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LP METRIC CRITERIA FOR DIRECTED CONVERGENCE∗

J. STRASSER MCINTOSH† AND BRUCE M. BENNETT†

Abstract. We consider a discrete-time probabilistic inference system where the conclusions and

inputs are probability measures on measurable spaces X, X and Y,Y respectively. We are given a

kernel N from X to Y (N : X × Y → [0, 1]), which represents the way information about states of

affairs (represented by X) is transmitted to a receptor (represented by Y ). Suppose that at time

t = i the conclusion is given by a probability measure µi on X. Then given any input measure λi on

Y we update µi, replacing it by µi+1 = λiPµi,N , where Pµi,N is the Bayes adjoint kernel for N and

the ‘prior’ µi. In this way the conclusions evolve by conditional probability given a sequence of input

measures. This is in contrast to classical Bayesian inference where the inputs are points of Y , and

the conclusions are updated by conditioning a fixed Bayes posterior (defined with respect to a fixed

prior) on the sequence of point inputs. In our case, as in classical Bayesian inference, the object is to

obtain a (weakly) convergent sequence of conclusion measures µi. But in our case we have available

a method called directed convergence strategy to facilitate convergence: metric criteria are employed

to accept or reject input measures based on the degree of belief in the current conclusion. In this

paper we develop sufficient conditions to execute this strategy using Lp metrics (after representing

measures as their Radon-Nikodym derivatives). This work generalizes L∞ criteria for directed con-

vergence presented in [4].
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1. Introduction. Let X, X and Y,Y be measurable spaces, N a kernel from X

to Y (N : X × Y → [0, 1]), and µ0 an initial probability measure on X. X is a
configuration space for some class of states of some system of interest (probability
measures on X are probabilistic models of those states). Y is a receptor for informa-
tion about X, e.g., Y is a sensory receptor. N represents the channel which transmits
information about the states of affairs to the receptor Y : If a state corresponding to a
probability measure µ on X is transduced, there results the probability measure µN

on Y . In the literature, N is sometimes called a ‘likelihood kernel’.
In classical Bayesian inference, it is assumed that there is a state corresponding

to µ which is unchanging over time, and that receptor information is acquired in the
form of a sequence of points {yn} of Y whose distribution is µN . The object is then
to infer µ from the yn: With each successive yn we obtain an updated measure

µn = P(µ0,N)(y1, ..., yn).

Here P(µ0,N) denotes the Bayes posterior kernel which depends only on µ0 and N ,
so it is fixed throughout the procedure. Ideally the sequence µn will converge to
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µ in the weak topology; this is the problem of “Bayes consistency” which has been
much discussed in the literature (Diaconis-Freedman 1986 [7]). It is important to
note that in this classical Bayesian situation, the measure µ is supposed to represent
all the available information about the state, its overall statistics. Moreover, all the
available input data {yn} is to be used to infer µ; in particular there is no option to
reject certain yn’s on the grounds that they are ‘outliers,’ since it is assumed that the
whole sequence of yn’s instantiates µN .

In this study, however, we consider the case where the inputs are probability
measures on Y . (For instance, our inference system may be part of a hierarchy in
which the input measures are inferred at a lower level.) In this setting the updating
of conclusions proceeds as follows. Suppose that at time t = i the conclusion is given
by a probability measure µi on X. Then, given any input measure λi on Y we update
µi, replacing it by µi+1 = λiPµi,N , where Pµi,N is the Bayes adjoint kernel for N and
the ‘prior’ µi. In this way the conclusions evolve by conditional probability given a
sequence of input measures. This is called structural probabilistic inference.

Here we no longer assume that the inputs collectively instantiate some unique
state of affairs to be inferred. Instead we adopt the more flexible viewpoint that any
subsequence of input measures which gives rise to a (weakly) convergent sequence
of conclusion measures is “valid,” in the sense that it gives information about some
stable feature in the environment. From this point of view the system, in its quest for
convergent sequences of conclusions, should ideally have the option to select or reject
inputs, i.e., to decide whether a given input measure should be used for updating
the current conclusion, or should be ignored. In this paper we discuss how metric
criteria can be effectively used for input selection, in order to achieve convergence of
the conclusion sequence. The idea is that at time t = i, λ should be close to µiN in
order to accept it as the λi for purposes of updating µi to µi+1. One can interpreted
the minimum distance between λ and µiN in order for λ to be accepted, as indicative
of the “degree of belief” in the current conclusion µi: the greater that degree of belief,
the closer we will insist that λ is to µiN in order to accept it. This is based on the fact
that if µi represented the actual state of affairs, then the input measure transduced
at the receptor Y would be λ = µiN . This is called directed convergence strategy. Of
course, the environment must cooperate by making inputs available which satisfy the
criteria. For this reason, if in a given observational situation the application of these
criteria results in a sequence which converges to a µ, there is justification to conclude
that there ‘really’ is a feature of the scene which is represented by µ.

Given that we are interested in weak convergence, it is natural that our criteria
for acceptance or rejection of inputs should be expressed in terms of a metric which
metrizes the weak topology of measures, such as the Prokhorov metric (Prokhorov,
1956, [2]). Unfortunately, the Prokhorov metric is, in practice, a fairly difficult com-
putational tool. The idea is to replace Prokhorov metric computations with compu-
tations in Lp after identifying measures with their Radon-Nikodym derivatives. This
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involves first ‘localizing’ to the subset of measures which are absolutely continuous to
a given one, and secondly restricting to those measures whose derivatives are in Lp.
The technical problem is to see that this can be done effectively, in the sense that
we can state effective directed convergence criteria in Lp. In Section 2 we give some
mathematical background, and develop the formalism for this study. In Section 3 we
obtain convergence criteria in L1 (Theorem 3.17) , and in Section 4 we extend these
results to Lp (the ‘Main Theorem’). We also prove that if a directed convergence pro-
cedure with inputs {λn} results in a convergent sequence of conclusions {µn}, then
the sequence {λn} must also converge (Section 3, Theorem 3.19; and Section 4, (2)
of the ‘Main Theorem’). These results are generalizations of results for the special
case L∞, which were published in [4] (Bennett and Cohen-Lehman, 1999). It is a
natural question whether the converse of (2) of the ‘Main Theorem’ holds: if {λn} is
a convergent sequence of input measures, then will the corresponding sequence {µn}
of conclusion measures converge? At present, this is unknown.

2. Recursively Updated Bayesian Probabilistic Inference. Suppose that
we are given measurable spaces (X, X) and (Y,Y), where X models states of some
system and Y models a receptor. We refer to the elements of Y , or probability
measures on Y , as ‘premises,’ since they serve as premises for inferences about the
state. Denote by P(X) and P(Y ), the spaces of probability measures on X and Y ,
respectively. Suppose we are given a Markovian kernel N : X × Y → [0, 1]. Recall
that to say N is ‘Markovian’ means that for x in X, N(x, ·) is a probability measure
on Y . Intuitively, for x in X and B in Y, N(x, B) is the probability that a premise y

in B would be acquired if a state represented by x is transduced at the receptor array.
N is called a noise kernel; in statistics N is sometimes called a ‘likelihood function.’
N acts in a natural way as a function

N : P(X) → P(Y ),

via µ 7→ µN , where µN is defined by

µN(B) =
∫

X

N(x,B)µ(dx)

for µ in P(X) and B in Y. Finally, we will assume that we are given a probability
measure µ in P(X), called the prior. Intuitively, the prior µ represents the initial
preconception about the state; the purpose of an inference now is to update that
preconception, given a premise measure λ in P(Y ).

With the data (µ, N), the apparatus of conditional probability canonically gives
rise to a kernel P(µ,N) : Y ×X → [0, 1], called the Bayes adjoint or Bayes posterior of
N with respect to the prior measure µ. Let us assume that µ is a correct description
of the probabilities of states of our system at a given instant, and that N correctly
describes the likelihood of y’s given x’s. For y in Y and A ⊂ X, P(µ,N)(y, A) is the
conditional probability that the state corresponds to a point in A, given the premise y.
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The probability measures P(µ,N)(y, ·) are called the Bayesian posterior probabilities
on X.

Now, via the usual operation of kernels on measures, P(µ,N) defines the map

P(Y ) → P(X) given by λ 7→ λP(µ,N)(A) def=
∫

Y
P(µ,N)(y, A) λ(dy) for A in X. In this

sense we can view, P(µ,N) as defining an ‘inference map’

Ψ : P(Y ) → P(X)

λ 7→ λP(µ,N)

(given the premise measure λ the conclusion measure Ψ(λ) is inferred).
Definition 2.1. A Bayesian probabilistic inference is a map

Ψ : λ 7→ λP(µ,N)

for a given X, Y,N, µ as above.
In other words, ‘Bayesian probabilistic inference’ means that the inference is made
exclusively on the basis of conditional probability in the form of the Bayesian posterior
kernel. It will be useful to conceptualize this conditional probability mathematically
as follows: Given spaces X and Y , a measure µ on X together with a kernel N :
X × Y → [0, 1] gives rise to a measure on X × Y , denoted µ⊗N , defined by

µ⊗N(A×B) def=
∫

A

N(x, B) µ(dx)

(for sets A ⊂ X and B ⊂ Y ). Then P(µ,N)(y, A) expresses the conditional probability
of the set A ⊂ X given the point y in Y with respect to this measure µ⊗N on X×Y .
To make this completely precise, since the underlying measure µ⊗N of the conditional
probability is on X × Y , we should express everything in terms of sets on X × Y and
say that P(µ,N)(y, A) is the conditional probability of the set A×Y ⊂ X×Y given the
set X × {y} in X × Y . P(µ,N)(y, A) may be expressed as the appropriate conditional
expectation, or equivalently as a Radon-Nikodym derivative;

P(µ,N)(y, A) = Prob(A | y) = (µ⊗N)(A× Y | X × {y})

or

(∗) P(µ,N)(y, A) = d(µ(1AN))
d(µN) (y) µN − a.e. y ∈ Y

If α and β are fixed probability measures on Y and X, respectively, then (∗) is equiv-
alent to the familiar formulation of the Bayes posterior given in terms of probability
densities:

P(µ,N)(y, A) =
∫

A

f(x, y) β(dx).
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where

f(x, y) =
dµ
dβ (x)dN(x,·)

dα (y)∫
X

dµ
dβ (x)dN(x,·)

dα (y) β(dx)
.

Proposition 2.2. µNP(µ,N) = µ

Proof. We have, for any µ-measurable subset A ⊂ X,

µNP(µ,N)(A) =
∫

Y

P(µ,N)(y, A)µN(dy).

Which, by definition of Bayes posterior,

=
∫

Y

d(µ(1AN))
d(µN)

(y) µN(dy)

= µ(1AN)(Y )

=
∫

X

(1A(x)N(x, Y ))µ(dx)

= µ(A). (N(x, Y ) = 1)

Note: For σ 6= µ, the equation σNP(µ,N) = σ will not hold in general.
The type of Bayesian inference described in Definition 2.1 can be updated recur-

sively in discrete time in a natural way. Given X, Y , N and µ0, we get the Bayes
posterior P(µ0,N) which gives the inference map λ 7→ λP(µ0,N) from P(Y ) to P(X).
To simplify notation, let us denote this map by P0. We use following time index
convention: we will view µ0 and the associated inference map P0 as arising at time
t = 0, but the argument λ to which P0 is applied as arising at t = 1. For this reason
it is appropriate to denote the argument of the map P0 by λ1, and to view the new
measure λ1P0 on X as a new prior µ1 which arises at t = 1 together with its associated
inference map P1 = P(µ1,N). We remind the reader that N is time invariant.

In this way, given a sequence of premise measures {λn}, there is generated a
sequence of priors {µn} and the associated sequence of Bayesian posteriors, i.e., of
inference maps {Pn}, where Pn = P(µn,N). We can think of the inference map Pn as
the ‘learning strategy’ prepared at time n to be applied to a new premise λn+1 which
will be acquired at time n + 1. Thus at each time n there arises a pair consisting of a
new prior µn and its associated learning strategy Pn. The acquisition of the premise
λn+1 triggers the transition (µn, Pn) 7−→ (µn+1, Pn+1). This procedure is more fully
recursive than classical Bayesian inference, in which the posterior itself is not updated.
Hence we may call it Bayesian recursive updating or Bayesian structural updating.
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3. The L1 Window.
Notation 3.1. Let (U, d) be a metric space. Let A ⊂ U , and let ε > 0. We

denote

Aε = {u ∈ U : d(u, A) < ε}.

With this we have:

Definition 3.2. Let (U, d) be a metric space with its associated Borel measurable
structure. Let µ1, µ2 be measures on U . Then the Prokhorov distance between µ1 and
µ2, denoted by ρprok(µ1, µ2), is defined as follows:

ρprok(µ1, µ2) = max(ε12, ε21)

where

ε12 = inf {ε : µ1(A) < µ2(Aε) + ε for all A ∈ U} ,

ε21 = inf {ε : µ2(A) < µ1(Aε) + ε for all A ∈ U} .

We will call convergence with respect to the Prokhorov metric, Prokhorov con-
vergence or ρprok-convergence.

Theorem 3.3. (Prokhorov 1956 [2])
(i) If U is a metric space then the Prokhorov metric topology is the weak topology

on P(U).
(ii) If U is a complete separable metric space, then P(U), with the Prokhorov

metric topology (i.e., the weak topology) is also a complete separable metric
space.

Notation 3.4. Let U be a complete separable metric space with a metric d; U

is then a measurable space with Borel σ-algebra, U, associated to the metric topology.
Let P(U) denote the set of probability measures on U . For a given measure ν on U ,
and for an integrable function f defined on U , denote

‖f‖1ν =
∫

U

|f |dν.

Then, as usual, L1(U, ν) denotes the set of ν - a.e. equivalence classes of measurable
functions, f , on U such that ‖f‖1ν < ∞. We denote, by ρ1

ν , the metric on L1(U, ν)
associated to the ‖ · ‖1ν norm.

Let S+ denote the subset of the unit sphere in L1(U, ν) consisting of non-negative
functions such that ‖f‖1ν = 1.

Notation 3.5. Let

Bν(U) = {σ ∈ P(U) : σ << ν}
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where << denotes absolute continuity of measures. Bν(U) is a topological space for
the weak topology induced from P(U).

Define the function

Φ : S+ ⊂ L1(U, ν) → Bν(U)

by

Φ(g) = gν.

We now have the following proposition:
Proposition 3.6. Φ is a continuous bijective function onto Bν(U). Conse-

quently, since S+ is complete, (a closed subset of a complete space) Φ transforms
Cauchy sequences in S+ to Cauchy sequences in Bν(U).

Proof. Consider g1, g2 ∈ S+. If g1ν = g2ν, then∫
B

g1dν =
∫

B

g2dν

for every B ∈ U. And as g1 and g2 are integrable, we have∫
B

(g1 − g2)dν = 0

for every B ∈ U. Thus g1 − g2 = 0, ν-almost everywhere on U , proving Φ is injective.
For any probability measure σ ∈ Bν(U), since σ << ν, we have that dσ

dν exists,
and (as σ is a probability measure)

∫
U

dσ
dν dν = 1. Thus, dσ

dν ∈ S+ and Φ(dσ
dν ) = σ.

That is, Φ is surjective.
To show that Φ is continuous, we show that for any sequence {σn}n∈N and σ in

Bν(U), if

ρ1
ν

(
dσn

dν
,
dσ

dν

)
=

∥∥∥∥dσn

dν
− dσ

dν

∥∥∥∥1

ν

→ 0

as n →∞, then {σn}n∈N converges weakly to σ.
Let f be an arbitrary bounded continuous function on U . Then

(3.1)
∣∣∣∣∫

U

f
dσn

dν
dν −

∫
U

f
dσ

dν
dν

∣∣∣∣ ≤
∫

U

|f |
∣∣∣∣dσn

dν
− dσ

dν

∣∣∣∣ dν −→ 0

as n →∞. Thus, by (3.1),

lim
n→∞

∫
U

f dσn =
∫

U

f dσ

for any bounded continuous function f . That is, σn → σ weakly.
Via the map Φ, we may now identify S+ with Bν(U). In fact, we may even

‘transport’ the metric ρ1
ν to the space Bν(U) ⊂ P(U) in the following way:
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Notation 3.7. Let σ and τ be probability measures absolutely continuous with
respect to a fixed measure ν.

(3.2) ρ1
ν(σ, τ)

def
= ρ1

ν(
dσ

dν
,
dτ

dν
).

Henceforth, we will use the notation, ρ1
ν , both in its original sense as the L1

metric on S+ and as the metric on Bν(U) defined by equation (3.2). Since S+ is
complete with respect to ρ1

ν , so is Bν(U). We can restate Proposition 3.6 in terms of
a comparison of this metric with the Prokhorov metric, ρprok, on Bν(U).

Proposition 3.8. The ρ1
ν metric topology is weaker than the ρprok metric topol-

ogy, i.e., if a sequence of measures in Bν(U) converges in the ρ1
ν metric, then it con-

verges in the ρprok metric. Consequently, since Bν(U) is ρ1
ν-complete, a ρ1

ν-Cauchy
sequence of measures in Bν(U) is a ρprok-Cauchy sequence.

Remark. If U is a complete metric space, then P(U) is complete with respect
to ρprok, but Bν(U) is not. (Cauchy sequences that converge to Dirac measure, for
example, have limit outside of Bν(U).) However, Bν(U) is complete with respect to
ρ1

ν .
We now need the following theorems to use L1(U, ν) as a ‘window’. We ob-

tain recursively determined metric criteria on the sequence of input measures for the
sequence of conclusion measures to be L1-convergent (via Φ), and, hence, weakly
convergent.

Proposition 3.9. Let (U,U) and (V,V) be two measurable spaces. Let K be a
Markovian kernel from U to V , and let µ and ν be probability measures on U . Then

(3.3) µ << ν ⇒ µK << νK.

Proof. Let B ∈ V be given, and suppose that νK(B) = 0. Then∫
U

K(u, B) dν = 0.

Since K is non-negative, this means

K(u, B) = 0 for ν − a.e. u ∈ U.

Let A = {u ∈ U : K(u, B) > 0}. By above, ν(A) = 0, so µ(A) = 0, since µ << ν. We
have that, as K(u, B) = 0 on Ac,

µK(B) =
∫

U

K(u, B) dµ

=
∫

A

K(u, B) dµ +
∫

Ac

K(u, B) dµ

≤
∫

Ac

1 dµ + 0 (K is Markovian)

= µ(A) + 0

= 0.
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That is, µK(B) = 0 and, therefore, µK << νK.
As a corollary, we apply the result of Proposition 3.9 to Bayesian recursive infer-

ence terminology.
Corollary 3.10. Let X and Y be measurable spaces. Let µ0 be a fixed prior

probability measure on X, and suppose N is a time invariant noise kernel from X to
Y . If {λn}n∈N is a sequence of premise measures on Y , and {µn}n∈N is the generated
sequence of conclusions, then, for each n = 1, 2, 3, . . .,

(3.4) λn << µn−1N ⇒ µn << µn−1

Proof. Use ν = λn, µ = µn−1N , and K = Pn−1 in Proposition 3.9. Then, as
λnPn−1 = µn and µn−1NPn−1 = µn−1, the result is immediate.

Corollary 3.11. For each n ≥ 1,

µn << µn−1 ⇒ µnN << µn−1N.

Notation 3.12. Let µ and ν be probability measures on a measurable space U .
If µ << ν, then dµ

dν exists. Let us adopt the convention to use a representative of the
equivalence class dµ

dν such that dµ
dν = 0 outside of the support of ν (supp(ν)).

We will write 1ν to mean the indicator function for supp(ν), i.e., 1supp(ν). As a
result, dµ

dν = dµ
dν 1ν .

Theorem 3.13. Let (U,U) and (V,V) be two measurable spaces. Let K be any
Markovian kernel from U to V , and let σ and ν be probability measures on U such
that σ << ν. Then, for any ε > 0,

(3.5) ρ1
ν(σ, ν) < ε ⇒ ρ1

νK(σK, νK) < ε.

Proof. Let ε > 0 be given, and suppose ρ1
ν(σ, ν) < ε. That is,

∥∥∥∥dσ

dν
− 1ν

∥∥∥∥1

ν

=
∫

U

|dσ

dν
− 1ν | dν < ε.

Let A+ = {u ∈ U : dσ
dν (u) > 1ν(u)} and A− = {u ∈ U : dσ

dν (u) < 1ν(u)}. Then
we have,

(3.6)
∫

A+
(
dσ

dν
(u)− 1ν(u)) dν +

∫
A−

(1ν(u)− dσ

dν
(u)) dν < ε.

We make use of the following facts, noting first that, by Proposition 3.9, dσK
dνK

makes sense. By definition, for every B ∈ V,

σK(B) =
∫

U

K(u, B) dσ =
∫

U

K(u, B)
dσ

dν
dν.
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And, by the Radon-Nikodym theorem,

σK(B) =
∫

B

dσK

dνK
dνK.

So,

(3.7)
∫

U

K(u, B)
dσ

dν
dν =

∫
B

dσK

dνK
dνK.

Similarly,

νK(B) =
∫

U

K(u, B) dν =
∫

U

K(u, B)1ν dν.

and

νK(B) =
∫

B

1νK(v) dνK.

So that,

(3.8)
∫

U

K(u, B)1ν dν =
∫

B

1νK(v) dνK.

Consider the case:

B = {v ∈ V :
dσK

dνK
(v) > 1νK(v)}.

For this B, by (3.7) and (3.8) we have,

∫
B

(
dσK

dνK
− 1νK) dνK =

∫
U

K(u, B)[
dσ

dν
− 1ν ] dν

=
∫

A+
K(u, B)[

dσ

dν
− 1ν ] dν +

∫
A−

K(u, B)[
dσ

dν
− 1ν ] dν

≤
∫

A+
[
dσ

dν
− 1ν ] dν + 0.

In a similar fashion, we may define

C = {v ∈ V :
dσK

dνK
(v) < 1νK(v)}

so that (with C replacing B above)∫
C

(1νK − dσK

dνK
) dνK =

∫
U

K(u, C)[1ν −
dσ

dν
] dν

=
∫

A+
K(u, C)[1ν −

dσ

dν
] dν +

∫
A−

K(u, C)[1ν dν − dσ

dν
] dν

≤ 0 +
∫

A−
[1ν −

dσ

dν
] dν.
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Thus,

∫
U

| dσK

dνK
− 1νK |dνK =

∫
B

(
dσK

dνK
− 1νK) dνK +

∫
C

(1νK − dσK

dνK
) dνK

≤
∫

A+
[
dσ

dν
− 1ν ] dν +

∫
A−

[1ν −
dσ

dν
] dν.

< ε. (by (3.6))

That is, ρ1
νK(σK, νK) < ε.

We apply the result of Theorem 3.13 to Bayesian recursive updating to obtain
the following corollaries; as always, the notation is as introduced in Section 2.

Corollary 3.14. For any n ≥ 0 and ε > 0, if λn+1 << µnN , then

ρ1
µnN (λn+1, µnN) < ε ⇒ ρ1

µn
(µn+1, µn) < ε.

Proof. Use K = Pn in Theorem 3.13 and the fact that µnNPn = µn.

Corollary 3.15. For any n ≥ 0 and ε > 0, if µn+1 << µn, then

ρ1
µn

(µn+1, µn) < ε ⇒ ρ1
µnN (µn+1N,µnN) < ε.

The next lemma provides sufficient criteria for the recursive selection of a se-
quence of input measures which yields a convergent sequence of conclusion measures
(convergent with respect to a fixed prior measure).

Lemma 3.16. Let µ0 be given. For any n ≥ 0 and κ > 0, if λn+1 << µnN and
ρ1

µnN (λn+1, µnN) < κ, then

ρ1
µ0

(µn+1, µn) < κ.

Proof. Note that, λn+1 << µnN for all n, implies that µn+1 << µn for all n by
Proposition 3.9. If ρ1

µnN (λn+1, µnN) < κ, then, by Corollary 3.14, we have

ρ1
µn

(µn+1, µn) < κ.

We have,

ρ1
µ0

(µn+1, µn) =
∥∥∥∥dµn+1

dµ0
− dµn

dµ0

∥∥∥∥1

µ0

=
∫

U

|dµn+1

dµn
− 1µn ||

dµn

dµ0
| dµ0 (since

dµn

dµ0
=

dµn

dµ0
1µ0 , by convention)

=
∫

U

|dµn+1

dµn
− 1µn

| dµn

=
∥∥∥∥dµn+1

dµn
− 1µn

∥∥∥∥1

µn

= ρ1
µn

(µn+1, µn).
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That is,

ρ1
µ0

(µn+1, µn) = ρ1
µn

(µn+1, µn)(3.9)

< κ.

Theorem 3.17. Let X and Y be complete, separable metric spaces. Suppose that
{λn}n∈N is a sequence of probability measures on Y , such that λn+1 << µnN , which
recursively generates the sequence {µn}n∈N on X via µn+1 = λn+1P(µn,N). Suppose
we are given a sequence {κn}n∈N of non-negative numbers such that

∑∞
i=0 κi < ∞.

Suppose that, for each n = 0, 1, 2, . . .,

ρ1
µnN (λn+1, µnN) < κn.

Then, the sequence {µn}n∈N converges weakly in P(X).
Proof. By Lemma 3.16, since ρ1

µnN (λn+1, µnN) < κn for each n, we have,

(3.10) ρ1
µ0

(µn+1, µn) < κn for each n ∈ N.

Then, since
∑∞

i=0 κi converges, equation (3.10) means that {dµn

dµ0
}n∈N is a Cauchy

sequence in S+ ⊂ L1(X, µ0). Thus, by Proposition 3.6, via Φ, {µn}n∈N is a Cauchy
sequence in Bµ0(X). Hence, {µn}n∈N is a ρprok-Cauchy sequence in Bµ0(X) and
converges weakly in P(X).

Theorem 3.17 describes concretely how a system can formulate a directed conver-
gence strategy. The goal of the system is to acquire a weakly convergent sequence of
conclusion measures, a stable percept. Suppose the system has the ability to accept
or reject input measures λ. To accept λ at the (n+1)st stage means to take λ = λn+1

and obtain updated conclusion measure µn+1 = λn+1P(µn,N). To reject λ means not
to use λ for the purpose of updating the conclusion. Suppose, moreover, that the
system has the capability to determine, for each n, the L1(Y, µnN) - metric distance
of an input λ to the measure µnN , i.e., to determine ρ1

µnN (λ, µnN). Now, if a se-
quence of numbers, {κn}, such that

∑∞
i=0 κi < ∞, is given, then at stage n + 1, the

system can wait for an input measure λ such that ρ1
µnN (λ, µnN) < κn. When such a

λ is acquired, it will be accepted as λn+1. According to the preceding theorem, the
sequence of conclusions, {µn}, corresponding to the sequence of inputs {λn} selected
in this manner, will converge weakly in P(X).

In practice, the choice of the sequence of numbers {κn} corresponds to the sys-
tem’s degree of confidence, at each stage, about how close the current conclusion,
µn, is to a correct conclusion µ - a correct conclusion, by definition, is a weak limit
in P(X) of a recursively generated sequence of conclusions, {µn}. The greater the
confidence, the smaller κn is. That is, incoming inputs λ must fall within a more
restrictive neighborhood to be accepted as λn+1. If such a λ is forthcoming, we say
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that the system’s belief (about the closeness of conclusion µn to the correct conclu-
sion µ) is confirmed. If a belief-confirming premise is not acquired in a reasonable
length of time at the nth stage, then the system’s confidence in conclusion µn may
decrease. In this case, it is reasonable that the degree of belief, κn, may be replaced
by a larger number, to improve the possibility of acquiring an acceptable λ (one such
that ρ1

µnN (λ, µnN) < κn) to be used as λn+1. In this manner, the ‘direction’ of the
search for stable percepts is responsive to the actual environmental conditions.

We now show in Theorem 3.19 the conditions on the λn’s which ensure the conver-
gence of the µn’s (Theorem 3.17) also ensure the convergence of the sequence {λn}n∈N,
and at a rate comparable to that of {µn}n∈N in P(X).

Lemma 3.18. For every n and every ε > 0, if µn << µ0, then

ρ1
µ0

(µn, µn−1) < ε ⇒ ρ1
µ0N (µnN,µn−1N) < ε.

Proof. We note that

ρ1
µ0N (µnN,µn−1N) = ρ1

µn−1N (µnN,µn−1N).

Namely, by definition,

ρ1
µ0N (µnN,µn−1N) =

∥∥∥∥dµnN

dµ0
− dµn−1N

dµ0

∥∥∥∥1

µ0N

,

where, ∥∥∥∥dµnN

dµ0
− dµn−1N

dµ0

∥∥∥∥1

µ0N

=
∫

U

∣∣∣∣ dµnN

dµn−1
− 1µn−1N

∣∣∣∣ ∣∣∣∣dµn−1N

dµ0

∣∣∣∣ dµ0N

=
∫

U

∣∣∣∣ dµnN

dµn−1
− 1µn−1N

∣∣∣∣ dµn−1N

= ρ1
µn−1N (µnN,µn−1N).

Thus, for a given ε > 0, if µn << µ0 for all n, then

ρ1
µ0

(µn, µn−1) < ε ⇒ ρ1
µn−1

(µn, µn−1) < ε (by equation (3.9))

⇒ ρ1
µn−1N (µnN,µn−1N) < ε (by Theorem 3.13)

⇒ ρ1
µ0N (µnN,µn−1N) < ε.

Theorem 3.19. Suppose we have a sequence of probability measures, {µn}n∈N on
X, which is obtained recursively from a sequence of premises {λn}n∈N which satisfy
λn+1 << µnN , for all n. Let {κn} be a sequence of non-negative numbers such that∑∞

i=0 κi < ∞. Assume that

ρ1
µnN (λn+1, µnN) < κn.
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Then,

(3.11) ρ1
µ0N (λn+1, λn) < κn + 2κn−1.

Consequently, {λn} converges weakly in P(Y ).
Proof. We have

ρ1
µnN (λn+1, µnN) < κn ⇒ ρ1

µ0
(µn+1, µn) < κn (by Lemma 3.16)

⇒ ρ1
µ0N (µn+1N,µnN) < κn (by Lemma 3.18).

Thus,

(3.12) ρ1
µnN (λn+1, µnN) < κn ⇒ ρ1

µ0N (µn+1N,µnN) < κn.

Moreover, for any n = 1, 2, 3, . . . ,

ρ1
µ0N (λn, µn−1N) =

∫
U

∣∣∣∣ dλn

dµn−1N
− 1µn−1N

∣∣∣∣ ∣∣∣∣dµn−1N

dµ0N

∣∣∣∣ dµ0N

=
∫

U

∣∣∣∣ dλn

dµn−1N
− 1µn−1N

∣∣∣∣ dµn−1N.

= ρ1
µn−1N (λn, µn−1N).

So that,

(3.13) ρ1
µ0N (λn, µn−1N) = ρ1

µn−1N (λn, µn−1N).

By the triangle inequality,

(3.14) ρ1
µ0N (λn+1, λn) ≤ ρ1

µ0N (λn+1, µnN)+ρ1
µ0N (µnN,µn−1N)+ρ1

µ0N (µn−1N,λn).

Using (3.12) and (3.13) in (3.14), we have

ρ1
µ0N (λn+1, λn) < κn + κn−1 + κn−1

= κn + 2κn−1.

Now, since
∑∞

i=0 κi < ∞, we have that

∞∑
i=1

(κi + 2κi−1) =
∞∑

i=1

κi + 2
∞∑

i=0

κi < ∞.

Thus, {λn} is a ρ1
µ0N -Cauchy sequence. By Proposition 3.8, {λn} is then a ρprok

-Cauchy sequence in Bµ0N (Y ) ⊂ P(Y ) and, therefore, weakly convergent in P(Y ).

Remark. In practice, as the numbers κn may correspond to degree of belief, there
is no reason to expect that {κn} is a strictly decreasing sequence of non-negative
numbers. (Even though the κn’s must go to 0.)
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4. Extension to Lp. In this section, we use fundamental relationships between
the Lp spaces to prove the following main result:

Main Theorem. Suppose that {λn}n∈N is a sequence of probability measures on
Y which recursively generate the sequence {µn}n∈N on X via µn+1 = λn+1P(µn,N).
Suppose that, for each n, λn+1 << µnN . Let {κn}n∈N be a sequence of non-negative
numbers such that

∑∞
i=0 κi < ∞. For each n, assume that (see Notation 4.1)

ρp
µnN (λn+1, µnN) ≤ κn.

Then,
(1) The sequence {µn}n∈N converges weakly in P(X).
and
(2) The sequence {λn}n∈N converges weakly in P(Y ).

Notation 4.1. Let (U,U) be as in Notation 3.2. Let ν be a given probability
measure on the measurable space (U,U). For p ∈ [1,∞), let us denote

‖f‖p
ν =

{∫
U

|f |p dν

}1/p

.

Then, as usual, Lp(U, ν) denotes the set of ν - a.e. equivalence classes of measurable
functions, f , on U such that ‖f‖p

ν < ∞. We denote by ρp
ν the metric on Lp(U, ν)

associated to the p-norm.
For p = ∞, L∞(U, ν) denotes the set of ν-a.e. equal equivalence classes of mea-

surable, ν-essentially bounded functions on U , where recall that a function f on U is
ν-essentially bounded if there exists a real number M such that ν({u ∈ U : f(u) >

M}) = 0. In that case, the essential sup norm, ‖f‖ν , is the infimum of the set of
such M ’s. We denote by ρν the metric on L∞(U, ν) associated to this norm.

Proposition 4.2. Let (U,U, ν) be a probability space. For any p and q such that
1 ≤ q < p ≤ ∞, Lp(U, ν) ⊂ Lq(U, ν). In fact, for any measurable function g on U ,

‖g‖q
ν ≤ ‖g‖p

ν .

Proof. Proposition 4.2 is a well-known result. (Yeh 2000 [1], for instance).

It follows from Proposition 4.2 that, for any open ball, Bq(f, ε), in Lq(U, ν) there
exists an open ball with respect to the p-metric - namely Bp(f, ε) - contained inside.
That is, Bp(f, ε) ⊂ Bq(f, ε). This implies that Bq(f, ε) is an open set with respect to
the p-metric, i.e., ρp

ν is a finer metric on Lp(U, ν) than ρq
ν restricted to Lp(U, ν). We

apply these results to a special case below:

Proposition 4.3. Let p > 1.
(1) Lp(U, ν) ⊂ L1(U, ν).
(2) ‖ · ‖1ν ≤ ‖ · ‖p

ν .
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(3) ρp
ν � ρ1

ν �Lp(U,ν), where � denotes finer topology.
Proof. Let q = 1 in Proposition 4.2.

Proof of Main Theorem. Suppose we have {λn}n∈N, a sequence of probability
measures on Y , such that λn+1 << µnN which recursively generate the sequence
{µn}n∈N on X via µn+1 = λn+1P(µn,N). Suppose we are given a sequence, {κn}n∈N

of non-negative numbers such that
∑∞

i=0 κi < ∞. Let p ∈ [1,∞] be given and suppose
that, for each n ∈ N, we have that

ρp
µnN (λn+1, µnN) < κn.

Then, by (2) of Proposition 4.3,

ρ1
µnN (λn+1, µnN) < κn.

We then apply Theorem 3.17 to obtain that the sequence {µn}n∈N converges weakly
in P(X).
Moreover, by Theorem 3.19, {λn}n∈N converges weakly in P(Y ).
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