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CAUSE-EFFECT RELATIONS BASED DYNAMIC MODELING AND
ITS APPLICATION TO CONTROL∗

GANCHO VACHKOV† AND TOSHIO FUKUDA‡

Abstract. In this paper a special incremental type of cause-effect dynamic model is proposed for

use in different control schemes. The model parameters are integrated into the shape of the specially

introduced cause-effect relation function. This function represents the degrees of relationship between

the past time changes of the control input and the change of the current plant output. The model

of the plant dynamics is identified from experimental data by three different algorithms. The first

one is a Direct Identification by use of the Least Mean Squares (LMS) algorithm. The second one

is the Indirect (reduced size) Identification, which identifies the parameters of an one-dimensional

Takagi-Sugeno fuzzy model that is further used to approximate the cause-effect relation function of

the dynamic model. Thus a significant reduction in the size of the identification problem is achieved.

The third algorithm is called “Soft Guided” Identification that is able to use preliminary human

knowledge about the possible or expected type of the plant dynamics. It is able to produce a more

plausible dynamic model especially in the presence of highly noised input-output data.

Several versions of predictive control schemes based on the proposed dynamic model are described

and investigated in the paper. They use different horizon lengths and horizon widths. Finally, a

special version of a feed-forward reference model control, based on the proposed type of incremental

cause-effect relation model is described and analyzed in the paper by numerical simulations. All the

simulation results are a kind of numerical proof for the real applicability of the proposed dynamic

modeling method and the respective control schemes.

1. Introduction. Many different approaches to the simulation and identification
of dynamic systems have been reported in the literature, some of them using neural
networks [1,2], fuzzy models [3,6] or auto regressive techniques [4,5,6] for representing
the system behavior and its internal cause-effect relationships. Typical applications
of the identified dynamic models are in control, especially predictive type of control
[4,5,7] or reference model control, where a precise model with a sufficient degree of
generalization ability is of crucial importance.

Let us suppose that a model of a dynamic process y = y(u, t) with an output
y and one control input u has to be created by using M discrete time instances
k = 1, 2, ...,M with sampling intervals dt.

The Nonlinear AutoRegressive with eXogenous input (NARX ) model, as in [4,
6] is a popular and widely used dynamic model structure, especially for a predictive
control purpose. In its common format it defines the non-linear relations between the
past inputs, past outputs and the predicted process output, as follows:

y(k + 1) = F{y(k), y(k − 1), ..., y(k − ny + 1);(1.1)

u(k − nd), ..., u(k − nu − nd + 1)}
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Here ny and nu are the maximum considered lags for the output and control, respec-
tively and nd is the discrete dead time. The linearized form of the NARX model (with
nd = 0) is written in the form:

y(k + 1) =
ny∑

i = 1

aiy(k − i + 1) +
nu∑

i = 1

biu(k − i + 1)(1.2)

In case a nonlinear dynamic behavior should be identified, the Takagi-Sugeno (TS)
fuzzy model representation [6,8,9] of the NARX dynamic model can be successfully
used. The overall TS fuzzy model interpolates between L local linear ARX models
by using the following fuzzy rule base [6]:

Ri : IF {z1(k) isAi
1 and ... and zn(k) is Ai

n}, THEN yi(k + 1) =(1.3)

ci
0 +

ny∑
j = 1

aiy(k − j + 1) +
nu∑

j = 1

biu(k − j − nd + 1), i = 1, 2, ..., L

The Fuzzy dynamic model constructed in this way has n inputs: z1(k), ... , zn(k)
( n ≤ nu + ny ) and Ai

1, Ai
2, ... , Ai

n are the fuzzy sets associated to the i-th fuzzy rule
Ri. All fuzzy sets are defined over the following universe of discourse: {y(k), ..., y(k−
ny + 1); u(k−nd), ..., u(k−nu−nd + 1)} with dimension ny + nu. From a modeling
viewpoint, the overall nonlinear dynamic model in (1.3) consists of L linear model
cells Mi, i = 1, 2, ..., L from the type of (1.2) with nonlinear interconnections and
weights that are given by the preliminary tuned TS fuzzy model.

It is obvious that with such a model structure, the accuracy of the overall dynamic
model highly depends on the preliminary assumed number of inputs for each model
cell (i.e. the number of measured past time samplings for u(k) and y(k)). However it
is also well known [6,9,11] that the fuzzy inference procedure for a fuzzy model with
large number of inputs becomes a serious (or even unaffordable) time consuming task
since a large number of fuzzy rules should be processed. Therefore a kind of reasonable
simplification of the structure of the fuzzy dynamic model by decreasing the number
of inputs could be of real practical use. Such incremental type of model for each
linear model cell Mithat is based on Cause-Effect relations is discussed in the next
Section 2 Further on, Sections 3 and 4 of this paper deal with different identification
algorithms of the proposed dynamic model. The usage of this dynamic model in
different predictive control schemes is given in Sections 5,6 and 7 and application to
a feed-forward type of reference model control is given in Section 8. Finally, Section
9 concludes the paper with a brief analysis of the results and future problems.

2. The Incremental Cause-Effect Relation Based Dynamic Model. The
dynamics of a plant with control input u(t) and plant output y(t) can be described
in an incremental way and discrete form as in [4,10] by use of a cause-effect relations
between the change-of-the-past-inputs ∆u(k − 1), ∆u(k − 2), ... and the respective
change-of-the-current-output ∆y(k). Further on n denotes the memory length of the
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model and k is the current discrete sampling time. Then the proposed incremental
model has the following form:

y(k) = y(k − 1) + ∆y(k)(2.1)

where:

∆y(k) = ϕ[∆u(k − 1), ...,∆u(k − i), ...,∆u(k − n)],with(2.2)

∆u(k − i) = u(k − i) − u(k − i− 1)(2.3)

Here, as in [10],we propose and use the following type of cause-effect relation for the
function (2.2):

∆y(k) = g

n∑
i = 1

∆u(k − i)f(i)(2.4)

that leads to the following incremental dynamic model:

y(k) = y(k − 1) + g
n∑

i = 1

∆u(k − i)f(i)(2.5)

Here g is a kind of scaling factor and f(i), i = 1, 2, ..., n are discrete points
(parameters) of the so called Cause-Effect-Relation Function (CER-functions). Each
point f(i) of this function represents the strength degree of the relationship between
the past change of the control ∆u(k− i) and the resulted change of the output ∆y(k)
at the current k-th sampling time.

The above proposed dynamic model (2.5) will be further referred to as Incremental
Cause-Effect Relation (ICER) dynamic model.

Figure 1 shows an example of five ICER models with different CER-functions,
representing five different dynamics as shown in Fig. 2.

It should be noted that the scaling factor g is used just as a normalizing coef-
ficient that allows different CER-functions to be compared by shape. It does not
have a meaning of gain G of the model, as in the classic control theory. That gain
is implicitly included into the shape and the length of the CER-function and can be
easily calculated by:

G =
∆y

∆u
= g

n∑
i− 1

f(i)(2.6)

It is often the case when the process gain G of the current CER-function f(i) should
be changed to a desired (reference) value Gr while keeping the same type of dynamics
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Fig. 1. Five ICER Dynamic Models with Different Cause-Effect Relation Functions

Fig. 2. Step Responses of the five ICER Dynamic Models from Fig. 1.

as represented by the shape of the CER-function f(i). Then taking into account (2.6),
the new (reference) function fr(i) will be calculated as follows:

fr(i) =
Gr

G
f(i), i = 1, 2, ..., n(2.7)

The shape of the above introduced CER-function carries certain information
about the type of dynamics of the plant. By changing this shape different (prac-
tically all) types and orders of dynamics can be represented, including also time
delay dynamic processes. This makes the proposed structure of the dynamic model
a convenient tool for describing different types of dynamics. Additionally, the clear
physical meaning of the CER-function gives a possibility for utilizing a preliminary
and subjective human knowledge in the identification process.

For some dynamic processes the CER-function f(i) is known in advance or could
be defined approximately by a human expert and plant operator, based on preliminary
knowledge about the process. In other cases no preliminary information about the
process exists, so that plant dynamics should be identified based on the available
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experimental input-output process data.
It can be easily noticed that the above proposed incremental cause-effect (ICER)

model in (2.5) is equivalent to the following class of simplified linearized NARX model:

y(k) = a1y(k − 1) +
nu∑

i = 1

biu(k − i)(2.8)

Equations describing the transition from the given ICER model in (2.5) to its equiv-
alent NARX model in (1.2) are written as follows:

a1 = 1; b1 = f(1);

bi = f(i) − f(i− 1), i = 2, ..., n;(2.9)

nu = n + 1; bnu
= bn+1 = −f(n).

The above equations could be useful, for example, if there is a need to perform
a predictive control algorithm using the NARX model, but the identification of the
process has been performed as an ICER model due to existence of a human knowledge
about the process dynamics.

3. Direct Identification of the Dynamic Model Based on the Least
Mean Squares Algorithm. This is an off-line identification problem where all n

strength degrees f(i), i = 1, 2, ..., n of the CER-function have to be identified based
on experimental data. From an optimization point of view the mean squared error
(MSE) should be minimized, in the form of the following criterion:

Q =
1
m

M∑
k = n+1

{d(k) − [y(k − 1) +
n∑

i = 1

∆u(k − i)f(i)]}2(3.1)

where d(k)denotes the measured output from the real process and m = M − n is
the real amount of experimental data used in the identification. This problem can be
solved by the direct implementation of the Least Mean Squares (LMS) algorithm, as
shown in [10].

The basic linear system of equations is rectangular in size, as follows:

Af = d(3.2)

The m sized vector d has the following structure:

d = [∆y(n + 1), ∆y(n + 2), ... ,∆y(M)]T(3.3)

The unknown vector f of the CER-function strength degrees with size n has a format:

f = [ f(1) f(2) ... f(i) ... f(n)]T(3.4)

The rectangular matrix A with size m × n is constructed as follows:

A = g


∆un+1(k − 1) ∆un+1(k − 2) · · · ∆un+1(k − n)
∆un+2(k − 1) ∆un+2(k − 2) · · · ∆un+2(k − n)

· · · · · · · · · · · ·
∆uM (k − 1) ∆uM (k − 2) · · · ∆uM (k − n)

(3.5)
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Then the original rectangular linear system (3.1) is modified into a square system of
equations with size n:

AT Af = AT d(3.6)

Finally, the solution of the above identification problem is represented in a Least-
Mean-Square sense as:

f = (AT A)−1 AT d(3.7)

This standard Identification scheme will be further referred to as Direct Identifi-
cation of the ICER model.

4. Reduced Size Indirect Identification Based on Takagi-Sugeno Fuzzy
Model Tuning. It is well known that fuzzy models, especially Takagi-Sugeno (TS)
fuzzy models [8,9,11,6], are widely used as universal approximators of nonlinear re-
lationships. This fact suggests the fruitful idea to utilize the TS model in order to
reduce the dimensionality and therefore the computational cost of the original stated
Identification problem in the previous section. The newly proposed method is further
called Indirect Identification of the CER-function [10]. It is a kind of modification of
the Direct Identification (by use of the standard LMS algorithm) where all the param-
eters of the CER-function are implicitly identified by only identifying the consequent
parameters of a one-dimensional TS fuzzy model. That TS fuzzy model serves later
as an approximator to retrieve all points of the CER-function.

The obvious computational advantage of this Indirect Identification approach is
the reduction in the size of the original Identification problem. Indeed the number
of the consequent parameters of the one-dimensional TS fuzzy model is much less
(usually no more than 8-10 parameters) than the number n of the points in the CER-
function f(i) being 20, 30 or even more for slow and complex dynamic processes.
Further on, the details of this algorithm are given.

Suppose that the cause-effect relation function f(i), i = 1, 2, ..., n has to be ap-
proximated by a one-dimensional TS fuzzy model with L Gaussian membership func-
tions and linear consequent parts of the fuzzy rules. Then the number of the fuzzy rules
coincides with the number L of the membership functions. If the centers and widths
of each membership function are preliminary fixed, then the identification problem
of the fuzzy model is transformed into finding all 2L consequent parameters of the
model. The later task is solved by a modification of the LMS algorithm, that adjusts
the linear consequent parameters p0r and p1r, r = 1, 2, ..., L of the fuzzy model, so
that to fit as close as possible all n points f(i), i = 1, 2, ..., n of the CER-function.
The details are given below.

Since each point of the CER-function has to be matched by the fuzzy model, the
following equations hold:

f(i) =
L∑

r = 1

νr(i)(pr 0 + pr1i) , i = 1, 2, ..., n(4.1)
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Here pr0 and pr1 are the linear consequent parameters of the r-th fuzzy rule (r =
1, 2, ..., L) and νr(i) is the normalized truth value (activation degree) of the r-th fuzzy
rule for the i-th approximation point

νr(i) = µr(i)

/
L∑

j = 1

µj(i) , i = 1, 2, ..., n(4.2)

The fuzzified value µr(i) for the i-th point by the r-th Gaussian membership
function (r = 1, 2, ..., L) is calculated as:

µr(i) = exp

(
− (i − cr)2

2σ2
r

)
, i = 1, 2, ..., n(4.3)

Here cr , σr , r = 1, 2, ..., L are the predetermined centers and widths of the respective
membership functions. Note that the one-dimensional fuzzy model stated in this way
will be used as approximator of the CER-function thus and will have only discrete
numbers i, (i = 1, 2, ..., n) in its input.

By substituting f(i) in (2.4) with its expression from (4.1), the following rectan-
gular system of equations with size m × 2L is obtained:

∆y(k) = g

n∑
i = 1

∆u(k − i)
L∑

r = 1

νr(i)(pr0 + pr1. i),(4.4)

k = n + 1, n + 2, ..., M

The LMS solution of the above system for obtaining the consequent parameters p0r

and p1r, r = 1, 2, ..., L is given in [10].
For illustration, in Fig. 3 and Fig. 4. an example of such Indirect Identification

is given for the case of TS fuzzy model with four Gaussian membership functions
(L = 4) and four different memory lengths of the CER-functions, as follows: n =
25, 20, 15, 12. The bold line in Fig. 4. denotes the original CER-function (with
n = 30) that has to be identified.

Fig. 3. Four Predetermined Gaussian Membership Functions Used for the Indirect Identification.
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Fig. 4. Indirect Identification of four CER-functions with different memory lengths n =

25, 20, 15, 12.

For the purpose of identification, an input signal with 80 samplings has been
applied to the original ICER model and the respective inputs-output pairs of data
have been used to construct the linear system in (4.4). As seen in Fig. 4., the
indirect identification with n = 12 fails to find the shape of the original CER-function,
because of a big loss in information (too short memory). The other identifications
(with memory legths n = 15, 20, 25) are satisfactory and give results that are very
closed to the real shape of the original CER-function.

It should be noted that in real applications, the actual memory length n of the
CER-function is unknown and should be predicted. One way to do this is to exam-
ine the shapes of several identified CER-functions and analyse their plausibility and
physical meaning, when possible.

5. “Soft-Guided” Identification Algorithm. From a mathematical point of
view, the Identification schemes in the above Sections 3 and 4 can be characterized as
pure data fitting algorithms. It means that they try to only fit the experimental data
according to a pre-specified criterion such as (3.1) (minimizing the MSE), without
“taking care” of the physical meaning of the model. Therefore if the data set is highly
noisy and/or includes effects of unmeasured inputs with non-zero means, then the
identified model may largely deviate from the real process dynamics, thus losing its
physical meaning. In such cases an utilization of any kind of preliminary or subjective
human knowledge about the type of the model and/or approximate process dynamics
could be helpful for the final accuracy and plausibility of the identification process,
preventing it from going into an “undesirable” direction.

The proposed above ICER model is able to implement some kind of human knowl-
edge about the dynamics of the process by suggesting the approximate shape of the
membership function f(i). However the algorithms in Sections 3 and 4 cannot utilize
such information.
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The following numerical example explains graphically some of the demerits of the
Direct Identification schemes in Sections 3 and 4. In Fig. 5. a test input-output data
set without noise is generated by using the ICER model M3 from Fig. 1.

Fig. 5. Pure Input-Output Data Set used for the Direct Identification of the ICER Model M3

from Fig. 1.

The Direct Identification scheme (3.7) finds exactly the model. After that the
same dynamic process has been “contaminated” by additive noise with uniform dis-
tribution within the interval [-2,+2]. The obtained noised input-output data set has
been used further for identification and the results are depicted in Fig. 6.

Fig. 6. Noised Input-Output Data Set used for the Direct Identification of the ICER Model M3.

The identified ICER model is shown in Fig. 7. and compared with the original
CER-function of the model M3 from Fig. 1. It is obvious that the identification fails
to discover the essential input-output relationships of the process. The calculated
output by use of the poorly identified ICER model from Fig. 7. is shown by bold line
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in Fig. 6.

Fig. 7. The Identified CER Model from the Noisy Data in Fig. 6.

Taking into account the above disadvantages, in the sequel another identification
algorithm is described, based on a kind of hybrid criterion that includes the human
knowledge about the identified process.

This algorithm is further called “Soft-Guided” Identification and tries to minimize
the following criterion:

Q =
M∑

k = n+1

[d(k) − y(k)]2 +
n∑

i = 1

λ(i)[fr(i) − f(i)]2(5.1)

where fr(i) represents the human knowledge (suggestion) about the most plausible
or desirable membership function of the process. The selection of the weighting co-
efficients λ(i), i = 1, 2, ..., n is important for the proper balance in the identification
process between the pure data fitting (if λ(i) → 0) and the pure membership function
fitting (if λ → ∞).

The two sums in the criterion (5.1) have different nature and different number
of elements. Therefore we propose here a kind of normalization scheme with equal
weighting coefficients for all n points, that is:

λ(1) = λ(2) = ... = λ(n) = λ(5.2)

where

λ = α(Rmax − Rmin)/fr max(5.3)

with [Rmin , Rmin] being the output range of the measured data d(k) and fr max as
the peak of the human specified (reference) membership function. In this way the
identification can be performed with a human defined factor α within the range α ∈
[0 , 100].
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The final solution of the identification problem (5.1) is represented again in a
LMS sense by (3.7) with an appropriate modification of the matrices (3.3) and (3.5).
However this time the result of the identification takes into consideration the existing
human knowledge or the human suggestion about the dynamics type, as implemented
in (5.1).

The following numerical simulations demonstrate the effect of using the proposed
”Soft-Guided” Identification in the case of the highly noisy process from Fig. 6.

We consider the case when the human operator has a kind of preliminary knowl-
edge or perception that the process dynamics should be similar to that one of the
model M2 in Fig. 1. even if the true dynamics is actually M3. Then Fig. 8. shows
the results from five different “soft-guided” identifications with different factors α as
follows: 1,5,10,30,50. It is seen that the identified models gradually approach the
reference model M2 and become smoother in shape, which is more meaningful. The
respective unit step responses of some of the identified models are depicted in Fig.
9. for α = 0, 1, 3, 5, 10. They also become gradually closer to the desired reference
model M2.

Fig. 8. Identified ICER Models from the Noisy Data in Fig. 6. with Different Factors α and

a Reference Model M2.

It is worth to note that the mean square error (MSE) taken over all output data
y(k)shows a slight tendency of increasing by increasing α. This could be logically
explained by the fact that in this case the identified model is gradually forced to
follow the reference model M2, which is actually different from the true model M3,
as seen in Fig. 1.

If a true reference model M3 is selected as a reference model, the same identifica-
tion experiments produce an MSE that is monotonically decreasing by increasing α.
Such a tendency could be practically used as a clear sign that the human knowledge
about the reference model approach the true model or at least is close to the real
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Fig. 9. Unit Transient Processes of Different Identified ICER Models by Use of the Reference

Model M2.

process dynamics. Thus the proposed “Soft-Guided” Identification scheme can also
serve as a kind of diagnostic tool to discover the most plausible model of the process
from a noisy data collection.

6. Simple Predictive Control by Use of the ICER Dynamic Model.
Model predictive control [4,5,7] is a powerful tool for dynamic optimization and control
of processes with large time delay and time-varying parameters. It is based on a
specified (identified) dynamic model of the plant and on-line measurements in order
to build a prediction of the future output behavior. On the basis of this prediction,
an optimization is performed to find the sequence of future controls that minimize the
chosen measure of the model output deviation from a preliminary specified reference
trajectory of the plant.

In the simplest case, the aim of the predictive control is to generate such a control
u(k) that would produce a model output y(k+1) equal to the reference (desired) value
r(k + 1) at the future time instant k + 1, that is: y(k + 1) = r(k + 1). This scheme
is called: one-step-ahead predictive control.

In the more general case of predictive control [4], the notion of receding horizon
is defined as a range [h1, h2] with h2 ≥ h1, a horizon length h given by h = h1 ≥ 1
and a preliminary defined horizon width: w = h2 − h1 + 1. Figure 10. gives an
illustration to the general predictive control scheme.

The aim of the general predictive control algorithm is to minimize the deviation of
the model output from the given plant reference trajectory within the horizon width
w by considering not only one, but rather a series of multiple control actions in the
future, namely u(k + 1), u(k + 2), ...

If the ICER dynamic model (2.5) is identified by either of the above proposed
identification schemes, it can be easily implemented into various predictive control
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Fig. 10. General Predictive Control Scheme

schemes as in [4,5,7]. Let us consider the simplest case of a predictive control with
one-step-ahead prediction (horizon length h = 1 ). The future (next sampling) model
output is given as:

y(k + 1) = y(k) + ∆y(k + 1)(6.1)

with:

∆y(k + 1) = y(k + 1) − y(k) = g
n∑

i = 1

∆u(k + 1− i)f(i)(6.2)

= g∆u(k)f(1) + g
n∑

i = 2

∆u(k + 1− i)f(i)

After simple algebraic transformations the following equation for computing the
required control u(k) at the current sampling time is obtained:

u(k) = u(k − 1) +
r(k + 1) − y(k) − g

n∑
i = 2

∆u(k + 1− i)f(i)

g f(1)
(6.3)

The control scheme with one-step-ahead prediction usually does not give good
performance results [4,7] and often leads to instability and oscillations, while requiring
large control actions. The general reason for such performance is that there is a weak
relationship between the control u(k) and the result y(k + 1) at the next time instant
(see f(1) in Fig. 1.), which leads to a weak controllability of the process. This is
especially true for processes with larger time delay. As a result the control u(k) is
chattering between the predetermined constraints: umin and umax.

A better and smoother control can be realized with a longer prediction horizon
h > 1.

7. Predictive Control with Longer Prediction Horizon. This is a more
general case of a predictive control where h = h1 > 1 and more future control
actions could be calculated. Therefore another parameter called length of the control
horizon nc ≤ h2 should be determined beforehand. It represents the number of the
different control actions in the future u(k), u(k +1), ... , u(k +nc− 1) that have to be
calculated in order to optimize the performance of the predictive control within the
given horizon range [h1, h2] with width w = h2 − h1 + 1.
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In this paper we consider the simplified case of only one control action nc = 1. It
means that the optimization of the performance within the horizon range [h1, h2] is
carried out by only one control u(k) and after that the projected control increments
are assumed to be zero, that is:

u(k + 1) = u(k + 2) = ... = u(k + nc) = u(k)(7.1)

The above assumption is an obvious simplification that leads to one-dimensional op-
timization task. However it does not change the main idea of the predictive control
based on the proposed incremental cause-effect relation model (6.1) and (6.2).

There are two possible cases of predictive control with a longer horizon h = h1 >

1, differing from the horizon width w = h2 − h1 + 1, as follows: w = 1 and w > 1.
The respective predictive control schemes are discussed in the sequel.

7.1. Predictive Control with Longer Horizon and One-Point Horizon
Width. According to the notations in Fig. 5., this case of predictive control can be
expressed as:

nc = 1; h = h1 > 1; h2 = h1; w = 1(7.2)

In order to calculate the control action u(k), the following model recursion is used:

y(k + 2) = y(k + 1) + ∆y(k + 2)(7.3)

and further on:

y(k + 2) = y(k) + ∆y(k + 1) + ∆y(k + 2)(7.4)

Then the change of the output is calculated as:

∆y(k + 2) = g
n∑

i = 1

∆u(k + 2− i)f(i)(7.5)

= g∆u(k)f(2) +
n∑

i = 3

∆u(k + 2− i)f(i)

As seen the term containing ∆u(k + 1) is omitted in (7.5), in accordance with the
assumption (7.1) to keep the control unchanged in the future samplings. Finally, the
predicted output at the end of the horizon with length h will be:

y(k + h) = y(k) +
h∑

j = 1

∆y(k + j) ,(7.6)

where

∆y(k + j) = g
n∑

i = j + 1

∆u(k + j − i)f(i) + g∆u(k)f(h) , j = 1, 2, ..., h(7.7)
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Under the assumption that a perfect control at the future time instant k + h has
to be achieved, which is represented as : y(k + h) = r(k + h), the change of the
control action at the current time k will be:

∆u(k) =
r(k + h) − y(k) − D

g
h∑

j = 1

f(j)
,(7.8)

where

D = g
h∑

j = 1

n∑
i = j + 1

∆u(k + j − i)f(i)(7.9)

Note that for any longer horizon: h > n, the CER-function becomes zero, namely:
f(h) = 0. Finally, the applied control at the current sampling time k is given by:

u(k) = u(k − 1) + ∆u(k)(7.10)

7.2. Predictive Control with Longer and Wider Horizon. This is a more
general case of the predictive control with the following parameters, according to Fig.
5.:

nc = 1; h = h1 > 1; h2 > h1; w = h2 − h1 + 1 > 1;(7.11)

Here the control performance should be optimized over the whole horizon range [h1, h2]
with m points as follows: h1, h1+1, ... , h2 by using only one control u(k). The solution
of this problem is a further development of equations (7.8) and (7.9) that leads to a
least mean squares solution of a linear system of equations, as shown in [12].

8. Simulation Results for Predictive Control by Use of the ICER Dy-
namic Model. Extensive simulations have been performed in order to evaluate the
merits and demerits of the proposed incremental dynamic model (ICER model) based
on cause-effect relation functions model in different predictive control schemes. A hy-
pothetical plant and its identified model have been assumed for the further simulation
with CER-function, as shown in Fig. 11.

First the ideal case of perfect identification of the plant has been assumed, that
is: Model = Plant in order to study the performance of the different predictive control
schemes. A reference trajectory r(k) with arbitrary shape and 140 samplings has been
assumed in the simulations. As mentioned in Section 6, the one-step-ahead predictive
control (h = 1) shows instability because of the time delay and low controllability of
the plant.

Simulation results for the predictive control with one point horizon width (w = 1)
and different horizon lengths h = 2 ↔ 7 are shown in Fig. 12.
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Fig. 11. Assumed Dynamics of the Plant and Model.

Fig. 12. Predictive Control Performance with Different Horizon Lengths h.

Fig. 13. Predictive Control with Three-Steps-Ahead Prediction (h = 3) and Unit Horizon

Width (w = 1).
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Figure 13. shows the results of the predictive control with horizon width: w = 1
and a horizon length: h = 3 under the assumption of exact identification of the plant
(Plant = Model).

Further simulations have been conducted where a certain difference between the
identified model and the plant exists (Model 6= Plant), as shown in Fig. 11., due to
the inexact identification. Figure. 14. depicts such a case of a predictive control with
horizon length h = 3 and width w = 1by using the inexact identified ICER model.
The control performance has been obviously deteriorated which shows the importance
of the model accuracy in the predictive control scheme.

Fig. 14. Predictive Control in the Case of Difference Between the Plant and the Model

9. Feed Forward Reference Model Control by Use of the ICER Dy-
namic Model. The above described cause-effect relation dynamic model in Section
2 can be also successfully used in other control schemes. One of them with certain ap-
plication areas in robotics and other engineering fields is the so called reference model
control [2]. Here the desired dynamic behavior of the plant is given by a predefined
and stable Reference Model. The main goal of the controller is to force the process
to follow the reference model output. In the simplest case, the controller could be of
the type of feed-forward controller, as shown in Fig. 15.

From control point of view, such a feed-forward controller can be regarded as
a special “correction unit” that transforms the initial reference signal r(t) into a
modified control u(t) which is further applied as a plant input.

In order to design such a controller (correction unit), an identification procedure
based on experimental data should be performed. Let us assume that the dynamics
of all units is represented by the proposed ICER dynamic model with CER-functions
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Fig. 15. Reference Model Control Structure with Tuning of the Feed-Forward Controller.

and memory lengths as follows: Fr and nr for the Reference Model ; Fp and np for the
Plant and Fc with nc for the Controller. Suppose that kmax sampling times from the
reference signal r(k) are also needed for the identification. Then the general statement
of this identification problem is as follows:

Given Fr,nr; Fp, np; kmax and nc; determine all nc points of the CER-function
Fc of the Controller that minimize the following performance index:

Q =
1
2

kmax∑
k = 1

[x(k) − x̂(k)]2(9.1)

The solution of this identification problem can be obtained in a non-iterative way
by a proper modification of the LSM algorithm.

Let us first derive the output of the serial connection of the controller (correction
unit) and the Plant, as shown in Fig. 16.

Fig. 16. Serial Connection of two Dynamic Units.

x(k) = x(k − 1) +
np∑

i = 1

∆u(k − i)fp(i)(9.2)

∆u(k − i) = u(k − i) − u(k − i− 1) =
nc∑

j = 1

∆r(k − i− j)fc(j)(9.3)

Finally the output of the plant is calculated as:

x(k) = x(k − 1) +
np∑

i = 1

fp(i)
nc∑

j = 1

∆r(k − i− j)fc(j)(9.4)
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Obviously, the total memory length n for the whole serial connection unit, which
represents the number of all past times used for calculation of the current output x(k)
is: p = np + nc.

In the identification scheme, according to Fig. 15., we assume that the increments
of the reference model and that one of the serial connection of the controller and the
plant, are equal at each sampling time k, that is:

∆x̂(k) = ∆x(k)(9.5)

which yields:

∆x̂(k) =
nr∑

i = 1

∆r(k − i)fr(i),(9.6)

x(k) =
np∑

j = 1

∆u(k − j)fp(j) =
np∑

j = 1

fp(j)
nc∑

l = 1

∆r(k − j − l)fc and(9.7)

nr∑
i = 1

∆r(k − i)fr(i) =
np∑

j = 1

∆u(k − j)fp(j)(9.8)

=
np∑

j = 1

fp(j)
nc∑

l = 1

∆r(k − j − l)fc

Finally, the solution fc(l), l = 1, 2, ..., nc for the correction unit is obtained by solving
the following linear system of equations:

Al(k) .fc(l) = B(k), l = 1, 2, ..., nc; k = 1, 2, ..., kmax; kmax > nc(9.9)

where:

Al(k) =
np∑

j = 1

fp(j)∆r(k − j − l) and(9.10)

B(k) =
nr∑

i = 1

∆r(k − i)fr(i)(9.11)

The above Identification scheme (9.9), (9.10) and (9.11), has been used for exten-
sive simulations of the Reference Model control by use of the ICER Dynamic Model,
in accordance with the control structure in Fig.15. The assumed plant and reference
model dynamics are shown in Fig. 17. A portion of 120 samplings from a reference
signal with stochastic behavior has been used for the identification.
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Fig. 17. Dynamics of the Plant and the Reference Model.

Two groups of identified feed-forward controllers are shown in Fig. 18. and Fig.
19. with different memory lengths within the range nc ∈ [2, 12]. As seen from
these figures, the CER-functions for the controllers are represented by (seems to be)
broken lines in contrast with the smooth-shaped CER-functions for the plant and the
reference model from Fig. 17. Therefore these CER-functions cannot be used for
direct extraction of a physical meaning that explains the behavior of the controllers.

Fig. 18. Identified CER-functions of the Feed-Forward Controllers with Different Memory

Lengths: n= 2,3,4,5 and 7.

Because of the difference between the memory lengths of the plant and because the
reference model is 7 (np = 12 and nr = 19), it is expected that a controller with a
memory length nc = 7 would perform well. The following Fig. 20. and Fig. 21. serve
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Fig. 19. Identified CER-functions of the Feed-Forward Controllers with Memory Lengths: n=

8,9, 10,11 and 12.

as a proof of that expectation. It is especially clear from Fig. 21. that a controller
with a longer memory length nc > 7 does not improve the performance significantly,
since the older information is no longer related to the current output in this particular
simulation.

Fig. 20. Performance of the Reference Model Control Based on the Identified Feed-Forward

Controller with nc = 7.

The modified (corrected) signal u(k) that is produced by the feed-forward controller
and is further used as an input to the plant, is compared with the original reference
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Fig. 21. Rooted Mean Square Error (RMSE) for the Response to the Reference Signal by the

Different Controllers.

signal r(k) in Fig. 22.

Fig. 22. Comparison of the Reference Signal r(k) with the output u(k) from the Feed-Forward

Controller with Memory nc = 7.

Figure 23. shows the performance of the controllers with shorter memory length:
nc = 5, 6, 7, based on unit step function reference signal. Obviously, there is an
increasing loss of information in the case of shorter memory length that leads to a
significant deviation between the performance of the reference model and that one of
the serial connection: Controller – Plant.

The above simulations show the importance of the proper choice of the memory length
for the reference model controller.
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Fig. 23. Performance of the Reference Model Control Based on the Identified Feed-Forward

Controller with n = 5, 6 and 7.

10. Conclusions. An incremental cause-effect relation type of dynamic model
(ICER model) is proposed in this paper. It uses the concept of cause-effect relations
functions (CER-functions) in order to represent the relationship between the past time
changes in control and the change of the current model output. Three identification
schemes for this type of model are proposed in the paper. The first one is called Direct
Identification and uses the standard Least Mean Squares (LMS) algorithm. The size
of this problem is equal to the number of the points n of the CER-functions that is
normally high for slow and complex dynamic processes.

Next the Indirect (reduced size) Identification algorithm is presented. It identifies
the parameters of a one-dimensional Takagi-Sugeno fuzzy model with a predefined
structure that is further used to approximate the cause-effect relation function of
the dynamic model. Thus a significant reduction in the size of the identification
problem is achieved. Additional advantage of this identification algorithm is that
a change in the size nof the real problem does not necessarily mean change of the
size of the reduced identification problem. This makes the algorithm computationally
efficient with its accuracy depending directly on the predefined structure (the number
of the membership functions) of the TS fuzzy model, that is used as a nonlinear
approximator.

The third algorithm is called “Soft Guided” Identification that is able to use pre-
liminary human knowledge about the possible or expected type of the plant dynamics.
This algorithm is able to produce a more plausible dynamic model especially in the
presence of highly noised input-output data. In addition, it gives a lot of flexibility
of the identification procedure, being able to make any kind of reasonable balance
between “pure data-fitting” and “pure model-type fitting” by changing the weighting
coefficient λ (or weighting function λ(i)). A further development of this idea includes
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utilizing even a partial knowledge about a specified part of the plant dynamics, which
leads to identification of a plausible dynamic model.

Once the dynamic model is identified by use of any one of the proposed identifica-
tion algorithms, it can be used in various control schemes. In the paper, the identified
incremental model is used in several algorithms for predictive control with different
horizon lengths and horizon widths. Respective control equations for applying the first
control action u(k)have been derived. Finally an original application of the dynamic
model to a reference model feed-forward control scheme is presented, analyzed and
illustrated.

A variety of simulation results on test examples in the paper illustrate how to use
the proposed ICER dynamic model in the above predictive and reference model control
strategies. All the simulations are a kind of numerical proof for the applicability of
the derived control schemes by use of the ICER model to real plants. Some important
directions for future research are the improvement of the model accuracy and control
performance, as well as analysis of the stability and robustness of all the proposed
control schemes.
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