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PSEUDO-HAMILTONIAN REALIZATION AND ITS APPLICATION∗

DAIZHAN CHENG† , TIELONG SHEN‡ , AND T. J. TARN§

Abstract. In this paper, the problem of pseudo-Hamiltonian realization of a control system is

studied. Several sufficient conditions are obtained. The stability of a dynamic system is investigated

via dissipative pseudo-Hamiltonian realization, and the stabilization of a control system is also inves-

tigated via feedback dissipative pseudo-Hamiltonian realization. Some relations between the stability

(asymptotical stability) with the dissipative (strict dissipative) realization are revealed. Relations

between the affine dissipative control systems and the dissipative pseudo-Hamiltonian realization are

also investigated. These results show that the set of pseudo-Hamiltonian systems represent a very

large class of interesting dynamic systems, and this approach is a powerful tool. Particularly, a gen-

eralization of the Krasovskii’s Theorem is obtained. Then the problem of L2 disturbance attenuation

of a nonlinear system via pseudo-Hamiltonian realization is investigated. It is shown that for a class

of pseudo-Hamiltonian systems the disturbance attenuation problem is solvable and an estimation

of the boundary of the L2 gain is obtained. Finally the results are applied to the excitation control

of power systems. The stabilization and the H∞ control problems are investigated for the single-

machine infinite bus power systems.

Keywords. Hamiltonian system, dissipative system, stabilization, disturbance attenuation,

power system

1. Introduction. In recent years, the problem of energy-based Lyapunov func-
tions was investigated intensively. The theory of the passivity-based control has been
well-established [16],[18],[25]. Particularly, the port-controlled Hamiltonian systems
were studied by [11], [15], [17]. It becomes a powerful technique for designing robust
controllers for many physical systems, which are described as a “generalized” Hamil-
tonian systems. Some applications of the approach were illustrated in [5], [7], [20],
[22],[26], [27].

The advantage of this approach is that for this class of systems when the stability
related problems are investigated, the Lyapunov candidates can be chosen from the
Hamiltonian functions. When the robust or H∞ control problems are considered,
the Hamiltonian functions may serve as the storage function, to avoid solving HJI
inequality, etc.

A pseudo-Hamiltonian dynamic system was proposed in [4], [8] as

(1) ẋ = M(x)
∂H

∂x
, x ∈ Rn,

∗Invited paper. Received on July 4, 2002; accepted for publication on October 11, 2002. Supported

partly by National 973 Project G1998020308 of China, partly by the joint project of JSPS of Japan.

†Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, P.R.China, E-mail:

dcheng@iss03.iss.ac.cn
‡Dept. of Mechanical Engineering, Sophia University, Tokyo 102-8554, Japan, E-mail:

tetu.sin@hoffman.cc.sophia.ac.jp
§Dept. of Systems Science and Math, Washington University, St. Louis, MO 63130, USA, E-mail:

tarn@wuauto.wustl.edu

91



92 DAIZHAN CHENG, TIELONG SHEN, AND T. J. TARN

where M(x) is an n × n matrix with entries as Cr function on Rn\{0}, called the
structure matrix. H ∈ Cr(Rn) is the Hamiltonian function of the system. We also
denote by XH = M(x)∂H

∂x , the Hamiltonian vector field deduced by H.
Through the paper we use Cr for certain r > 0 to assure sufficiently many differ-

entiability.
A controlled pseudo-Hamiltonian system is defined as

(2)


ẋ = M(x)∂H

∂x +
m∑

i=1

giui, x ∈ Rn

y = gT ∂H
∂x ,

where M(x) and H(x) are as in (1), gi(x), i = 1, · · · ,m, are Cr vector fields, and
g = [g1 g2 · · · gm].

When a local problem is discussed, Rn is replaced by an open neighborhood, U
of the origin, i.e., 0 ∈ U ⊂ Rn.

As proposed in [8], we allow M(x) to be an arbitrary matrix. Decompose M(x) =
K(x) + P (x), where K(x) is skew-symmetric and P (x) is symmetric. Furthermore,
assume x is a regular point of P (x) in the sense that the number of positive eigenvalues
and the number of negative eigenvalues are locally invariant. Then we may further
decompose P (x) = −R(x)+T (x), where both R(x) and T (x) are positive semi-definite
and the ranks of T (x) and R(x) are the numbers of positive eigenvalues and negative
eigenvalues respectively. Then under the regularity assumption, we have a unique
decomposition of M(x) as

(3) M(x) = K(x)−R(x) + T (x).

Similar decomposition may also be found in [14].
In later discussion, we assume K(x), R(x), and T (x) are Cr on Rn\{0}.
We call system (1) a dissipative pseudo-Hamiltonian system, system (2) a con-

trolled dissipative pseudo-Hamiltonian system or port-controlled Hamiltonian system
if T (x) ≡ 0. Port-controlled Hamiltonian system was proposed and studied by Ortega,
Van der Shaft et al. [11], [15], [16], [17], [18], [19], [20], [25].

The generalization, provided by the concept of pseudo-Hamiltonian system is to
allow T (x) 6= 0. The motivation for this generalization lies on the following two points:
First of all, converting an affine nonlinear system into a port-controlled Hamiltonian
system directly is difficult. But from the later discussion one sees easily that, roughly
speaking, almost all the affine nonlinear systems can be converted to the pseudo-
Hamiltonian systems. Moreover, almost all the functions can be the Hamiltonian
function for a given nonlinear system. So this approach can cover a very large class
of systems. Secondly, some conditions are known to convert a pseudo-Hamiltonian
system to the port-controlled system via feedback [6]. This problem will be further
studied in this paper. Then a two step realization can be proposed as: dynamic system
→ pseudo-Hamiltonian system → port-controlled system, and the well established
theory for port-controlled systems may be used for a large class of control systems.
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Even though the pseudo-Hamiltonian systems are so general, they still have many
interesting properties. We refer to [8] for some studies, which may be convincing for
exploring this kind of systems.

The energy-based Lyapunov function approach has been used in the control of
power systems [5],[22], [26], [27]. A key point in applying this new approach to a
general control system is to express the system as a controlled pseudo-Hamiltonian
system and further to a port-controlled Hamiltonian model. In [15] a constructive
methodology was presented to design controllers for a class of systems of the form of
port-controlled Hamiltonian system preserving such a structure. The standard Hamil-
tonian realization problem has been studied widely in eighties of the last century. We
refer to [10] and the references therein for the realization of classical (controlled)
Hamiltonian systems. But to the authors’ knowledge, there is no systematic method
to handle the problem of (dissipative) pseudo-Hamiltonian realization for general (con-
trol) systems.

The first purpose of this paper is to explore a possible solution to the pseudo-
Hamiltonian realization and the dissipative pseudo-Hamiltonian realization.

Then the stability via dissipative realization and the stabilization via feedback
dissipative realization are investigated. It is shown that under certain conditions,
a port-controlled system is equivalent to a dissipative pseudo-Hamiltonian system.
Moreover, a stable (asymptotically stable) system is equivalent to a dissipative (strict
dissipative) pseudo-Hamiltonian system with a positive definite Hamiltonian function.
In particular, a generalized Krasovskii’s Theorem is presented.

Using the pseudo-Hamiltonian form, it is shown that for a class of pseudo-
Hamiltonian systems the disturbance attenuation problem is solvable. Moreover, an
estimation of the boundary of the L2 gain is obtained.

Finally, the results are applied to the excitation control of power systems. It is
shown that for a single machine system the dissipative pseudo-Hamiltonian realization
is unique and can be obtained mechanically. The H∞ control is obtained under more
general disturbance than [21]. Using a set of engineering parameters the precise
boundary of the L2 gain is calculated.

The paper is organized as follows: In section 2, the pseudo-Hamiltonian realiza-
tion is considered. Section 3 considers the problem of dissipative pseudo-Hamiltonian
realization and its applications to stability problems. The stabilization problem is
considered in section 4 via feedback dissipative pseudo-Hamiltonian realization. In
section 5 we consider the disturbance attenuation problem of a port-controlled Hamil-
tonian system. Finally, in section 6 the excitation control of power systems is studied
by pseudo-Hamiltonian approach. Section 7 is the conclusion.

2. Pseudo-Hamiltonian Realization.

Definition 2.1. Consider a dynamic system

(4) ẋ = f(x), x ∈ Rn,
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where f(x) = [f1(x) f2(x) · · · fn(x)]T is Cr vector field with f(0) = 0. The system (4)
is said to have a pseudo-Hamiltonian realization if there exists a suitable coordinate
charge and a Cr function H, such that equation (4) can be converted into a pseudo-
Hamiltonian system (1). H(x) is then called the Hamiltonian function of the system.

Consider a controlled dynamic system

(5)


ẋ = f(x) +

m∑
i=1

gi(x)ui, x ∈ Rn

y = h(x), y ∈ Rm,

where f(x), gi(x), i = 1, · · · ,m are Cr vector fields, h(x) is a set of m Cr functions,
and f(0) = 0, h(0) = 0. The system (5) is said to have a pseudo-Hamiltonian
realization if there exists a suitable coordinate change and a Cr function H ,called the
Hamiltonian function, such that the equation (5) can be converted into a controlled
pseudo-Hamiltonian system (2).

If in a realization as the form of (1) ((2)), the decomposition of M(x) has
T (x) ≡ 0, it is called a dissipative pseudo-Hamiltonian realization (or controlled dis-
sipative pseudo-Hamiltonian realization respectively). If in addition, R(x) is positive
definite, the (controlled) dissipative realization is called a (controlled) strict dissipative
realization.

To begin with, we may propose a Hamiltonian function, H(x), in advance and
try to convert a dynamic system into a pseudo-Hamiltonian system with H(x) as its
Hamiltonian function. For convenience, through the paper, for a smooth function
H(x) we denote

dH(x) = (
∂H(x)
∂x1

, · · · , ∂H(x)
∂xn

) =
(
∂H(x)
∂x

)T

.

Proposition 2.2. Let H(x) be a Cr function. If ‖dH(x)‖ :=
√
dH(x)∂H

∂x (x) 6=
0, x 6= 0, then the system (4) has a pseudo-Hamiltonian realization with H(x) as its
Hamiltonian function.

Proof. Choosing the structure matrix, M(x) = (mij(x)), as

(6) mij(x) =


fi(x)dH(x)j

‖dH(x)‖2 , x 6= 0,

0, x = 0.

Then M(x) is smooth on Rn\{0} and for this M(x) system (4) becomes (1).

Remark 2.3. It is obvious that the structure matrix is not unique. Say, for any
smooth function ψ(x) with ψ(0) = 0 if we replace mij(x) and mik(x) simultaneously
by

(7) mij − ψ(x), mik(x) +
ψ(x)dH(x)j

dH(x)k
, x 6= 0
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respectively, M(x) remains available. In this way we can modify M(x) to meet our
further requirement. For instance, see the following example.

Example 2.4. Consider a system

(8) ẋ =

(
−x1

−x2
1x2

)
.

Let H(x) = 1
2 (x2

1 + x2
2). Using (6) directly, we have

(9) ẋ =

− x2
1

x2
1+x2

2
− x1x2

x2
1+x2

2

− x3
1x2

x2
1+x2

2
− x2

1x2
2

x2
1+x2

2

 ∂H(x)
∂x

.

For i = 1, j = 1, k = 2, choose ψ1 = x2
2

x2
1+x2

2
, and for i = 2, j = 1, k = 2, choose

ψ2 = x1x3
2

x2
1+x2

2
, then (7) converts (9) to

(10) ẋ =

(
−1 0

−x1x2 0

)
∂H(x)
∂x

,

which is smooth at the origin. If in the above process, φ2 is replaced by ψ2 = −x3
1x2

x2
1+x2

2
,

a dissipative realization is obtained as

(11) ẋ =

(
−1 0
0 −x2

1

)
∂H(x)
∂x

.

We give some simple examples to describe the realization.

Example 2.5. (i). A simple form of H(x) is the variable-separated function as

(12) H(x) =
n∑

j=1

ψj(xj),

where ψj(xj) are n smooth functions (Cr) and ψj(0) = 0.
Then the system (4) has a pseudo-Hamiltonian realization if there exist continuous

functions φj(xj), mij(x), i = 1, · · · , n; j = 1, · · · , n, such that

(13) fi(x) =
n∑

j=1

mij(x)φj(xj), i = 1, · · · , n,

because we can simply choose ψj(xj) =
∫ xj

0
φj(τ)dτ, j = 1, · · · , n. Then (4) be-

comes

ẋ = M(x)
∂H

∂x
,

where M(x) = (mij(x)) and H(x) is as in (12).
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(ii). To illustrate the model described in (i), consider a particle in a gravity field.
Let x be the displacement and v = ẋ be the velocity. According to the Newton’s
second law we have

(14)

ẋ = v

v̇ = −c 1
(x+R0)2

, x > 0,

where R0 is the radius of the other body, say earth. According to (12), we may simply
choose φ1 = −c 1

x2 and φ2 = mv := p, which is the momentum of the particle, then
we get the Hamiltonian function as

H =
1

2m
p2 + c

(
1
R0

− 1
R0 + x

)
,

and (14) becomes a standard Hamiltonian system:

(15)

(
ẋ

ṗ

)
=

(
0 m

−m 0

)
∂H

∂(x, p)
.

(iii) Consider the system (4), assume the Jacobian matrix, Jf (x), of f is symmet-
ric. Then as shown in [12] (4) can be expressed as ẋ = (−I)∂H

∂x with the Hamiltonian
function as

H(x) = −
∫ xn

0
fn(x1, · · · , xn−1, τn)dτn

−
∫ xn−1

0
fn−1(x1, · · · , xn−2, τn−1, 0)dτn−1 · · ·

−
∫ x1

0
f1(τ1, 0, · · · , 0)dτ1.

To assure the positivity of the Hamiltonian function we assume ψi(xi) > 0 and
ψi(0) = 0, which make H(x) be a candidate of a Lyapunov function. Particularly,
we may assume ψi(xi) = x2

i , i = 1, · · · , n. Then we have the following proposition,
which is basically well known [13], but with a slightly different statement.

Proposition 2.6. System (4) has a pseudo-Hamiltonian realization with

H(x) =
1
2

n∑
i=1

x2
i ,

iff f(0) = 0.
Proof. Necessity is obvious. As for sufficiency, if f(0) = 0 system (4) can be

converted to (1) with the structure matrix as

M(x) =
∫ 1

0

[
∂f1(τ)
∂τ

,
∂f2(τ)
∂τ

, · · · , ∂fn(τ)
∂τ

]T
∣∣∣∣∣
τ=tx

dt.

The above discussion in this section shown that a large class of dynamic systems
can be converted into the pseudo-Hamiltonian systems. Then the developed and
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developing theory on “generalized” Hamiltonian systems may be used to solve various
control problems. Hence it is worthwhile to investigate such class of systems.

Consider system (4) again. A practically useful case is to convert it into (1) with
constant M . A constant M provides a Lie-group and Lie-algebra structure for the
system, which are parallel to the symplectic group and symplectic algebra [8].

Define a set of row vectors Ai = ( ∂
∂xi

f)T , i = 1, · · · , n. We have the following:
Proposition 2.7. System (4) has a constant and invertible M realization if the

following equation

(16)



A2 −A1

A3 −A1

. . .

An −A1

A3 −A2

. . .

An −A2

...
An −An−1




X1

X2

...
Xn

 = 0, , Xi ∈ Rn, i = 1, · · · , n

has a constant solution {Xi}, which makes the following matrix N non-singular:

N = col(XT
1 , X

T
2 · · · XT

n ).

To see the pattern of the coefficient matrix in (16), note that it consists of n− 1
blocks with n− 1, n− 2, · · · , 1 rows in sequence.
Proof. Denote the i-th component of Nf by Hi. Then a straightforward computation
shows that

∂Hi

∂xj
= AjXi, i, j = 1, · · · , n.

The solution of (16) implies that

∂Hi

∂xj
=
∂Hj

∂xi
, i 6= j.

According to Poincare’s Lemma [1], (Nf) is closed. That is, there exists H, such that
(Nf) = ∂H

∂x . Hence, f = M ∂H
∂x . Note that since Rn is simply connected a global

solution of (16) provides a global realization.
Remark 2.8. It is easy to prove that if the coordinate frame is fixed, the condi-

tions in Proposition 2.7 are also necessary.

3. Stability via Dissipative Realization. In this section we consider the sta-
bility of a dynamic system via pseudo-Hamiltonian realization. The following propo-
sition follows from definition and a straightforward computation.
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Proposition 3.1. 1. System (1) is a (strict) dissipative pseudo-Hamiltonian
system iff

(17) M(x) +MT (x) ≤ 0 (< 0).

2. Let z = z(x) be a coordinate change with the Jacobian matrix Jz. Then the
structure matrix under the new coordinate frame is

(18) M(z) = Jz(x)M(x)JT
z (x)|x=x(z).

where x = x(z) denotes the inverse mapping of z = z(x).
It follows from (18) that the decomposition in (3) is coordinate independent.

Therefore, the dissipativity of a system is also coordinate independent.
Next, we investigate the relationship between the (asymptotical) stability with

the (strict) pseudo-Hamiltoniant realization of a dynamic system. We start with linear
systems.

Proposition 3.2. A linear system

(19) ẋ = Ax

has a dissipative realization (strict dissipative realization) with positive Hamiltonian
function, iff it is stable (asymptotically stable).

Proof. (Sufficiency) Case 1. A is asymptotically stable. The dissipative realization
can be obtained in the following way: We can choose the Hamiltonian function as
H = 1

2x
TPx with P > 0. Then the generalized Hamiltonian realization is

ẋ = AP−1 ∂H

∂x
= (

1
2
(AP−1 − P−1AT ) +

1
2
(AP−1 + P−1AT ))

∂H

∂x
:= (K −R)

∂H

∂x
.

Now K is obviously skew symmetric, so if we can find a positive definite P such that
R > 0, we are done. It is well known that for any given negative definite matrix Q < 0
the Lyapunov equation

AP−1 + P−1AT = Q := −2R < 0

has a positive definite solution P > 0, which is what we are looking for.
Case 2. A is stable. We may convert A into a real Jordan form. Then the system

is decoupled into several subsystems, each subsystem contains a Jordan block. If the
block is of the eigenvalues with negative real part, it becomes case 1. If the block is
of the eigenvalues with zero real part, the eigenvalue should have fold 1 because A is

stable. So it is either 1× 1 block of zero, as J = (0), or 2× 2 block as J =

(
0 b

−b 0

)
.

Simply choosing P = I, it works.
(Necessity) If a linear system has a dissipative realization, then the Hamiltonian

function should be a quadratic form. In addition, since the Hamiltonian function is
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required to be positive definite it should be H = 1
2x

TPx, with P > 0. Using H as the
Lyapunov function, since the structure matrix is (strict) dissipative the linear system
is obviously (asymptotically) stable.

Now a natural question is: for a nonlinear system whether the (strict) dissipativity
with positive Hamiltonian function is also equivalent to (asymptotical) stability? To
answer this and for the further investigation we propose some notations and concepts.

LetM(x) = (mij(x)) be a p×q matrix. ThenDM(x) is a p×(nq) matrix, obtained
by replacing mij(x) by its differential dmij(x) = (∂mij(x)

∂x1
, · · · , ∂mij(x)

∂xn
). The higher

differentials can be defined inductively as

DkM(x) = D(Dk−1M(x)), k > 1.

Similarly, ∂M(x)
∂x is a (np)× (q) matrix, obtained by replacing mij(x) by its gradient

∂mij

∂x
(x) = (

∂mij(x)
∂x1

, · · · , ∂mij(x)
∂xn

)T .

Moreover,

∂k

∂xk
M(x) =

∂

∂x
(
∂k−1

∂xk−1
M(x)), k > 1.

Let M and N be two matrices of dimensions m × n and p × q respectively. If
n = tp or nt = p for some integer t, we define the semi-tensor product of M and N as

(20) M nN =

M(N ⊗ It), n = tp

(M ⊗ It)N, nt = p.

Since it is a generalization of the conventional matrix product, we may omit n.
Semi-tensor product is also associative [6], [9].

When the origin is an asymptotically stable equilibrium of the system (4) it must
be an isolated equilibrium point. When the origin is globally asymptotically stable it
must be the unique equilibrium point. So in the later discussion when the problem of
asymptotical stability or global asymptotical stability is considered, the corresponding
necessary condition is assumed. That means, f(x) = 0 implies x = 0 in either local
or global case. We write it as a hypothesis.

H1. The origin is an isolated equilibrium point of f(x) when the local stability or
stabilization problem is considered, it is the only equilibrium point when the global
stability or stabilization problem is considered.

As a consequence of H1, we have

Proposition 3.3. Assume H1 and the system (4) has a (strict) dissipative re-
alization with a positive Hamiltonian function. Then the system is (asymptotically)
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stable. Moreover, if H(x) is radially unbounded, the system is globally (asymptotically)
stable.

Proof. Taking H as the Lyapunov function, the stability follows. As for the
asymptotical stability. Note that Ḣ(x) < 0 and continuous for x 6= 0. Then for any
given ε > 0 there exists T > 0 such that ‖x(t)‖ < ε for t > T . In fact, it doesn’t
matter if M(x) is discontinuous at zero.

Now we are ready to consider the nonlinear counterpart of the Proposition 3.2.
Assume the system (4) is (globally) asymptotically stable with a Cr (r ≥ 2)

Lyapunov function L. Since the origin is a critical point, that is: L(0) = 0 and
∂L
∂x (0) = 0, we can express ∂L

∂x as

(21)
∂L

∂x
:= Φ(x)x.

According to Proposition 2.6, the system (4) can be expressed as

ẋ = A(x)x.

Now since the system (4) is (globally) asymptotically stable

(22) L̇ = xtΦT (x)A(x)x < 0,

which holds (globally on Rn) locally around the origin. A sufficient condition for 22
is

(23) ΦT (x)A(x) +AT (x)Φ(x) < 0.

Now in addition to Proposition 3.3, we have the following

Proposition 3.4. Assume the system (4) is (globally) asymptotically stable with
a Cr (r ≥ 2) Lyapunov function, L(x) as in (21) with invertible Φ(x), and (23) holds.
Then it has a (global) dissipative realization.

Proof. Under the assumption it is easy to see that the system (4) can be expressed
as

(24) ẋ = M(x)
∂L(x)
∂x

,

where

M(x) =

A(x)Φ−1(x), x 6= 0

0, x = 0.

Since ΦT (x)A(x) +AT (x)Φ(x) is a negative definite matrix, x 6= 0, we have that

A(x)Φ−1(x)+Φ−T (x)AT (x) = Φ−T (x)(ΦT (x)A(x)+AT (x)Φ(x))Φ−1(x) < 0, x 6= 0.

That is, the realization is a strict dissipative realization.
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A natural way to define a positive definite Hamiltonian function using f is to set

(25) H(x) = f tP (x)f, where P (x) > 0.

A straightforward computation shows that

∂H

∂x
(x) = [P (x)Jf (x) + JT

f (x)P (x) + fT (x) n
∂P (x)
∂x

]f.

Hence, we have the following realization:

Lemma 3.5. Assume there exists a matrix P (x) > 0, such that for the system (4)
the matrix

Φ(x) := P (x)Jf (x) + JT
f (x)P (x) + fT (x) n

∂P (x)
∂x

is nonsingular, then the system (4) has a realization

(26) ẋ := M(x)
∂H

∂x
= (Φ−1)

∂

∂x
(f tP (x)f).

Next, we consider the relationship between the realization of (26) and the stability
problem.

We say a matrix M is (strictly) dissipative if

M +MT ≤ 0, (< 0).

Lemma 3.6. 1. If a matrix M is dissipative and invertible then its inverse is also
dissipative;

2. If M is a strictly dissipative matrix, then M is invertible. Moreover, M−1 is
also strict dissipative.

Proof. 1. Since M is dissipative

xTMx ≤ 0, ∀x ∈ Rn

Set y = M−1x, then

yTM−T y = yTM−1y ≤ 0, ∀y ∈ Rn.

So M−1 is also dissipative.
2. DecomposeM = K−R, withK skew-symmetric and R symmetric and positive

definite. Assume M is not invertible. Then there exists x ∈ Rn\{0} such that

xTM = 0.

It follows that

xTMx = xT (K −R)x = −xTRx = 0,
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which is a contradiction. So M is invertible.
Next assume M−1 = K̃ − R̃ is not strict dissipative, i.e., there exists an x 6= 0

such that

0 = −xT R̃x = xTM−1x.

Let y = M−1x 6= 0. Then

xTM−1x = yTMTM−1My = yTMT y = yTMy = −yTRy = 0,

which is a contradiction again. So M−1 is strict dissipative.
Consider the stability problem via the pseudo-Hamiltonian realization in Lemma

3.6.

Theorem 3.7. Assume H1 holds for system (4). 1. If there exists a positive
definite matrix, P (x) > 0, such that

Φ(x) := P (x)Jf (x) + JT
f (x)P (x) + fT (x) n (

∂P (x)
∂x

)

is a locally invertible and dissipative matrix, then the origin is a stable equilibrium
point.

If Φ(x) is globally invertible and dissipative, and the function, fT (x)P (x)f(x), is
radially unbounded, then the system is globally stable at the origin.

2. If Φ(x) is locally strict dissipative, the origin is an asymptotically stable equi-
librium point.

If Φ(x) is globally strict dissipative, and the function, fT (x)P (x)f(x), is radially
unbounded, then the system is globally asymptotically stable at the origin.

Proof. Using Lemma 3.5, for both case 1 and case 2 we have a pseudo-Hamiltonian
realization of the system (4) as

(27) ẋ = M(x)
∂H

∂x
(x),

where H(x) = fT (x)P (x)f(x) and M(x) = Φ−1(x). According to H1, f(x) = 0
implies x = 0 (locally or globally respectively to 1 or 2). Hence H(x) is a Lyapunov
function. Now since Φ(x) is dissipative (strict dissipative respectively), by Lemma 3.6
so is M(x). Then

Ḣ(x) = dHM(x)
∂H

∂x
≤ 0,

the local (global) stability is assured.
Next, when M(x) is strict dissipative, we have to show that Ḣ(x) < 0, for x 6= 0.

Since M(x) is strict dissipative, Ḣ(x) = 0 implies dH(x) = 0. Since ∂H
∂x (x) =

Φ(x)f(x), and Φ(x) is non-singular, dH(x) = 0 implies f(x) = 0, and the later
implies x = 0.
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Remark 3.8. In the above Theorem, when P (x) = P > 0, Φ(x) becomes
JT

f P + PJf . When there exists c > 0 such that Φ(x) < −cI, it is easy to show that
fT (x)Pf(x), is radially unbounded. So the origin is globally asymptotically stable.
This is the Krasovskii’s theorem [12]. So the above is a generalization of Krasovskii’s
theorem. To see that the above Theorem is much more general we assume a system is
globally asymptotically stable and the corresponding Lyapunov function, L(x), is C2.
Moreover, assume the mapping π : x 7→ f(x) is a diffeomorphism. Then from the proof
of Proposition 3.4, one sees that L(x) can be expressed as L(x) = fT (x)P (x)f(x).
That is Theorem 3.7 is applicable to such kind of systems, while the Krasovskii’s
Theorem doesn’t work.

Casimir function method is an useful tool in the stability and stabilization analysis
of Hamiltonian systems [16], [7]. Using Casimir functions we may choose different
Hamiltonian functions to represent same system. It gives us more freedom to choose
a suitable Hamiltonian function as a Lyapunov function, or a storage function, etc.

Given a structure matrix M(x), we define a pseudo-Poisson bracket as

(28) {F (x), G(x)} = dFM(x)
∂G(x)
∂x

, ∀F (x), G(x) ∈ C∞(Rn).

Then for a given G(x) ∈ C∞(Rn) we can define a vector field, called the pseudo-
Hamiltonian vector field generated by G(x) and denoted by XG, as

(29) LXG
F (x) = {F (x), G(x)}, ∀F (x) ∈ C∞(Rn).

A function C(x) is called a left (right) Casimir function if

{C(x), F (x)} = 0, ({F (x), C(x)} = 0) ∀F (x) ∈ C∞(Rn).

If a left Casimir function is also a right Casimir function, it is called a Casimir function.
When M(x) is either symmetric or skew-symmetric matrix, a left (or right)

Casimir function is also a Casimir function.
A right Casimir function, Cr(x), may be added to the Hamiltonian function H,

which will not affect the structure of the system. But for the new Hamiltonian function
H̃ = H+Cr, the derivative of the Lyapunov function along the trajectory is changed to
d
dt (H̃) = d

dt (H) + {Cr,H}. Choosing suitable Cr may turn the Hamiltonian function
to meet our requirement.

A left Casimir function, Cl(x), may be added to the Hamiltonian function H, to
form a new storage function as S(x) = H(x) + Cl(x). It has the same derivative as
H along the trajectory.

Example 3.9. Consider the system (4) we denote f = col(f1, f2). Note that
we always use supscripts for blocks, and subscripts for individual components.

Assume

J11 =
∂f1

∂x1
, f1(x) ∈ Rk, x1 ∈ Rk
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is nonsingular. A local coordinate change can be obtained as

zi =

fi, i = 1, · · · , k

xi, i = k + 1, · · · , n.

Then
1. Locally we have

(30) f2(x) = Ψ(x)f1(x) + φ(x2)x2.

To prove (30), note that if h(x) is a smooth function with h(0) = 0, then

h(x) =
∫ 1

0

∂h(r, x2, · · · , xn)
∂r

∣∣∣∣
r=x1t

dtx1 +R2(x2, · · · , xn) := a1(x)x1 +R2.

Applying this to R2 etc. inductively, we have

h(x) = a1(x)x1 + a2(x2, · · · , xn)x2 + · · ·+ an(xn)xn,

which implies (30).
2. There is a local pseudo-Hamiltonian realization with the Hamiltonian function

H(x) = 1
2 ((f1)T f1 + (x2)Tx2), such that

(31) ẋ =

(
J−T

11 0
Ψ(x)J−T

11 − φ(x2)JT
12J

−T
11 φ(x2)

)
∂H

∂x
.

3. If x → (f1, x2) is a global coordinate transformation, then the realization is
global.

4. For system (31) C(x) is a right Casimir function iff C(x) = C(x2) and
φ(x2)∂C(x)

∂x = 0. C(x) is a left Casimir function iff dC(x) ∈ D⊥, where

D = Span col

(
I 0

Ψ(f1) φ(x2)

)
.

5. If (31) is (strict) dissipative then the system (4) is (asymptotically) stable. If
(31) is a global realization and ‖f1(x)‖ → ∞ as ‖x‖ → ∞, the system (4) is globally
(asymptotically) stable.

4. Stabilization via Feedback Dissipative Realization. We consider a
pseudo-Hamiltonian system as

(32)

ẋ = M(x)∂H
∂x + g(x)u = (K(x)−R(x) + T (x))∂H(x)

∂x + g(x)u

y = gT ∂H(x)
∂x ,

where K(x) is skew symmetric and R(x) and T (x) are symmetric and positive semi-
definite, and all M(x), K(x), R(x), and T (x) are Cr on R\{0}, H(x), g(x) are Cr on
Rn.
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Definition 4.1. System (32) is said to have a feedback (strict) dissipative real-
ization if there exists a state feedback

u = α(x) + v

such that the closed-loop system becomes a dissipative pseudo-Hamiltonian system as

(33)

ẋ = (K̃(x)− R̃(x))∂H
∂x + gv

y = gT ∂H
∂x ,

where K̃ is skew symmetric and R̃ ≥ 0 is positive semi-definite (R̃ > 0 is positive
definite).

We call (33) a dissipative pseudo-Hamiltonian system because it is easy to verify
that as H(x) > 0 the system (33) is a dissipative system with H(x) as its the storage
function and the passivity supply rate s(u, y) = uT y [25]. Conversely, we want to
show that (33) covers a large class of the dissipative systems.

Proposition 4.2. Assume the system (5) is a dissipative system with a Cr

(r ≥ 2) storage function, S(x) with S′(0) = 0. Moreover, assume the Hessian matrix,
Hess(S(x)) is nonsingular as x 6= 0. Then it can be expressed as a dissipative pseudo-
Hamiltonian system.

Proof. Using Taylor expansion we have that

∂S(x)
∂x

= S′(0) +Hess(S(ξ))x = Hess(S(ξ))x, where ξk ∈ (0, xk), k = 1, · · · , n.

Hence ∂S(x)
∂x 6= 0, as x 6= 0. According to Proposition 2.2, system (5) can be expressed

as

ẋ = M(x)
∂S(x)
∂x

+ gu

Since ([25] p 38) Sx(x)f(x) ≤ 0, we have

dS(x)M(x)
∂S(x)
∂x

= xTHessT (S(ξ))M(x)Hess(S(ξ))x ≤ 0, ∀x ∈ Rn.

It follows that M(x) ≤ 0.
To use the stabilization method proposed in [15] [6], we have to convert the

controlled pseudo-Hamiltonian systems into the dissipative type systems. We consider
the following state feedback control

u = E(x)
∂H

∂x
+ v.

As an immediate consequence of the definition, we have
Proposition 4.3. System (32) has a dissipative type realization (around an

equilibrium point x0), iff there exists an m × n matrix E(x), such that the following
matrix is negative semi- definite(locally).

(34) g(x)E(x) + ET (x)gT (x) + (M(x) +MT (x)) ≤ 0.
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We are particularly interested in the case when both M(x) and g = (g1 · · · gm)
are constant. In this case we seek a particular output feedback control of the form

u = E
∂H

∂x
+ v,

where E is a constant matrix.
Let P = 1

2 (M +MT ). Then we have the following corollary.

Corollary 4.4. System (32) with constant M and g has a dissipative type
realization if there exists an m×n matrix E such that the following matrix is negative
semi-definite :

(35) gE + ET gT + 2P ≤ 0.

Note that we can decompose P = −R + T , with positive semi-definite R and T .
When both R and T have minimum rank, the decomposition is unique. Assuming
span{col(T )} ⊂ span{col(g)}, it is easy to find E which satisfies (35). In fact, if
T = gα we can simply choose E = −α.

Now we assume K̃(x) = K(x), which provides a skew-symmetric structure matrix
as required in many cases [25]. That is the skew-symmetric part is not changeable.
Then we have

Theorem 4.5. Assume gi(x), i = 1, · · · , k are linearly independent, then sys-
tem (32) has a feedback dissipative realization with K̃(x) = K(x), iff there exists a
continuous function λ(x) such that

(36) λ(x)g(x)(g(x))T − T (x) ≥ 0.

Proof. (Sufficiency) We choose the control as

(37) u = −λ(x)gT ∂H

∂x
+ v.

Then the feedback system becomes

ẋ = (K(x)−R(x)− (λ(x)g(x)gT (x)− T (x)))
∂H

∂x
+ gv.

Necessity: Since gα has the form as gα = E(x)∂H
∂x , left-multiply both sides by

(gT g)−1gT we have

α = (gT g)−1gTE(x)
∂H

∂x
:= ξ

∂H

∂x
.

To keep the skew-symmetric part K unchanged, we need

(gξ)T = ξT gT = gξ.
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Express ξ as

ξT = gξg(gT g)−1 := gφ.

Now we have

gφT gT = gξ = (gξ)T = gφgT .

That is

g(φgT − φT gT ) = 0.

Using the fact that gi, i = 1, · · · ,m are linearly independent, we have φgT = φT gT .
Using similar argument again, we have φ = φT . Now by the definition, no cancellation
will happen between R and T . So the feedback system is dissipative iff

gφgT + T ≤ 0.

Now let λ(x) = −‖φ(x)‖. Then we have λ(x)Im − φ(x) ≤ 0. It follows that g(λIm −
φ)gT ≤ 0. Hence

g(λIm − φ)gT + gφgT + T = λggT + T ≤ 0,

which complete the proof.
Above result is convenient in use. But it is restricted because the Hamiltonian

function is known and fixed. In the following a Hamiltonian function can be con-
structed.

Theorem 4.6. The system (5) has a (strict) dissipative realization if Jf is in-
vertible and there exist two positive definite constant matrices P and R such that

(38) J−T
f P + PJ−1

f − PgRgTP ≤ 0 (< 0).

Proof. Take H = 1
2f

TPf as a Hamiltonian function. Since Jf is invertible we
have a pseudo-Hamiltonian realization as

(39) ẋ = P−1J−T
f

∂H

∂x
+ gu.

Choosing control as

(40) u = −RgT ∂H

∂x
+ v,

the closed-loop system becomes

(41) ẋ = (P−1J−T
f − gRgT )

∂H

∂x
+ gv.
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Now to get a (strict) dissipative realization it is required that

(42) P−1J−T
f + J−1

f P−1 − gRgT ≤ 0 (< 0),

which is equivalent to (38).
Remark 4.7. 1. In linear case it is degenerated to the Algebraic Riccati equation.

If (A,B) is controllable and A is invertible, then (A−1, B) is also controllable. Hence,
it is well know that the positive definite solution P always exists.

2. The invertibility of A is not important because as long as (A,B) is controllable,
we may first use pre-control E such that A+BE is invertible.

3. In non-linear case, instead of the invertibility, we may assume (Jf |0, g(0))
is controllable. In this case we can find a constant matrix K such that for the pre-
feedback systems the Jacobian matrix of f + gE is at least locally non-singular around
the origin.

4. In linear case to solve (38) we can choose Q < 0 (Q ≤ 0) and solve the
algebraic Riccati equation

A−TP + PA−1 − PBRBTP = Q.

The following results are well known:
4.1. If (A,B) is controllable, then for Q < 0 there is a unique positive definite

solution P > 0;
4.2. If (A,B) is controllable R = CTC and (A,C) is observable, then for Q ≤ 0

there exists a unique solution P > 0.
4.3. If (A,B) is stabilizable and (A,C) is detectable then there exists a unique

solution P ≥ 0. Moreover, in all three cases Re(eig(A−BBTP )) < 0.
In practical application, a question arises as: How to find a solution of (38)? It

seems not so easy. One way to solve this problem is as the following: First we may
give any constant Q > 0 to solve the constant algebraic Riccati equation:

(43) J−T
f (0)P + PJ−1

f (0)− Pg(0)Rg(0)TP = Q.

Let A = Jf (0), and B = g(0). If (A,B) is completely controllable, then for any
Q > 0 we can find an unique solution of P > 0. By continuity, at least locally (38) is
satisfied. Then we can check whether it is globally satisfied.

It is interesting to solve (38) for some particular cases. For instance, we have

Proposition 4.8. Assume for a given range D ⊂ Rn, g = B is a constant
matrix, and

J−1
f = A+GΣ(x)F, ΣT (x)Σ(x) ≤ I, ∀x ∈ D,

where A = J−1
f (0) and G,F are constant matrices, and Σ(x) is a matrix function.

Then, a positive definite matrix P , satisfying (38) for all x ∈ D is obtained by solving
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the algebraic Riccati equation

(44) ATP + PA+ P (GGT −BRBT )P + FTF = −Q.

Proof. Using the particular form of J−1
f , (38) becomes

J−T
f P + PJ−1

f − PBRBTP = ATP + PA− PBRBT + FT ΣTGTP + PGΣF
≤ ATP + PA− PBRBT + (PGΣ− FT )(PGΣ− FT )T + PGGTP + FTF ≤ −Q.

Next, we consider the problem of strict realization of the system (32). That is,
to find a feedback control u = α(x) + v, such that the system (32) becomes (33) with
positive definite R̃(x) > 0. We have the following

Proposition 4.9. 1. A sufficient condition for system (32) to have a dissipative
realization is

(45) Span col{T} ⊂ Span{g}.

2. A necessary condition for (32) to have a strict dissipative realization is

(46) Span col{R}+ Span{g} = Rn.

3. (45) and (46) form a sufficient condition for system (32) to have a strict dissipative
realization.

Proof. 1. (45) implies that there exists a smooth matrix E(x) with proper di-
mension such that T = gE. Then u = −E ∂H

∂x makes the closed-loop system to be
dissipative.

2. Assume dim(span col{R} + span{g}) < n. Then there exists a vector X ∈
Rn\{0} such that X ∈ ker(R) ∩ ker(g). Now assume gu = ξ ∂H

∂x , then ξ ∈ Span{g}.
Say, ξ = gN , then

XT (K −R+ T + gN)X = XTTX ≥ 0,

which is a contradiction.
3. Choose u = −(gT + E)∂H

∂x , where E is as in the proof of 1. We have only to
show the negativeness of K − R + T − (ggT + gE) point-wise. For a given point we
may express R as

R =

(
R0 0
0 0

)
,

where R0 is non-singular. Correspondingly, we split g as g = (g1, g2), where
dim(g1) = dim(R0). Now we have

ggT =

(
g1g

T
1 g1g

T
2

g2g
T
1 g2g

T
2

)
.
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Condition (46) implies that g2 has full row rank. For any X ∈ Rn\{0}, we split
X = (X1 X2)T with dim(X1) = dim(R0). Then we have

XT (K −R+ T − (ggT + gE))X = −XTRX −XT ggTX = XT
1 R0X1 −XT ggTX.

Set it to be zero, then X1 = 0 and it follows that

XT
2 g2g

T
2 X2 = 0.

But g2gT
2 is non-singular. Hence X2 = 0.

Remark 4.10. For a strict dissipative realization (46) is not sufficient and (45)
is not necessary. Let

R =

(
−1 0
0 0

)
, T =

(
0 0
0 1

)
.

If we set g = (1 1)T , it is easy to verify that no matter how to choose E, −R+T +gE

can not be negative definite. Hence, (46) is not sufficient. If we set g = (1 2)T , (45)
is not satisfied. But if we choose E = (0 −2), then −R+T +gE represents a negative
definite quadratic form.

Finally, we consider a dissipative realization of a general control system

(47) ẋ = f(x) +
m∑

i=1

gi(x)ui.

When m = 1, the problem was discussed in [23]. A generalization is the following

Proposition 4.11. Assume the system

(48) ẋ =
m∑

i=1

gi(x)ui

has a smooth state feedback ui = ξi(x) such that the closed-loop system (48) is
(globally) asymptotically stable, then (47) has a (global) feedback dissipative pseudo-
Hamiltonian realization with controls smooth on (Rn\{0}) U\{0}, where U is a neigh-
borhood of the origin. Consequently, (47) is (globally) stabilizable.

Proof. By Lyapunov inverse theorem, we can assume there exist ξi(x) and a

Lyapunov function V (x) > 0 such that Lg̃V < 0, where g̃ =
m∑

i=1

gi(x)ξi. Then we can

construct a control as u = w + v, where

(49) w =

− 1
LgV (x) (ξf

T − ξξT gT )∂V (x)
∂x , x 6= 0

0, x = 0.

Then a straightforward computation shows that the closed-loop system can be ex-
pressed as a dissipative pseudo-Hamiltonian system

(50) ẋ = M(x)
∂V (x)
∂x

+ gv = (K(x)−R(x))
∂V (x)
∂x

+ gv,
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where the skew-symmetric K(x) and the positive semi-definite R(x) are

K(x) =


[

f(x)g̃T−g̃fT

Lg̃V (x)

]
, x 6= 0

0, x = 0;
R(x) =


[

g̃g̃T

Lg̃V (x)

]
, x 6= 0

0, x = 0.

Moreover, it is ready to verify that the derivative of V (x) along the trajectory of the
system (50) with v = 0 is

V̇ = Lg̃V (x) < 0.

So (47) is asymptotically stabilized by the control u = w.
Remark 4.12. 1. If LgV (0) = 0, the control will be unbounded at zero. So the

control can be used for practical stabilization (trajectory enters any given neighborhood
of the origin). Similar to [23], we may theoretically assume that LgV (x) 6= 0 to avoid
the unbounded control.

2. The stabilization claim is related to Sontag’s approach [24].

5. L2 Disturbance Attenuation. In this section we consider a pseudo-Hamil-
tonian system as the following:

(51)

ẋ = M(x)∂H
∂x + g1(x)u+ g2(x)w

z = C(x), x ∈ Rn, u ∈ Rm, w ∈ Rq, z ∈ Rp,

where z is the penalty signal and w is the disturbance.
The L2 disturbance attenuation problem of pseudo-Hamiltonian system has been

discussed in [22]. The L2 disturbance attenuation problem can be described as follows:
Given a penalty signal z = q(x), a disturbance attenuation level γ > 0 and a desired
equilibrium x0 ∈ Rn, find a feedback control law u = k(x), a positive storage function
V (x) and a non-negative definite function Q(x) such that the γ-dissipation inequality

(52) V̇ +Q(x) ≤ 1
2
{γ2‖w‖2 − ‖z‖2}, ∀w

holds along all trajectories of the closed-loop system (51) with a designed feedback
law.

Remark 5.1. 1. The property (52) ensures the following performance [3].
P1. The L2 gain from w to z is less than the preassigned γ;
P2. If Q(x) is positive definite, i.e., Q(x) 6= 0, ∀x 6= x0, the closed-loop system

with vanished w is asymptotically stable at x0;
P3. If w is square integrable, then x is uniformly bounded. If there is a κ∞

function κ such that

Q(x) + ‖z‖2 ≥ κ(‖x− x0‖), ∀x,

then a bounded w(t) gives bounded states x(t).
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2. Note that if the system is output detectable with penalty output z, i.e., z = 0
implies x → 0 (as t → ∞), then the conclusion of P2 remains true without the
positive definiteness assumption of Q(x). In this section we will always assume either
one holds.

First, we decompose g2 as

g2 = g1
2 + g2

2 , where g1
2 ∈ Span(g1), g2

2 ∈ (Span(g1))⊥.

Then we can express g2 as

g2 = g1ξ + g̃2, where g1
2 = g1ξ, g2

2 = g̃2.

If g̃2 = 0 and ξ = Im, the problem is reduced to the case discussed in [22], where the
dissipative realization is assumed. The following is our main result for H∞ control
design for dissipative Hamiltonian systems.

Theorem 5.2. For system (51) assume
A1. M(x) = K(x)−R(x) with R(x) ≥ 0 and H(x) > 0;
A2. z = h(x)gT

1
∂H
∂x .

A3. There is a η > 0 such that −R(x) + ηg̃2(g̃2)T ≤ 0.
Then the L2 disturbance attenuation objective for γ ≥ 1√

2η
is achieved by the

following feedback control law:

(53) u = −[
1
2
(hTh)gT

1 +
1

2γ2
(ξξT gT

1 + 2ξ(g̃2)T )]
∂H

∂x
.

Proof. Using control (53), a straightforward computation shows that

(54)
dH
dt = −dHR∂H

∂x + dHg1u+ dHg2w

+ 1
2dHg1h

Th(g1)T ∂H
∂x + dHg1u+ 1

2γ2 dHg2(g2)T ∂H
∂x .

Note that

(55)
dHg2g

T
2

∂H
∂x = dH(g1ξ + g̃2)(ξtgT

1 + (g̃2)T )∂H
∂x

= dH[g1ξξT gT
1 + g1ξ(g̃2)T + g̃2ξ

T gT
1 + g̃2(g̃2)T ]∂H

∂x

= dHg1(ξξT gT
1 + 2g1ξ(g̃2)T )∂H

∂x + dHg̃2(g̃2)T ∂H
∂x .

Plugging (55) into (54) and using control (53) yield

(56) Ḣ = −dH(R− 1
2γ2

g̃2(g̃2)T )
∂H

∂x
− 1

2
‖γw − 1

γ
(g2)T ∂H

∂x
‖2 +

1
2
(γ2‖w‖2 − ‖z‖2).

As γ ≥ 1√
2η

, we can set

Q(x) = dH(R− 1
2γ2

g̃2(g̃2)T ))
∂H

∂x
≥ 0.
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Then we have

(57) Ḣ +Q(x) ≤ 1
2
(γ2‖w‖2 − ‖z‖2),

which completes the proof.
Theorem 5.2 assures only that the closed-loop system with vanished w is stable at

x0. If either Q(x) is positive definite or system is output detectable, the closed-loop
system with vanished w is asymptotically stable. In fact, we have another sufficient
condition.

Proposition 5.3. In Theorem 5.2, if x0 is the only equilibrium point of the free
system(i.e., u = 0 and w = 0), and A3 is replaced by

(58) −R(x) + ηg̃2(g̃2)T − 1
2
ghhT gT < 0.

Then the conclusion of Theorem 5.2 holds. Moreover, the closed-loop system with
vanished w is asymptotically stable.

Proof. From (56) we have

(59)
Ḣ ≤ dH(−R(x) + ηg̃2(g̃2)T )∂H

∂x − 1
2‖z‖

2

= dH(−R(x) + ηg̃2(g̃2)T − ghhT gT )∂H
∂x .

Using (58), Ḣ = 0 implies dH = 0. But x0 is the only equilibrium point of the free
system. So ∂H

∂x 6= 0 (x 6= x0). That is, Ḣ is negative definite. The conclusion follows.

Note that if (58) holds at x0 the conclusion is local, and if (58) holds globally, the
conclusion is global.

In Theorem 5.2, assumptions A1 and A2 are natural. We would like to analyze
A3 a little bit more.

Lemma 5.4. A3 implies that

Span{g̃2} ⊂ Span col{R}.

Proof. Without loss of generality we assume

R(x) =

(
R0(x) 0

0 0

)

where R0(x) is non-singular. Correspondingly, we express

g̃2 =

(
G1

G2

)
.
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Then

g̃2(g̃2)T =

(
G1G

T
1 G1G

T
2

G2G
T
1 G2G

T
2

)
.

Now it is obvious that if G2 6= 0, A3 can never be true.
Under a coordinate change, we may assume

g̃2 =

(
G0(x)

0

)
,

where G0 is non-singular. Then we have

Proposition 5.5. Let the restriction of R(x) on the subspace spanned by g̃2 be
Rg(x). Then

(60) η = min
x

min
λ
{λ(x) ∈ eig(G−1

0 RgG
−T
0 )}.

Proof. Since

Rg(x)− ηG0(x)GT
0 (x) ≥ 0

which is equivalent to

G−1
0 (x)Rg(x)G−T

0 (x)− ηI ≥ 0.

The conclusion follows.

6. Dissipative realization and H∞ Control of Excitation System. As
an application, we consider the excitation control systems. The model for excitation
control of the single-machine infinite bus power system with silicon-controlled rectifier
direct excitor is described as [22]

(61)


δ̇ = ω − ω0

ω̇ = ω0
M Pm − D

M (ω − ω0)−
ω0E′

qVs

Mx′dΣ
sinδ

Ė′q = − 1
T ′

d
E′q + 1

Td0

xd−x′d
x′dΣ

Vs cos δ + 1
Td0

Vf

where δ: the rotor angle; ω: rotor speed; E′q: internal transient voltage; PM : mechani-

cal power; M : inertia coefficient of a generator; D: damping constant; Pe = E′
qVs

x′dΣ
sinδ:

active electrical power; T ′d: stator closed loop time constant; Td0: excitation circuit
time constant; xd: stator circuit self-inductor resister; x′d: stator circuit transient
resister; Vf : voltage of the field circuit of a generator.

Consider u = Vf as the control, and set x1 = δ, x2 = ω − ω0, x3 = E′q and

denote a = ω0
M Pm, b = D

M , c = ω0Vs

Mx′dΣ
, d = 1

T ′
d
, e = 1

Td0

xd−x′d
x′dΣ

Vs, and h = 1
Td0

, then



PSEUDO-HAMILTONIAN REALIZATION AND ITS APPLICATION 115

system (61) becomes

(62)

ẋ1

ẋ2

ẋ3

 = f + gu =

 x2

a− bx2 − cx3 sinx1

−dx3 + e cosx1

+

0
0
h

u.

Now we consider all the possible Hamiltonian realizations. Since g is constant,
we can ignore it. For f in (62) equation (16) becomes
(63)1 −b 0 0 cx3 cosx1 e sinx1 0 0 0

0 −c sinx1 −d 0 0 0 0 cx3 cosx1 e sinx1

0 0 0 0 −c sinx1 −d −1 b 0

X = 0.

We are looking for a constant solution, but the terms with different degrees of
x1 and x3 in (63) provide an infinite number of linear equations. If we consider the
constant terms and terms linear in x1 and x3 only, we get the following linear system:

(64)



1 −b 0 0 0 0 0 0 0
0 0 −d 0 0 0 0 0 0
0 0 0 0 0 −d −1 b 0
0 0 0 0 0 e 0 0 0
0 −c 0 0 0 0 0 0 e

0 0 0 0 −c 0 0 0 0
0 0 0 0 c 0 0 0 0
0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 0 0


X = 0.

It is easy to check that the other terms in x do not provide any new equations. Let
X = (n11, n12, · · · , n33). Since the rank of the coefficient matrix of (64) is 7, we may
simply choose n33 = c

e ;n21 = α. Then, up to a constant coefficient, the solution of
(64) is given by

M−1 = N =

n11 n12 n13

n21 n22 n23

n31 n32 n33

 =

b 1 0
α 0 0
0 0 c

e

 M = µ

0 1 0
α −b 0
0 0 eα

c


where µ is an arbitrary coefficient. We may simply set µ = 1. Now for any non-zero
α M provides a Hamiltonian realization. If we consider the dissipative realization, it
is easy to verify that the only possible solution is α = −1.

Using this M , system (62) can be rewritten as

(65)

ẋ1

ẋ2

ẋ3

 =


 0 1 0
−1 0 0
0 0 0

−

0 0 0
0 b 0
0 0 e

c



 −a+ cx3 sinx1

x2

−c cosx1 + cd
e x3

+

0
0
h

u.



116 DAIZHAN CHENG, TIELONG SHEN, AND T. J. TARN

Choosing a suitable output, the dissipative realization of (65) is expressed as

(66)




ẋ1

ẋ2

ẋ3

 = (K(x)−R(x))∂H
∂x + g(x)u

y = gT ∂H
∂x

where

K(x) =

 0 1 0
−1 0 0
0 0 0

 , R(x) =

0 0 0
0 b 0
0 0 e

c

 , g =

0
0
h


and then

y = − c

Td0
cosx1 +

cd

Td0e
x3,

and

(67) H(x) = −cx3 cosx1 − ax1 +
cd

2e
x2

3 +
1
2
x2

2.

This is exactly the form presented in [5]. Based on the above argument, we know
that the dissipative realization of the excitation control system (65) without feedback
is unique (up to a constant coefficient).

Next, we consider the feedback dissipative realization. Recalling Corollary 4.4,
one sees easily that a trivial solution for equation (35) is K = (0 0 k3), where k3 ≤
0. Now gK = diag(0 0 g3k3), which means when the feedback is allowed, new
Hamiltonian function, He, can be chosen as He = H + (ax3 + b). Based on this
consideration, we may use the following Hamiltonian function [22], which differs from
(67) in a linear function of x3.

(68) He(x) =
1
2
x2

2 + bLx3(cosx1e − cosx1)− P (x1 − x1e) +
bLcT
cL

(x3 − x3e)2

and a pre-control is used as

(69) ū(t) = cTx3e − cL cosx1e.

It was shown in [27] that

x1e =
1
2

sin−1(2ad/ec); x3e = (e/d)cos(x1),

and locally H > 0 and reaches its minimum at the point (x1e, 0, x3e). Equivalently,
under control (69), locally He > 0 and reaches its minimum at (x1e, 0, x3e).

Finally, we consider the problem of the L2 disturbance attenuation of the excita-
tion control system. Based on the above argument and the disturbance system as in
[21], we can formulate the system as

(70)

ẋ = (K −R)∂H
∂x e

+ g1u+ g2w

z = h(x)gt
1

∂H
∂x e
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where K, R and g1 are as in equation (66). w = (w1, w2) are the disturbances, and

g2 =

0 0
1 0
0 1

 .

Using the data in [28] as D = 3.0; M = 7.6; ω0 = 50π; Vs = 20; x′dΣ = 0.36;
Pm = 100; T ′d = 5.0; Td0 = 5.0; xd = 0.9; x′d = 0.36; k = 1; l = 1; x10 = 1.7; x20 = 5;
x30 = 7, we have

R =

0 0 0
0 3/7.6 0
0 0 0.2×7.6×0.36

50π×20

 , g1 =

 0
0

0.2

 ,

g1
2 =

0
0
1

 , g2
2 =

0
1
0

 , g̃2 =

0 0
1 0
0 0

 ,

and ξ = (1 0). To use Theorem 5.2, we verify the assumptions. A1 and A2 are
obviously true. To make assumption A3 true, i.e.,

−R+ ηg̃2(g̃2)T ≤ 0.

The largest η is obtained as η = 3/7.6. Hence

γ ≥ 1√
2η

= 1.125.

We conclude that for this excitation control system the disturbance attenuation prob-
lem is solvable only for the L2 gain γ ≥ 1.125. Moreover, using (53) a feasible control
is

u = ū− [
1
2
(hTh)(0 0 0.2) +

1
2γ2

(0 2 1)]
∂He

∂x
.

Note that this system is output detectable [27]. So x0 is asymptotically stable.
We omit the computer simulating results here due to the space limitation. But

the performance is very encouraging.

7. Conclusion. The problem of pseudo-Hamiltonian realization was considered.
First of all, several sufficient conditions were provided for a dynamic system to be
convertible to a pseudo-Hamiltonian system. Some related stability results were ob-
tained via revealing the relationship between Hamiltonian functions and Lyapunov
functions. Among them, a generalization of the Krasovskii’s Theorem is obtained. It
is also proved that an affine nonlinear system is stabilizable if the system, obtained
by setting its drift term to be zero, is stabilizable. Then the realization with constant
structure matrix and the feedback dissipative realization of a control system were
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investigated. The results obtained were applied to the stabilization problem. Next,
some conditions were obtained for a pseudo-Hamiltonian realization with constant
structure matrix. Meanwhile, it was shown that under certain conditions the fol-
lowing systems are mutually convertible: stable (asymptotically stable) system with
dissipative (strict dissipative) pseudo-Hamiltonian system; dissipative affine control
system with dissipative pseudo-Hamiltonian system.

Finally, the problem of disturbance attenuation of the pseudo-Hamiltonian sys-
tems was studied. It was shown that a class of pseudo-Hamiltonian systems the
disturbance attenuation problem is solvable and an estimation of the boundary of the
L2 gain is obtained. As an application example the results were implemented to the
excitation control of power systems.
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