλ

N̄λ + Hλ

Dλ


Let Λ be the set of λi such that the above is not coprime so that Λ ⊂ Λ̄. It is then a
simple matter to choose an 1

2η-bounded real perturbation vector hλ of nλ in the vicin-
ity of each λi ∈ Λ such that hλ is not in the kernel
ker[nλi

(sij)]
⋂

ker[N̄λi
(sij) + Hλi

]
⋂

ker[Dλi
(sij)] for any sij and hence

ker[nλ(sij) + hλ]
⋂

ker

([
N̄λ(sij) + Hλ

Dλ(sij)

])
= ∅

for all sij such that Re[sij] ≥ 0. We have therefore established that there exists a

constant (in the s-plane) ∆λ =
[

hT
λ HT

λ 0
]T

, such that ‖∆λ‖ < η for arbitrarily
small η, and that Gλ + ∆λ is a coprime realisation. It is then trivial to construct
a normalised coprime realisation as follows. Let Rλ be the stable minimum-phase
spectral factor of

L∗λLλ = [G∗
λ + H∗

λ][Gλ + Hλ]

= I + H∗
λGλ + G∗

λHλ + H∗
λHλ

where ‖H∗
λGλ + G∗

λHλ + H∗
λHλ‖∞ ≤ 2η + η2.It then follows that we can define our

perturbation

G ′
λ = [Gλ + Hλ]L−1

λ

and easily show that ‖Gλ − G ′
λ‖∞ ≤ 5η for η < 1.
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