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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR
SYSTEMS COMBINING NONPARAMETRIC AND PARAMETRIC

ESTIMATORS∗

BRUNO PORTIER†

Abstract. In this paper, a new adaptive control law combining nonparametric and parametric

estimators is proposed to control stochastic d-dimensional discrete-time nonlinear models of the form

Xn+1 = f(Xn) + Un + εn+1. The unknown function f is assumed to be parametric outside a given

domain of Rd and fully nonparametric inside. The nonparametric part of f is estimated using a

kernel-based method and the parametric one is estimated using the weighted least squares estimator.

The asymptotic optimality of the tracking is established together with some convergence results for

the estimators of f .

Keywords. Adaptive tracking control; Kernel-based estimation; Nonlinear model; Stochastic
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1. Introduction. In a recent paper, [Portier and Oulidi 2000] consider the
problem of adaptive control of stochastic d-dimensional discrete-time nonlinear sys-
tems of the form (d ∈ N):

Xn+1 = f(Xn) + Un + εn+1(1)

where Xn, Un and εn are the output, input and noise of the system, respectively. The
state Xn is observed, the function f is unknown, εn is an unobservable noise and the
control Un is to be chosen in order to track a given deterministic reference trajectory
denoted by (X∗

n)n≥1. To satisfy the control objective, Portier and Oulidi introduce an
adaptive control law using a kernel-based nonparametric estimator (NPE for short)
of the function f denoted by f̂n. Following the certainty-equivalence principle, the
desired control is given by

Un = −f̂n(Xn) + X∗
n+1(2)

However, to compensate for the possible lack of observations which disruptes the
NPE, some a priori knowledge about the function f is required. In a recent paper,
[Xie and Guo 2000] study scalar models of the form (1) and prove that, without as-
suming any a priori knowledge about the function f and estimating it using a nearest
neighbors method, only weakly explosive open-loop models (typically f such that
|f(x)− f(y)| ≤ (3/2 +

√
2) |x− y| + c) can be stabilized using a feedback adaptive

control law. Portier and Oulidi model the needed a priori knowledge by a known
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continuous function f̃ satisfying

∀ x ∈ Rd, ‖f(x)− f̃(x)‖ ≤ af ‖x‖+ Af for some af ∈
[
0 , 1/2

[
and Af < ∞(3)

The adaptive tracking control is then given by:

Un = −f̂n(Xn)1En(Xn) − f̃(Xn)1En
(Xn) + X∗

n+1(4)

where En = {x ∈ Rd ; ‖f̂n(x) − f̃(x)‖ ≤ bf ‖x‖ + Bf} with bf ∈ ]af , 1− af [ and
Bf > Af ; En denotes the complementary set of En.

From a theoretical point of view, introduction of the control law (4) combined
with (3) ensures the global stability of the closed-loop system, which is the key point
to obtain the uniform almost sure convergence for the NPE f̂n, over dilating sets of
Rd, and then, to derive the tracking optimality.

From a practical point of view, the knowledge of a function f̃ satisfying (3) plays a
crucial role in the transient behaviour of the closed-loop model. Indeed, when function
f is not yet well estimated by f̂n, the control law (2) could not always stabilize the
process around the reference trajectory and therefore, if the model is very unstable
in open-loop, the process can explode. In that case, we need an information which
can allow the controller to get back the process around the reference trajectory. This
information, given by f̃ , is crucial since thanks to condition (3), it ensures that the
model driven by the control Un = −f̃(Xn) + X∗

n+1 is globally stable. However, this
scheme suffers from some drawbacks: the function f̃ can be unavailable or not well-
known, the set En can be difficult to interpret and from a theoretical point of view,
the asymptotic results require the uniform almost sure convergence of the NPE over
dilating sets, obtained for a well-suited noise ε, and leading to slow convergence rates.

The contribution of this paper is to provide an alternative way to handle a priori
knowledge. We replace the previous set En by introducing a fixed domain D of Rd

containing the reference trajectory (X∗
n), which is more explicit. To cope with the

unability of the NPE (due to its local nature) to deliver an accurate information when
only a few observations are available, we propose to consider some parametric a priori
knowledge about the function f outside D (for example linear). This a priori is not
modelled by a given fixed function like f̃ in the previous scheme but, for giving more
flexibility, it depends on an unknown parameter to be estimated. The objective is to
design a control law which gets the state back to D, after an excursion outside D.

A convenient theoretical framework should consist on assuming that outside D,
the function f is approximately of the given parametric form. Nevertheless, for some
technical reasons, this framework cannot be addressed. We shall see later that the
stability result obtained in this paper is largely due to the ability of the parametric
estimator based adaptive controller to stabilize the closed-loop system and needs the
exact knowledge of the parametric structure of f . Hence, this work must be considered
as a first step towards the study of nonlinear stochastic systems using such adaptive
control laws which combine nonparametric and parametric estimators. We suppose
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that, outside a given domain D, the function f is of the form f(x) = θtx where θ is
an unknown d× d matrix.

The new adaptive control law is then of the form:

Un = −f̂n(Xn)1D(Xn) − θ̂t
n Xn 1D(Xn) + X∗

n+1(5)

where θ̂n denotes the parametric estimator of θ. The resulting closed-loop model is
given by

Xn+1 −X∗
n+1 =

(
f(Xn)− f̂n(Xn)

)
1D(Xn)(6)

+
(
θ − θ̂n

)t

Xn 1D(Xn) + εn+1

From a theoretical point of view, only the almost sure uniform convergence on
fixed compact of Rd is now required for the NPE and poorer noises can be considered.
However to ensure the global stability of the closed-loop model (6) and then derive the
uniform convergence of the NPE, we need good properties for the prediction errors
associated with the parametric estimator. For this reason, we focus our attention
on the well-suited weighted least squares estimator (Bercu and Duflo,1992) for which
convergence results were previoulsy established.

Now, let us make some comments about adaptive control of discrete-time stochas-
tic systems which have been intensively studied during the past three decades. For
linear models, ARX and ARMAX models, the problem of adaptive tracking has been
completely solved using both a slight modification of the extended least squares al-
gorithm (Guo and Chen, 1991; Guo 1994) and the weighted least squares algorithm
(Bercy, 1995,1998; Guo, 1996).

For nonlinear systems, several authors have proposed interesting methods: neural
networks-based methods, for example, have been increasingly used (Narendra and
Parthasarathy, 1990; Chen and Khalil, 1995; Jagannathan et al, 1996). However, to
our knowledge, no theoretical results are available to validate these approaches. More
recently, [Guo 1997] examines the global stability for a class of discrete-time nonlinear
models which are linear in the parameters but nonlinear in the output dynamics. He
proves the global stability of the closed-loop system when the growth rate of the
nonlinear function does not exceed the one of a polynomial of degree < 4. The
unknown parameter is estimated by the least squares estimator. In addition, in the
scalar case, by exhibiting a counter-example, he shows that the closed-loop model is
unstable if the degree is ≥ 4, even if the least squares estimator converges to the true
parameter value. In a more recent work, [Bercu and Portier 2002] examine simular
models and solve the problem of adaptive tracking. Several convergence results for
the least squares estimator are also provided.

Adaptive control laws using nonparametric estimators are not deeply studied. For
a stable open-loop model of the form (1), [Duflo 1997] (see also Portier and Oulidi,
2000) proposes an asymptotically optimal adaptive tracking control law using persis-
tent excitation.
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When the control law (4) is used, [Poggi and Portier 2000, 2001] give several
other statistical results, as a pointwise central limit theorem for f̂n and a global and a
local test for linearity of function f . Finally, let us mention that an adaptive control
law using a nonparametric estimator has been already experimented in a real world
application: [Hilgert et al. 2000] use such an approach to regulate the output gas flow-
rate of anaerobic digestion process, by adapting the liquid flow-rate of an influent of
industrial wine distillery wastewater.

The paper is organized as follows. In section 2, we specify the model assumptions,
the different estimators and the control law. Section 3 is devoted to the theoretical
results (the proofs are postponed to appendices). Finally, section 4 contains an illus-
tration by simulations. Our simulations carried out for one simple real-valued model
indicate that our asymptotic results give a good approximation for moderate sample
sizes.

2. Framework and assumptions. This section is devoted to the model as-
sumptions, the definition of the different estimators and the adaptive control law.

2.1. Model assumptions. Let us denote D = {x ∈ Rd ; ‖x‖ ≤ D} where D

is a positive constant, supposed to be known, and where ‖ . ‖ is the euclidian norm
on Rd. Let us consider model (1) where initial conditions X0 and U0 are arbitrarily
chosen and where function f is subjected to the following hypothesis.

Assumption [A1]. The function f is continuous and ∀x 6∈ D, f(x) = θtx

where θ is an unknown d× d matrix.

Remark 1. Under some convenient assumptions, extension to f(x) = θtϕ(x)
can be handled, but this framework requires some specific proofs and it is out of the
scope of the paper.

The noise ε will satisfy either

Assumption [A2]. The noise ε = (εn)n≥1 is a bounded martingale difference

sequence with E
[
εn+1 εt

n+1 /Fn

]
= Γ where Γ is an invertible matrix and Fn

is the σ-algebra generated by events occuring up to time n.

or

Assumption [A2bis] The noise ε = (εn)n≥1 is a sequence of d-dimensional,

independent and identically distributed random vectors, with zero mean and

invertible covariance matrix Γ. Its distribution is absolutely continuous with

respect to the Lebesgue measure, with a probability density function (p.d.f.

for short) p supposed to be C1-class with compact support, and p and its

gradient are bounded.

Assumption [A2] is not usual in the context of nonparametric estimation. Usually,
we consider [A2bis] without assuming the boundedness of ε. The boundedness of ε,
which is not so restrictive from a practical point of view, is required here to ensure
the boundedness of the NPE.
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2.2. Nonparametric estimator of f . As in [Portier and Oulidi 2000], un-
known function f is estimated using a kernel method-based recursive estimator. For
x ∈ Rd, f(x) is estimated by f̂n(x) defined by:

f̂n(x) =
∑n−1

i=1 iαdK (iα(Xi − x)) (Xi+1 − Ui)∑n−1
i=1 iαdK (iα(Xi − x))

(7)

and f̂n(x) = 0 if the denominator in (7) is equal to 0. The real number α, called the
bandwidth parameter, is in ]0 , 1/d[ and K, called the kernel, is a probability density
function, subjected to the following assumption:

Assumption [A3]. K : Rd → R+ is a Lipschitz positive function, with

compact support, integrating to 1.

Nonparametric estimation is extensively studied and widely used in the time series
context. Comprehensive surveys about density and regression function estimation can
be found in [Silverman 1986] and [Härdle 1990], respectively.

2.3. Parametric estimator of θ. It is well-known in linear adaptive control
that the choice of the parameter estimation algorithm is crucial and essentially de-
pends on the control objective: to identify the model or to solve the tracking problem.
In this paper, we use the weighted least squared (WLS for short) estimator introduced
by [Bercu and Duflo 1992]. This choice is governed by the properties of prediction er-
rors which are simpler to manage and which allow us to easily study the global stability
of the closed-loop model.

Let us mention that the stochastic gradient estimator proposed by [Goodwin et
al. 1981] is also well-suited for solving the tracking problem, but due to the lack of
consistency it is not convenient for identifying function f outside D.

Let us now present the construction of the WLS estimator which is slightly dif-
ferent from as usual since only the observations lying outside D have to be considered
for the updating. The WLS estimator θ̂n is defined by:

θ̂n+1 = θ̂n + an S−1
n (a)Xn 1D(Xn)

(
Xn+1 − Un − θ̂t

nXn 1D(Xn)
)t

(8)

Sn(a) =
n∑

k=0

ak Xk Xt
k1D(Xk) + S−1,(9)

where S−1 is a deterministic, symmetric and positive definite matrix. The initial value
θ̂0 is arbitrarily chosen. The weighted sequence (an) has been chosen following the
work of [Bercu and Duflo 1992] and [Bercu 1995], ie. an = (log dn)−(1+ε) for some
ε > 0, and where

dn =
n∑

k=0

‖Xk‖2 1D(Xk) + d−1 with d−1 > 0,(10)

2.4. Control law. In order to solve the tracking problem, we introduce an ex-
cited adaptive control law based on the certainty-equivalence principle (Aström and
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Wittenmark, 1989). Addition of an excitation noise is necessary to obtain the uni-
form strong consistency of f̂n when the noise ε is bounded (Duflo, 1997; Portier and
Oulidi, 2000). Similar persistently excited control is used in the ARMAX framework
to obtain the consistency of the extended least squares estimator (Caines, 1985).

Let (X∗
n)n≥1 be a given bounded deterministic tracking trajectory. Let (γn)n≥1

be a sequence of positive real numbers decreasing to 0 and let η = (ηn)n≥1 be a white
noise. The excited adaptive tracking control is given by:

Un = X∗
n+1 − f̂n(Xn)1D(Xn) − θ̂t

nXn1D(Xn) + γn+1 ηn+1(11)

where f̂n(x) is the kernel-based estimator of f(x) and θ̂n is the WLS estimator of θ.
The tracking trajectory (X∗

n)n≥1, the vanishing sequence (γn)n≥1 and the exciting
noise η has to be chosen in such a way that the following assumptions are satisfied.

Assumptions [A4].

– The tracking trajectory (X∗
n)n≥1 is converging to a finite limit x∗ ∈ D;

– The sequence (γn)n≥1 is such that γ−1
n = O ((log n)a) for some a > 0;

– The noise η = (ηn)n≥1 is a sequence of d-dimensional, independent and iden-

tically distributed random vectors with mean zero and a finite moment of

order 2, supposed to be also independent of X0 and ε. The distribution of η

is absolutely continuous with respect to the Lebesgue measure, with a proba-

bility density function q > 0, supposed to be C1-class; q and its gradient are

bounded.

The choice of γn and ηn will govern the convergence rate of the NPE and the
tracking. A short discussion about that choice is made in the following section.

3. Theoretical results.

3.1. Stability of the closed-loop model. Let us now present the theoretical
results. The first one says that the control law (11), built with the NPE f̂n and the
WLS estimator, allows us to stabilize the closed-loop model.

Theorem 3.1. Assume that [A1] to [A4] hold. Then, the closed-loop model is
globally stable that is

n∑

k=1

‖Xk‖2 = O(n) a.s.(12)

Moreover, the parametric prediction errors satisfy
n∑

k=1

‖(θ̂k − θ)tXk‖21D(Xk) = o(n) a.s.(13)

Proof. The proof is given in Appendix A.
Of course results (12) and (13) hold if we assume [A2bis] instead of [A2]. The

global stability (12) is the key point to prove convergence results for the NPE. Result
(13) indicates that the parametric prediction errors have the good behaviour. This
result will be useful to prove the asymptotic optimality of the tracking.
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3.2. Optimality of the tracking. To establish the tracking optimality, we
need a uniform convergence result for the NPE and the main difficulty of the proof is
to establish that the denominator of f̂n(x) is strictly positive on any compact set of
Rd. Usually, this point is easily established when the distribution of ε is absolutely
continuous with respect to the Lebesgue measure and its p.d.f. p is > 0. However,
as ε is assumed to be bounded, we use the excitation noise η and its p.d.f. q > 0 to
ensure that the denominator of f̂n(x) remains strictly positive on any compact set of
Rd. Nevertheless, due to the vanishing sequence (γn), a condition linking (γn) and
the decrease of q, is now required.

Assumption [A5]. The p.d.f. q of the noise (ηn) and the vanishing sequence

(γn) are such that there exists a sequence of positive real numbers (δn)n≥1

decreasing to 0, with δ−1
n = O

(
(log n)b

)
for some b > 0, satisfying, for any

B < ∞ and any n ≥ 1,

γ−d
n inf

‖z‖≤B
q(γ−1

n z) ≥ c δn(14)

where c is a positive constant.

Remark 2. By choosing well-suited η and (γn), it is always possible to find a
sequence (δn) matching condition (14). For example in the case d = 1, let us choose
η such that its p.d.f. q satisfies q(x) ≥ cte/(1 + x4). Then, condition (14) holds with
δn = γ3

n.
Theorem 3.2. Assume that [A1] to [A5] hold. Then, for α < 1/2d, we have the

uniform almost sure convergence of f̂n to f : for any A < ∞,

sup
‖x‖≤A

∥∥∥f̂n(x)− f(x)
∥∥∥ = o

(
nβ−1

δn

)
+ O

(
n−αγ−d

n

δn

)
a.s.(15)

where β ∈ ]1/2 + αd , 1[. Moreover, the tracking is asymptotically optimal, ie.

1
n

n∑

k=1

‖Xk −X∗
k‖2 a.s.−→

n→∞
trace(Γ)(16)

and Γ̂n =
1
n

n∑

k=1

(Xk −X∗
k)(Xk −X∗

k)t is a strongly consistent estimator of Γ.

Proof. The proof is given in Appendix B.
Remark 3. If assumption [A2] is replaced by [A2bis], the term n−αγ−d

n reduces
to n−α (see Remark B.1 in Appendix B). In that case, we have a loss in the convergence
rate given by (15), compared to the result obtained in a nonadaptive context by
[Duflo 1997] or [Senoussi 1991, Senoussi 2000]. The loss is due to the term δn which
comes from Assumption [A5] (δn ≡ 1 in Duflo and Senoussi).

Remark 4. Starting from result (B.20) of AppendixB, which means that

n∑

k=1

∥∥f(Xk) + Uk −X∗
k+1

∥∥2 = o(n) a.s.
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where Uk is given by (11), we can obtain other interesting statistical results follow-
ing the work of [Poggi and Portier 2000]. More precisely, under assumptions [A1],
[A2bis] and [A3] to [A5], a multivariate pointwise central limit theorem for f̂n(x)
and a test for linearity of f can be derived.

3.3. A supplementary result about the WLS. As expected, the consistency
of the parametric estimator is not required to establish the tracking optimality. Nev-
ertheless, if we are interested in estimating the model outside D, it is possible to
obtain some convergence results for the WLS estimator. However, the noise ε must
satisfy [A2bis] instead of [A2].

Theorem 3.3. Assume that [A1], [A2bis] and [A3] to [A5] hold. Assume also
that

L = E
[
(ε1 + x∗)(ε1 + x∗)t1D(ε1 + x∗)

]

is invertible. Then, (13) is improved by

n∑

k=1

‖(θ̂k − θ)tXk‖21D(Xk) = o
(
(log n)1+ε

)
a.s.(17)

where ε is given by the weighting sequence (an)n≥1.
In addition, we have

∥∥∥θ̂n − θ
∥∥∥

2

= O

(
(log n)1+ε

n

)
a.s.(18)

√
n

(
θ̂n − θ

) L−→
n→∞

N (
0 , L−1 ⊗ Γ

)
.(19)

Proof. The proof is given in Appendix C.
The convergence results of the WLS estimator hold when the support of the

noise ε is sufficiently large to guarantee that the process visits D sufficiently often
even if the process is stabilized around x∗. Let us also mention that as expected,
the asymptotic variance of θ̂n is larger than the one obtained if model (1) was fully
parametric. Indeed, in that case, matrix L is equal to Γ+x∗(x∗)t leading to a smaller
asymptotic covariance matrix.

4. Simulation experiments. Since only asymptotic results are available, in
this section we illustrate the behaviour of the adaptive control law (11) for moderate
sample size realizations. We will focus on the quality of the tracking as well as the
behaviour of the different estimates.

Let us examine the following real-valued simulated nonlinear model defined by

Xn+1 =
(
1.4 + 0.5 sin(Xn/3) exp

(−(Xn − 118)2/50
))

Xn + Un + εn+1(20)

with εn ∼ N (
0 , 22

)
, X0 = 5 and U0 = 0. This model, of course unrealistic, is

very interesting because identification is difficult and the open-loop is very explosive.
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Moreover, it satisfies the assumptions of the theoretical results previously established.
Let us denote by f the real-valued function defined by

f(x) = 1.4 x + 0.5 sin(x/3) exp
(−(x− 118)2/50

)
x.

The graph of f is given by the dotted line on Fig. 3. This function is linear for large
x and highly nonlinear for small x. Here, the value of parameter θ is equal to 1.4.

Domain D is defined by D = {x ∈ R, |x| ≤ 260} and contains the tracking trajec-
tory which is defined as follows:

X∗
n = x∗−(x∗−X∗

0 ) exp(−τ n) with τ = −(1/100)∗log(0.05), X∗
0 = 20 and x∗ = 113.

This kind of tracking trajectory is usual and is such that the deviation between X∗
n

and x∗ is of 5% when n = 100.
For the nonparametric estimation of f , we take the bandwidth parameter α = 1/2

and we use the Gaussian kernel with the usual normalization equal to the estimated
standard deviation of the process. However, when the process is stabilized at x∗, this
choice is not relevant, since during the transient phase of the tracking, due to the bad
estimation of f(x) at the beginning, the process is often far from the tracking trajec-
tory. Therefore, a slight modification of the normalization must be done: we compute
the standard deviation of the process by taking only the most recent observations,
and more precisely, the computation is based on the last observations Xn−51, . . . , Xn,
leading to build a slightly modified version of the NPE (7). This choice of normaliza-
tion plays a crucial role since it allows to forget the transient phase, while the original
normalization leads to a large empirical standard deviation and then to a kernel-based
estimator with a too widely opened bandwidth of estimation.

Let us describe the updating scheme of estimates f̂n and θ̂n.
• At time n = 0, the initial state X0 lies in D. Let n0 be the first n such that

Xn 6∈ D. Until n0, we update f̂n and θ̂n. The updating of θ̂n allows us to obtain an
approximative idea of the true parameter value.

• After, for all n ≥ n0, if Xn ∈ D, then the updating only concerns f̂n, and θ̂n

otherwise. The preliminary estimation of θ will certainly accelerate the convergence
of θ̂n.

Let us now comment on the obtained results. The study is based on 200 realiza-
tions of length n = 200. We can distinguish two kinds of realizations: those for which
process X takes one or two values outside D (83%) and those for which process X

does not leave D (17%).
In the first case, as we can see for one realization (Fig. 1 to Fig. 4), the tracking

is good until the nonlinear part of the model generates the observations (Fig. 1). The
function f not yet being well estimated in the zone of the nonlinearity, the controller
cannot stabilize the process at the reference trajectory. Later on, the process takes a
value outside D. Since the WLS estimator is near to the true parameter value (Fig. 4),
the controller can bring back the process within D (Fig. 1). This situation occurs one
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Fig. 1. The process Xn superim-

posed with the tracking trajectory.

Fig. 2. The corresponding adap-

tive tracking control Un.
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Fig. 3. The true function (dotted

line) superimposed with its NPE.
Fig. 4. Parametric estimation.

or two times. After the process remains within D, estimation of f becomes better and
better, the controller can stabilize the process at x∗ and finally, matches the control
objective: the quantity (1/750)

∑1000
k=251(Xk −X∗

k)2 is equal to 4.15, to be compared
to the noise variance equal to 4.

As already observed by [Poggi and Portier 2000], we see in Fig. 2 that the control
effort is moderate on the time interval [0 , 100] since the open-loop system is close
to a linear system easy to be controlled. The control effort is very high after, since
the open-loop system is locally highly unstable leading to the control burden (large
slope). Nevertheless, this behaviour is as expected. In Fig. 3, one can appreciate the
quality of the functional estimation of f in [0, 125] explaining the good quality of the
tracking performance. Function f is not well estimated in [125, 200] because there are
so few observations.
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Fig. 6. The corresponding adap-

tive tracking control Un.
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Fig. 8. Parametric estimation.

In the second case (Fig. 5 to Fig. 8), let us only mention that the tracking is better
(Fig. 5) and since the process does not leave D, the parameter θ is not well estimated
(see Fig. 8).

Some notation. Let us specify some notation that will be used in the rest of
the paper. Let F = (Fn) be the nondecreasing sequence of σ-algebras of events
occuring up to time n. If (Mn) is square-integrable vector martingale adapted to F ,
its increasing process will be the predictable and increasing sequence of semi-definite
positive matrices defined by:

<M >n=
n∑

k=1

E
[
(Mk −Mk−1)(Mk −Mk−1)t /Fk−1

]
where M0 = 0
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Let us now define the prediction errors which have to be considered. The nonpara-
metric prediction error πn(f) is defined by

πn(f) = −
(
f̂n(Xn)− f(Xn)

)
1D(Xn)

and the parametric one πn(θ) is defined by:

πn(θ) = −
(
θ̂n − θ

)t

Xn 1D(Xn) = − θ̃t
nXn 1D(Xn)

where θ̃n = θ̂n − θ.

Appendix A: Proof of Theorem 3.1. By substituting (11) into (1), we obtain

Xn+1 = πn + X∗
n+1 + γn+1ηn+1 + εn+1(A.1)

where πn is the global prediction error defined by πn = πn(f) + πn(θ). Let us denote

sn =
n∑

k=0

‖Xk‖2 + s−1 where s−1 > max(d−1, trace(S−1))(A.2)

By the strong law of large numbers, we easily prove that n = O(sn) a.s., which implies
that sn

a.s.−→
n→∞

∞ (see Duflo, 1997, Corollary 1.3.25, p. 28). Now, let us show that we
have

∞∑
n=1

‖πn(θ)‖2 / dn < ∞ a.s.(A.3)

Since Xn+1−Un = f(Xn)1D(Xn)+θtXn1D(Xn)+εn+1, equation (8) can be rewrit-
ten under the form:

θ̃n+1 = θ̃n + an S−1
n (a)Xn 1D(Xn)

(
πn(θ) + εn+1

)t

(A.4)

Setting vn+1 = trace(θ̃t
n+1 Sn(a) θ̃n+1), we have

vn+1 = vn − an(1− fn(a)) ‖πn(θ)‖2 + anfn(a) ‖εn+1‖2

− 2 an(1− fn(a)) <πn(θ), εn+1 >

where fn(a) = anXt
n S−1

n (a)Xn 1D(Xn). Then, as
∑

n≥1 an fn(a) < ∞ , we derive,
by proceeding as for the proof of Theorem1 of [Bercu 1995], that

∑

n≥1

an(1− fn(a)) ‖πn(θ)‖2 < ∞ a.s.(A.5)

and
∥∥∥S1/2

n (a) θ̃n+1

∥∥∥
2

= O(1) a.s.(A.6)

Finally, as an(1− fn(a)) ≥ (a−1
n + dn)−1 ≥ (2dn)−1 for large n, we derive from (A.5)

that the WLS estimator satisfy (A.3).
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Therefore, as sn ≥ dn and sn increases to infinity a.s., we infer from (A.3) and
Kronecker’s lemma, that:

n∑

k=1

‖πk(θ)‖2 = o(sn) a.s.(A.7)

Now to close the proof, let us show that sn = O(n) a.s. Firstly, LemmaB.1 of
[Portier and Oulidi 2000] ensures that ∀ x ∈ Rd and ∀ n ≥ 1,

∥∥∥f̂n(x)− f(x)
∥∥∥ ≤ cf + ‖f(x)‖ + sup

k≤n
‖εk‖ a.s.

In addition, since (εn) is bounded and f continuous, it follows easily that πn(f) is
almost surely bounded. Then, starting from (A.1), there exists a finite constant M1

such that

‖Xn+1‖2 ≤ 8
(
‖πn(θ)‖2 + ‖ηn+1‖2 + M1

)
a.s.

and therefore,

sn+1 − s1 ≤ 8
( n∑

k=1

‖πk(θ)‖2 +
n∑

k=1

‖ηk+1‖2 + nM1

)
a.s.(A.8)

Furthermore, as η is independently and identically distributed (i.i.d. for short) and
has a finite moment of order 2, then

n∑

k=1

‖ηk+1‖2 = O(n) a.s.(A.9)

and using (A.7), we deduce from (A.8) that sn = o(sn) + O(n) leading to sn = O(n)
a.s., which establishes (12). In addition, we also deduce from (A.7) that

n∑

k=1

‖πk(θ)‖2 = o(n) a.s.(A.10)

which gives (13). This last result will be useful to prove the optimality of the tracking
(see Appendix B).

Appendix B: Proof of Theorem3.2. The study of the convergence results for
the kernel-based estimator f̂n is now well-known following the work of [Duflo 1997],
[Senoussi 2000] and [Portier and Oulidi 2000]. In this proof, we shall follow the same
scheme. Nevertheless, as (εn) is not a sequence of i.i.d. random vectors with as usual
a probability density function, some adaptations of the proof are required. Therefore,
to make the paper self-contained, the main technical points are recalled and some of
them are detailed if necessary.

Starting from (7), let us rewrite f̂n(x)− f(x) under the form

f̂n(x)− f(x) =
Mε

n(x) + Rn−1(x)
Hn−1(x)

1{Hn−1(x) 6= 0} − f(x)1{Hn−1(x) = 0}(B.1)
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where Mε
n(x) =

n−1∑

i=1

iαd K
(
iα(Xi − x)

)
εi+1

Rn−1(x) =
n−1∑

i=1

iαd K
(
iα(Xi − x)

)(
f(Xi)− f(x)

)

Hn−1(x) =
n−1∑

i=1

iαd K
(
iα(Xi − x)

)

Now, following the well-known argues, let us study the convergence of Mε
n(x),

Rn(x) and Hn(x).

Study of Mε
n(x). For x ∈ Rd and n ≥ 1, Mε

n(x) is a square integrable martingale
adapted to F = (Fn)n≥0 where Fn = σ (X0, U0, ε1, . . . , εn). As K is bounded and
Lipschitz, we have for any x, y ∈ Rd and δ ∈ ]0 , 1[ ,

nαd |K (nαXn)| ≤ cte nαd(B.2)

nαd |K (nα(Xn − x))−K (nα(Xn − y))| ≤ cte nαd+αδ ‖x− y‖δ(B.3)

In addition, as (εn)n≥1 has a finite conditional moment of order > 2, Mε
n(x) matches

assumptions of Proposition 3.1 of [Senoussi 2000] (or Corollary 3.VI.25 of [Duflo 1990],
p.154). Hence, we have for any positive constant A < ∞ and β ∈ ]1/2 + αd , 1[,

sup
‖x‖≤A

‖Mε
n(x)‖ = o(nβ), a.s.(B.4)

Before studying Rn(x) and Hn(x) let us establish the following lemma useful for the
sequel. Consider the new filtration G = (Gn)n≥0 where Gn = σ(X0, U0, ε1, . . . , εn+1,
η1, . . . , ηn).

Lemma B.1. Assume that [A1], [A2], [A3] and [A4] hold. For x ∈ Rd, let us
consider

Mn(x) =
n∑

i=1

iλ
{

K
(
iα(Xi − x)

)
− E

[
K

(
iα(Xi − x)

)
/Gi−1

]}
(B.5)

where λ ∈ ]0 , 1/2[ , α ∈ ]0 , 1/2d[. Then, for any A < ∞ and s ∈ ]1/2 + λ , 1[, we
have

sup
‖x‖≤A

|Mn(x)| = o (ns) , a.s.(B.6)

Proof. The proof is based on a result of uniform law of large numbers for martin-
gales established in [Senoussi 2000] or [Duflo 1997]. We have

<M(0)>n ≤
n∑

i=1

E
[
i2λ K2 (iα Xi) /Gi−1

]

≤
n∑

i=1

i2λ

∫
K2

(
iα(πi−1 + X∗

i + εi + γiv)
)

q(v) dv
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After an easy change of variable, we obtain

<M(0)>n ≤ ‖ q ‖∞ ‖K‖∞
n∑

i=1

i2λ−αdγ−d
i

Hence, E [<M(0)>n] ≤ cten1+2λ−αd γ−d
n ≤ cte n1+2λ.

Let x, y ∈ Rd. Since K is bounded and Lipschitz, straightforward calculations
give, for any τ ∈ ]0 , 1[ ,

<M(x)−M(y)>n ≤
n∑

i=1

i2λ E
[(

K (iα(Xi − x))−K (iα(Xi − y))
)τ

/Gi−1

]

≤ cte
n∑

i=1

i2λ+ατ ‖x− y‖τ

Now, taking the expectation, we obtain

E [<M(x)−M(y)>n] ≤ cte ‖x− y‖τ
n1+2λ+ατ

and assumptions of Theorem1.1 of Senoussi (or Proposition 6.4.33 of Duflo, p.219) are
fullfilled. Therefore, for any A < ∞ and s > 1/2+λ+ατ/2, sup

‖x‖≤A

n−s |Mn(x)| a.s.−→
n→∞

0.

Finally, since τ > 0 is arbitrary, we obtain Lemma’s result.

Study of Rn(x). As K is compactly supported, there exists a finite constant cK such
that K(y) = 0 for ‖y‖ ≥ cK .

From Assumption [A1], we deduce that f is Lipschitz-continuous that is, there
exists a finite constant cf such that for all x, y ∈ Rd, ‖f(x)− f(y)‖ ≤ cf ‖x− y‖.
Then, we infer that

‖Rn(x)‖ ≤ cf

n∑

i=1

iαd−αK
(
iα(Xi − x)

)
iα ‖Xi − x‖1niα ‖Xi − x‖ ≤ cK

o

and we deduce that ‖Rn(x)‖ = O (Tn(x)) where Tn(x) =
n∑

i=1

iαd−αK
(
iα(Xi − x)

)
.

Now, let us decompose Tn(x) under the form MT
n (x) + T c

n(x) where

T c
n(x) =

n∑

i=1

iαd−α E
[
K

(
iα(Xi − x)

)
/Gi−1

]

=
n∑

i=1

i−αγ−d
i

∫
K(t) q

(
γ−1

i (i−αt + x− πi−1 −X∗
i − εi)

)
dt.

As q is bounded and K integrating to 1, we easily deduce that

sup
x∈Rd

|T c
n(x)| = O

(
γ−d

n n1−α
)

a.s.(B.7)
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For x ∈ Rd and n ≥ 1, MT
n (x) is a square integrable martingale for which we can

apply Lemma B.1 with λ = αd− α. Then, for A < ∞ and s′ > 1
2 + αd− α,

sup
‖x‖≤A

∣∣MT
n (x)

∣∣ = o
(
ns′

)
a.s.(B.8)

Moreover, since α ∈ ]0 , 1/2d[, the real s′ can be chosen such that s′ < 1− α. Hence,
from (B.7) and (B.8), we obtain that for any A < ∞, sup

‖x‖≤A

|Tn(x)| = O
(
γ−d

n n1−α
)

a.s., and therefore

sup
‖x‖≤A

‖Rn(x)‖ = O
(
γ−d

n n1−α
)

a.s.(B.9)

Remark B.1. If assumption [A2] is replaced by [A2bis], then

sup
‖x‖≤A

‖Rn(x)‖ = O
(
n1−α

)
a.s.

Indeed, in that case, result (B.6) of LemmaB.1 holds for the filtration (Fn) instead of
(Gn). In addition, the term T c

n(x) is then equal to

T c
n(x) =

n∑

i=1

i−α

∫∫
K(t) p

(
i−αt + x− πi−1 −X∗

i − γiv
)
q(v) dt dv

and, as ‖p‖∞ < ∞, we derive that sup
x∈Rd

|T c
n(x)| = O

(
n1−α

)
, which gives the desired

result.

Study of Hn(x). We study Hn(x) by proceeding as for Tn(x). For x ∈ Rd, let us set

Hn(x) = MH
n (x) +

(
Hc

n(x) − Jn(x)
)

+ Jn(x)(B.10)

with MH
n (x) = Hn(x)−Hc

n(x) and

Hc
n(x) =

n∑

i=1

γ−d
i

∫
K(t) q

(
γ−1

i (i−αt + x− πi−1 −X∗
i − εi)

)
dt

Jn(x) =
n∑

i=1

γ−d
i q

(
γ−1

i (x− πi−1 −X∗
i − εi)

)

For x ∈ Rd and n ≥ 1, MH
n (x) is a square integrable martingale adapted to G. Then,

by Lemma B.1 used with λ = αd, we derive that for A < ∞ and s′′ > 1
2 + αd,

sup
‖x‖≤A

∣∣MH
n (x)

∣∣ = o
(
ns′′

)
a.s.(B.11)

As ‖Dq‖∞ < ∞ and
∫
‖t‖K(t) dt < ∞, we have

sup
x∈Rd

|Hc
n(x)− Jn(x)| = O

(
γ−(d+1)

n n1−α
)

a.s.(B.12)
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From (A.1) together with (A.9) and (12), we deduce that

n∑

j=1

∥∥πj−1 + X∗
j + εj

∥∥2 = O(n) a.s.(B.13)

Then using LemmaA.1 of [Portier and Oulidi 2000], we obtain that there exists c1 > 0
such that for R large enough,

lim inf
n→∞

1
n

n∑

k=1

1{‖πk−1+X∗
k+εk‖≤R} > c1 > 0 a.s.(B.14)

Let A < ∞. For x ∈ Rd such that ‖x‖ ≤ A, we have

Jn(x) ≥
n∑

j=1

γ−d
j inf

‖z‖≤A+R
q(γ−1

j z)1{‖πj−1+X∗
j +εj‖≤R}(B.15)

and using Assumption [A5], we obtain that

Jn(x) ≥ c2 δn

n∑

j=1

1{‖πj−1+X∗
j +εj‖≤R}(B.16)

where c2 > 0. Then, from (B.14) together with (B.16), we deduce that for any A < ∞,

lim inf
n→∞

1
n δn

inf
‖x‖≤A

Jn(x) > 0 a.s.(B.17)

Finally, from the following inequality

inf
‖x‖≤A

Hn(x) ≥ inf
‖x‖≤A

Jn(x)− sup
‖x‖≤A

∣∣MH
n (x)

∣∣− sup
‖x‖≤A

|Hc
n(x)− Jn(x)|

together with (B.11), (B.12) and (B.17), we deduce that

lim inf
n→∞

1
n δn

inf
‖x‖≤A

Hn(x) > 0 a.s.(B.18)

To close the proof of Part 1, it suffices to combine (B.4), (B.9) and (B.18).

Optimality of the tracking. Starting from (A.1), we have

∥∥Xn+1 −X∗
n+1

∥∥2 = ‖πn‖2 + 2 <πn , εn+1 + γn+1 ηn+1 >

+ ‖εn+1‖2 + γ2
n+1 ‖ηn+1‖2 + 2 γn+1 <ηn+1, εn+1 >

where < . , . > denotes the inner product on Rd.
By Theorem 3.2, we have for any A < ∞, sup

‖x‖≤A

‖f̂n(x) − f(x)‖ = o(1) a.s. In

particular, we can take A = D and then derive that

n∑

k=1

‖πk(f)‖2 = o(n) a.s.(B.19)
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In addition as ‖πn‖2 = ‖πn(f)‖2 + ‖πn(θ)‖2, we infer from (A.10) and (B.19) that

n∑

k=1

‖πk‖2 = o(n) a.s.(B.20)

Using once again (A.9), it follows that

n∑

k=1

γ2
k+1 ‖ηk+1‖2 = O

( n∑

k=1

γ2
k+1

)
= o(n) a.s.(B.21)

Furthermore, using the Cauchy-Schwarz inequality, we deduce that a.s.
∣∣∣∣∣

n∑

k=1

<πk , εk+1 + γk+1 ηk+1 >

∣∣∣∣∣ ≤
( n∑

k=1

‖πk‖2 ×
n∑

k=1

‖εk+1 + γk+1 ηk+1‖2
)1/2

= o(n)

and
∣∣∣∣∣

n∑

k=1

γk+1 <εk+1 , ηk+1 >

∣∣∣∣∣ ≤
( n∑

k=1

γ2
k+1 ‖ηk+1‖2

)1/2( n∑

k=1

‖εk+1‖2
)1/2

= o(n)

Finally, combining these different results with a strong law of large numbers, we prove
the tracking optimality. The strong consistency of Γ̂n is obtained by proceeding as
usual (see [Portier and Oulidi 2000] for example).

Appendix C: Proof of Theorem 3.3. This appendix is concerned with the
proof of some convergence results for the WLS estimator defined by (8) and (9).
First, let us establish the following lemma.

Lemma C.1. Assume that [A1], [A2bis] and [A3] to [A5] hold. Let g : Rd → R
be a function of C2-class with bounded derivatives of order 2 and such that |g(x)| ≤
cte(1 + ‖x‖2). Then,

1
n

n∑

k=1

g(Xk) a.s.−→
n→∞

E [g(ε1 + x∗)](C.1)

and

1
n

n∑

k=1

g(Xk)1D(Xk) a.s.−→
n→∞

E [g(ε1 + x∗)1D(ε1 + x∗)](C.2)

Proof. As g is of C2-class with bounded derivatives of order 2 and as ε is bounded,
we easily show using a Taylor expansion that

1
n

n∑

k=1

g(Xk) =
1
n

n∑

k=1

g(εk + x∗)

+ O

(
1
n

n∑

k=1

(
‖πk−1‖2 + ‖X∗

k − x∗‖2 + γ2
k ‖ηk‖2

))
(C.3)
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Then, using results used to prove the tracking optimality in the previous appendix
and a strong law of large numbers, we derive result (C.1). To establish (C.2), let us
remark that

1
n

n∑

k=1

g(Xk)1D(Xk) =
1
n

n∑

k=1

g(Xk) − 1
n

n∑

k=1

g(Xk)1D(Xk)

and let us rewrite
n∑

k=1

g(Xk)1D(Xk) as Mg
n + Rn where

Rn =
n∑

k=1

E [g(Xk)1D(Xk) /Fk−1]

=
n∑

k=1

∫∫
g(t)1D(t) p (t−X∗

k − πk−1 − γkv) q(v) dt dv

For any n ≥ 1, Mg
n is a square integrable martingale adapted to F . Its increasing

process satisfies <Mg >n= O(n) a.s. Therefore, using a strong law of large numbers
for martingales, we deduce that Mn = o(n) a.s.

Now, as E [g(ε1 + x∗)1D(ε1 + x∗)] =
∫

g(t)1D(t) p (t− x∗) dt and ‖Dp‖∞ < ∞,
∫

q(v)dv = 1,
∫
‖v‖ q(v)dv < ∞ and

∫
|g(t)|1D(t)dt < ∞, we infer after an easy

calculation that

|Rn − nE [g(ε1 + x∗)1D(ε1 + x∗)]| = o(n) a.s.(C.4)

Then,

1
n

n∑

k=1

g(Xk)1D(Xk) a.s.−→
n→∞

E [g(ε1 + x∗)1D(ε1 + x∗)](C.5)

and combining this result with (C.1), we obtain (C.2).
Now, we are able to prove Theorem3.3. Firstly, using Part 2 of Lemma C.1, we

deduce that

1
n

n∑

k=1

Xk Xt
k1D(Xk) a.s.−→

n→∞
L = E

[
(ε1 + x∗)(ε1 + x∗)t1D(ε1 + x∗)

]
(C.6)

Secondly, following [Bercu 1998], we derive that
Sn(a)

n(log n)−(1+ε)

a.s.−→
n→∞

L. In addition,

as soon as L is invertible,

λmin (Sn(a))
n(log n)−(1+ε)

a.s.−→
n→∞

λmin(L) > 0(C.7)

Finally, from results (A.5) and (A.6) together with (C.7), we deduce (17) and (18),
respectively. The central limit theorem (19) is obtained using Lemma C.1 of
[Bercu 1998].
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