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PROPERTIES OF THE GRAPH TOPOLOGY FOR SCALAR

TRANSFER FUNCTIONS∗

THOMAS S. BRINSMEAD† AND BRIAN D. O. ANDERSON†

Abstract. Necessary and sufficient conditions for the existence of a scalar homotopy in the

Vinnicombe metric between two given transfer functions are presented. Previous results show that

for multivariable transfer functions, the existence of a homotopy is related to a winding number con-

dition on the homotopy end-points. Here, it is shown that for scalar transfer functions the existence

of a homotopy is also related to a Cauchy index condition. Extensive use is made of the relationship,

previously noted by Brockett, between the Cauchy index of a real function and the argument of a

particular related complex function.
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1. Introduction. A desire to analyse robustness of controlled performance has
motivated the development of various control-relevant metrics on linear operator
spaces corresponding to transfer function matrices. For linear systems, it is known
that the graph metric (also known as the gap metric [8]) and the ν-gap (Nu-gap or Vin-
nicombe gap) metric [14, 17] induce the weakest operator topologies under which both
stability and performance are robust properties [6]1. In addition, various extensions
of such metrics to nonlinear operator spaces have also been proposed [2, 3, 11, 12, 15].

The definition of the Nu-gap metric for linear operators involves checking a prop-
erty known as the “winding number condition” [14, 17] related to counting encir-
clements of the origin of a particular frequency domain function. Because it is defined
in terms of an operator in the frequency domain, such a condition is an inherently
linear systems concept. If the Vinnicombe metric is to be extended to nonlinear sys-
tems, then an obvious stepping stone is to characterise the winding number condition
in a way that does not depend upon the linearity of the underlying operators.

That the winding number condition is equivalent to the existence of a homotopy
between two systems has been known for some time [17] (see Section 7.2). However,
as pointed out by a reviewer, the corresponding homotopy does not consist of what we
would normally consider systems, although this is not important for the development
of robustness results. (For further discussion see [16].) It has been hypothesised that
the winding number condition is equivalent to the existence of a homotopy of linear
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time-invariant system transfer functions, an hypothesis which is investigated in detail
in [4]. In that paper, it is shown that for multivariable transfer functions, the winding
number condition is equivalent to the existence of a particular multivariable transfer
function homotopy. For the case of scalar transfer functions, the winding number
condition is also shown to be equivalent to the existence of a particular multivariable
homotopy which is achieved by embedding the scalar transfer function in a higher-
dimensional operator space.

The relationship between the scalar transfer function winding number condition
and the existence of a scalar transfer function homotopy was not resolved in [4].
However, in [1] it was demonstrated, by a particular example, that there do exist
scalar transfer functions which satisfy the winding number condition, but for which
no scalar homotopy in the Vinnicombe metric between them exists. In this paper we
generalise these results to develop an extra necessary and sufficient condition that two
scalar transfer functions must satisfy, in addition to the winding number condition,
in order for a scalar transfer function Vinnicombe metric homotopy between them to
exist.

The structure of this paper is as follows. In Section 2, we review the Vinnicombe
metric, define the winding number condition, and recall some properties which will
be useful for the subsequent development. In the following section, we re-state the
main theorem from [4] relating the winding number condition to the existence of a
multivariable homotopy. We also review the main result in [1] showing that there exist
some transfer functions which satisfy the winding number condition, but for which
no corresponding homotopy exists. We then introduce and define a quantity which
we call the “Brockett angle” corresponding to a given real number and investigate
the relationship between this angle and another quantity defined for real rational
functions known as the Cauchy index. We then demonstrate that the existence of
a scalar homotopy between two scalar transfer functions places restrictions on the
change in the Brockett angle at particular points in the transfer function. We also
demonstrate why this restriction does not hold in the case of multivariable homotopies,
and demonstrate the extent to which these additional necessary conditions for the
existence of a scalar homotopy are also sufficient. Finally, in Section 7, we offer
concluding remarks.

2. The Vinnicombe Gap Metric. For a fully detailed exposition of the Vin-
nicombe Gap metric, consult [14, 17]. Here, we briefly state the definition and sum-
marise some basic properties for discrete time plants, for which the exposition is
slightly less complicated than that for continuous time plants.

In this paper a continuous time transfer function in the s-domain is related to a
discrete transfer function in the z-domain by the mapping z = 1−s

1+s , which maps the
unstable region in the s-domain (the open right half plane) to the interior of the unit
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disk, and the imaginary axis to the unit circle. The origin is mapped to positive one
(+1), and the point at infinity is mapped to negative one (-1). This contrasts with
the more usual definition of a discrete time transfer function (in the q-domain), by
the mapping q = 1+s

1−s , which maps the the s-domain unstable region in the right half
plane to the exterior of the unit disk. The reason for the somewhat unconventional
choice for discrete-time mapping is in order to simplify the analysis.

Let Pγ and Pζ be two real rational, possibly multivariable, discrete time transfer
functions with the same dimensions. Define the chordal distance between Pγ and Pζ

at frequency θ by

κ(Pγ , Pζ , θ) :def= lim
θ̂→θ

σ̄
{

[I + Pζ(e−jθ̂)P ∗ζ (e−jθ̂)]−
1
2 × . . .

[Pζ(e−jθ̂)− Pγ(e−jθ̂)][I + P ∗γ (e−jθ̂)Pγ(e−jθ̂)]−
1
2

}
,

and

κ̄(Pγ , Pζ) :def= ess sup
−π<θ≤π

κ(Pγ , Pζ , θ).(1)

In the definition of the chordal distance, the inverse square root X−
1
2 is understood to

be a matrix square root of the inverse square matrix X−1, where X is positive definite
Hermitian. The reason for the limit operation in the definition is to account for the
possibility that either Pγ or Pζ has poles on the unit circle. In addition the notationX∗

represents conjugate transposition of a transfer matrix, so that X∗(z) = [X(z)]∗. The
notation X∗(z) = X(z)∗ is also sometime used. For real rational transfer functions,
X∗(z) = XT (z∗) for all z. Furthermore for all |z| = 1 (that is, on the unit circle), we
have that z∗ = z−1 so that X∗(z) = XT (z−1). In the following, in order to emphasize
the conjugation operation, we will usually use the notation X∗(z) rather than X(z)∗,
or XT (z∗) for real rational transfer functions, or XT (z−1) on the unit disk, or X(z∗),
X(z−1) for the scalar case.

The Vinnicombe metric distance between Pγ and Pζ is then defined as

δν(Pγ , Pζ) = κ̄(Pγ , Pζ)

provided the following two conditions are satisfied:

det[I + Pγ(e−jθ)P ∗ζ (ejθ)] 6= 0, for all θ,(2)

and wno
[
det(I + PγP

∗
ζ )

]
+ η̆(Pγ)− η̄(Pζ) = 0.(3)

If the conditions of equations (2) and (3) are not both satisfied then δν(Pγ , Pζ) =
1. In the above, P ∗(z) denotes P (z−1)T , and wno(X) is the winding number of the
transfer functionX, that is, the number of counterclockwise encirclements of the origin
by X(z) as z moves counter-clockwise around the unit circle (corresponding to the
standard clockwise NyquistD-contour in the s-domain) indented, if necessary, into the
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interior (that is, into the unstable region) around any unit circle poles. Finally η̆(X)
and η̄(X) denote the number of poles of X in the open and closed interior (unstable
region) of the unit circle respectively. In this paper, we also use the notation Z̆(X)
and ¯(Z)(X) to denote the number of zeros of X in the open and closed interior of the
unit circle.

For scalar transfer functions pγ and pζ the defintion of the chordal distance (1)
reduces to

κ(pγ , pζ , θ̂) = lim
θ→θ̂

|pζ(e−jθ̂)− pγ(e−jθ̂)|√
[1 + |pζ(e−jθ̂)|2][1 + |pγ(e−jθ̂)|2]

(4)

and the determinant and winding number conditions (2) and (3) become

for all θ 1 + pγ(e−jθ)p∗ζ(e
−jθ) 6= 0(5)

and wno[1 + pγ(e−jθ)p∗ζ(e
−jθ)] + η̆(pγ)− η̄(pζ) = 0.(6)

An equivalent expression for the Vinnicombe metric involves normalised coprime
fraction descriptions. Let Pξ = NξM

−1
ξ = M̃−1

ξ Ñξ denote normalised right and left
coprime fractional descriptions [13] of Pξ. Define

G
(p+m)×m
ξ =

[
Nξ

Mξ

]
,

and G̃
p×(p+m)
ξ =

[
−M̃ξ Ñξ

]
.

It follows that
[
Gξ G̃∗ξ

]
is all-pass. The chordal distance at a frequency θ is given

by

κ(Pγ , Pζ , θ) = σ̄
[
G̃ζ(e−jθ)Gγ(e−jθ)

]
,(7)

= σ̄
{
M̃ζ(e−jθ)

[
Pγ(e−jθ)− Pζ(e−jθ)

]
Mγ(e−jθ)

}
,

where the last equality holds only for e−jθ not a pole of either Pγ or Pζ . The Vinni-
combe metric may then be alternatively expressed as

δν(Pγ , Pζ) = ‖G̃ζGγ‖∞ = ‖G̃γGζ‖∞(8)

(where ‖ · ‖∞ represents the L∞ norm), provided that

det
[
G∗ζ(e

−jθ)Gγ(e−jθ)
]
6= 0 for all θ,(9)

and wno
{
det

[
G∗ζGγ

]}
= 0.(10)

Otherwise δν(Pγ , Pζ) = 1. Note that conditions (2) and (9) are provably equivalent,
as are conditions (3) and (10).
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Given scalar plants

pγ =
nγ
mγ

,

pζ =
nζ
mζ

,

where (nγ ,mγ) and (nζ ,mζ) are each coprime polynomial pairs, [13], let rγ and rζ be
stable polynomials(that is, polynomials with no zeros on the closed unit disk) such
that

r∗γrγ = n∗γnγ +m∗γmγ

and r∗ζrζ = n∗ζnζ +m∗ζmζ .

Then pγ and pζ have normalised coprime fractional descriptions

pγ =
nγ/rγ
mγ/rγ

,

pζ =
nζ/rζ
mζ/rζ

,

where the numerators nξ/rξ and denominators mξ/rξ (for ξ = γ, ζ) are each rational
transfer functions, which are coprime over the principal ideal domain [13] of proper
stable transfer functions. We set

Gξ =

[
nξ/rξ

mξ/rξ

]
and G̃ξ =

[
−mξ/rξ nξ/rξ

]
.

Note that G̃ξGξ = 0 and that G∗ξGξ = 1.
That δν is a metric (implying that particular properties, such as the triangle

inequality, for example, hold) is justified in [14].

3. Review of Previous Results. We restate a theorem from [4] regarding the
relationship between the winding number condition and the existence of a homotopy
between two transfer functions. Although the thereom was originally stated and
proved for continuous time transfer functions, it also holds true for discrete time
transfer functions.

Theorem 3.1. Let real rational p ×m transfer functions Pα and Pβ be given,
with at least one of p and m strictly greater than one and with δν(Pα, Pβ) < 1. Then
for any given η (which will provide an upper bound for departure from monotonicity),
there exists a Vinnicombe metric homotopy, parametrised by λ ∈ [λα, λβ ], given by
Pλ, varying from Pα to Pβ such that the following properties hold.

• Endpoint properties: Pλ = Pα for λ = λα, and Pλ = Pβ for λ = λβ.
• Vinnicombe Continuity Property: For every λ̂ ∈ [λα, λβ ] and ε > 0 there

exists δ such that δν(Pλ̂, Pλ) < ε for all λ ∈ [λα, λβ ] with
∣∣∣λ̂− λ

∣∣∣ < δ.
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• Subunitary Property: κ̄(Pα, Pλ) = supθ κ(Pα, Pλ, θ) < 1 for all λ ∈ [λα, λβ ].
• Monotonicity Property (Arbitrary Closeness to): κ̄(Pα, Pλ) ≥ κ̄(Pα, Pλ̂) − η

for all λ̂, λ ∈ [λα, λβ ] such that λ̂ ≤ λ.
Conversely, if there exists a homotopy with the Endpoint and Vinnicombe Con-

tinuity properties as well as the Subunitary property, then δν(Pα, Pβ) < 1, which is
equivalent to saying that if δν(Pα, Pβ) = 1 then no homotopy satisfying those three
properties exists.

Proof. See [4]
Note that the continuity in the Vinnicombe metric is equivalent to continuity in

the graph metric, so that the “Vinnicombe Continuity Property” could just as validly
called the “Graph Metric Continuity Property”, however, since our motivation is
extension of the Vinnicombe metric to nonlinear systems, we retain this terminology.

Note also that the ”Monotonicity Property” is not mentioned in the converse
part of the theorem statement, so that there exists a homotopy connecting Pα and Pβ
with the Endpoint, Vinnicombe Continuity and Subunitary Properties, if and only if
δν(Pα, Pβ) is strictly less than unity. However the particular homotopy constructed for
the proof does in fact possess the Monotonicity Property (in the Vinnicombe metric)
so that Monotonicity is an additional property that comes“for free” and which may
or may not be useful depending on the intended application of the theorem.

The situation for scalar transfer functions is a little more subtle. Of course, it is
possible to embed the space of scalar transfer functions within a higher dimensional
space of multivariable transfer functions. In this way it can easily be seen that the
satisfaction of the winding number condition of scalar transfer functions is equivalent
to the existence of a multivariable transfer function homotopy. It is shown in [1],
however, that it is not equivalent to the existence of a scalar homotopy. In fact, there
it is shown by counterexample, that there exist two scalar transfer functions which
satisfy the winding number condition, but for which there does not exist a connecting
homotopy. We present the following theorem from [1], also stated for continuous time
transfer functions.

Theorem 3.2. Let p̂α = ε
s−1 and p̂Ω = − ε

s−1 for some 0 < ε < 1. Note that
δν(p̂α, p̂Ω) < 1 for sufficiently small ε. Let uα(s) and uΩ(s) be Hurwitz polynomials
and let bα(s) = εuα(s), aα(s) = (s − 1)uα(s) and bΩ(s) = −εuΩ(s), aΩ(s) = (s −
1)uΩ(s). Let bλ(s), aλ(s) be homotopies on [0, 1] continuously linking bα to bΩ(s) and
aα(s) to aΩ(s), such that setting p̂λ = bλ(s)

aλ(s) gives a proper, but not necessarily strictly
proper p̂λ. Then for some λ ∈ (0, 1) there holds

δν(p̂α, p̂λ) = 1.

Proof. See [1].
Note that if uα(s) were not Hurwitz, then homotopies in the numerator and

denominator polynomials which do not preserve the right hand plane pole-zero can-
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cellation will not translate to Vinnicombe metric homotopies of the transfer functions
because the winding number condition will be violated. This is also demonstrated in
[1].

The analysis in [1] proceeded first by demonstrating that no first order homotopy
between two first order plants p̃α = Kα

s+ρα
and p̃Ω = KΩ

s+ρΩ
exists if either p̃α or p̃Ω is

unstable (that is if either ρα < 0 or ρΩ < 0) and the signs of the gains Kα and KΩ

are different, that is if KαKΩ < 0. It was then shown, by exploiting the properties
of a quantity known as the Cauchy index, defined for real rational functions, that no
real rational subunitary homotopy pλ (that is, one for which δν(p̂α, pλ) < 1 for all λ)
of any order exists between p̂α = ε

s−1 and p̂Ω = − ε
s−1 , even though δν(p̂α, p̂Ω) < 1.

In the following, we generalise this result to develop an extra necessary (and
sufficient) condition that two scalar transfer functions must satisfy, in addition to the
winding number condition, in order for a scalar Vinnicombe metric homotopy between
them to exist. However, we first introduce some concepts which will become useful in
the ensuing exposition.

4. Some Mathematical Tools:

Cauchy indices and Brockett angles. The analysis in [1] relied on the properties
of the Cauchy index. The Cauchy index is defined [9] (See in particular Chapter XV,
Section 2) for a real rational function f(s) over an interval [l, u] of the real line (where
either or both l or u can be at infinity) as

Iul [f(s)] = P̃ul [f(s)]− Ñu
l [f(s)],

where P̃ul is the number of (positive) jumps that f(s) makes from −∞ to +∞ as s
increases in the open interval (l, u) and Ñu

l is the number of (negative) jumps from
+∞ to −∞. For a rational f(s) with f(∞) < ∞ and denominator of degree k in a
coprime polynomial fraction, the Cauchy index over any interval is an integer in the
set {−k,−k + 2, . . . , k − 2, k}.

In [5], a slightly different perspective on the Cauchy index is developed by mapping
y, an element of the extended real line (which includes the point at infinity) to an
angle φ̄ ∈ (−π, π] by the function

φ̄ =

{
2 tan−1(y) for −∞ < y <∞,

π for y = ±∞,

where the amibiguity in the definition of the inverse tangent is resolved by restricting
it to lie within the interval (− 1

2π,
1
2π]. We shall call this angle φ̄, the (bounded)

“Brockett angle” associated with a particular extended real number y.

This definition extends in a natural way to the Brockett angle corresponding to
a real rational function. Consider the real rational transfer function f(x) = b(x)

a(x) ,
where b(x) and a(x) are coprime polynomials (and therefore continuous in x). Define
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a complex valued function of x by

F (x) =
[1 + jf(x)]2

|1 + jf(x)|2
for x ∈ R

=
1− f(x)2

1 + f(x)2
+ 2j

f(x)
1 + f(x)2

(11)

=
b(x)2 − a(x)2

b(x)2 + a(x)2
+ 2j

a(x)b(x)
b(x)2 + a(x)2

.

It is easily confirmed that for all real f(x), the complex quantity F (x) lies on the
unit circle in the complex plane, and that the argument of the complex number F (x)
is the Brockett angle corresponding to the (extended) real number f(x). In [5], the
Cauchy index I∞∞f (that is, over the entire real number line) is related to the number
of full rotations of the argument of F (x) as x varies from −∞ to +∞.

The Brockett angle defined in the above way is not necessarily a continuous
function of x, since it is bounded within the interval (−π, π] and it may therefore
be discontinuous where f(x) = ∞. It is, however, possible to define a “continuous
Brockett angle” over an x-interval [l, u] corresponding to a real rational function f(·)
by allowing the angle to range continuously beyond the bounded (−π, π] interval,
removing the modulo 2π ambiguity by defining the value of the continuous Brockett
angle to coincide with the bounded Brockett angle at a particular choice of x in the
[l, u] interval. For convenience, we may take this particular choice to be the lower
limit, x = l.

Formally, given a real rational f(x) = b(x)
a(x) , we can define a (continuous) real

valued function by

Φ(x) =
∫ x

l

2
b(t) ∂∂ta(t)− a(t) ∂∂tb(t)

b(t)2 + a(t)2
dt+ 2 tan−1 b(l)

a(l)
(12)

=
∫ x

l

2
∂
∂tf(t)

1 + f(t)2
dt+ 2 tan−1 f(l),

where as before tan−1 : R∪∞ → (− 1
2π,

1
2π], so that even if a(l) = 0, then Φ(l) = π is

well defined. Note that
∂
∂t f(t)

1+f(t)2 = ∂
∂t tan−1[f(t)]. The above definition of Φ(x) in terms

of the integral of a derivative is required to ensure that Φ(x) is continuous, even where
a(·) = 0, that is f(·) = ∞. It is fairly easy to see that arg[F (x)] = φ̄(x) = Φ(x)±2nπ,
for some integer n. It is also possible to let l → −∞, so that a continuous Brockett
angle can be defined even for semi-infinite or doubly infinite x-intervals.

Lemma 4.1. Given a real rational function f(x) = b(x)
a(x) where b(x) and a(x) are

coprime polynomials (and therefore continuous in x), define the real function Φ(x)
according to (12). The Cauchy index Iul of f(x) over the interval [l, u] is equal to the
number of net positive strict crossings by Φ(x) of values of π ± 2nπ where n is any
integer, as x varies over the interval [l, u].
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Proof. This is fairly obvious from the definition of the Cauchy index. Consider
the continuous complex function F (x) defined by (11) which takes values only on the
unit circle. It is easy to confirm that tan{ 1

2Φ(x)} = tan{ 1
2 arg[F (x)]} = f(x) and

that changes as x varies in the value of f(x) from negative to positive infinity and
vice versa correspond to changes in the argument of F (x) across the angle π, that is,
changes in crossings of quantity Φ(x) of values of π± 2nπ. If Φ(l) or Φ(u) is π± 2nπ,
this does not count in the enumeration of strict crossings, just as the Cauchy index
disregards jumps in f(x) at x = l, u.

This lemma has related a Cauchy index of a real rational function over an interval
to the change in argument of a corresponding complex function (which takes values
on the unit disk) over the same real interval. It can also be seen that except in
pathological cases where the continuous Brockett angle is equal to −π (modulo 2π) at
points x = u and x = l, the Cauchy index Iul f(·) of a function f(·) can be determined
from knowledge of the continuous Brockett angle Φ(l) and Φ(u) at the two end points
of the interval only. In fact it is fairly easy to establish that (not including pathological
cases) Iul f(·) is an integer such that∣∣∣∣Iul f(·)− 1

2π
[Φ(u)− Φ(l)]

∣∣∣∣ < 1.(13)

To see this, let Iul f(·) = N , so that Φ(l) = φ̄l ∈ (−π, π] and Φ(u) = φ̄u + 2Nπ for
some φ̄u ∈ (−π, π]. then observe that∣∣∣∣Iul f(·)− 1

2π
[Φ(u)− Φ(l)]

∣∣∣∣ =
∣∣∣∣N − 1

2π
[φ̄u + 2Nπ − φ̄l]

∣∣∣∣
=

∣∣∣∣ 1
2π

[
φ̄u − φ̄u

]∣∣∣∣ < 1.

It is also possible to take care of the cases where the continuous Brockett angle is
equal to −π (modulo 2π) at points x = u and x = l, by noting that for sufficiently
small ε > 0 there holds∣∣∣∣Iul f(·)− 1

2π
[Φ(u− ε)− Φ(l + ε)]

∣∣∣∣ < 1,

so that ∣∣∣∣Iul f(·)− 1
2π

[Φ(u)− Φ(l)]
∣∣∣∣ ≤ 1,(14)

with equality only possible if either or both Φ(u) and Φ(l) is equal to π modulo 2π.

4.1. Transfer function Homotopies. We now consider a homotopic family
of rational functions fλ(x) = bλ(x)

aλ(x) . Here bλ(x) and aλ(x) are polynomials with
coefficients parametrised by λ, differentiable (with respect to λ) within an interval
[α,Ω]. We can use continuity properties to show that it is possible to determine the
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Cauchy index over an interval [l, u] of a function fλ as λ varies between [α,Ω] solely
on the basis of knowing fα and by observing the changes in the Brockett angle Φλ(l)
and Φλ(u) at the two end points of the x-interval, as λ varies.

To this end define the (continuous) change as λ varies over an interval [α,Ω] in
the Brockett angle of fλ(x) = bλ(x)

aλ(x) at a point x as

∆λ(α,Ω, x) =
∫ Ω

α

2
bλ(x) ∂

∂λaλ(x)− aλ(x) ∂
∂λbλ(x)

aλ(x)2 + bλ(x)2
dλ(15)

=
∫ Ω

α

2
∂
∂λfλ(x)

1 + fλ(x)2
dλ.

Again, the above definition of ∆λ(α,Ω, x) in terms of the integral of a derivative is
required to ensure that ∆λ(α,Ω, x) is continuous in Ω. The required derivatives exist
since bλ and aλ are differentiable in λ.

Conversely, in accordance with (12), we define the (continuous) change as x varies
over an interval [u, l] in the Brockett angle of fλ(x) = bλ(x)

aλ(x) at a point λ in the
homotopy as

∆x(l, u, λ) =
∫ u

l

2
bλ(x) ∂∂xaλ(x)− aλ(x) ∂∂xbλ(x)

aλ(x)2 + bλ(x)2
dx

=
∫ u

l

2
∂
∂xfλ(x)

1 + fλ(x)2
dx(16)

= Φλ(u)− Φλ(l).

It is now a simple matter to establish that the net change in the Brockett angle over
a given x-interval [l, u] may vary with the function homotopy only as much as much
as the changes in the Brockett angle over the function homotopy at the x-interval end
points. Roughly speaking, the diagram in Figure 1 commutes. This is formalised in
the following lemma.

Φ(α, l)

Φ(α, u)

Φ(Ω, l)

Φ(Ω, u)

∆x(l, u, α)

∆λ(α,Ω, l)

∆x(l, u,Ω)

∆λ(α,Ω, u)

-

-

? ?

Fig. 1. Commutative Diagram
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Lemma 4.2. For a given homotopy of real rational functions fλ(x) = bλ(x)
aλ(x) of x

parametrised by λ, define ∆λ(α,Ω, u) and ∆λ(α,Ω, l) according to equation (15) and
∆x(l, u,Ω) and ∆x(l, u, α) are defined according to (16). It then follows that

∆x(l, u,Ω)−∆x(l, u, α) = ∆λ(α,Ω, u)−∆λ(α,Ω, l).

Proof. The proof is straightforward, if somewhat involved.

∆x(l, u,Ω)−∆x(l, u, α) =
∫ u

l

2
∂
∂xfΩ(x)

1 + fΩ(x)2
dx−

∫ u

l

2
∂
∂xfα(x)

1 + fα(x)2
dx

= 2
∫ u

l

∂
∂xfΩ(x)

1 + fΩ(x)2
−

∂
∂xfα(x)

1 + fα(x)2
dx.(17)

We can express the difference in the integrand itself as an integral with respect to λ:

∂
∂xfΩ(x)

1 + fΩ(x)2
−

∂
∂xfα(x)

1 + fα(x)2
=

∫ Ω

α

∂

∂λ

[
∂
∂xfλ(x)

1 + fλ(x)2

]
dλ

=
∫ Ω

α

[1 + fλ(x)2] ∂2

∂x∂λfλ(x)− 2fλ(x) ∂
∂λfλ(x)

∂
∂xfλ(x)

[1 + fλ(x)2]
2 dλ.

Substitution of this expression in (17) gives

∆x(l, u,Ω)−∆x(l, u, α)

=
∫ u

l

∫ Ω

α

[1 + fλ(x)2] ∂2

∂x∂λfλ(x)− 2fλ(x) ∂
∂λfλ(x)

∂
∂xfλ(x)

[1 + fλ(x)2]
2 dλ dx

=
∫ Ω

α

∫ u

l

[1 + fλ(x)2] ∂2

∂x∂λfλ(x)− 2fλ(x) ∂
∂λfλ(x)

∂
∂xfλ(x)

[1 + fλ(x)2]
2 dx dλ.(18)

In the above, the exchange of the order of integration can be justified on the basis
of the piecewise continuity of the integrand in both x and λ and the finiteness of the
integral limits for λ. The inner integral can be expressed as a difference as follows.∫ u

l

[1 + fλ(x)2] ∂2

∂x∂λfλ(x)− 2fλ(x) ∂
∂λfλ(x)

∂
∂xfλ(x)

[1 + fλ(x)2]
2 dx =

∂
∂λfλ(u)

1 + fλ(u)2
−

∂
∂λfλ(l)

1 + fλ(l)2
.

Finally substituting this expression back in (18) yields

∆x(l, u,Ω)−∆x(l, u, α) =
∫ Ω

α

∂
∂λfλ(u)

1 + fλ(u)2
−

∂
∂λfλ(l)

1 + fλ(l)2
dλ

= ∆λ(α,Ω, u)−∆λ(α,Ω, l),

as required.
The above lemma indicates that in order for the Cauchy Index over an interval

[l, u] of a real rational function homotopy fλ(x) to change as λ varies from α to Ω, the
argument Φα(x) + ∆λ(α, λ, x) of the corresponding function Fλ(x) that takes values
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on the unit disk (for all x and all λ) must “unwind” over π ± 2nπ at one or possibly
both of the interval end points l and u as λ varies.

Corollary 4.3. The change in the Cauchy index Iul fλ(·), as λ varies from α

to Ω, that is, Iul fΩ(·)− Iul fα(·), is given by an integer such that∣∣∣∣[Iul fΩ(·)− Iul fα(·)]− 1
2π

[∆λ(α,Ω, u)−∆λ(α,Ω, l)]
∣∣∣∣ ≤ 2.

(19)

Proof. We investigate the change in the Cauchy index Iul as follows.∣∣∣∣Iul fΩ(·)− 1
2π

∆x(l, u,Ω)
∣∣∣∣ ≤ 1,∣∣∣∣Iul fα(·)− 1

2π
∆x(l, u, α)

∣∣∣∣ ≤ 1.

The above equations can be seen to be true in light of equation (14) and the fact that
∆x(l, u, λ) = Φλ(u)− Φλ(l). We can therefore conclude that∣∣∣∣Iul fΩ(·)− Iul fα(·)− 1

2π
[∆x(l, u,Ω)−∆x(l, u, α)]

∣∣∣∣ ≤ 2,∣∣∣∣[Iul fΩ(·)− Iul fα(·)]− 1
2π

[∆λ(α,Ω, u)−∆λ(α,Ω, l)]
∣∣∣∣ ≤ 2.

This shows that if the Cauchy index Iul fλ(·) when λ varies from α to Ω is to
change by a value greater than two, then the argument Φα(x) + ∆λ(α, λ, x) of the
unit disk function Fλ(x) must perform a full rotation on at least one of the end points
x = l or x = u. This corresponds to the original function fλ(x) (at least at one of
the end points x = l or x = u) taking on all possible real values, including infinity, at
least once in the homotopy.

4.2. Implications for Scalar Transfer Function Homotopies. We next es-
tablish that the existence of a Vinnicombe metric homotopy pλ between two real
rational scalar transfer functions pα and pΩ places restrictions on the variation of the
Brockett angle of pλ(z) at the points z = 1 and z = −1, as λ varies from α to Ω.

We need to first show that if we have a transfer function homotopy consisting of
the ratio of two polynomial homotopies, then this implies the existence of a transfer
function normalised fraction description, with associated homotopies for the number-
ator and denominator of the fraction.

Lemma 4.4. Let n̄λ(z), m̄λ(z) be two polynomial homotopies with real, bounded
coefficients on λ ∈ [α,Ω] continuous (differentiable) in λ and linking n̄α(z) to n̄Ω(z)
and m̄α(z) to m̄Ω(z), where for all λ, n̄λ(z) and m̄λ(z) have no common zeroes on the
closed unit disk. Then there exist nλ(z), mλ(z) two real rational scalar transfer func-
tion homotopies on [α,Ω] continuous (differentiable) in λ and linking nα(z) to nΩ(z)
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and mα(z) to mΩ(z), where nα(z)mα(z)−1 = n̄α(z)m̄α(z)−1 and nΩ(z)mΩ(z)−1 =
n̄Ω(z)m̄Ω(z)−1 and nλ(z), mλ(z) represent the numerator and denominator of a nor-
malised coprime fraction. That is nλ(z), mλ(z) have no pole-zero cancellations on
the closed unit disk, n∗λ(z)nλ(z) +m∗λ(z)mλ(z) = nλ(z−1)nλ(z) +mλ(z−1)mλ(z) = 1
for all z on the unit circle and all poles of nλ(z) and mλ(z) lie in |z| > 1.

Proof. Let r̄λ(z) be a stable spectral factorisation polynomial of n̄∗λ(z)n̄λ(z) +
m̄∗λ(z)m̄λ(z) = r̄∗λ(z)r̄λ(z), that is, such that it has no zeros on the closed unit disk.
Such an r̄λ(z) exists because n̄λ(z), m̄λ(z) are polynomials with bounded coefficients
and no common zeros in the unit disk. Furthermore, since n̄λ(z), m̄λ(z) are real
polynomials with coefficients differentiable in λ, it follows that r̄λ(z) can also be
chosen so that it is a real polynomial with differentiable coefficients. If we then define

nλ(z) = n̄λ(z)r̄λ(z)−1,

mλ(z) = m̄λ(z)r̄λ(z)−1,

then nλ(z), mλ(z) are two real rational scalar transfer function homotopies on [α,Ω]
that are differentiable in λ and linking nα(z) to nΩ(z) and mα(z) to mΩ(z) with the
required properties.

We now state the following lemma (in the z-domain) which asserts that the wind-
ing number condition (3) cannot be violated over a homotopy without passing through
a point in the homotopy where there is a violation of the scalar version of the deter-
minant condition (2). This is the discrete time analogue of Lemma 4.2 in [1] which
applies to continuous time systems.

Lemma 4.5. Let nλ(z), mλ(z) be two real rational stable scalar transfer function
homotopies on [α,Ω] continuously linking nα(z) to nΩ(z) and mα(z) to mΩ(z), where
for all λ, the ratio nλ(z)mλ(z)−1 is a normalised coprime fraction, implying that there
are no common zeros of nλ(z) and mλ(z) on the closed unit disk and n∗λ(z)nλ(z) +
m∗λ(z)mλ(z) = 1 for all z on the unit circle. Then, with pα = nα

mα
, pλ = nλ

mλ
the two

conditions

lim
λ→λ−

δν(pα, pλ) = 1,

and δν(pα, pλ) < 1 for all λ < λ̄,

will hold true if and only if n∗αnλ + m∗αmλ is non-zero for all z = exp(−jθ) on the
unit circle with 0 < λ < λ̄, and n∗αnλ̄ +m∗αmλ̄ is zero for some z = exp(−jθ).

Proof. It is true that

κ(pα, pλ, θ) =
∣∣nα(e−jθ)mλ(e−jθ)− nλ(e−jθ)mα(e−jθ)

∣∣ ,(20)

and δν(pα, pλ) = ess sup
−π<θ≤π

κz(pα, pλ, θ) provided that

for all θ ∈ (−π, π] n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ) 6= 0,(21)

and wno [nα(·)∗nλ(·) +mα(·)∗mλ(·)] = 0.
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One can verify that for all θ∣∣nα(e−jθ)mλ(e−jθ)− nλ(e−jθ)mα(e−jθ)
∣∣2

+
∣∣n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ)

∣∣2 = 1.(22)

When λ < λ̄ the condition δν(pα, pλ) < 1 implies that the winding number condition
holds and therefore

∣∣n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ)
∣∣ 6= 0 for all θ.

When λ → λ̄− we have that δν(pα, pλ) → 1. This can only be because either
κ(pα, pλ, θ) → 1 at some θ, that is, in light of equation (20), that∣∣nα(e−jθ)mλ(e−jθ)− nλ(e−jθ)mα(e−jθ)

∣∣ → 1; or the winding number condition (21)
fails so that

∣∣n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ)
∣∣ → 0, or indeed both. (The

winding number cannot change without n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ) hav-
ing a zero pass across the boundary of the unit disk). Inspection of equation (22) shows
that both conditions causing δν(pα, pλ) = 1 will necessarily operate simultaneously,
at the one frequency. Similar reasoning will demonstrate the reverse implication.

We now define a change in Brockett angle corresponding to the value of pλ(z) at
a fixed real value of z as λ varies as

∆λ(α, µ, z) =
∫ µ

α

2
∂
∂λpλ(z)

1 + pλ(z)2
dλ,(23)

and a continuous Brockett angle as λ varies as

Φλ(z) = 2 tan−1 pα(z) + ∆λ(α, λ, z).(24)

Note that the modulo 2π ambiguity is removed by specifying the value of Φλ(z) at
λ = α. (As an aside, note that, strictly speaking, this definition may agree with that
presented in equation (12), only up to modulo 2π. In equation (12) the modulo 2π
ambiguity in defining Φ was resolved by requiring Φ(l) to lie in the interval (−π, π],
whereas in equation (24), it is resolved by specifying Φα(z). This issue does not affect
the correctness of the following development presented here.) Clearly, tan 1

2Φλ(z) =
pλ(z) = nλ(z)

mλ(z) for real z. Also, because nλ(z)
mλ(z) is normalised, that is, |nλ(z)|2 +

|mλ(z)|2 = 1 on the unit circle, it follows that at the points z = 1 and z = −1 we
have either nλ(z) = sin[12Φλ(z)] and mλ(z) = cos[12Φλ(z)], or nλ(z) = − sin[ 12Φλ(z)]
and mλ(z) = − cos[ 12Φλ(z)]. We can also show, because nλ,mλ are real rational, that

n∗α(1)nλ(1) +m∗α(1)mλ(1) = nα(1)nλ(1) +mα(1)mλ(1)

= ±
{

cos
[
1
2
Φα(1)

]
cos

[
1
2
Φλ(1)

]
+ sin

[
1
2
Φα(1)

]
sin

[
1
2
Φλ(1)

]}
= ± cos

[
1
2
Φλ(1)− 1

2
Φα(1)

]
= ± cos

[
1
2
∆λ(α, λ, 1)

]
.
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Similarly

n∗α(−1)nλ(−1) +m∗α(−1)mλ(−1) = ± cos[
1
2
Φλ(−1)− 1

2
Φα(−1)]

= ± cos[
1
2
∆λ(α, λ,−1)].

This allows us to conclude the following.
Lemma 4.6. If pλ is a Vinnicombe metric homotopy of real rational transfer

functions for λ ∈ [α,Ω] (piecewise differentiable in λ), then the change in the Brockett
angle ∆λ(α, λ, z) defined by equation (23) at the points z = 1 and z = −1 is restricted
to the interval (−π, π) for all λ.

Proof. By Lemma 4.5, the winding number condition, equation (21) being true
for all λ implies that as λ varies, cos[ 12∆λ(α, λ,±1)] 6= 0 that is ∆λ(α, λ,±1) is in the
interval (−π, π) for all λ.

At the points z = 1 and z = −1 the quantity pλ(z) is real. Lemma 4.6 implies
that a necessary condition for the winding number condition to hold throughout a
pλ homotopy, is that at the particular frequencies z = ±1 (at DC and the folding
frequency respectively) the net change as λ varies, in the corresponding angle may
not be π. This is equivalent to saying that at no value of λ is it permitted for
pλ(1) = −p−1

α (1) or pλ(−1) = −p−1
α (−1).

It then follows from Lemma 4.2 that if there exists a homotopy from pα to pΩ,
then the quantity

∆x(−1, 1,Ω)−∆x(−1, 1, α) = ∆λ(α,Ω, 1)−∆λ(α,Ω,−1)

is restricted in allowable possible values. That is, change ∆x(−1, 1, λ) in the Brockett
angle over the x-interval [−1, 1] may not vary by too much as λ varies from α to
Ω. Specifically, since ∆λ(α,Ω, 1) ∈ (−π, π) and ∆(α,Ω,−1) ∈ (−π, π) if the winding
number condition is satisfied for all λ, then ∆x(−1, 1,Ω) −∆(−1, 1, α) ∈ (−2π, 2π).
We formalise this is the following corollary, which is one of the main results of this
paper.

Corollary 4.7 (Main Result). Assume that pλ(z) = nλ(z)mλ(z)−1 (for λ ∈
[α,Ω]) is a homotopy of real rational transfer functions where nλ(z) and mλ(z) form a
real rational normalised stable coprime factorisation and the winding number condition
cos[ 12∆λ(α, λ, z)] 6= 0 holds at z = −1 and z = 1. Then the net change in the argument
at z = 1, that is, ∆λ(α, λ, 1) is bounded within the interval (−π, π) for all λ. Similarly,
the net change in the argument at z = −1, that is, ∆λ(α, λ,−1) is also bounded for
all λ.

Furthermore, if I1
−1pλ(z)− I1

−1pα(z) = N , then N ∈ {−2,−1, 0, 1, 2}.
Proof. This is a corollary Lemma 4.6, using Corollary 4.3.
Since pλ(z) is a homotopy of real rational transfer functions such that the winding

number condition cos[12∆λ(α, λ, z)] 6= 0 holds at z = −1 and z = 1, it follows by
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Lemma 4.6 that both ∆λ(α, λ, 1) ∈ (−π, π) and ∆λ(α, λ,−1) ∈ (−π, π). Hence
∆λ(α, λ, 1)−∆λ(α, λ, 1) ∈ (−2π, 2π).

Then, by Corollary 4.3 we have∣∣∣∣[I1
−1pλ(z)− I1

−1pα(z)
]
− 1

2π
[∆λ(α, λ, 1)−∆λ(α, λ, 1)]

∣∣∣∣ ≤ 2.

Since
∣∣ 1
2π [∆λ(α, λ, 1)−∆λ(α, λ, 1)]

∣∣ < 1 it follows that I1
−1pλ(z)− I1

−1pα(z) ∈ (3, 3)
but since I1

−1pλ(z)− I1
−1pα(z) = N is an integer then N ∈ {−2,−1, 0, 1, 2}.

Remark 4.8. In the course of letting λ vary for a Vinnicombe homotopy pλ, the
Cauchy index I1

−1pλ(z) cannot change by more than two, since this would force the
value of pλ(z) at at least one of either z = 1 or z = −1 to take on all possible real
values, including the forbidden value pλ(1) = −p−1

α (1) or pλ(−1) = −p−1
α (−1), leading

to a violation of the winding number condition, which requires that 1+pλ(z−1)∗pα(z) 6=
0, for all z on the unit disk.

5. Revisiting a Previous Example. Our main result, Corollary 4.7 has indi-
cated that if a Vinnicombe metric homotopy exists, then there is a restriction on the
allowable change in the Cauchy index over the interval [−1, 1]. Armed with this this
insight, we can take a fresh look at the example presented in [1].

We first note that the Cauchy indices of ε/(s−1) and −ε/(s−1) are minus one and
plus one respectively. They only differ by two, which is not forbidden by Corollary
4.7. However, by using the tools presented in previous sections, we can show that
there does not exist a homotopy from ε/(s− 1) to −ε/(s− 1).

In order to see this, consider the restriction on the change in Brockett angle at
s = 0 and s = ∞ (corresponding for continuous systems to z = +1 and z = −1 in
discrete time). We recall that the Brockett angle at frequencies s = 0 and s = ∞ at
the end points λ = α and λ = Ω of the homotopy are specified modulo 2π by the
value of pλ(z). However, the net change in the argument as λ varies limited to (−π, π).
Taken together, these three facts specify the change in ∆x(0,∞, λ) as λ varies.

It is fairly easy to see that for the plant ε/(s− 1)

Φα(0) = 2 tan−1−ε ≈ −2ε,

Φα(∞) = −2π,

∆x(0,∞, α) ≈ −2(π − ε),

and that for −ε/(s− 1)

ΦΩ(0) = 2 tan−1 ε ≈ 2ε,

ΦΩ(∞) = 2π,

∆x(0,∞, α) ≈ 2(π − ε).

It also follows that since Φα(0) ≈ −2ε, that ΦΩ(0) ≈ 2ε and ∆λ(α,Ω, 0) = ΦΩ(0) −
Φα(0) + 2nπ ≈ 4ε + 2nπ. However, if a homotopy exists that does not violate the
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winding number condition then ∆λ(α,Ω, 0) ∈ (−π, π) so that ∆λ(α,Ω, 0) ≈ 4ε. Simi-
larly ∆λ(α,Ω,∞) = ΦΩ(0)−Φα(0)+2nπ = 4π+2nπ and since ∆λ(α,Ω,∞) ∈ (−π, π)
then ∆λ(α,Ω,∞) = 0. From this we can determine that if a homotopy exists, then
the winding number condition restriction on the change as λ varies in the continuous
Brockett angle at the end points of the s-interval at s = 0 and s = ∞ determines
∆λ(α,Ω,∞)−∆λ(α,Ω, 0) ≈ −4ε.

If we now look at the change as x varies in the continuous Brockett angle at the end
points of the λ-interval, at λ = α and λ = Ω, we see that ∆x(0,∞,Ω)−∆x(0,∞, α) ≈
−4ε+ 4π 6= −4ε. However, this leads to a contradiction with Lemma 4.2.

The changes of the Cauchy index alone do not tell the whole story and are insuf-
ficient to establish the existence or non-existence of a homotopy. The reason for this
is that the Cauchy index is related to changes in the absolute Brockett angle (modulo
2π), but the winding number condition only places restrictions on the relative changes
as λ varies in the (continuous) Brockett angle at the end points of the x-interval.

5.1. The Cauchy Index may Change by Two during a Homotopy. We
have just seen that there exist transfer functions which have Cauchy indices that differ
by two, and yet for which there exists no connecting Vinnicombe metric homotopy.
In order to demonstrate that the conclusions in Corollary 4.7 are not conservative, we
present a Vinnicombe metric homotopy which does involve a Cauchy index change of
two.

Define a variable parameter βλ ∈ [1− ε, 1 + ε] where ε > 0 is a small positive real
number. The parameter βλ is presumed to vary with λ ∈ [α,Ω] from βα = 1 − ε to
βΩ = 1 + ε

Define a variable gain Kλ by

Kλ =

√
(16 +

1
16

)β2
λ − (1 + β4

λ) ∈ ≈ 3.75± 15ε,

and a homotopy of transfer functions by

pλ =
Kλ

z(z + βλ)(z − βλ)

=
Kλ

2β2
λ

(
−2
z

+
1

z + βλ
+

1
z − βλ

)
.

The reason that a non-constant gain has been chosen is in order to make the ex-
pressions for the normalised coprime fraction description of pλ simpler: in fact, for
small ε, the gain Kλ does not vary particularly much with λ. A normalised fraction
description of pλ is given by

Gλ =

 Kλ

βλ( 1
2 z+2)( 1

2 z−2)
z(z+βλ)(z−βλ)

βλ( 1
2 z+2)( 1

2 z−2)

 .
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To check that the above coprime fraction description is normalised, it is a simple
matter to confirm that

K2
λ + (z2 − β2

λ)(z
−2 − β2

λ) = β2
λ(

1
4
z2 − 4)(

1
4
z−2 − 4).

It follows easily that

G̃λ =
[
− z(z+βλ)(z−βλ)

βλ( 1
2 z+2)( 1

2 z−2)
Kλ

βλ( 1
2 z+2)( 1

2 z−2)

]
,

Gα =

 Kα

βα( 1
2 z+2)( 1

2 z−2)
z(z+βα)(z−βα)

βα( 1
2 z+2)( 1

2 z−2)

 ,
G̃α =

[
− z(z+βα)(z−βα)

βα( 1
2 z+2)( 1

2 z−2)
Kα

βα( 1
2 z+2)( 1

2 z−2)

]
.

We now look at the Vinnicombe distance.

G̃αGλ =
z[Kλβα(z2 − λ4

α)−Kαβλ(z2 − β2
λ)]

βαβλ( 1
2z + 2)( 1

2z − 2)
.

‖G̃αGλ‖∞ <
4

9(1− ε)4
|Kλβα(z2 − λ4

α)−Kαβλ(z2 − β2
λ)|

<
4

9(1− ε)4
(
|Kλβα −Kαβλ|+

∣∣Kλβ
3
α −Kαβ

3
λ

∣∣)
≈ O(ε).

Since (for small ε) the quantity ‖G̃αGλ‖∞ remains small, and never approaches the
value unity as λ varies it is established that pλ is a Vinnicombe metric homotopy such
that δν(pα, pλ) < 1 for all λ ∈ [λ,Ω].

Note that the Cauchy index over a real interval [l, u] of a real rational transfer
function f(x) is equal to the number of positive signed residuals of real poles of f(x)
in the interval [l, u], minus the number of negative signed residuals of real poles of
f(x) in the interval. From the partial fraction expansion of pλ, it is possible to see
that the Cauchy index within the interval [−1, 1] differs by 2 as βλ varies from just
smaller than unity to just greater than unity.

This demonstrates that it is possible for the Cauchy index over the interval [−1, 1]
to vary by up to two in a scalar Vinnicombe metric homotopy.

6. Scalar Vinnicombe Metric Homotopies: Necessary and Sufficient

Conditions for Existence. In this section we develop necessary and sufficient con-
ditions for the existence of a Vinnicombe metric homotopy between two given scalar
transfer functions. However, in order to simplify the analysis, we present a number
of lemmas which allow us to consider, without loss of generality, one end point of the
homotopy to be fixed at unity over all frequencies.

We first define a linear transformation on transfer function space that maps an
arbitrary given transfer function pα to 1. Provided pα possesses no unit circle poles,
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the transformation preserves certain properties that are desirable from the point of
view of Vinnicombe metric analysis.

Lemma 6.1. Consider the linear transformation T : R(s) → R(s), parametrised
by pα ∈ R(s).

T (pλ) =
2p∗α

1 + |pα|2
pλ +

1− |pα|2

1 + |pα|2
.(25)

Then T (pα) = 1, and furthermore T (pλ)[T (pα)]∗ + 1 = 0 if and only if pλp∗α + 1 = 0.
In addition, if normalised coprime fraction descriptions of pα, pλ, p̄α = T (pα) and
p̄λ = T (pλ) respectively by nα

mα
, nλ

mλ
, n̄α

m̄α
and n̄λ

m̄λ
then provided pα has no poles or

zeroes on the unit circle

n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ) = 0(26)

for some θ ∈ (−π, π] if and only if

n̄∗α(e−jθ)n̄λ(e−jθ) + m̄∗α(e−jθ)m̄λ(e−jθ) = 0.(27)

If pα has no poles on the unit circle then (27) implies (26), but the converse does not
necessarily hold. If pα has no zeroes on the unit circle then (26) implies (27), but the
converse does not necessarily hold.

Proof. That T (pα) = 1 follows immediately from the definition of T .
Provided that pα is finite, it is also fairly easy to see that

T (pλ)[T (pα)]∗ + 1 = 0

implies

p∗αpλ + 1− |pα|2 + 1 + |pα|2 = 0,

p∗αpλ + 1 = 0,

and vice versa.
At poles of pα if we know that p∗αpλ+1 = 0, then we can conclude that pλ = 0 at

that point and hence from equation (25) that T (pλ) = −1, that is T (pλ)[T (pα)]∗+1 =
0. Hence p∗αpλ+1 = 0 implies T (pλ)[T (pα)]∗+1 = 0 and, everywhere except for poles
of pα it is true that T (pλ)[T (pα)]∗ + 1 = 0 implies p∗αpλ + 1 = 0.

Note also that

n̄α(z) = m̄α(z) =
1√
2

(28)

for all z and hence equation (27) is equivalent to n̄λ(e−jθ) + m̄λ(e−jθ) = 0 and
also to T [pλ(e−jθ)] = −1. Since T (pα)∗ = 1 for all z, this is also equivalent to
T (pα)∗T (pλ) + 1 = 0. Provided that that e−jθ is not a pole of pα then we can also
conclude that p∗αpλ + 1 = 0.
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For the foward implication, that is to show that equation (26) implies equation
(27) we need to assume that nα(e−jθ) 6= 0. We now consider separate cases for
pα(e−jθ).
Case 1 (neither a pole nor a zero of pα): We first consider the case where both

nα(e−jθ) 6= 0 and mα(e−jθ) 6= 0. If nλ(e−jθ) = 0 then equation (26) im-
plies that mλ(e−jθ) = 0, which contradicts that nλ(z) and mλ(z), have no
common zeros in the closed unit disk. Similarly if mλ(e−jθ) = 0 then equa-
tion (26) implies that nλ(e−jθ) = 0, which is also a contradiction. Hence
both nλ(e−jθ) 6= 0 and mλ(e−jθ) 6= 0 and thus both pα and pλ are finite
and non-zero at z = e−jθ. It follows that (26), taken together with the facts
mα(e−jθ) 6= 0 and mλ(e−jθ) 6= 0, implies

n∗α(e−jθ)
m∗α(e−jθ)

nλ(e−jθ)
mλ(e−jθ)

+ 1 = 0,

that is,

p∗α(e−jθ)pλ(e−jθ) + 1 = 0.

We recall that since e−jθ is not a pole of pα, then p∗α(e−jθ)pλ(e−jθ) + 1 = 0
implies T [pλ(e−jθ)] = −1 which is equivalent to (27).

Case 2 (at a pole): On the other hand, if mα(e−jθ) = 0, then taking equation (26)
as given, we conclude that nλ(e−jθ) = 0 and by the coprimeness of nλ(z) and
mλ(z) we have mλ(e−jθ) 6= 0. Thus mα(e−jθ) = 0 and nλ(e−jθ) = 0. From
equation (25) we have that T (pλ(e−jθ)) = −1 which is equivalent to (27).

For the converse, that is to show that equation (27) implies equation (26) we need
to assume that there are no poles of pα on the unit disk. Recall that equation (27)
is equivalent to T (pλ(e−jθ)) = −1 which, in light of the assumption of no unit disk
poles, also implies that p∗α(e−jθ)pλ(e−jθ) = −1. We now consider separate cases for
pα(e−jθ).
Case 1 (neither a pole nor zero of pα): We first assume that both nα(ejθ) 6= 0 and

mα(ejθ) 6= 0. Since e−jθis not a pole of pα, then p∗α(e−jθ)pλ(e−jθ) = −1. It
then follows that both nλ(e−jθ) 6= 0 and mλ(e−jθ) 6= 0. We can also write

n∗α(e−jθ)
m∗α(e−jθ)

nλ(e−jθ)
mλ(e−jθ)

+ 1 = 0,

n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ) = 0,

that is, equation (26) holds.
Case 2 (at a zero): nα(e−jθ) = 0. It follows by coprimeness of nα(z) and mα(z) on

the closed unit disk that mα(e−jθ) 6= 0. Since e−jθ is not a pole of pα, then
p∗α(e−jθ)pλ(e−jθ) = −1. It then follows that mλ(e−jθ) = 0, from which it is
easy to see that

n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ) = 0,
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that is, equation (26) holds.
Case 3 (at a pole): mα(e−jθ) = 0. It follows by coprimeness of nα(z) and mα(z) on

the closed unit disk that nα(e−jθ) 6= 0. We may factorise mα as mα(z) =
m̂α(z)[z− e−jθ]rα where m̂α(e−jθ) 6= 0 and rα is a (strictly) positive integer.
Equation (27) is equivalent to T (pλ) = −1. By equation (25) we see that

T (pλ) =
2n∗α(z−1 − e−jθ)rαm̂∗αnλ

[(z−1 − e−jθ)rαm̂∗αm̂α(z − e−jθ)rα + n∗αnα]mλ

+
(z−1 − e−jθ)rαm̂∗αm̂α(z − e−jθ)rα − n∗αnα
(z−1 − e−jθ)rαm̂∗αm̂α(z − e−jθ)rα + n∗αnα

.

In order for T (pλ) to be finite and non-zero, we must have that mλ(z) has a
zero at ejθ of order no more than rα (including a possibility of order zero).
Recall that mλ is real rational and so has a zero of the same order at e−jθ.
It then straightforwardly follows that

n∗α(e−jθ)nλ(e−jθ) +m∗α(e−jθ)mλ(e−jθ) = 0,

that is, equation (26) holds.

Note that the inverse transformation for (25) is given by

T−1(p̄λ) =
|pα|2 + 1

2p∗α
p̄λ +

|pα|2 − 1
2p∗α

.

Corollary 6.2 (Homotopy “Normalisation”). Provided pα has no poles on the
unit circle, the existence of a Vinnicombe homotopy from p̄α = 1 to p̄Ω implies the
existence of a Vinnicombe homotopy from from pα to pΩ. (Note, however, that at any
unit circle zero of pα, that is not a zero of pΩ with the same multiplicity, we have a
pole of p̄Ω, so that if there exists such a zero, then δν(1, p̄Ω) = 1.)

Conversely, provided pα has no zeros on the unit circle, the existence of a Vinni-
combe homotopy from pα to pΩ implies the existence of a Vinnicombe homotopy from
from p̄α = 1 to p̄Ω. (Note, however, that at any unit circle pole of pα, that is not a
pole of pΩ with the same multiplicity, we have 1 + p̄Ω = 0, so that if there exists such
a pole, then δν(1, p̄Ω) = 1.)

Hence, given a scalar transfer function pα, with no poles or zeros on the unit
circle, there exists a Vinnicombe homotopy pλ from pα to pΩ if and only if there
exists a Vinnicombe homotopy p̄λ from p̄α = 1 to p̄Ω =

[
2p∗α

1+|pα|2 pΩ + 1−|pα|2
1+|pα|2

]
.

Proof. Given a Vinnicombe homotopy pλ = nλ

mλ
from pα to pΩ, define

p̄λ =
[

2p∗α
1 + |pα|2

pλ +
1− |pα|2

1 + |pα|2

]
.(29)

That p̄λ is continuous in λ follows from the continuity of pλ. By Lemma 6.1, it
also follows (provided that pα has no unit circle zeroes, but irrespective of whether



238 THOMAS S. BRINSMEAD AND BRIAN D. O. ANDERSON

pα has unit circle poles) that n̄∗α(ejθ)n̄λ(e−jθ) + m̄∗α(ejθ)m̄λ(e−jθ) 6= 0 holds for all θ
and all λ because nα(ejθ)∗nλ(e−jθ)+mα(ejθ)∗mλ(e−jθ) 6= 0 holds for all θ and all λ.
By Lemma 4.5, the only way for the winding number condition to fail is via a failure
of the determinant condition.

Hence the existence of a homotopy pλ from pα to pΩ implies the existence of a
homotopy p̄λ from p̄α = 1 to p̄Ω. Similar reasoning can be used to prove the reverse
implication, but requires that pα possesses no unit circle poles, in order for the valid
application of Lemma 6.1.

This implies that for scalar plants without unit circle poles or zeroes, we can con-
sider necessary and sufficient conditions for the existence of homotopies from p̄α = 1,
to p̄Ω without loss of generality. (Note that there is no suggestion that the transfor-
mation T preserves a monotonicity condition on δν [pλ, pα].)

However for the development of necessary and sufficient conditions, it will be
necessary to somewhat generalise the notion of the Cauchy index to allow the critical
point in the extended real line over which net crossings are counted to differ from the
point at infinity. We present the following definition of a geneneralised Cauchy index
and derive some of its properties including the relationship to the standard Cauchy
index.

Lemma 6.3. For a given f(x) = b(x)
a(x) , a real rational transfer function define the

corresponding continuous Brockett angle Φ(x) by equation (12). Define the generalised
Cauchy index Ĩul [ψ, f(·)] parametrised by an crossing angle ψ over the real interval
[l, u] as the number of net positive strict crossings of ψ±2π of the continuous Brockett
angle as x varies over the interval [l, u]. Lemma 4.1 states that the (standard) Cauchy
index is related to the generalised Cauchy index by Iul f(·) = Ĩul [π, f(·)], that is, it is
the generalised Cauchy index for ψ = π.

Furthermore

Ĩul [ψ, f(·)] = Iul g(·)(30)

= Iul h(·)(31)

= Ĩul [0, k(·)],(32)

where

g(x) =
a(x) cos( 1

2ψ) + b(x) sin( 1
2ψ)

a(x) sin( 1
2ψ)− b(x) cos( 1

2ψ)

=
cos( 1

2ψ) + f(x) sin( 1
2ψ)

sin( 1
2ψ)− f(x) cos( 1

2ψ)
,

h(x) =
a(x)

a(x) tan( 1
2ψ)− b(x)

,

k(x) = f(x)− tan(
1
2
ψ),
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and where the second and third equalities (31) and (32) hold true provided cos( 1
2ψ) 6=

0, that is ψ 6= π ± 2nπ.
Proof. It is easy to see that

g(x) =
f(x) + cot( 1

2ψ)
1− f(x) cot( 1

2ψ)

2 tan−1 g(x) = 2 tan−1 f(x) + (π − ψ), mod 2π

and that Φg(x), the Brockett angle associated with g(x) differs from Φf (x), the Brock-
ett angle associated with f(x) by an amount π − ψ. Therefore net positive strict
crossings of Φg(x) of π correspond to net positive strict crossings of Φf (x) of ψ.

It can also be seen that, provided cos( 1
2ψ) 6= 0, that is ψ 6= π ± 2nπ

g(x) = Iul
a(x) + b(x) tan( 1

2ψ)
a(x) tan( 1

2ψ)− b(x)

=
a(x) sec2( 1

2ψ)− a(x) tan2( 1
2ψ) + b(x) tan( 1

2ψ)
a(x) tan( 1

2ψ)− b(x)

=
a(x) sec2( 1

2ψ)
a(x) tan( 1

2ψ)− b(x)
− tan(

1
2
ψ)

Iul g(x) = Iul
a(x)

a(x) tan( 1
2ψ)− b(x)

.

Finally, by substituting ψ = 0 in equation (30) we get

Ĩul [0, f ] = Iul
[
−f−1

]
Hence by identifying h = a

a tan[ 12ψ]−b with −f−1 in the above

Iul h = Ĩul
[
0,−h−1

]
= Ĩul [0, k] .

Armed with the notion of a generalised Cauchy index, we can now give a necessary
and sufficient condition for the existence of a homotopy from 1 to an arbitrary target
transfer function.

Theorem 6.4. There exists a scalar Vinnicombe metric homotopy pλ from pα = 1
to arbitrary pΩ with δν(1, pλ) < 1 if and only if

• δν(1, pΩ) < 1, and
• Ĩ1

−1[− 1
2π, pΩ] = Ĩ1

−1[0, 1 + pΩ] = I1
−1

−1
1+pΩ

= 0.
Proof. It is clear from Lemma 6.3, by identifying f(x) and h(x) with respectively

pΩ and 1+pΩ, that Ĩ1
−1[− 1

2π, pΩ] = Ĩ1
−1[0, 1+pΩ] = I1

−1
−1

1+pΩ
. That Ĩ1

−1[− 1
2π, pΩ] = 0

is equivalent to, in the x-interval [−1, 1], the number of net crossings of the continuous
Brockett angle ΦΩ(x) corresponding to pΩ of the value − 1

2π ± 2nπ being equal to
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zero. Note also that Φα, the continuous Brockett angle corresponding to pα = 1 is
2 tan−1 1 = 1

2π.
We now show that the conditions in the Lemma hypothesis are necessary for the

existence of a homotopy. Clearly the first condition is necessary since the subunitary
condition δν(1, pλ) < 1 must hold, even at the final end point λ = Ω.

For the second condition, note that since Φα(x) = 1
2π for all x, then by Lemma

4.6, if a homotopy pλ exists from pα = 1 to pΩ, then both the Brockett angles ΦΩ(1)
and ΦΩ(−1) must lie in the interval ( 1

2π − π, 1
2π + π) = (− 1

2π,
3
2π). This is sufficient

to ensure that Ĩ1
−1[− 1

2π, pΩ] = 0.
We now show that provided the lemma hypotheses hold, there exists a homotopy

from pα = 1 to pΩ via pλ such that δν(1, pλ) < 1 for all λ. Since δν(1, pΩ) < 1 it
follows that

wno(1 + pΩ) + η̆(pΩ) = 0,

Z̆(1 + pΩ)− η̆(1 + pΩ) + η̆(pΩ) = 0,

Z̆(1 + pΩ) = 0.

(Recall that Z̆(X) denotes the number of zeros of transfer function X, including
multiplicity in the open interior of the unit disk.) Let

1 + pΩ(z) =
ñΩ(z)
m̃Ω(z)

,

such that ñΩ and m̃Ω are polynomials and ñΩ(z) = K
∏
k(1 −

1
ζk
z) has no zeros in

the open unit disk and ñΩ(0) = K > 0. We then define for λ ∈ [0, 1]

ñλ(z) = [2 + (K − 2)λ]
∏
k

(1− λ

ζk
z),

m̃λ(z) = (1− λ) + λm̃Ω(z),

nλ(z) = ñλ(z)− m̃λ(z),

mλ(z) = m̃λ(z).

Then we define a homotopy pλ as

pλ =
nλ
mλ

=
ñλ
m̃λ

− 1.

If follows by construction that ñλ(z) possesses no zeroes in the open unit disk and
therefore for λ ∈ [0, 1] we have Ĩ1

−1[0,
ñλ

m̃λ
] = Ĩ1

−1[0, 1 + pλ] = 0, because we have no
crossing of ψ = 0 of the continuous Brockett angle corresponding to ñλ

m̃λ
in the real

interval z ∈ [−1, 1]. It also follows that ñλ and m̃λ possess no common zeroes in the
open unit disk, and that the same holds for nλ and mλ. We then have that

wno(1 + pλ) + η̆(pλ) = wno
(
ñλ
m̃λ

)
+ η̆

(
ñλ
m̃λ

)
= Z

(
ñλ
m̃λ

)
= 0.(33)
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Finally, for all λ, we have

ess sup
|z|=1

|pλ(z)− 1|√
2(1 + |pλ(z)|2)

= ess sup
|z|=1

∣∣∣ nλ

mλ
− 1

∣∣∣√
2(|mλ(z)|2 + |nλ(z)|2

= ess sup
|z|=1

|nλ(z)−mλ(z)|2

2(|mλ(z)|2 + |nλ(z)|2)
.

Now observe that ∣∣∣∣ ñλ(z)m̃(z)

∣∣∣∣2 =
|nλ(z) +mλ(z)|2

|mλ|2

> 0, for all |z| = 1.

So for all |z| = 1 the following holds.

|nλ(z) +mλ(z)|2 > 0,

|nλ(z)|2 + |mλ(z)|2 > −nλ(z)∗mλ(z)− nλ(z)mλ(z)∗,

2|nλ(z)|2 + 2|mλ(z)|2 > |nλ(z)|2 + |mλ(z)|2 − nλ(z)∗mλ(z)− nλ(z)mλ(z)∗.

Hence,

1 > ess sup
|z|=1

|nλ(z)−mλ(z)|2

2(|mλ(z)|2 + |nλ(z)|2)
.

Since the winding number condition (33) holds it follows that δν(1, pλ) < 1.
Now that we have necessary and sufficient conditions for the existence of a ho-

motopy from the fixed initial transfer function pα = 1 to an arbitrary final transfer
function, we can use the normalisation transformation of Lemma 6.1 to given neces-
sary and sufficient conditions for the existence of a homotopy from a transfer function
pα that possesses no unit circle poles but is otherwise arbitrary.

Remark 6.5. By Lemma 6.3 the condition Ĩ1
−1[− 1

2π, pΩ] = Ĩ1
−1[0, 1 + pΩ] =

I1
−1

1
1+pΩ

= 0 in the hypothesis of Theorem 6.4 is equivalent to I1
−1

1−pΩ
1+pΩ

= Ĩ1
−1[π,

1
1+pΩ

] = 0.
Corollary 6.6 (Main Result). Provided that pα has no poles or zeros on the

unit circle, there exists a scalar Vinnicombe metric homotopy pλ from pα to pΩ with
δν(pα, pλ) < 1 if and only if

• δν(pα, pΩ) < 1, and
• I1

−1

[
1+p∗αpα

1+p∗αpΩ

]
= 0.

Proof. This is a consequence of Corollary 6.2 and Theorem 6.4, using the identity
Ĩ1
−1[0, 1 + pΩ] = I1

−1
1

1+pΩ
.

We first apply Corollary 6.2. Since pα has no poles on the unit circle, the existence
of a scalar Vinnicombe metric homotopy pλ from pα to pΩ with δν(pα, pλ) < 1 is
equivalent to the existence of a Vinnicombe metric homotopy p̄λ from 1 to

p̄Ω =
[

2p∗α
1 + |pα|2

pΩ +
1− |pα|2

1 + |pα|2

]
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By Theorem 6.4 this will hold if and only if

• δν(1, p̄Ω) < 1, and
• Ĩ1

−1[− 1
2π, p̄Ω] = Ĩ1

−1[0, 1 + p̄Ω] = I1
−1

−1
1+p̄Ω

= 0.

Note also that δν(1, p̄Ω) < 1 is equivalent to δν(pα, pΩ) < 1 and that

1 + p̄Ω = 1 +
2p∗αpΩ + 1− |pα|2

1 + |pα|2

= 2
1 + p∗αpΩ

1 + p∗αpα

so that I1
−1

−1
1+p̄Ω

= 0 is equivalent to I1
−1 − 1

2
1+p∗αpα

1+p∗αpΩ
= 0 and I1

−1

[
1+p∗αpα

1+p∗αpΩ

]
= 0.

7. Conclusion. We have given necessary and sufficient conditions for the exis-
tence of a Vinnicombe metric homotopy between two given scalar transfer functions,
provided at least one of the end points has no marginally unstable poles. The neces-
sary and sufficient conditions are equivalent to the satisfaction of a winding number
condition and a Cauchy index condition. The homotopy is subunitary, in the sense
that δν(pα, pλ) is less than unity at all values of the homotopy parameter λ, although
there is no suggestion that the homotopy is necessarily monotonic. Lemma 4.6 gives
an equivalent condition, in terms of a difference in the continuous Brockett angle
over the interval [−1, 1], which is shown to be necessary for the existence of a sub-
unitary homotopy, even For the case where the initial transfer function does possess
marginally unstable poles. The authors conjecture that this condition is also sufficient
for the existence of a homotopy, but have been unable to prove this. It is possible
that a perturbation argument might be used to demonstrate this sufficiency.

This paper therefore, virtually settles the question of the relationship between
the winding number condition and the existence of a subunitary Vinnicombe metric
homotopy for scalar transfer functions, except for the special case of marginally un-
stable transfer functions. On the basis of the results presented here, taken together
with those in [4] which gives a constructive subunitary (and arbitrarily close to mono-
tonic) homotopy between two given multivariable transfer functions which satisfy a
winding number condition, it is fair to say that this relationship is now reasonably
well understood.
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