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DATA REDUCTION VIA ADAPTIVE SAMPLING∗

XIAO-BAI LI†

Abstract. Data reduction is an important issue in the field of data mining. This article de-

scribes a new method for selecting a subset of data from a large dataset. A simplified chi-square

criterion is proposed for measuring the goodness-of-fit between the distributions of the reduced and

full data sets. Under this criterion, the data reduction problem can be formulated as a binary

quadratic program and a tabu search technique is used in the search/optimization process. The

procedure is adaptive in that it involves not only random sampling but also deterministic search

guided by the results of the previous search steps. The method is applicable primarily to discrete

data, but can be extended to continuous data as well. An experimental study that compares the

proposed method with simple random sampling on a number of simulated and real world datasets

has been conducted. The results of the study indicate that the distributions of the samples produced

by the proposed method are significantly closer to the true distribution than those of random samples.

Keywords. Data reduction, data mining, chi-square, goodness-of-fit, tabu search, binary

quadratic programming.

1. Introduction. In recent years, we have observed an explosion of electronic
data generated and collected by individuals, corporations, and government agencies.
It was estimated several years ago that the amount of data in the world was dou-
bling every twenty months [5]. By current standards, that estimate is no doubt too
conservative. The widespread use of bar codes and scanning devices for commercial
products, the computerization of business and government transactions, the rapid
development of electronic commence over the Internet, and the advances in storage
technology and database management systems have allowed us to generate and store
mountains of data. This rapid growth in data and databases has created the problem
of data overload. There has been an urgent need for new techniques and tools that
can extract useful information and knowledge from massive volumes of data. Conse-
quently, an emerging field, known as data mining, has flourished in the past several
years [4].

Data mining is the process of discovering hidden patterns in databases. The
entire process includes (loosely) three steps: (1) data preparation, which includes
data collection, data cleaning, data reduction and data transformation; (2) pattern
exploration, which involves developing (or using existing) algorithms and computer
programs to discover the patterns of interest; and (3) implementation, in which the
patterns discovered in the previous step are used to solve real world problems such as
credit evaluation, fraud detection, and customer relationship management. Although
it is commonly acknowledged that data preparation is often the most involved and
potentially most important step in the data mining process, there have been sur-
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prisingly few studies of problems in this area, as compared to the other areas. This
article addresses a key issue in data preparation, namely, data size reduction, where
the size refers to the number of records (rows) in a dataset. The number of attributes
(columns) in a dataset is often called dimensionality. The problem of dimensionality
reduction, known as feature selection, has been studied more extensively (see [11] [16])
and will not be discussed in this paper.

The presence of massive datasets can cause serious problems in an organization’s
decision support systems and database management systems. First, many data mining
and decision support systems cannot handle a dataset with size larger than a certain
limit (e.g., memory size). Second, the time spent on mining a large dataset can be
prohibitive even if the data size itself is not a constraint to the systems. Third,
maintaining and managing large volumes of data can be very expensive in required
personnel and storage equipment. On the other hand, some researchers have argued
that more effective data mining can be done by working on a reduced dataset instead of
the full set, as a statistician put it: “A powerful computationally intensive procedure
operating on a sub-sample of the data may in fact provide superior accuracy than a
less sophisticated one using the entire data base.”

A number of studies on data reduction problems have been done recently. Weiss
and Indurkhya [20] and Pyle [16] presented comprehensive reviews of sampling tech-
niques in the context of data reduction for data mining. Provost and Kolluri [15]
provided an in-depth discussion of data reduction techniques for inductive machine
learning. Han and Kamber [9] offered some guidelines for data reduction in general.
Catlett [2] studied a variety of procedures for selecting subsets from a large dataset
and compared empirically the results of using different techniques. Quinlan [17] used
a sampling technique, called windowing, in his C4.5 decision tree programs to handle
large datasets. Common to all of the data reduction techniques described or proposed
in these studies is that they are mainly based on statistical sampling techniques, such
as simple random sampling, stratified sampling or cluster sampling (see [3] for details
of these sampling techniques). There have also been some data reduction methods
that incorporate random sampling with adaptive procedures [8] [10] [14] [18]; but these
methods were intended for use in conjunction with a specific data mining technique
such as decision trees or association rule algorithms.

There is a weakness in almost all of the existing data reduction methods: they
fail to recognize a key difference between statistical sampling and data reduction in
the context of data mining. In statistical sampling, data is viewed as an expensive
resource and it is assumed that collecting population data is practically impossible.
The purpose of sampling is to allow us to draw statistical inferences about the unknown
population from sample data. Therefore, sampling procedures must be stochastic in
nature. In data reduction from large databases, data stored in the databases are so
large in size that they are normally regarded as “population” data (often, they indeed
represent the population). The concern of data reduction centers on getting a subset
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of data that best represents the known “population”. Therefore, techniques for data
reduction do not have to be truly stochastic. In fact, since there exists a known
object (the full dataset) as a reference for optimization, it should be beneficial to
incorporate deterministic search mechanism in a data reduction procedure in finding
better representative subsets.

In this paper, we present a new method for selecting a subset of data from a large
dataset. A simplified chi-square statistic is proposed for measuring the goodness-of-fit
(or closeness-of-fit) between the distributions of the reduced and full datasets. Under
the simplified chi-square criterion, the data reduction problem can be formulated as
a binary quadratic program. The global optimal solution to the problem is compu-
tationally intractable for large datasets and therefore a tabu search technique is used
in the search/optimization process. The procedure is adaptive in nature. It begins
with a random sample of the full set as an initial subset, and then repeatedly swaps a
record inside the subset with another outside. A candidate swap is drawn in random
but is committed only if it is not a tabu swap or it improves the value of the global ob-
jective function. The procedure is very fast and produces a significantly better subset,
in terms of the closeness to the true distribution, than a simple random sample. The
method is applicable primarily to discrete data, but can be extended to continuous
data as well.

The rest of the paper is organized as follows. The simplified chi-square criterion
is proposed and discussed in the next section. The third section describes details
of the adaptive sampling procedure, including the tabu search method used. An
experimental study that compares the proposed method with the simple random
sampling on a number of simulated and real world datasets has been conducted and
is described in Section 4. We conclude our study and discuss potential extensions in
Section 5.

2. Simplified Chi-Square Criterion. Given a large dataset, our objective is to
find a reduced dataset whose frequency distribution is as close to the true distribution
as possible, where the true distribution refers to the frequency distribution of the
original dataset. The size of the reduced set is expected to be substantially smaller
than that of the full set.

A classical measure of the closeness of (or distance between) the actual and ex-
pected distributions is the chi-square goodness-of-fit statistic, given by

(1) X2 =
∑ (ni −mi)2

mi
,

where ni is the frequency of the actual (or observed) distribution; mi is the fre-
quency of the expected distribution; and subscript i runs over all possible category
combinations (all cells in the contingency tables). When the data values are of the
continuous type, they are grouped into certain intervals before applying equation (1).
The statistic X2 follows asymptotically a χ2 distribution with appropriate degrees of
freedom.
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To apply equation (1) to the data reduction problem, let N and n be the sizes
of the original and reduced datasets, respectively, and call p = n/N the sampling
proportion. Let J be the number of attributes and Kj (j = 1, ... , J) be the number
of categories (intervals) in the jth attribute. Call each category combination a pattern.
Then the total number of patterns can be as large as

∏J
j=1 Kj . The actual number of

patterns, C, may be smaller since some of the patterns may not appear in the data.
Let Ni and ni (i = 1, ... , C) be the frequencies of the ith pattern in the original and
reduced datasets, respectively. Then, X2 can be computed by

(2) X2 =
C∑

i=1

(ni − pNi)2

pNi
,

Now, it appears that the data reduction problem described at the beginning of
this section can be translated to finding a reduced dataset that minimizes the X2

value in equation (2). However, there are two serious problems when equation (2) is
applied to large datasets. First, quantity C can be a huge number for a large dataset.
For instance, a dataset with 20 attributes of 5 categories each could potentially have
520 different patterns. In this case, it is unlikely to compute Ni from the data under
current computing capacity. Therefore, equation (2) is, in general, computationally
prohibitive in a data mining context. Second, in a large dataset, the frequencies of
different patterns often vary significantly. Some patterns may have hundreds or thou-
sands of replicates; others may have very few. When the latter case is not negligible,
X2 will depart more or less from a χ2 distribution and the degrees of freedom associ-
ated with it will be difficult to determine. Consequently, the validity of the chi-square
goodness-of-fit test is in doubt. To overcome these problems, we propose the following
simplified chi-square statistic:

(3)
X2

s =
J∑

j=1

Kj∑
k=1

(njk−pNjk)2

pNjk

=
K∑

i=1

(ni−pNi)
2

pNi
,

where njk is the frequency of the kth category of the jth attribute in the reduced
dataset; Njk is the corresponding frequency in the original set; and K =

∑J
j=1 Kj .

Since the frequencies in equation (3) are marginal frequencies instead of joint frequen-
cies, quantity K is generally much smaller than C, and the required memory space
and the amount of computation involved are reduced substantially. For instance, the
dataset with 20 attributes of 5 categories each will have only 20 × 5 terms in the
summation.

Our question now is (1) whether X2
s is a reasonably good measure of the closeness

of two distributions and (2) what distribution form the X2
s statistic has. The following

theorem provides the answer to the second question.
Theorem 2.1. The simplified chi-square X2

s has a χ2 distribution with K − J
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degrees of freedom; that is,

(4) X2
s ∼ χ2(K − J).

Proof. X2
s can be written as X2

s =
J∑

j=1

x2
j , where x2

j =
Kj∑
k=1

(njk−pNjk)2

pNjk
is the sum of

the squared frequency deviation for the jth attribute. Note that the frequency count
of categories in each attribute has a multinomial distribution and the size of each
njk or pNjk is apparently large enough to apply the central limit theorem. Based on
Pearson’s work [13], x2

j follows a χ2(Kj − 1) distribution. By the additivity property
of χ2 distributions, we have X2

s ∼ χ2(K − J).
To answer the first question, let us look at the relationship between the probability

distribution of the original dataset,

(5) PN (X) = PN (Xj)PN (X\j |Xj),

and that of the reduced set,

(6) Pn(X) = Pn(Xj)Pn(X\j |Xj),

where X\j represents the set of all attributes, excluding Xj . The X2 statistic in equa-
tion (2) is a good measure of the closeness of two distributions in that it represents
the closeness of the two joint distributions, PN (X) and Pn(X). (The fact that X2

is not computationally practical and its distribution form may not be clear in large
settings is irrelevant to whether it is a good measure of closeness.) The X2

s statistic,
on the other hand, represents the closeness of the two marginal distributions, PN (Xj)
and Pn(Xj). An optimization procedure based on the X2

s criterion may not yield con-
sistent results with those based on the X2 criterion unless the conditional probability
distribution remains relatively unchanged. However, since our proposed optimization
algorithm (discussed in the next section) minimizes the differences between PN (Xj)
and Pn(Xj) for all j simultaneously, it is reasonable to argue that the decreasing
rate of these differences will generally be greater than the rate of the changes in the
differences between PN (X\j |Xj) and Pn(X\j |Xj). Therefore, minimizing X2

s will, in
general, causes the X2 value to decrease. Further, for a chi-square distribution with
large degrees of freedom (df ), its cutoff point values fall into a narrow range centered
at df. A small drop in the X2 value caused by minimizing X2

s will lead to a significant
drop in probability of rejecting the null hypothesis that two distributions are the same.
(This fact can be observed from a χ2 distribution table or any software package that
generates the χ2 distribution.) This is true even though X2 departs somewhat from
a χ2 distribution. Therefore, the decrease in the X2 value caused by minimizing X2

s

is often statistically significant. We will see this effect in the experiments in Section
4.

3. Adaptive Sampling Procedure. Having established the simplified chi-
square as the minimization criterion, we now formulate our data reduction problem in
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a more rigorous form, as a quadratic optimization problem, and describe our proposed
adaptive sampling procedure for data reduction.

Given a large dataset X of size N × J (N rows/records, J columns/attributes),
our objective is to find a reduced dataset x of size n×J that minimizes the simplified
chi-square in equation (3). Continuing the notations in the previous section, the
problem can be formulated as a binary quadratic program as follows:

(7a) min X2
s =

J∑
j=1

Kj∑
k=1

(njk − pNjk)2

pNjk
,

(7b) s.t.
n∑

r=1

yrjk = njk, j = 1, ... , J ; k = 1, ... , Kj ,

(7c)
yrjk = 1 if the (r, j) entry value in x is the kth category of the jth attribute,

= 0 otherwise,

(this implies
Kj∑
k=1

yrjk = 1, r = 1, ... , n; j = 1, ... , J).

In addition, a row vector formed by yrjk (j = 1, ... , J ; k = 1, ... , Kj) must cor-
respond to a row in X. Note that p = n/N and Njk are known values. If there are
missing values in X, the missing item is counted as a category labeled as, say, “miss-
ing”; that is, Kj represents the number of categories in the jth attribute, including the
“missing” category. Like most integer programs, there is no “slick” solution to prob-
lem (7). We have to rely on enumeration based search technique. Our basic strategy
is to draw first a random sample of size n from X, and then repeatedly swap a record
inside the sample with a record outside to reduce the value of the objective func-
tion (7a). The global optimal solution to the problem is computationally intractable
for large data size N . In order to find a good solution with limited iterations, we
implement a tabu search technique in our optimization/searching procedure.

Tabu search is a meta-heuristic that guides a local heuristic search procedure to
overcome local optimality. The local search typically involves the use of an operation
called move to identify the neighborhood of a given solution. In order to escape
the trap of local optimality, the method records recent moves in a tabu list, or tabu
search memory, and forbid or penalize new moves that attempt to repeat or retrace
the recorded moves. The tabu list, which has a certain size, is updated after each
iteration. Therefore, a move recorded on the tabu list will stay in memory only for a
certain period. Tabu search also allows a move on the tabu list to be included in the
new solution if the move improves the level of aspiration function, which is typically
related to the global optima of the objective function. (See [7] for a comprehensive
treatment of tabu search.) Tabu search has been applied to various combinatorial
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optimization problems, including binary quadratic programming [6] and quadratic
assignment problem [19].

In the data reduction problem, after initial sampling, a move is a swap between
a record inside the sample and a record outside. A major difference between this
problem and other integer programming related tabu search problems is that a swap
of two records in this problem involves a simultaneous change of multiple attribute
values, while a move in the other problems normally involves only one attribute.
Therefore, it is not appropriate to place a sequence of recent swaps into the tabu
list, as most of the other tabu search applications do, because the compound effect
of forbidding these swaps is rather complicated and unpredictable. In our proposed
procedure, we first check if the two records to be interchanged have the same value
in each of the respective attributes, and draw a new pair of records if this situation
occurs. Based on the nature of our problem, we then place two restrictions on the
tabu list. To explain these restrictions, let us look at the objective function (7a),
which can be expressed, using the notations in the proof of Theorem 2.1, as below:

(7a′) min X2
s = x2

1 + x2
2 + · · · + x2

J ,

where the individual summation term, x2
j =

Kj∑
k=1

(njk−pNjk)2

pNjk
, represents the closeness

of the marginal distribution of the jth attribute. When x2
j = 0, it indicates a perfect

fit in the jth marginal distribution. When this situation occurs, we want to keep
it in the subsequent iterations. Therefore, a restriction is placed such that once a
x2

j reaches zero, any swap that changes the term to positive is forbidden (all x2
j ’s

are nonnegative, obviously). The second restriction is to forbid a swap that causes
the smallest non-zero summation term to deteriorate (increase). However, if a swap
improves the aspiration level, which is defined as the best (smallest) X2

s value that
has been achieved up to the current iteration, the swap will be selected even if this
restriction is violated. Since each summation term x2

j measures the gap between two
marginal distributions, the purpose of these two restrictions is to avoid selecting swaps
that allow gaps flow from one term to the other. In some rare occasions, it could be
difficult to find a swap that does not violate the above restrictions. To prevent long
trials at one iteration, a threshold number can be prespecified at the beginning of
the process. If the number of trials in searching a swap exceeds this threshold, the
existing tabu list is destroyed, which would allow a new swap to be selected quickly.
Another parameter specified by the user is the total number of iterations, which is
dependent on the sizes of the full and reduced datasets, N and n, as well as the time
that the user is willing to spend on the computation. Having described the details of
the procedure, we present the computation algorithm for adaptive sampling in Table
1.
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Table 1

Adaptive Sampling Algorithm

0. Let X be a data matrix of size N×J . Let M be the total number of iterations
and set iteration counter t = 0. Let xt be the sample data selected at the tth
iteration. Let m be the total number of trials within an iteration.

1. Draw a simple random sample x0 of size n × J from X. Compute X2
s using

equation (7a′). Set X2
min = X2

s , where X2
min represents the minimum objec-

tive function value. Set the best current sample x∗ = x0. Create the tabu
list b as a J-dimensional vector, with jth element bj = x2

j , where x2
j is the

jth summation term in (7a′).
2. Set t = t + 1. Select a swap as follows:

a. Set i = 0.
(i) Set i = i + 1. If i > m, reset each component of b to an arbitrarily large

number and go to step 3; otherwise, randomly select a row u from X
and a row v from xt−1.

(ii) If uj = vj for all j, go to (i); otherwise, add u to xt−1 and drop v from
xt−1. Denote the resulting sample as x̃t.

(iii) Update the X2
s (and x2

j ) value based on x̃t. If there is a subscript
j (j = 1, ... , J) such that x2

j > 0 and bj = 0, then go to (i); otherwise,
go to (iv).

(iv) Let bj∗ = min
j

{bj |bj > 0}. If x2
j∗ > bj∗ and X2

s ≥ X2
min, then go to (i);

otherwise, go to step b.
b. If x̃t = ∅, set xt = xt−1; otherwise, set xt = x̃t and update the tabu list by
assigning the new x2

j value to bj (j = 1, ... , J), respectively. If X2
s < X2

min,
set X2

min = X2
s and x∗ = xt. Go to step 3.

3. Repeat step 2. Stop if t > M or X2
min = 0.

Next, we discuss the computational complexity of the proposed algorithm. The
algorithm basically includes two phases: (1) select an initial random sample and
compute X2

s (step 1); and (2) repeatedly swap a pair of records to minimize X2
s

(steps 2 and 3). The most time-consuming operation in phase (1) is the computation
of X2

s . It involves a full scan of the entire datasets X and x, respectively. During
the scan, the algorithm identifies the category value of each attribute and counts the
frequency of each category. The total number of searching and counting operation is
(N + n)

∑J
j=1 Kj or (N + n)K, which is of order O(N) since N is dominantly larger

than n and K. Therefore, the time complexity of the first phase is linear in data size
N .

The second phase includes two loops. The outer loop repeats exactly M times
and the inner loop repeats at most m times. In the inner loop, the algorithm selects a
candidate swap, checks its tabu status, and updates the X2

s and tabu list values. Note
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that updating X2
s is much faster than computing X2

s from scratch because it only in-
volves adjusting the existing frequency tables, instead of scanning the entire datasets.
The time complexity of this operation is of order O(K). The other operations in the
inner loop have the same or lower order of time complexity. The maximum number
of runs for the inner loop, m, is often set as a small number (between 5 and 10) and,
based on our experience, the actual number of runs is even smaller (1 or 2 in most
cases). The effect of this number on computing time is thus not considered a factor.
Therefore, the time complexity of the second phase is of order O(KM ). Apparently,
the user has control over the computing time in this phase since M is set by the
user. To sum up, the time complexity of the adaptive sampling algorithm is of order
O(N) + O(KM). Clearly, the algorithm is capable of handling large data reduction
problems in a data mining context.

4. Experiments. In this section, we describe an experimental study that com-
pares the proposed adaptive sampling with simple random sampling on a number of
simulated and real world datasets. The primary objective of using simulated data is
to allow us to observe empirically the relationship between the X2 statistic in equa-
tion (2) and the proposed X2

s statistic, while the purpose of using real world data
is to see how the adaptive sampling performs in real settings against random sam-
pling. Therefore, the experiments for the simulated and real world data are described
separately.

Four artificial datasets were generated using SAS package. A summary of these
four datasets is given in Table 2 below, where 2 × 2 × 2 indicates that the dataset
has three attributes, each with two categories, and so on. The datasets were gen-
erated in a way such that the frequency of each pattern (category combination) in
each dataset ranges between 100 and 2000. This frequency range, together with prop-
erly chosen sampling proportions, would ensure that each pattern after sampling has
a sufficient number of records for a valid chi-square goodness-of-fit test. We were
unable to experiment with datasets of a larger dimensionality (i.e., a larger number
of attributes and/or categories) since the number of patterns increases exponentially
with dimensionality, which makes the calculation of X2 virtually impossible. We also
avoided generating a dataset that has a larger number of records but a low dimen-
sionality (which implies a high frequency for each pattern), since this kind of data is
uncommon in practice.

We set the maximum number of runs for the outer and inner loops, M and m,
to 500 and 10, respectively, for each dataset. In the experiments, we were able to
obtain the optimal solution (of problem (7)), where X2

s = 0, for each dataset in fewer
than M iterations. The results of the experiments are shown in Table 3. Because
the dimensionality of the datasets is relatively low, we were able to compute the X2

and its corresponding p-value in each dataset. Table 3 lists the X2, X2
s and their

corresponding p-values for the initial random sample and final sample (the result of
running the adaptive algorithm on the initial sample), respectively. Since a small p-
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value favors rejecting the null hypothesis that the sample has the same distribution as
the full dataset does, a larger p-value (and smaller X2 value) is desired. Also given in
the table are the actual number of iterations and the CPU computing time in seconds
to find the optimal solution.

Table 2

Summarized Descriptions of Simulated Data

Dataset Number of Number of Sampling
Name Records Attributes & Categories Proportion

A 5000 2 × 2 0.02
B 8000 2 × 2 × 2 0.02
C 13500 3 × 3 × 2 × 2 0.05
D 24000 2 × 2 × 2 × 2 × 2 × 2 0.05

Table 3

Results on Simulated Data

Initial Sample
Data X2 p-val X2

s p-val

A 1.48 0.69 1.36 0.51
B 6.00 0.54 5.23 0.16
C 32.5 0.59 6.67 0.35
D 80.7 0.07 13.4 0.04

Final Sample
Data X2 p-val X2

s p-val No. of Runs CPU Time
to Converge in Seconds

A 0.21 0.98 0 1.00 12 5
B 1.40 0.99 0 1.00 68 21
C 26.4 0.85 0 1.00 155 87
D 52.7 0.82 0 1.00 183 161

It is very clear from Table 3 that minimizing X2
s causes the X2 value to decrease.

More importantly, the improvement in the p-value for each X2 is quite substantial, as
shown in the two highlighted columns. For dataset D, the p-value for X2 in the initial
random sample is 0.07, which could lead to a decision of rejecting the null hypothesis
that the sample follows the same distribution as the original data does, depending
on the significance level used. In the final sample, this p-value improves to 0.82, well
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above any reasonable significance level. It appears that the simple random sampling
may or may not select a sample with a sufficiently large p-value; but after the sample
is processed by the algorithm, the p-value tends to increase to a level very close to
one.

Next, we describe the experiments on the real world data. It is very difficult,
for obvious reasons, to find a real world dataset of ideal size. U. C. Irvine maintains
a large collection of real world datasets [1], but those datasets are too small to be
used as data reduction examples. We nevertheless selected one set from this database
for our study. This dataset, initially used in [12], consists of 699 records of patients
with breast cancer, each having 9 attributes of integer type representing 9 medical
measurements, and a class label representing diagnostic decision. The integer values
range from 1 to 10. We selected this data due to a number of considerations. First,
we would like to see if the proposed algorithm could be readily applied to a dataset
with integer attributes, where the number of integer values is not too large so that
each integer can be treated as a category. Second, the dimensionality of this data is
rather high (2×109 possible patterns) compared to the data size. We want to see how
the proposed algorithm performs in this situation. Third, this dataset has missing
values.

The second dataset was collected from a company in travel industry. The dataset
contains 30384 customer records, each with 22 categorical attributes (four of them
were converted from numeric attributes). These attributes include customer descrip-
tions such as age, gender, membership status, credit card type, payment amount, the
number of transactions in a certain period, and so on. Due to company confidential-
ity requirements, it is not possible to reveal more information about the data. The
dimensionality of the dataset is reasonably large but the size is not. We collected
and used this data in our study because this kind of data is quite typical in data
mining applications such as credit evaluation and customer relationship management.
A summary of the two real world dataset is provided in Table 4.

Since X2 is computationally intractable for both datasets, we resort to an indirect
method to check the quality of the processed samples. Both datasets have a class
attribute that allows us to perform classification analysis on the data (the breast
data has been used for testing various classification algorithms in numerous studies).
The classification results based on the full and reduced sets can be used to indirectly
evaluate the effectiveness of different sampling methods. A popular decision tree
system, C4.5 [17], was used to perform the classification analysis. For each dataset,
we randomly selected 20% of the records and reserved the data as a common test
set for evaluating decision trees built based on different data sizes. This part of the
data is not involved in the data reduction process. The remaining 80% of the data
forms the full set and sampling methods were applied to this part of the data only.
The sampling proportions in Table 4 are larger than those used in the simulated data
because the dimensionalities of these sets are much larger and we want to avoid losing
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too many patterns after sampling.
The maximum number of runs for the outer and inner loops, M and m, was set

to 1000 and 10, respectively, for both datasets. The results of the experiments are
given in Table 5, where the CPU time under the initial sample column indicates the
time spent on step 1 of the algorithm and under the final sample column is the extra
processing time on steps 2 and 3. Neither sample converges to zero in 1000 runs but
the X2

s values in both cases drops significantly after processing. Decision trees were
built based on the data in the full set, initial and final samples, respectively, and tested
using the reserved test set. The results are given in Table 6, where the error rate is
the test error rate and the tree size is the average number of nodes in the decision
trees. The error rate is a primary measure of the quality of decision trees while the
tree size measures the simplicity of decision trees. If the test error rate based on a
sample is close to that based on the full set, it will be reasonable to argue that the
relationships among various attributes in the full set are well captured by the sample.
A similar statement does not apply to the comparison of tree size since smaller data
size tends to result in smaller trees. However, if the error rates are about the same,
then a smaller tree size is desirable.

Table 4

Summarized Descriptions of Real World Data

Dataset No. of No. of Max. No. of Categories Sampling
Name Records Attributes in an Attribute Proportion
Breast 693 10 10 0.30
Travel 30384 22 8 0.20

Table 5

Sampling Results on Real World Data

Initial Sample Final Sample
Dataset X2

s CPU Time X2
s Extra CPU Time

Name in Seconds in Seconds
Breast 62.68 3 3.82 55
Travel 47.00 108 0.54 1025

It is evident that both samples have significantly smaller tree sizes than the full
set has while keeping their error rates comparable to those of the full set. The tree size
for the final sample in the travel data is substantially smaller than those of the other
two. For the breast data, the final sample has the same error rate as the full set while
the initial random sample does have a notable higher error rate. For the travel data,
the final sample again has almost the same error rate as the full set while the initial
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Table 6

C4.5 Classification Results on Real World Data

Error Rate Tree Size
Dataset Full Initial Final Full Initial Final
Name Set Sample Sample Set Sample Sample
Breast 0.029 0.036 0.029 32 21 22
Travel 0.313 0.321 0.312 865 315 276

Fig. 1. Relationship between the Simplified Chi-Square and the Number of Iterations for the

Travel Data

sample has a slightly higher error rate. The differences in error rate for this data are
not significant, however. In short, the results are favorable to our proposed sampling
method. However, more experiments are needed before reaching any conclusion in
this aspect. In terms of computing time, it appears that the extra processing time for
the travel data is somewhat long. A further investigation of the relationship between
the X2

s value and the number of iterations, as shown in Figure 1, indicates that the
X2

s value drops substantially in the first 300 runs, and levels off after about 500 runs.
Therefore, the actual time to find a sample with a significantly smaller X2

s can be
reduced substantially.
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5. Conclusions and Extensions. We have presented a new data reduction
method that applies a tabu search technique to minimize a simplified chi-square crite-
rion in selecting a sample from a large dataset. The results of our experimental study
are favorable, although more empirical studies are needed to justify the effectiveness
of the proposed method.

As we stated earlier, the proposed method is applicable primarily to discrete or
categorical data. It is not difficult to extend the method to continuous or numerical
data, however. In fact, both of the real world datasets used in our experiments
involve numeric data. The easiest way to apply the method to continuous data is
to convert them to discrete values by grouping (or binning) the continuous values.
With individual record ID properly indexed, the original continuous values can be
retrieved for the final sample. Another approach to deal with continuous data is
to use a criterion that is appropriate for continuous data, instead of the chi-square
related measures. A possible criterion is the mean squared deviation, where the mean
refers to the average value of a continuous attribute in the full set, and the deviation
should be normalized for each attribute. This criterion seems feasible when the data
is continuous over all attributes. The key is to set the criterion properly so that the
selected sample will be close to the full set in terms of both the mean and variance.
When the data is of a mixed type (both continuous and discrete), it will be difficult,
if not impossible, to have a criterion commensurate to both continuous and discrete
values. Therefore, conversion between continuous and discrete values seems inevitable.

The simplified chi-square statistic, X2
s , is based on marginal distribution while

the chi-square statistic, X2, is based on joint distribution. In some occasions, the
correlation between X2

s and X2 may be weak and minimizing X2
s may not cause X2

to decrease sufficiently. When this is a serious concern, a modified chi-square measure
based on a higher order (higher than marginal) distribution can be considered. For
example, a second order chi-square measure that involves the frequency of joint cat-
egory combinations from any two attributes would generally have higher correlation
with X2 than X2

s does. However, the amount of computation for such kind of higher
order statistic increases quickly. Therefore, whether or not this approach is practical
depends on the size and dimensionality of the dataset.

REFERENCES

[1] C. Blake, E. Keogh and C. J. Merz, UCI repository of machine Learning databases,

Dept. of Information and Computer Science, University of California, Irvine, CA, 1998,

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] J. Catlett, Megainduction: Machine Learning on Very Large Databases, Ph.D. Dissertation,

School of Computer Science, University of Technology, Sydney, Australia, 1991.

[3] W. G. Cochran, Sampling Techniques (3rd ed), John Wiley & Sons, NY, 1977.

[4] U. M. Fayyad, G. Piatetsky-Shapiro and P. Smyth, From data mining to knowledge dis-

covery: An overview, Advances in Knowledge Discovery and Data Mining (U. M. Fayyad,

G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds.), pp.1-34, AAAI Press / MIT



DATA REDUCTION VIA ADAPTIVE SAMPLING 67

Press, Menlo Park, CA, 1996.

[5] W. J. Frawley, G. Piatetsky-Shapiro and C. J. Matheus, Knowledge discovery in

databases: An overview, Knowledge Discovery in Databases (G. Piatetsky-Shapiro and

C. J. Matheus, eds.), AAAI Press / MIT Press, Menlo Park, CA, 1991.

[6] F. Glover, G. A. Kochenberger and B. Alidaee, Adaptive memory tabu search for binary

quadratic programs, Management Science, 44:3(1998), pp. 336–345.

[7] F. Glover and M. Laguna, Tabu Search, Kluwer Academic, Norwell, MA, 1997.

[8] G. John and P. Langley, Static versus dynamic sampling for data mining, Proceedings of

the 5th International Conference on Knowledge Discovery and Data Mining (KDD-96),

pp.367-370, AAAI Press, Menlo Park, CA, 1996.

[9] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, San

Mateo, CA, 2001.

[10] H. Liu and H. Motoda (eds.), Instance Selection and Construction for Data Mining, Kluwer

Academic, Norwell, MA, 2001.

[11] J. Kittler, Feature selection and extraction, Handbook of Pattern Recognition and Image

Processing (T. Y. Young and K. S. Fu, eds.), Academic Press, NY, 1986.

[12] O. L. Mangasarian, R. Setiono and W. Wolberg, Pattern recognition via linear program-

ming: Theory and application to medical diagnosis, Large-Scale Numerical Optimization

(T. F. Coleman and Y. Y. Li, eds.), pp.22–30, SIAM Publications, Philadelphia, PA, 1990.

[13] K. Pearson, On a criterion that a given system of deviations from the probable in the case of

a correlated system of variables is such that it can be reasonably supposed to have arisen

from random sampling, Philos. Mag., 5:50(1900), pp.157–175.

[14] F. Provost, D. Jensen and T. Oates, Efficient progressive sampling, Proceedings of the 5th

International Conference on Knowledge Discovery and Data Mining (KDD-99), pp.23–32,

AAAI Press, Menlo Park, CA, 1999.

[15] F. Provost and V. Kolluri, A survey of methods for scaling up inductive algorithms, Data

Mining and Knowledge Discovery, 3:2(1999), pp.131–169.

[16] D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann, San Mateo, CA, 1999.

[17] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA,

1993.

[18] T. Reinartz, A unifying view on instance selection, Data Mining and Knowledge Discovery,

6:2(2002), pp.191–210.

[19] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, INFORMS Jour-

nal on Computing, 2:1(1990), pp.33–45.

[20] S. M. Weiss and N. Indurkhya, Predictive Data Mining: A Practical Guide, Morgan Kauf-

mann, San Mateo, CA, 1997.



68 XIAO-BAI LI


