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MOTION CONTROL OF A TENSEGRITY PLATFORM∗

NARONGSAK KANCHANASARATOOL† AND DARRELL WILLIAMSON‡

Abstract. In this paper, we develop a passive nonlinear constrained particle dynamic model for

a class of tensegrity platform structures. Based on the steady state input-output mapping, we then

formulate a neural network inversion problem which is later used as the basis for the design of large

scale path tracking algorithms.

1. Introduction. Tensegrity structures (so named by Kenneth Snelson in 1948
because of their integrity under tension) can be thought of as structures in which the
shape is guaranteed by the interaction between a continuous network of members in
tension and a set of isolated members in compression. Investigation of the mathe-
matical properties remain an interest and a challenge [1], [2], and provide exciting
opportunities for new civil and mechanical applications [3]. We shall refer to tension
members as strings, compression members as bars, and the ends of bars as nodes. In
[4], a class I tensegrity structure is defined as one in which only one bar is connected
to any node, while a class II structure is one in which at least one node has more
than one bar connected to it. However, the distinguishing feature of all tensegrity
structures is that a continuous connection between any two nodes by traversing only
along the bars is not possible.

In [5], [6], the topology of a particular type of class I tensegrity structures having
N bars, S strings and M stages with Pk strings in stage k was described. Then in
[7], a description of these structures in terms of a constrained mass-spring particle
dynamic model was considered. In particular, a constrained particle dynamic model
was developed in which each bar was represented by two particles positioned at the
ends of the bar separated by a distance equal to the length of the bar. A method
for regulating the position and orientation of the resulting constrained mass-spring
model with respect to a given equilibrium point was presented based on linearization
of the resulting nonlinear differential equations.

In this paper, we begin by defining the general structure of a tensegrity platform
as a particular class II tensegrity structure in which at least half the nodes have only
one bar attached. In section 2, a passive nonlinear constrained particle dynamic (or
mass-spring) model is developed as the basis for designing a system for controlling
the position and orientation of the structure along a prescribed path by adjusting
the lengths of the bars. Then in section 3, we formulate a neural network “inversion
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problem” which seeks the (approximate) constant input signal u to give a desired
steady state output response y. The performance of two path tracking algorithms;
a quasi-static algorithm based on an open loop piecewise constant input, and a gain
scheduling algorithm based on an interpolation of “locally designed” controllers, are
then examined. An early version of these results has appeared [8], [9].

2. Tensegrity Platform. A (N,S; P1, P2, ..., PM ) class I structure described in
[5],[6] has a total of N bars, S strings and Pk bars in stage k (with

∑
Pk = N). The

structure is said to symmetrical if Pk = P for all k; otherwise, the structure is said to
be non-symmetrical.

Without any loss of generality, we henceforth assume that the N bar connections
occur between nodes p2k−1 and p2k for k = 1, 2, .., N . We indicate when a string
connection exists between node pi and node pj by writing [i, j]. The following results
are of interest. The cited references provide general expressions for determining all
the spring connections.

Theorem 2.1. [5],[6]

(a) The single stage (N, S;P1) tensegrity has N = P1 bars and S = 3N strings.
The nodes which define both the base and top form a N -sided polygon. Each node is
connected by 3 springs to 3 other nodes.

(b) A symmetrical (N, S; P, P, . . . P ) tensegrity structure with M > 1 stages has
N = MP bars and S strings where S = 4N − 2 (for P = 2) and S = 4N (for P > 2).
Each node is connected by 4 springs to 4 other nodes.

(c) An (N, S; P1, P2, . . . PM ) tensegrity structure exists when the following con-
ditions are satisfied:

(i) P1 > 1 and Pk ≥ 1 for k ≥ 2 (ii) M = r when Pr = 1

(iii) |Pk+1 − Pk| = 1 for 1 ≤ k ≤ M − 1.

The number S of strings for all (N,S; P1, P2 . . . , PM ) structures is bounded by
3N ≤ S ≤ 4N . In particular, for (a) symmetrical structures

S =





3N ; M = 1, P ≥ 3
4N − 2 ; M ≥ 2, P = 2

4N ; M ≥ 2, P ≥ 3

and for (b) non-symmetrical structures (and so M ≥ 2)

S = 4N − L;L =
M∑

k=1

`k,

where
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`1 = 1 if P1 = 2 or P2 = P1 − 1

`k = 1 for 2 ≤ k ≤ M − 1 if Pk = Pk−1 + 1 and Pk+1 = Pk−1

`M =

{
1 if PM = 2 or PM = PM−1 + 1
2 if PM = 1.

Each node is connected by either 3 or 4 springs to either 3 or 4 other nodes.
We make the following definitions.
Definition 2.1. (i) The base nodes of an (N, S; P1, P2 . . . , PM ) tensegrity

structure are defined as the P1 nodes {pb1 ,pb3 , ...,pb2P1−1} which are a subset of the
2P1 nodes in stage 1 that are connected to each other only by springs called the base
strings. The base bars are the P1 bars defined by the node pairs {pb2k−1 ,pb2k

} for
k = 1, 2, .., P1.

(ii) The top nodes of a (N, S; P1, P2 . . . , PM ) tensegrity structure are defined as
the PM nodes {pt1 ,pt3 , ...,pt2PM−1} which are a subset of the 2PM nodes in stage M

that are connected to each other only by springs called the top strings. The top bars
are the PM bars defined by the node pairs {pt2k−1 ,pt2k

} for k = 1, 2, .., PM .
(iii) Define a platform to be any (finite area) 2-dimensional surface. Then for

P1 ≥ 3 and PM ≥ 3, an (N, S;P1, P2, . . . PM ) tensegrity platform is defined from
a class I (N, S;P1, P2, . . . PM ) tensegrity structure by removing the base and top
strings, and fixing the base bars to a base platform at the base nodes, and the top bars
to a top platform at the top nodes using spherical joints.
For simplicity, we henceforth refer to the base platform as the base, and the top
platform as the top of the tensegrity platform structure.

2-stage 6-bar Platform: A 2-stage 6-bar tensegrity platform can be obtained
from the 2-stage (6, 24; 3, 3) tensegrity structure shown in Fig 1 by replacing the
top nodes {p1, p3, p5} and the springs connecting top nodes {p1, p3}, {p1, p5} and
{p3, p5} by a top (platform), and fixing the base nodes {p7, p9, p11} to the base (plat-
form). The three top bars are attached to the top at the top nodes {p1,p3,p5}
and three base bars are attached to the base at the base nodes {p7,p9,p11} using
spherical joints. The resulting 2-stage tensegrity platform with the 18 string con-
nections: {[1, 6], [1, 8], [2, 3], [2, 8], [2, 11], [2, 12], [3, 12], [4, 5], [4, 9], [4, 10], [4, 12], [5, 10],
[6, 7], [6, 8], [6, 10], [7, 10], [8, 11], [9, 12]} is illustrated in Fig 2.

Lemma 2.1. An (N,S; P1, P2, . . . PM ) tensegrity platform is a class II tensegrity
structure in which all the base nodes and top nodes are geometrically constrained. For
M > 1, all P1 (PM ) nodes in stage 1 (stage M) that are not base (top) nodes satisfy
only 1 geometric constraint. For 3 ≤ k ≤ M − 1, all the 2Pk nodes in stages 2 to
M − 1 satisfy only one geometric constraint.

The natural (or maximal) coordinates for a tensegrity platform consist of the
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Cartesian coordinates of each node (which includes the spherical joints). The gener-
alized coordinates for this platform is a reduced set of independent coordinates which
provides a mimimal parametrization of the structure from which the dynamic behav-
ior of the structure can be determined. In order to derive a dynamic model for a
tensegrity platform, we also use the fact that since all the base nodes and top nodes
are spherical joints, no further kinematic constraints are introduced.

2.1. Number of Degrees of Freedom. Overall, the tensegrity platform is
represented by 2N particles {pj ; 1 ≤ j ≤ 2N} in which every particle defines a
node. Each rigid bar is defined by two nodes {p2k−1,p2k−1} and the base and top
are described by P1 and PM nodes respectively. Any platform has 6 DOFs, and so if
P nodes are positioned on a platform with no 3 collinear, then 3P − 6 constraints are
required. We have the following result

Lemma 2.2. Given two nodes {pk(t),pm(t)} at time t, define the function

(1) hk,m(pk(t),pm(t), t) ∆= ||pk − pm||2 −Dk,m(t) ; Dk,m(t) ∆= L2
k,m(t)

where ||·|| denotes the Euclidean norm. For simplicity, we henceforth use the short-
hand notation: hk,m

∆= hk,m(pk(t),pm(t), t) so that the constraints as defined by the
bar lengths are described by {h2k−1,2k = 0; k = 1, 2, ..., N}.

(i) Assume that no three points on the base are collinear. Then a set of 3P1 − 6
independent base node constraints are given by:

hb2k−1,b2k+1 = 0; k = 1, 2, .., P1 − 1

hb2P1−1,b1 = 0

hb1,b2k+3 = 0; k = 1, 2, .., P1 − 3

hb3,b2k+5 = 0; k = 1, 2, .., P1 − 3.(2)

(ii) Assume that no three points on the top are collinear. Then a set of 3PM − 6
independent top node constraints are given by:

ht2k−1,t2k+1 = 0; k = 1, 2, .., P1 − 1

ht2P1−1,t1 = 0

ht1,t2k+3 = 0; k = 1, 2, .., P1 − 3

ht3,t2k+5 = 0; k = 1, 2, .., P1 − 3.(3)

Since each particle is represented by 3 coordinates, the number D of degrees-of-
freedom is given by D = 2N × 3−C = 6N −C where C is the number of constraints
on the nodes described as follows:

(i) There are PM nodes (with no 3 collinear) constrained to lie on the top plat-
form which require 3PM − 6 constraints given by (2). Similarly, there are P1 nodes
constrained to lie on the base platform which require 3P1−6 constraints given by (3).
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(ii) There are N constraints representing the lengths of the bars given by

(4) h2k−1,2k = 0 ; k = 1, 2, .., N.

(iii) Finally, in a body frame which is attached to the base, the positions of the P1

base nodes are fixed which gives a further 3 + 2 + 1 = 6 constraints (corresponding
to the number of zeros in (5) below). Without any loss of generality, we assume the
base is the x− y plane, and

(5) pT
b1 = [0, 0, 0] ; pT

b2 = [Lb1,b2 , 0, 0] ; pT
bk

= [αx,k, αy,k, 0] for k = 3, 4, .., P1.

We summarize these facts as follows:
Lemma 2.3. In the tensegrity body frame, the (N,S; P1, P2, . . . PM ) tensegrity

platform has D degrees-of-freedom where

D = 5N + 6− 3P1 − 3PM .

Consequently, a minimal set of 2D generalized coordinates describe its dynamic be-
havior.

For a 2-stage 6-bar platform where N = 6,M = 2;P1 = P2 = 3, we have D = 18.

2.2. Constrained Particle Dynamic Model. For a tensegrity platform, it is
neither obvious nor convenient to develop a model in terms of the minimal generalized
coordinates. Instead, we now develop a model to describe the motion of a tensegrity
platform in terms of particles (ie point masses) that represent the ends of the bars
which are subject to geometric constraints. As shown in [7], the dynamical equations
for a tensegrity structure in which each bar is represented by two constrained particles
subject to translational and Euler dynamics is equivalent (subject only to a change
in the length and/or mass distribution) to an idealized (ie zero diameter) bar. A
similar conclusion can be reached with respect to representing an idealized (ie zero
thickness) platform in terms of constrained particles located on its surface. In practice,
however, bars have non-zero diameter and platforms have non-zero thickness, and so
the dynamical behaviour of the constrained particle dynamics model and a model
derived by including inertial effects of the bars and plate will differ. Numerical results
[19] however demonstrate that a particle dynamic formulation provides a very useful
approximation of the motion of a tensegrity platform. It should also be noted that
the steady state (or static) characteristics of the particle dynamic models provide an
exact representation of position and orientation of tensegrity platforms, and tensegrity
structures more generally.

Suppose fk is the Newtonian force at node k which occurs as a result of spring
forces applied at point k. Then assuming a linear cable model, we have

(6) fk =
∑
m

{kmk

(
`mk − `0mk

)
+ dmk

˙̀}emk
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in which {kmk, dmk} are respectively the spring constants and the damping constants
of the springs. The summation in (6) is over all nodes m which are connected to node
k by a spring where `0mk is the rest length of the spring, `mk is the length at time t of
this spring, and emk is the unit vector from node m to node k as given by

(7) `mk = ‖pm − pk‖ ; emk =
pm − pk

`mk
.

The motion of each particle is subject to constraints (2) - (4), and in order to guar-
antee that the model constraints are satisfied, we follow an established approach in
multibody systems analysis and add a constraint force f̂j to each node. The motion of
the tensegrity platform in which each particle of unit mass is subject to both a spring
force fk and a constraint force f̂k is then given by

(8) p̈k = fk + f̂k ; 1 ≤ k ≤ 2N.

Using the principle of virtual work, we now derive the explicit form of the constraint
forces.

2.2.1. Principle of Virtual Work. Since constraint forces influence accelera-
tions, these forces must convert the accelerations of the particles into “legal” accelera-
tions that are consistent with the constraints. Physical considerations also impose two
further conditions: (i) the constraint forces must obey Newton’s third law, and (ii)
for stationary constraints (i.e when Dkm(t) in (1) is constant for all t), the constraint
forces must neither add nor remove energy from the system. This latter requirement
is referred to as the principle of virtual work [12],[13]. Constraint forces which satisfy
this property also provide a model for the internal forces exerted in the bars. We have
the following result.

Theorem 2.2. The constraint forces f̂k which act on the unit masses at nodes
pk and satisfy the principle of virtual work are of the form

(9) f̂k =
∑
m

λk,m(pk − pm) ; λk,m = λm,k

for some Lagrange parameters {λk,m} where the summation is over all nodes m for
which there is a geometric constraint hk,m = 0 between node m and node k. In
particular:

(i) Suppose M ≥ 3, and the two nodes {p2i−1,p2i} represent a bar in stage k for
2 ≤ k ≤ M −1. Then the constraint forces {f̂2i−1, f̂2i} are given in terms of the single
Lagrange parameter λ2i−1,2i by

(10) f̂2i−1 = λ2i−1,2i(p2i−1 − p2i) ; f̂2i = −λ2i−1,2i(p2i−1 − p2i).

(ii) The constraint forces {f̂bj ; j = 1, 2, .., 2P1} on the P1 base nodes {pb2k−1 ; k =
1, 2, .., P1} and the P1 base bar nodes {pb2k

; k = 1, 2, .., P1} corresponding to the base
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node constraints (2) are given in terms of 4P1 − 6 Lagrange parameter by

f̂b2k
= −λb2k−1,b2k

(pb2k−1 − pb2k
) ; k = 1, 2, ..., P1

f̂b1 =
P1−1∑

k=1

λb1,b2k+1(pb1 − pb2k+1) + λb1,b2(pb1 − pb2)

f̂b3 =
P1−2∑

k=1

λb3,b2k+3(pb3 − pb2k+3) + λb3,b1(pb3 − pb1) + λb3,b4(pb3 − pb4)(11)

and: (a) For P1 = 3

(12) f̂b5 =
2∑

k=1

λb5,b2k−1(pb5 − pb2k−1) + λb5,b6(pb5 − pb6);

(b) For P1 ≥ 4

f̂b5 =
2∑

k=1

λb5,b2k−1(pb5 − pb2k−1) + λb5,b7(pb5 − pb7) + λb5,b6(pb5 − pb6)

f̂b2P1−1 =
2∑

k=1

λb2P1−1,b2k−1(pb2P1−1 − pb2k−1) + λb2P1−1,b2P1−3(pb2P1−1 − pb2P1−3)

+λb2P1−1,b2P1
(pb2P1−1 − pb2P1

);(13)

(c) For P1 ≥ 5, then for m = 1, 2, .., P1 − 4

f̂b5+2m =
2∑

k=1

λb2m+5,b2k−1(pb2m+5 − pb2k−1) +
2∑

k=1

λb2m+5,b2m+4k−1(pb2m+5 − pb2m+4k−1)

+λb2m+5,b6+2m(pb2m+5 − pb2m+6).(14)

(iii) The constraint forces {f̂tj ; j = 1, 2, .., 2PM} on the PM top nodes {pt2k−1 ; k =
1, 2, .., PM} and the PM top bar nodes {pt2k

; k = 1, 2, .., PM} corresponding to the top
node constraints (3) are given given in terms of 4PM−6 Lagrange parameter similarly
to (11)- (14) provide P1 is replaced everywhere by PM and bj is replaced everywhere
by tj.

In order to prove this result, observe that the kinetic energy T and rate of change
Ṫ of the constrained mass-spring system as represented by the 2N unit mass particles
{pk; 1 ≤ k ≤ 2N} are given by

(15) T =
1
2

2N∑

k=1

||ṗk||2 ; Ṫ =
2N∑

k=1

(p̈k)T ṗk.

Hence the rate of change ˙̂
T in the kinetic energy due only to the constraint forces is

given by

˙̂
T =

2N∑

k=1

f̂T
k ṗk.
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Then using (9), it follows that

(16) ˙̂
T =

∑
m

∑

k<m

λk,m
d

dt
(||pk − pm||2).

Now from (1)

(17) ḣk,m(pk,pm, t) = 2(pk − pm)T (ṗk − ṗm)− Ḋk,m

and so from (16), we have

˙̂
T =

∑
m

∑

k<m

λk,m[ḣk,m + Ḋk,m].

For “legal” accelerations, ḣk,m(pk,pm, t) = 0 and for constant constraints Ḋkm(t) =
0, which then gives the result in (9). Part (ii) then follows from structural properties
which define the tensegrity platform, while part (iii) follows from Lemma 2.2.

Corollary 2.1. The constraint forces {f̂m+j ; 1 ≤ m ≤ 6, 0 ≤ j ≤ 1} of
the 2-stage 6-bar tensegrity structure which act respectively on the unit masses at the
tensegrity nodes and satisfy the principle of virtual work are given in terms of the 6
Lagrange parameters {λ2i−1,2i; 1 ≤ i ≤ 6} for the top nodes by j = 0 and the base
nodes by j = 1 where
(18)

f̂1+j = λ1+j,2+j(p1+j − p2+j) + λ1+j,3+j(p1+j − p3+j) + λ1+j,5+j(p1+j − p5+j)

f̂2+j = −λ1+j,2+j(p1+j − p2+j)

f̂3+j = λ3+j,4+j(p3+j − p4+j)− λ1+j,3+j(p1+j − p3+j) + λ3+j,5+j(p3+j − p5+j)

f̂4+j = −λ3+j,4+j(p3+j − p4+j)

f̂5+j = λ5+j,6+j(p5+j − p6+j)− λ1+j,5+j(p1+j − p5+j)− λ3+j,5+j(p3+j − p5+j)

f̂6+j = −λ5+j,6+j(p5+j − p6+j).

2.3. Determination of the Lagrange Parameters. Now ḧkm = 0 implies
hkm = g1

kmt + g0
km for some constants {g1

km, g0
km}, and so, if in addition, we have

(19) hkm(pk(0),pm(0), 0) = ḣkm(pk(0),pm(0), 0) = 0,

we could then conclude that hkm(pk(t),pm(t), t) = 0 for all t ≥ 0. In other words,
if (19) is satisfied, and the Lagrange parameters are chosen such that ḧkm = 0, the
constraint hkm = 0 will be satisfied for all t > 0.

Numerical Robustness: However in order to provide some numerical robustness for
the constrained mass-spring model, the Lagrange parameters {λqr} should be selected
so as to guarantee that: any small error at time t1 (which could arise as the result
of a numerical error) in the constraint of the form hkm(pk(t1),pm(t1), t1) 6= 0 or
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ḣkm(pk(t1),pm(t1), t1) 6= 0 will decay asymptotically to zero for t > t1. Accordingly,
we elect to choose the Lagrange parameters such that

(20) ḧkm + akmḣkm + bkmhkm = 0

where the numerical robustness parameters {akm, bkm} are selected so that the roots
of the equation

(21) λ2 + akmλ + bkm = 0

are strictly Hurwitz. In addition to guaranteeing asymptotic satisfaction of the con-
straints, the resulting modes of the constraint dynamics (20) should not be so fast
as to cause numerical problems as a result of the differential equations becoming too
“stiff”.

Now, from (17), we have

ḧkm = 2(ṗk − ṗm)T (ṗk − ṗm)− D̈km + 2(pk − pm)T (p̈k − p̈m)

= 2||ṗk − ṗm||2 − D̈km + 2(pk − pm)T (fk − fm)− 2(pk − pm)T (f̂k − f̂m)(22)

Then from (17), (20) and (22), the Lagrange parameters {λk,m} are given in terms of
the numerical robustness parameters {akm, bkm} from

(23) (pk − pm)T (f̂k − f̂m) = ek,m

where

ek,m
∆= (pk − pm)T [fk − fm + akm(ṗk − ṗm) + 0.5bkm(pk − pm)]

+ ||ṗk − ṗm||2 − 0.5(D̈km + akmḊkm + bkmDkm).(24)

From Theorem 2.2, we have the following result.
Lemma 2.4. For M ≥ 3, if the two nodes {p2i−1,p2i} represent a bar in stage k

for 2 ≤ k ≤ M − 1, then

(25) f̂2i−1 = λ2i−1,2i(p2i−1 − p2i) ; f̂2i = −λ2i−1,2i(p2i−1 − p2i)

where

(26) λ2i−1,2i =
e2i−1,2i

||p2i−1 − p2i||2

with {e2i−1,2i} given by (24).
At a base (or top) of the (N, S; P1, P2, . . . PM ) tensegrity platform, the geometric

constraint on any one base (or top) node pk is coupled to all other base (or top) nodes
and to all nodes which define the base (or top) bars. Hence from Theorem 2.2, we
have the following result.
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Lemma 2.5. (i) The 4P1−6 Lagrange parameters for the base nodes and base bar
nodes are given by the vector vb ∈ R4P1−6 which satisfies a linear algebraic equation

(27) Fbvb = gb

for some symmetric matrix Fb where

vT
b = [vT

b1,v
T
b2,v

T
b3,v

T
b4] ; gT

b = [gT
b1,g

T
b2,g

T
b3,g

T
b4](28)

where vector components are given by

vb1 = [λb2i−1,2i
; i = 1, 2, .., P1] ∈ RP1 ;(29)

vb2 = [λb1,2i+1 ; i = 1, 2, .., P1 − 1] ∈ RP1−1;

vb3 = [λb3,2i+3 ; i = 1, 2, .., P1 − 2] ∈ RP1−2 ;

vb4 = [λb2i+3,2i+5 ; i = 1, 2, .., P1 − 3] ∈ RP1−3

and

gb1 = [eb2i−1,b2i ; i = 1, 2, .., P1] ∈ RP1 ;(30)

gb2 = [eb1,b2i+1 ; i = 1, 2, .., P1 − 1] ∈ RP1−1;

gb3 = [eb3,b2i+3 ; i = 1, 2, .., P1 − 2] ∈ RP1−2 ;

gb4 = [eb2i+3,b2i+5 ; i = 1, 2, .., P1 − 3] ∈ RP1−3

where {ek,m} are given by (24).
(ii) The 4PM − 6 Lagrange parameters for the top nodes and top bar nodes are

given by the vector vt ∈ R4PM−6 which satisfies a linear algebraic equation

(31) Ftvt = gt

for some symmetric matrix Ft. The vectors {vt,gt} are given by {vb,gb} in (28) -
(30) with b replaced everywhere by t.

We shall refer to the matrices {Fb,Ft} as the tensegrity base constraint and the
tensegrity top constraint matrices respectively.

Structure of Constraint Matrix: A constraint matrix F (where F = Fb,Ft)
in Lemma 2.5 besides being symmetric has an additional sparse characteristic. In
particular: if we write

F =

[
F1 FT

2

F2 F4

]

where F1 is of dimension P1×P1, F2 of dimension 3P1−6×P1, and F4 is of dimension
3P1 − 6× 3P1 − 6, then:

(i) The matrix F1 is a diagonal whose diagonal components correspond to the
bar length constraints.
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(ii) The matrix F2 is of the form

F2 =




F2,1

F2,2

F2,3


 ; F2,1 ∈ RP1−1×P1 , F2,2 ∈ RP1−2×P1 , F2,3 ∈ RP1−3×P1 .

Here: (a) the first column of F2,1 is nonzero column whereas the following (P1 −
1)× (P1 − 1) submatrix is diagonal, (b) the first and second columns of F2,2 are zero
and nonzero columns respectively while the following (P1 − 2) × (P1 − 2) submatrix
is diagonal, and (c) the first two columns of F2,3 are zero columns and while in the
following (P1 − 3)× (P1 − 2) submatrix, the component [i, j] is nonzero for j = i + 2
or j = i + 3.

(iii) The matrix F4 generally has some zero terms but is not sparse.
Corollary 2.2. The constraint matrices {Fb,Ft} and the vectors {vb,gb,vt,gt}

of the 2-stage 6-bar tensegrity platform are given by

Fb = F1 ; Ft = F0 ;vb = v1, gb = g1, vt = v0, gt = g0

where for j = 0, 1, the 6× 6 matrix Fj and the 6-vectors {vj ,gj} are given by

Fj =




β1+j,1+j 0 0 β1+j,4+j β1+j,5+j 0
0 β2+j,2+j 0 −β2+j,4+j 0 β2+j,6+j

0 0 β3+j,3+j 0 −β3+j,5+j −β3+j,6+j

β1+j,4+j −β2+j,4+j 0 β4+j,4+j β4+j,5+j −β4+j,6+j

β1+j,5+j 0 −β3+j,5+j β4+j,5+j β5+j,5+j β5+j,6+j

0 β2+j,6+j −β3+j,6+j −β4+j,6+j β5+j,6+j β6+j,6+j




vT
j =

[
λ1+j,2+j λ1+j,3+j λ1+j,5+j λ3+j,4+j λ3+j,5+j λ5+j,6+j

]

gT
j =

[
e1+j,2+j e1+j,3+j e1+j,5+j e3+j,4+j e3+j,5+j e5+j,6+j

]
(32)

where for j = 0, 6

β1+j,1+j = 2||p1+j − p2+j ||2 ; β1+j,4+j = (p1+j − p2+j)T (p1+j − p3+j) ;

β1+j,5+j = (p1+j − p2+j)T (p1+j − p5+j)

β2+j,2+j = 2||p3+j − p4+j ||2 ; β2+j,4+j = (p3+j − p4+j)T (p1+j − p3+j) ;

β2+j,6+j = (p3+j − p4+j)T (p3+j − p5+j)

β3+j,3+j = 2||p5+j − p6+j ||2 ; β3+j,5+j = (p5+j − p6+j)T (p1+j − p5+j) ;(33)

β3+j,6+j = (p5+j − p6+j)T (p3+j − p5+j)

β4+j,4+j = 2||p1+j − p3+j ||2 ; β4+j,5+j = (p1+j − p3+j)T (p1+j − p5+j) ;

β4+j,6+j = (p1+j − p3+j)T (p3+j − p5+j)

β5+j,5+j = 2||p1+j − p5+j ||2 ; β5+j,6+j = (p1+j − p5+j)T (p3+j − p5+j)

β6+j,6+j = 2||p1+j − p6+j ||2.
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For the 2-stage 6-bar tensegrity platform, a straight forward application of the
matrix inversion lemma gives an explicit analytical form for computing the inverse
F−1 of a constraint matrix which may provide a time saving in a numerical simulation.

Theorem 2.3. A constrained particle dynamic model which satisfies the principle
of virtual work for a (N,S; P1, P2, . . . PM ) tensegrity platform is described by

(34) p̈k = fk + f̂k ; 1 ≤ k ≤ 2N

where the Newtonian forces {fk} are given in terms of the coordinates {pk; 1 ≤ k ≤
2N} by (6), (7).

For M ≥ 3, the constraint forces on nodes {p2i−1,p2i} which represent a bar in
stage k for 2 ≤ k ≤ M − 1 are given by

f̂2i−1 = λ2i−1,2i(p2i−1 − p2i) ; f̂2i = −λ2i−1,2i(p2i−1 − p2i)

where λ2i−1,2i is given by (26), (24). The constraint forces associated with the base
and top are given by

vb = F−1
b gb ; vt = F−1

t gt

where {Fb,Ft} are the tensegrity constraint matrices with {vb,gb,vt,gt} given by (28)
- (30).

Based on the coordinates of the nodes, the state vector z of the constrained
tensegrity particle dynamic model is given by

z = [p1, ṗ1,p2, ṗ2, ... ,p2N , ṗ2N ] ∈ R12N

However, as we have shown, in a body frame attached to the base, the positions of
the P1 base nodes {pb1,pb2, ... ,pbP1} are fixed, and so the dynamic behavior of
the tensegrity platform using constrained particle dynamics can be described by a
reduced order state vector z̃ ∈ R12N−6P1 . From Lemma 2.3, the dimension of z̃ is
N + 3PM − 6 greater than the order 2D which would be required if the simulation
were expressed in terms of the minimal generalized coordinates. For the 2-stage 6-bar
tensegrity platform, N + 3PM − 6 = 9.

3. Control of a Tensegrity Platform. We now consider the control of a
tensegrity platform by adjustments of the lengths {L2k−1,2k} of the bars; that is,
the control input u is defined by

(35) u = [u1 u2, .. , uN ]T ∈ RN ; uk
∆= L2k−1,2k

and the quality of the control will be measured in terms of how well a performance
output y tracks a desired path yd. For this purpose, we first develop a system of
nonlinear differential equations

(36) ż = f(z,u) ; y = h(z)
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which describes the input u, state z and performance output y of the platform with
respect to a body frame attached to the base.

In general, given the tracking time T and the initial state z(0), a finite time path
tracking problem can be formulated as an approximate “inverse problem” in which a
continuous control signal ud is to be computed from the given trajectory yd so as to
minimize the integral of the tracking error J defined by

J(z(0), T ) ∆=
∫ T

0

(y − yd)2dt.

As a result of the nonlinear nature of the model, no solution to this problem is
available, and so instead we formulate a sub-optimal solution. Specifically, we divide
the trajectory into R segments with endpoints {y1, y2, . . . , yR}, and seek a sequence
of constant inputs {u1, u2, . . . , uR} such that yi is an equilibrium condition for each
given ui; that is, such that

(37) 0 = f(zi,ui) ; yi = h(zi)

where zi is the steady state value of the system state. A suboptimal quasi-static
solution ud is then defined by the piecewise constant input

(38) ud(t) =
R−1∑
m=0

ump(
R(t−m)

T
)

where p(σ) = 1 for 0 ≤ σ < 1, and zero elsewhere. Later, we compare the tracking
performance of this quasi-static solution to that achieved using a suboptimal gain
scheduling algorithm which incorporates a sequence of “local” feedback controllers
defined in terms of the equilibrium values {zi,ui,yi}.

3.1. Dynamic Model for Control. As described in [7], control of a tensegrity
structure can be achieved by changing the bar lengths {L2k−2,2k; k = 1, 2.., N}. A
change in the bar length L2k−2,2k changes the Lagrange parameter λ2k−2,2k in (26),
(24) which then modifies the bar constraint forces {f̂2k−1, f̂2k} in (25) to affect a change
in the dynamical response (34). As evident in (24), λ2k−2,2k is a direct function of
the square D2k−1,2k of the length and its derivatives {D̈2k−1,2k, Ḋ2k−1,2k}, and so it is
simpler (at least for purposes of analysis) to consider introducing a control signal uk

to control D2k−1,2k. While more general control strategies are possible [7], we restrict
consideration in this paper to the following result.

Lemma 3.1. Consider the linear second order controller

(39) L̈2k−1,2k + α2k−1,2kL̇2k−1,2k + β2k−1,2kL2k−1,2k = β2k−1,2kwk ; β2k−1,2k 6= 0.

Suppose the control signal wk is expressed as a nonlinear function of the length and
its derivative {L2k−1,2k, L̇2k−1,2k} and the independent control input uk according to

(40) wk = L−1
2k−1,2k

{
uk − β−1

2k−1,2k(L̇2k−1,2k)2
}

.
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Then D2k−1,2k(t) = L2
2k−1,2k(t) satisfies the linear second order differential equation

(41) D̈2k−1,2k + α2k−1,2kḊ2k−1,2k + 2β2k−1,2kD2k−1,2k = 2β2k−1,2kuk.

Furthermore, based on the control strategy (39), (40), the Lagrange parameters
{λ2k−1,2k} are given by

(42) λ2k−1,2k =
ε2k−1,2k

||p2k−1 − p2k||2
where

ε2k−1,2k
∆= (p2k−1 − p2k)T [f2k−1 − f2k + a2k−1,2k(ṗ2k−1 − ṗ2k)

+0.5b2k−1,2k(p2k−1 − p2k)] + ||ṗ2k−1

−ṗ2k||2 − 0.5(a2k−1,2kḊ2k−1,2k + b2k−1,2kD2k−1,2k)

−0.5(2β2k−2,2ku2k−1,2k − 2β2k−2,2kD2k−1,2k − α2k−1,2kḊ2k−1,2k).(43)

From Theorem 2.3 and Lemma 2.3, components of the state of the tensegrity
platform consist of the 2D positions and velocities of the constrained particles. In
addition, from (41), the N bar controllers require the need of a further 2N state
components {D2k−1,2k, Ḋ2k−1,2k}. Therefore in summary, a system of equations in
terms of the generalized coordinates and their derivatives with respect to a body frame
attached to the base is of the form (36) where z ∈ RND with

ND = 2D + 2N = 2(6N − 3P1 + 6− 3PM ).

However, as we have already mentioned, since the generalized coordinates are not
easily obtained, it is preferable to define the state variables z ∈ RNS as the coordinates
of particles (after eliminating the base nodes) where

NS = 2(6N − 3P1 + N).

For example, for the 2-stage 6-bar platform, ND = 48 whereas NS = 66.

3.1.1. 2-Stage 6-Bar Platform. All of the numerical results for control which
follow are obtained for a 2-stage 6-bar tensegrity structure in which the performance
output y is defined by

(44) y(t) = [xc(t) yc(t) zc(t) φ(t) ζ(t) ω(t)]T

where {xc, yc, zc} are the coordinates of the center of the top, and {φ, ζ, ω} are
the Euler angles 3-2-1 sequence representing the orientation of the top relative to the
base. In this case, {N = 6,M = 2; P1 = P2 = 3} and so the system state z ∈ RNS

where NS = 66. (If the generalized coordinates could be found, then a state space
representation of ND = 48 states could be used.) Because of the complexity of the
system and space limitations, we only include a summary of the numerical results. A
full description of the simulation results data is available [19].
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3.2. Neural Network Approximation. The nonlinear constrained mass-
spring system (36) is a passive system subject to geometric constraints. We therefore
have the following result.

Lemma 3.2. Suppose the Lagrange parameters {λ2k−1,2k} of the constrained
mass-spring model are given by (42), (43). Then given any initial state z(0) and any
constant control signal ū = [ū1, ū2, . . . , ūN ]T with ūk > 0 for all k, the steady state
value z̄ of the platform state is bounded, and the steady state bar lengths {L̄k} are
given by

L̄k =
√

ūk ; k = 1, 2, .., N

Note that in steady state (ie zero velocity), half of the steady state components
of z̄ are zero. For example, for the 2-stage 6-bar platform, (37) define a nonlinear
algebraic relationship between 6 constant input values (components of {ui}), 33 con-
stant internal values (non-zero components of {zi}) and 6 constant output values
(components of {yi}).

Suppose from (37), there exists an invertible function H such that ȳi = H(ūi).
Then given points {ȳ1, ȳ2, . . . , ȳR} on the desired path, a suboptimal tracking solution
(38) is given from the inverse function

(45) ūi = H−1 (ȳi) .

The existence of an inverse is based on the assumption that for any given constant
input ūi (corresponding to a given set of N bar lengths), there exists a unique steady
state output ȳi. Even though asymptotic stability is guaranteed, sufficient conditions
for uniqueness are still not available.

However, even if an inverse were known to exist, an explicit form would be unlikely.
Therefore based on the assumption that an inverse exists, we seek a artificial neural
network approximation [14] to H−1. As is well-known, a neural network must be
“trained” using a data obtained from input-output data of the steady state system
(37). In [15], it is suggested that a multi-layered feed-forward neural network with a
back-propagation learning rule provides the best results. In each specific application,
the problem however is then to determine the number of layers and neurons noting
that both accuracy and convergence suffer if the numbers of neurons and layers are
either too small or too large.

3.2.1. Training Data for 2-Stage 6-Bar Platform. The training data con-
sisted of 1456 pairs of steady state input-output data {ȳi, ūi} obtained from the simu-
lation for various bar lengths {L1,2, ..., L11,12} that corresponded to the {0%,±10%,
±20%} of the nominal lengths Li,j = 2. The input-output data however was first
normalized so that inputs and outputs had zero mean and unit variance to assure
that the input data evenly contributed to the output data.
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The hyperbolic tangent sigmoid function was chosen, and the neuron network
was trained by using Matlab and Neural Network Toolbox 1. Training was regarded as
having successfully completed once the mean square error between the output from
the network and the training set was less than 5E−06. The “optimal” neuron network
consisted of 3 layers (2 hidden and 1 output). Each hidden layer had 30 neurons and
the output layer had 6 neurons.

In order to test the quality of the neural network approximation, new data was
generated based on bar lengths adjusted at ±15% (which is within the range of the
training data) and ±25% (which is outside the range of the training data) of their
nominal lengths. Each set of the testing data had 729 pairs of input-output testing
data. The error between the true output and that generated by the neural network
had mean square errors equal to 2.34E − 05 and 1.40E − 03 for the testing at ±15%
and ±25% respectively. Inspite of the relatively large error for the ±25% data set,
the neural network approximation proved to be reasonably robust and indicates a
“smoothness” property of the nonlinear input-output mapping H. We also investi-
gated the numerical sensitivity of the neural network to small changes in control signal
as a result of the neural network approximation, and found that the nonlinear model
was relatively insensitive to such changes especially with respect to changes in the
Euler angle variables. Once again this result is indicative of a “smoothness” property
of the nonlinear input-output mapping H.

3.2.2. Tracking Performance of 2-Stage 6-Bar Platform. In order to eval-
uate the tracking performance, we consider a linear path yd(t) defined by

y(t) = yR − (yR − y1)(T − t)
T

where

y1 = [ 1.0000 0.5770 4.3628 30.0000 0.0000 0.0000 ]T

yR = [ 3.0000 2.3080 5.2354 40.0000 10.0000 −10.0000 ]T .

Various simulations were then performed with the path divided into R = 10, 20 and
40 segments with time increments 4t = 0.625, 1.25, 2.5, and 5 seconds corresponding
to a tracking time T = R4t seconds. The mean square tracking errors are given in
Table 1.

We make the following observations: (i) For a constant time increment 4t, track-
ing performance improves as R increases, (ii) for a constant number of increments
R, tracking performance improves as 4t increases, and (iii) for a constant number of
tracking time T , tracking performance improves as R increases (4t decreases). Two
particular results (R = 10,4t = 5) and (R = 40,4t = 2.5) labelled 1 and 2 respec-
tively are shown in Fig 3 and 4. The one segment or step response characteristics

1Matlab and Neural Network toolbox is the registered trademark of of The Math works, Inc.,

http://www.mathworks.com
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Table 1

Tracking error with various numbers of segments R and time increments 4t

No. of segments Mean Square Error
4t = 0.625 4t = 1.25 4t = 2.5 4t = 5

40 1.59E-02 1.29E-02 1.00E-02 1.06E-2
20 2.18E-02 1.58E-02 1.39E-02 1.67E-2
10 2.58E-02 2.17E-02 1.85E-02 2.58E-02

corresponding to R = 1 as illustrated in Fig 5 and Fig 6 are highly oscillatory with an
approximate “settling time” of 50 seconds. Note also that the tracking performance
significantly deteriorated for T < 50 seconds, and the inability to further reduce the
tracking time is consistent with the open loop nature of the quasi-static approach to
tracking.

3.2.3. Gain Scheduling Algorithm. We now show how a “gain scheduling”
control algorithm can lead to a reduction in tracking time compared with the quasi-
static approach without a deterioration in tracking mean square error. Specifically,
we consider a finite number R of constant operating points as parameterized by the
scheduling variable {αi; i = 1, 2, .., R} such that

(46) 0 = f(z(αi),u(αi), αi) ; y(αi) = h(z(αi),u(αi), αi)

and seek a nonlinear controller of the form

(47) u(t) = K(α)z(t) + {u(α)−K(α)z(α)}

The gains {K(α)} at α = αi were determined from the linearized system at z = z(αi)
based on a LQR solution, and {K(α)} for αi < α < αi+1 were determined using the
interpolated method in [10].

“Local” gains {K(α)} were determined at R = 3 operating points for 10 and 20
segments, and at R = 5 operating points for 40 segments. The z(αi) were determined
by simulation with u = ui. In each case, a “local” LQR design resulted in a “local”
closed loop responses having a “settling time” of approximately 3 seconds. The corre-
sponding mean square tracking error of path tracking for different segment numbers
and time increments 4t are presented in Table 2.

The simulations in Fig 7 and Fig 8 illustrate the tracking responses when the
(R = 40,4t = 1.25) for a tracking time of T = 50 seconds. Linear gains {K(αi)}
were determined at path nodes 2,10,20,30 and 41 and the other gains were obtained
by interpolation. The simulations in Fig 9 and 10 are also for (R = 40,4t = 1.25)
and a tracking time of T = 50 seconds. However in this case, only one linear gain was
calculated (at path node 2) and this gain was then used at all other nodes. While some
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Table 2

Mean square tracking errors for gain scheduling algorithm

No. of segments Mean Square Error
4t = 0.625 4t = 1.25 4t = 2.5

40 3.8970E-03 1.1774E-03 1.7942E-03
20 1.5383E-03 3.7862E-03 5.4167E-03
10 3.2965E-02 1.0788E-02 1.8888E-02

deterioration is now evident compared with the interpolated approach, the response
is significantly better than the quasi-static results in Fig 3 and Fig 4. ”The mean
square tracking errors of path tracking corresponding to various numbers of segments
and time increments δt are presented in Table 2.

From Table 2, it is evident that the nonlinear gain scheduling algorithm improves
the tracking performance compared to the quasi-static approach since both the mean
square tracking error and the tracking time are reduced. For example, when R = 10
and δt = 1.25, the mean square error of 1.08E − 02 is obtained for a tracking time
T of approximately 15 seconds. However, without gain scheduling ( see Table 1), the
tracking time T must be greater than 100 seconds when R = 40 and δt = 1.25 in
order to achieve a mean square tracking error of 1.00E − 02.

3.3. A Tensegrity Flight Simulator. A recent paper [18] has proposed the
use of a 2-stage 6-bar tensegrity platform for a flight simulator as an alternative to a
Stewart Platform. As both approaches provide important contributions to design, we
now point out some differences and similarities. In particular:

(i) In [18], the model is based on a symmetrical mode of operation. This enables
the geometry of the structure to be expressed in terms of only two angles δ, α which
reduces the degrees of freedom to six. The six independent degrees of freedom are
then selected as the variables yT = [xc(t), yc(t), zc(t), φ(t), ζ(t), ω(t)] in (44). In this
paper, the model does not assume a symmetrical mode of operation, and as a result
has a total of D = 18 degrees-of-freedom.

(ii) In [18], the resulting dynamical equations of state dimension 12 are expressed
in the form

M(y)ÿ + c(y, ẏ) + A(y)T(y) + Ĝ = 0

using Lagrange methodology where M(y) is the system inertia matrix. No dynamics
are included for control action. In this paper, a constrained particle dynamic model
(ignoring control dynamics) of order 54 is developed. (Recall that if 18 independent
generalised coordinates could be found, then in principle, a model of order 36 is possi-
ble.) A particle dynamic model can only provide an approximation of the dynamical
behaviour of full kinematic model where the degree of approximation depends on the
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rotational inertial effects of the bars. Some numerical simulations in ([19]) demon-
strate these differences are not large for ‘normal’ modes of operation of the platform.

(iii) In [18], the control variables are the rest lengths {`0mk} of the six ‘saddle
strings’ {[6, 10], [10, 4], [4, 12], [12, 2], [2, 8], [8, 6]} in Fig 2 whereas in this paper, the
control variables are the lengths of the six bars. For an application as a flight sim-
ulator, it is justifiable argued in [18] that string (or tendon) control eliminates the
need for telescopic bars (or struts). The resulting dynamic response is also likely to
be quicker. Consequently, in this paper, open loop dynamics for the bar controller
have been included in the model. In terms of the model equations (8), adjustments to
the rest lengths of cables directly effects (some of) the string forces {fk} which then
indirectly affects the constraint forces {f̂k} whereas adjustments to the bar lengths di-
rectly effects the constraint forces {f̂k} which then indirectly affects the string forces
{fk}. For applications that require a larger ‘work space’, telescopic bars would be
required, and so a control strategy which incorporates both tendon and strut control
is worthy of investigation. Preliminary work which looked at localized linear particle
dynamic models have indicated that control using bar lengths was ‘more controllable’
(in terms of the size of the minimum singular value of the controllability grammian)
than control using rest lengths of the ‘saddle strings’.

(iv) The equilibrium configuration of the platform structure as determined by both
the particle dynamic model and the full kinematic model are equivalent. However in
[18], equilibrium configurations are only possible for a symmetric structure whose
geometry is described by two angles. The control methodology in this paper is based
on developing a neural network approximation of the inverse of the function H which
describes the equilibrium configuration of the platform in terms of steady state values
of control (the six bar lengths), states (the coordinates of bars) and outputs (the six
variables in y). Since both models give the same equilibrium configuration, these
results are valid for either model (though transient response characteristics differ). A
similar neural network approximation can be also be undertaken when the inputs are
the rest lengths of the ‘saddle strings’. This work is still under investigation.

4. Conclusion. This paper has developed a passive nonlinear constrained parti-
cle dynamic model of a tensegrity platform as the basis for the development of a path
tracking algorithm using an artificial neural network. The explicit form of Lagrange
multipliers which result from the constraints are derived, and can be used to provide
a model for the internal forces exerted in the bars. The platform has potential use as
a flight simulator or a smart structure, but many other applications exist. A compar-
ison with recent work on control of a tensegrity flight simulator has been given. The
disadvantage of requiring a higher state dimension when compared with the number of
independent degrees of freedom is balanced by the fact that the equations are simple
to derive and simulate.
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The artificial neural network provides a solution to the inverse problem of deter-
mining the constant control that moves the structure to a desired steady state output.
Even though the neural network only approximates the inverse input-output function,
it is shown to be reliably robust in its performance using both quasi-static and gain
scheduling control algorithms. In particular, it was found that inclusion of a con-
stant linear feedback control law greatly improved the performance of the quasi-static
algorithm.

One open problem that remains is to be able to design an appropriate path
between two given platform equilibrium conditions so that during path tracking, given
constraints on string tension and bar lengths are not exceeded. A more fundamental
problem is to be able to establish conditions under which the steady state nonlinear
input-output function H is invertible. Some recent results [20] may provide further
insights into this problem. A related problem is to be able to analyse ‘smoothness’
properties of H in order to provide a better understand as to why the neural network
provided such an accurate approximation of H−1.

REFERENCES

[1] D. E. Ingber, Architecture of Life, Scientific American, Jan., pp. 48–57, 1998.

[2] R. Connelly and A. Black, Mathematics and Tensegrity, American Scientist, Vol. 86, Mar-

Apr, 1998.

[3] H. Furuya, Concept of Deployable Tensegrity Structures in Space Applications, Int. J. Space

Structures, 7:2(1992), pp. 143–151.

[4] R. Adhikari, R. E. Skelton, and W. J. Helton, Mechanics of Tensegrity Beams, UCSD,

Structural Systems & Contr. Lab., Rep. No. 1998-1, 1998.

[5] D. Williamson and R. E. Skelton, A General Class of Tensegrity Systems: Geometric Defi-

nition, Engineering Mechanics for the 21st Century, ASCE Conference, La Jolla, California,

May, 1998.

[6] D. Williamson and R. E. Skelton, A General Class of Tensegrity Structures: Topology and

Prestress Equilibrium Analysis, AIAA J. Guidance, Contr., & Dynamics (to be published).

[7] N. Kanchanasaratool and D. Williamson, Modelling and Control of Class NSP Tensegrity

Structures, Int. J. Control, 75:2(2002), pp. 123–139.

[8] N. Kanchanasaratool and D. Williamson, Modelling of Class NSP Tensegrity Structures,

6th Int. Conf. on Control, Auto., Vision & Robotics, Singapore, 2000.

[9] N. Kanchanasaratool and D. Williamson, Control of Class NSP Tensegrity Structures, 6th

Int. Conf. on Control, Auto., Vision & Robotics, Singapore, 2000.

[10] D. J. Stilwell and W. J. Rugh, Interpolation of Observer State Feedback Controllers for

Gain Scheduling , IEEE Trans. Auto. Cntr., 44:6(1999), pp. 1125–1229.

[11] G. Cybenko, Approximation by Superpositions of a Sigmoidal Function, Math. Contr., Signals,

Syst., 2(1989), pp. 303–314.

[12] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA, 1950.

[13] J. Garcia de Jalon and E. Bayo, Kinematics and Dynamic Simulation of Multibody Systems,

Springer-Verlag, New York, 1998.

[14] K. M. Hornik, M. Stinchcombe, and H. White, Multilayer Feedforward Networks as Uni-

versal Approximations, Neural Networks, PWS Publishing, Boston, 1996.

[15] G. Krishnaswamy, M.H, Jr, G. B. Anderson, Structured Neural Network Appraoch to Robot



MOTION CONTROL OF A TENSEGRITY PLATFORM 319

Motion Control, Proc. IEEE Int. Joint Con. Neural Networks, Singpore, 1991.

[16] M. T. Hagan, H. B. Demuth, and Mark Beale, Neural Network Design, PWS Publishing,

Boston, 1996.

[17] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersy, 1999.

[18] C. Sultan, M. Corless, and R.E. Skelton, Tensegrity Flight Simulator, J. Guidance, Con-

trol, and Dynamics, 23:3(2000), pp. 1055–1064.

[19] N. Kanchanasaratool, A Simulation Study of a 2-Stage 6-Bar Tensegrity Platform,

http://hilbert.anu.edu.au/ narong/platform.html.

[20] D. Williamson, R. E. Skelton, and J. H. Han, Equilibrium Conditions of a Tensegrity

Structure, 3rd World Conf. o n Structural Control, Como, Italy, April 2002.



320 NARONGSAK KANCHANASARATOOL AND DARRELL WILLIAMSON

0

1

2

−1−0.500.511.52
0

0.5

1

1.5

2

2.5

3

3.5

4

X  axis
Y axis

Z
 a

xi
s

7

9
11

12

10

8

1

3

5

2

4

6

Fig. 1. A 2-stage 6-bar (6, 24; 3, 3) class 1 tensegrity structure.
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Fig. 2. A 2-stage 6-bar class 2 tensegrity platform.
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Fig. 3. Path tracking characteristics for: (1) (R = 10,4t = 1.25) and (2) (R = 40,4t = 1.25).

0 50 100
0.5

1

1.5

2

2.5

3

x
c

Time (sec)
0 50 100

0.5

1

1.5

2

2.5

y
c

Time (sec)
0 50 100

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

z
c

Time (sec)

0 50 100
30

32

34

36

38

40

42

φ
(rad)

Time (sec)
0 50 100

−2

0

2

4

6

8

10

12

ζ
(rad)

Time (sec)
0 50 100

−12

−10

−8

−6

−4

−2

0

2

ω
(rad)

Time (sec)

(1) (2) (1) (2)
(1) (2)

(1) (2)
(1)

(2)

(1)

(2)

Fig. 4. Path tracking characteristics for: (1) (R = 10,4t = 1.25) and (2) (R = 40,4t = 1.25).
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Fig. 5. Tracking response when R = 1.
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Fig. 6. Tracking response when R = 1.
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Fig. 7. Path tracking response of gain scheduled system where R = 40, 4t = 1.25.

0 20 40 60
0.5

1

1.5

2

2.5

3

3.5

x
c

Time (sec)
0 20 40 60

0.5

1

1.5

2

2.5

y
c

Time (sec)
0 20 40 60

4.5

5

5.5

z
c

Time (sec)

0 20 40 60
30

32

34

36

38

40

42

φ 
(r

a
d

)

Time (sec)
0 20 40 60

−2

0

2

4

6

8

10

12

ξ 
(r

a
d

)

Time (sec)
0 20 40 60

−12

−10

−8

−6

−4

−2

0

2

ω
 (

ra
d

)

Time (sec)

Fig. 8. Path tracking response of gain scheduled system where R = 40, 4t = 1.25.
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Fig. 9. Path tracking responses in Cartesian coordinate space for fixed gain.
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Fig. 10. Path tracking responses in time domain for fixed gain.


