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OPTIMAL PRICE DECREMENTAL STRATEGY FOR DUTCH
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Abstract. In a Dutch auction, the price of an item decreases incrementally from the starting

price at regular intervals. A bidder may buy the item at any time and stop the auction at the current

price. This paper presents an optimal price decrement strategy in a Dutch auction, such that the

expected revenue of the auction host is maximized. Properties of the optimal solution and a simple

iterative solution methodology are discussed. Numerical studies show that significant gain could be

obtained compared with a simple reference strategy.
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1. Introduction. With recent advances in wireless standards, such as the
IMT2000 for cellular networks as well as the HIPERLAN and the IEEE802.11 stan-
dards for wireless local area networks, there has been great expectation that wireless
data applications will soon become popular just like wireless telephony. In anticipa-
tion of this development, there have been many attempts in testing pilot applications
on various wireless platforms. The Information Engineering Department at the Chi-
nese University of Hong Kong has established a site, jawap.net, based on the Wireless
Application Protocol(WAP) to provide a host of wireless applications, including an
implementation of a Dutch Auction System.

The Dutch auction is said to originate in the Netherlands and uses a descending-
price format unlike the so-called “English Auction”. In the Dutch scheme, when an
object is presented to interested buyers for bidding the price will start at a high value
and progressively decreases downward until a buyer bids for the object by making a
declaration. If multiple declarations are made, any common resolution scheme can
be invoked to break the tie. It is possible to extend this scheme for the auctioning
of multiple units of an object. Successful bidders bidding at the same price will each
receive their unit at the bid price. If the number of units is not sufficient to cover
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all the bids, a tie-breaking rule is invoked. If sufficient units of the object are still
available, the auction will continue until all the units are sold or a reserved price level
is reached.

The Dutch auction is one of the four major auctioning schemes ([1] or the survey
article [2],) that also include the English auction1, first price sealed bid auction2, and
second price sealed bid auction (also known as the Vickrey auction)3. The seminal
work of Vickrey [3] analyzed and compared these four common kinds of auction rules.
Since the process of an auction is very complicated involving the auctioneer, the seller,
and multiple bidders, it is common to make certain simplifying assumptions about
these players in order to make the analytical model tractable. A key concept concerns
the idea of the value of the object under auction. The value can be private, that is, a
person buys an item for his/her own consumption without an objective to resell, or
common, in which case the buyer bids with the intention of resell and has to estimate
the valuation offered by prospective buyers. In the latter case, the competitors are
clearly a helpful source to obtain such a valuation estimate. A bidder is said to be
risk neutral if he/she bids exactly accordingly to his/her evaluation of the object. A
bidder who is likely to bid above his/her evaluation to increase the chance of winning
is called a risk averse bidder.

Vickrey’s paper [3] assumes that each bidder is risk-neutral and knows the value
of the object to himself/herself but not the value to other bidders. Moreover, the
model is assumed to consist of symmetric bidders, that is, individual valuation of
the object is i.i.d. Since then, there has been a steady output of follow-up work on
optimal auction design. One important piece of work was due to Myerson [4]. He
extended the work of Vickrey in two directions. Firstly, the case of asymmetric bid-
ders is considered, in which individual valuations are independent but not necessarily
identically distributed. Secondly, different viable ways of selling the object was con-
sidered rather than just a prespecified set of auction rules. Under this framework,
the optimal auction design problem to maximize the expected revenue of the auction
host is solved. There have been many more additional works on the design of optimal
auction rules. The well known auction rules are compared under various relaxations
of the stated assumptions [5], [6], [7].

With the advent of the World Wide Web, online auctions have become increas-
ingly popular. Moreover, the arrival of 3G and high speed wireless local area networks
have made the idea of hosting auctions to serve mobile users via wireless communica-

1In the English auction, bidders compete with each other by offering progressively higher bids

until one bidder remains, who is committed to buy at last price of the last bid.
2In a sealed bid auction, all the buyers submit a bid at the same time. The buyer offering the

highest bid is committed to buy the object the bid price.
3In such an auction, the buyer making the highest bid is committed to buy the object, but at a

price equal to the second highest bid.
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tion devices, such as enhanced cellular phones or personal digital assistants, practical
in the near future. Coupled with the concept of micropayment, one can envision the
possibility of auctioning all sorts of items which may have only small monetary value
or are time-critical, such as tickets for an upcoming concert or seats on air flights.

For these applications, the expected time for completing an auction and the
amount of signaling messages needed to conduct an auction are important consid-
eration factors. These two elements are not considered in classical auctioning models.
For Internet based auctions, in particular those available on wireless accesses, the
issue of communication cost cannot be ignored. From this perspective, the Dutch
auctioning scheme intuitively has an advantage over the English auctioning scheme.
For the former scheme, no bidder is required to bid more than once, whereas for the
latter scheme bidders may have to bid several times whether they are successful at
the bidding or not. Moreover, although the possibility of multiple bids at the same
value occurs in both cases, it can happen at most once in the auctioning process for
an item in a Dutch scheme and multiple times for the English scheme.

Another motivation of our work comes from the observation that in the literature,
a common assumption is that the bidding offers take values from a continuum. This
is an idealization of an actual bidding process. In practice, bid increments in an En-
glish auction or bid decrements in a Dutch auction is a discontinuous process. While
a small discontinuous price decrement would minimize inaccuracies due to discrete
optimization, it would also prolong the auctioning process. For auctions conducted
over the Internet, the value of a discontinuous decrement could have significant im-
plications on the communication cost. In particular, for a Dutch auction, the optimal
strategy for price decrement is an interesting issue.

In this paper, we present an analysis of an Internet based Dutch auctioning sys-
tem. In any auction, there are three player roles that one can consider, the buyer,
the seller, and the auction host. Traditional analyses on auctioning tend to focus on
the roles played by the buyer or the seller. The role of the auction host is defined in
terms of the type of auctioning system used. For auctions conducted on Internet, the
auction host is bestowed with a new set of controlling mechanisms and faces a new
set of objectives. Assuming the revenue of the auction host comes from commission
based on the realized bid revenue and the varying part of an auctioning cost is propor-
tional to the duration of the bidding process, one can formulate an objective function
based on these two factors. In a Dutch auction, an important controlling mechanism
available to an auction host is through price decrement strategy. The structure of
the optimal price decrement strategy in an Internet based Dutch auctioning system is
analyzed here via the Karush-Kuhn-Tucker condition. Moreover, we also established
a numerically efficient algorithm to determine the optimal strategy. Numerical stud-
ies were carried out and we showed that under certain conditions, the simple uniform
decrement strategy can be close to the optimal strategy. These results form a small,
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first step to generalize the earlier works in the literature on auction in the new context
of the Internet based environment.

The rest of the paper is organized as follows. In section 2, we describe the
system and optimization model. We maximize the expected revenue to the auction
host by dynamically varying price decrement at each iteration. Knowledge on the
number of bidders and the probability distributions of their valuations are exploited.
In section 3, properties of the optimal solution are presented. We also show how the
original problem can be reduced to a one dimensional numerical search problem. In
section 4, we present numerical examples to illustrate the properties of the optimal
solution. Performance comparison between the optimal strategy and a simple uniform
decrement strategy is also given. Section 5 offers some concluding remarks.

2. System and Optimization Model.

2.1. System Model. In an auction, there are three distinct player roles, namely
the buyer, seller and auction host. In an Internet based auction, the auction host usu-
ally acts as the application server and provides the necessary information to implement
the auction. It disseminates current price information to all bidders (logon users) reg-
ularly, and ends the auction when it receives a buying request from the users or the
auction timeout is reached.

We assume only one item is sold in the auction. Initially, the auction starts at a
given price c0. A price is kept constant for a fixed interval until the next iteration. At
iteration k, the price falls to ck, under the constraint cmin ≤ ck ≤ ck−1. The auction
will last for M + 1 iterations, where M is predetermined.

Denote Xi as the valuation of bidder i. Let n be the number of bidders. Since the
auction host is also the application server it knows the value of n. In this work, we
assume n is constant for the duration of the auction. We also assume the valuations
of the ith bidder, Xi, for all i ∈ [1, n] are i.i.d. random variables drawn from a known
distribution FX(.). In literature this is known as the case of symmetric bidders.
However, our solution methodology also works for asymmetric bidders. This is the
case where bidder valuations are drawn from independent but not necessarily identical
distributions.

Also denote Y = max(X1, ..., Xn) as the maximum valuations of the bidders. It is
straightforward to compute the cumulative distribution function cdf and probability
density function pdf of Y for the cases of symmetric or asymmetric bidders. We denote
them by the notation F (Y ) and f(Y ) respectively. For simplicity, we assume that
f(Y ) is a continuous positive function in the range cmin, c0. Subsequently we will
work with Y directly since the sold price depends on the random variable Y . If the
current selling price ck is lower than Y , at least one user will immediately make a bid
and end the auction. If cM > Y , the item will not be sold at the auction.
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2.2. Optimization model. Suppose the item is sold at iteration k. ck is the
selling price at iteration k, and T is a non-negative time discounting increment at
each iteration. Thus, the revenue is Rk = ck − kT if the item is sold at iteration
k, k ∈ {0, ..., M}. If the item is not sold at the end of auction (i.e. cM > Y ), we define
the corresponding revenue as RM+1 = 0.

The expected revenue upon selling the item is

p(c) = Ek∈{0,...,M+1}[Rk](1)

= Ek∈{0,...,M}[ck − kT ](2)

= c0(1− F (c0)) +
M∑

k=1

(ck − kT )(F (ck−1)− F (ck)).(3)

In our optimization model, we incorporated a time discounting factor T . The
meaning of T can be interpreted in two different scenarios. First of all, T can represent
the cost of using server resources in a wireless Dutch auction. Typically, the auction
period spans only for minutes or hours. The auction server may update the price on a
per minute or second basis. At each iteration, the application server has to broadcast
a message to update the current price to all the clients (bidders). This generates a lot
of data traffic and uses up bandwidth resources. Moreover, the amount of processing
and bandwidth overhead can be regarded as being constant at each iteration. Thus,
the resource usage is adequately modeled by a constant parameter T .

Alternatively, this model can also apply to online auction websites where auction
period spans over longer periods of time, such as days or weeks. It is common in these
cases that the price of an item is dropped gradually on a daily basis. In this scenario,
the amount of network traffic generated is insignificant. Rather, there is a time
discounting factor on the value of the good to account for storage and maintenance
cost incurred on the auction host.

The present problem belongs to a class of general nonlinear optimization problems
with inequality constraints. The problem is to

max
(c1,c2,...,cM )

p(c) = max
(c1,c2,...,cM )

c0(1− F (c0)) +
M∑

k=1

(ck − kT )
(
F (ck−1)− F (ck)

)

subject to the constraints

(4)

g1(c) = c1 − c0 ≤ 0,

g2(c) = c2 − c1 ≤ 0,
...
gM (c) = cM − cM−1 ≤ 0,

gM+1(c) = cmin − cM ≤ 0.

We note that many alternative formulations such as dynamic programming [8]
are possible. Our nonlinear programming formulation is desirable for practical imple-
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mentation because, as we will show in the next section, the multivariable optimization
problem of determining the selling price M -tuple ck, k = 1, 2, ..., M can be reduced
to a one dimensional numerical search problem. Since an auction host typically has
hundreds or thousands of items for sale, the reduction of computation complexity in
price setting is desirable for running a large auction hosting site.

3. Properties of the optimal solution. In the literature, optimization of
nonlinear functions subject to inequality constraints is well studied. The Karush-
Kuhn-Tucker (KKT) Theorem is one of the powerful tools commonly employed.

Let c be any point in the feasible set. Denote J(c) = {j : gj(c) = 0}. If ∇gj(c)
are mutually linearly independent for all j ∈ J(c), then c is a regular point. The well
known theorem due to Karush,Kuhn and Tucker [9] provides a necessary condition
for a point to be a local maximizer, commonly known as the Karush-Kuhn-Tucker
(KKT) condition, presented as follows.

Let c∗ be a regular point and local maximizer for the problem of maximizing p subject
to g(c) ≤ 0. Then there exists a vector u∗ ∈ <M+1 such that

u∗ ≥ 0(5)

∇p(c∗) = ∇g(c∗)u∗(6)

u∗T g(c∗) = 0(7)

where

(8) u∗ =




u∗1
u∗2
...

u∗M+1




g(c∗) =




g1(c∗)
g2(c∗)

...
gM+1(c∗)




,

and ∇g(c∗) is the M ×M + 1 matrix whose i-th column is ∇gi(c∗).
We refer to the vector u∗ as the Karush-Kuhn-Tucker (KKT) multiplier vector. In

the literature, a point satisfying the KKT condition (equation 5-7) is called a critical
point. It follows from the KKT Theorem that a local maximizer is a critical point but
not necessarily vice versa. We also define the global maximum in the feasible set as
c∗∗. Thus, if c∗∗ is regular, it is also within the set of all critical points.

For the stated optimization problem, the constraint stated by equation 4 can be
rewritten as:

(9) g(c) =




c1 − c0

c2 − c1

...
cmin − cM




.
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Therefore,

(10) ∇g(c) =




1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 0 0
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1




.

It is obvious that any selection of M column vectors from∇g are mutually linearly
independent. Hence any point, c, in the feasible set with the cardinality of J(c) less
than M +1 is a regular point. The case where J(c) = {1, 2, ...,M +1} corresponds to
c0 = c1 = ... = cM = cmin, does not belong to the feasible set since c0 6= cmin. Thus,
every point in the feasible set is regular. It follows from KKT Theorem that all local
maxima are regular and should satisfy the KKT equations. As a result, c∗∗ can be
found by searching over the set of all critical points. Hereafter, we denote a critical
point by c∗.

On substitution of g(c∗) and ∇g(c∗) into equation 6, one obtains

∇p(c∗) =
(

∂p
∂c1

(c∗), ∂p
∂c2

(c∗), . . . , ∂p
∂cM

(c∗)
)

=
(

u∗1 − u∗2, u∗2 − u∗3, . . . , u∗M − u∗M+1

)
.(11)

The last KKT condition in equation 7 leads to the conclusion

u∗kgk(c∗) = u∗k(c∗k − c∗k−1) = 0, for k = 1, 2, ..., M + 1.(12)

since c∗k − c∗k−1’s are non-positive for all k.
There are standard algorithmic approaches to solve the class of convex program-

ming problems in which the objective function is concave and the feasible set is convex.
However, we show in the appendix that our objective function is not concave in gen-
eral. As a result, local search technique is applied to identify local maxima. The
search procedure is repeated with different initial points to discover as many distinct
local maxima as possible. The best of these local maxima is chosen as the solution.
Numerical computations for this heuristic approach over the feasible set for local max-
ima can be quite extensive. This is an important consideration when the number of
iterations is large. In this case an optimization problem in M variables needs to be
considered. However, it turns out that by exploiting our knowledge of the structure
of the critical points, we could determine the global optimum c∗∗ by reducing the
problem to a one dimensional search problem. This is the main result provided by
theorem 3. In the following, we present some basic properties of the optimal solution
and describe an iterative solution methodology for finding the global maximum c∗∗.
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Suppose one implements an auction following the optimal price vector c∗∗. At
iteration j, the current price is c∗∗j . Define the subproblem starting at iteration j as
one in which there are M − j remaining iterations, starting from the price c∗∗j . The
problem of finding the optimal price vector for this problem is equivalent to solving
the problem,

max
(cj+1,...,cM )

Ek∈{j+1,...,M+1}[Rk|Y < c∗∗j ](13)

= max
(cj+1,...,cM )

Ek∈{j+1,...,M}[ck − kT |Y < c∗∗j ].(14)

Proposition 1. For any j, j ∈ {1, ..., M−1}, (c∗∗j+1, c
∗∗
j+2, . . . , c

∗∗
M ) is the optimal

price vector to subproblem starting at iteration j.

Proof.

max
(cj+1,cj+2,...,cM )

Ek∈{j+1,...,M}[ck − kT |Y < c∗∗j ](15)

= max
(cj+1,cj+2,...,cM )

M∑

k=j+1

(ck − kT )
(F (ck−1)− F (ck))

F (c∗∗j )
(16)

=
1

F (c∗∗j )
max

(cj+1,cj+2,...,cM )

M∑

k=j+1

(ck − kT )(F (ck−1)− F (ck)).(17)

It is obvious that the above expression is optimized when ck = c∗∗k for k =
j + 1, ...,M .

The previous result states that if the number of bidders n is constant throughout
the auction period, then we need to compute c∗∗ only once at the start of the auction.
In practice, n may change from time to time as bidders may join or leave during an
auction. In that case, one needs to get an update on the value of nj at iteration j

and computes the new optimal price vector.

When the number of iterations M is large, numerical optimization becomes more
complicated due to the number of variables involved. In theorem 1 and 3, we show
that the multivariable optimization problem can be reduced to a one dimensional
search problem.

Theorem 1. Suppose c∗ is a critical point and there exists an integer i such that
c∗i = c∗i+1, where i = {0, 1, ..., M − 1}. Then for all j > i, j ∈ {i+1, ..., M}, c∗i = c∗j .

Proof. Any feasible point must satisfy the condition:

(18) c0 ≥ c∗1 ≥ ... ≥ c∗k ≥ c∗k+1 ≥ ... ≥ c∗M ≥ cmin.

We claim that there does not exist an integer i, 0 ≤ i ≤ M−2, and a j, i < j ≤ M−1,
such that:

(19) c0 > c∗1 > ... > c∗i = c∗i+1 = ... = c∗j > c∗j+1 ≥ ... ≥ cM ≥ cmin.
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We prove this statement by contradiction. By the Karush-Kuhn-Tucker Theorem
we have to find u∗ ≥ 0 so that equations 5-7 are satisfied. For convenience, we define
the functions h and hM as

h(ck−1, ck, ck+1) =
∂p

∂ck
(20)

= F (ck−1)− F (ck) + f(ck)(ck+1 − ck − T ) k ∈ {1, . . . , M − 1},(21)

hM (cM−1, cM ) =
∂p

∂cM
(22)

= F (cM−1)− F (cM ) + (cM −MT )(−f(cM )).(23)

Since gk(c∗) < 0 for k ∈ {1, ..., i}, by equation 12,

u∗k = 0, k ∈ {1, ..., i}.(24)

At the point c∗, by equation 11 the following equations hold:

(25)

∂p
∂ck

(c∗) = h(c∗k−1, c
∗
k, c∗k+1) = u∗k − u∗k+1 = 0, k ∈ {1, ..., i− 1},

∂p
∂ci

(c∗) = h(c∗i−1, c
∗
i , c

∗
i+1) = −u∗i+1,

∂p
∂ci+1

(c∗) = h(c∗i , c
∗
i+1, c

∗
i+2) = u∗i+1 − u∗i+2,

...
∂p

∂cj−1
(c∗) = h(c∗j−2, c

∗
j−1, c

∗
j ) = u∗j−1 − u∗j ,

∂p
∂cj

(c∗) = h(c∗j−1, c
∗
j , c

∗
j+1) = u∗j − u∗j+1.

Since

gj+1(c∗) = c∗j+1 − c∗j < 0,(26)

equation 12 implies that u∗j+1 = 0.

∂p

∂cj
(c∗) = u∗j − u∗j+1 = u∗j(27)

= h(c∗j−1, c
∗
j , c

∗
j+1)(28)

= F (c∗j−1)− F (c∗j ) + f(c∗j )(c
∗
j+1 − c∗j − T )(29)

= f(c∗j )(c
∗
j+1 − c∗j − T )(30)

< 0.(31)

That is u∗j < 0, hence the non-negativity condition on u∗ is not satisfied. By contra-
diction we show that the scenario stated in equation 19 cannot hold.

Corollary 1. Suppose c∗ is a critical point and

(32) c0 > c∗1 > ... > c∗i = c∗i+1 = ... = c∗M ≥ cmin.
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for some 0 ≤ i < M . Then

(33)
∂p
∂cj

(c∗) = 0 j ∈ {1, ..., i− 1},
∂p
∂cj

(c∗) ≤ 0 j ∈ {i, ..., M − 1}.

Proof. The proof of theorem 1 shows that

(34)
∂p

∂ci
(c∗) = −u∗i+1 ≤ 0.

Since c∗i = c∗i+1 = ... = c∗M , we observe that

∂p

∂ci+1
(c∗) =

∂p

∂ci+2
(c∗) = ... =

∂p

∂cM−1
(c∗)(35)

= h(c∗i , c
∗
i+1, c

∗
i+2)(36)

= F (c∗i )− F (c∗i+1) + f(c∗i+1)(c
∗
i+2 − c∗i+1 − T )(37)

= −Tf(c∗i+1)(38)

≤ 0.(39)

We now introduce the notation of a sequence-valued function

(40) ĉ(s) = (ĉ0, ĉ1, ĉ2, ..., ĉM ) = (c0, s, ĉ2, ..., ĉM ).

The domain for s is defined in the range cmin ≤ s ≤ c0. The elements of ĉ are defined
recursively in the following way:

Assume that elements up to ĉk have been defined. Let t be the solution to:

(41) h(ĉk−1, ĉk, t) = 0.

(Note that by our assumption on the pdf and the definition of h, t always exists and
is unique.) If cmin ≤ t ≤ ĉk and t − (k + 1)T > 0, then ĉk+1 = t. Otherwise, define
ĉk+1 = ĉk.

Note that ĉ(s) defines a 1-parameter family of critical points satisfying the KKT
conditions. However, not all critical points can be represented by ĉ(s) for some s.
Suppose c∗ is a critical point and

(42) c0 > c∗1 > ... > c∗i = c∗i+1 = ... = c∗M ≥ cmin

for some 0 ≤ i < M . If c∗1 = ĉ1, then it follows directly from equation 25 and the
definition of ĉ that

c∗k = ĉk k ∈ {1, ..., i− 1}.(43)

However, c∗k and ĉk, for k ≥ i, may not be equal. In general,

c∗k ≥ ĉk k ∈ {i, ..., M − 1}.(44)
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To show that an optimal solution can be obtained by searching the family of
critical points defined by ĉ(s), we need the following observation:

Theorem 2. Define Rj = c∗∗j − jT , for j ∈ {1, . . . , M}. If Rj ≤ 0, then
c∗∗k = c∗∗k−1 for k ∈ [j,M ]. If Rj > 0, then c∗∗j < c∗∗j−1 if c∗∗j−1 > cmin.

Proof. Suppose Rj < 0. We have RM ≤ RM−1 ≤ ... ≤ Rj+1 ≤ Rj < 0.

p(c) =
M∑

k=1

Rk(F (ck−1)− F (ck))(45)

=
j−1∑

k=1

Rk(F (ck−1)− F (ck)) +
M∑

k=j

Rk(F (ck−1)− F (ck)).(46)

If c∗∗k < c∗∗k−1 for any k ∈ [j, M ], p can be increased by setting c∗∗k = c∗∗k−1 for k ∈ [j, M ].
A contradiction.

Suppose Rj = 0 and c∗∗j < c∗∗j−1. p can be increased by changing c∗∗j to any
value in the interval (c∗∗j , c∗∗j−1), and setting c∗∗k = c∗∗k−1 for k ∈ [j + 1,M ]. Again a
contradiction.

On the other hand, suppose Rj > 0. If c∗∗j = c∗∗j−1 then all c∗∗k ’s must be equal
for k ≥ j according to theorem 1. Therefore, p(c) can be increased by setting c∗∗j to
a value in the interval (cmin, c∗∗j−1) while keeping Rj > 0. A contradiction. Hence,
c∗∗j < c∗∗j−1.

Now we are ready to prove our main result:
Theorem 3. If c∗∗ is an optimal solution, then ĉ(s) = c∗∗ when s = c∗∗1 .
Proof. Suppose c∗∗ = (c∗∗0 , c∗∗1 , . . . , c∗∗M ) is an optimal solution. Set s = c∗∗1 .
Define Rj = c∗∗j − jT . Suppose Rj > 0 for all j ∈ {2, . . . , M}, then it follows

from corollary 1 and theorem 2 that c∗∗j−1 > c∗∗j and h(cj−2, cj−1, cj) = 0 unless
c∗∗j−1 = cmin. It follows from the definition of ĉ(s) that

(47) ĉk = c∗∗k

for all k.
Suppose Rj ≤ 0 for some j ∈ {2, . . . , M}. If j < M , notice that c∗∗M = c∗∗M−1 =

. . . = c∗∗j since Rk < 0 for k > j. Hence, it follows from the definition of ĉ(s) that

(48) ĉk = c∗∗k

for all k.
According to this theorem, by doing a one-dimensional numerical search for ĉ(s)

within the feasible set, one can obtain an optimal solution to the problem. We now
describe two more observations on the structure of the optimal solution. First of all,
the following theorem shows that depending on whether F (.) is convex or concave, the
sequence of price difference of the optimal strategy, c∗∗k − c∗∗k+1, satisfies the following
inequalities.
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Theorem 4. Given c∗∗ with the form c0 > c∗∗1 > ... > c∗∗i = c∗∗i+1 = ... = c∗∗M ≥
cmin. If F (.) is convex in [cmin, c0], then

c∗∗k−1 − c∗∗k ≤ c∗∗k − c∗∗k+1 + T k ∈ {1, ..., i− 1}.(49)

If F (.) is concave in [cmin, c0], then

c∗∗k−1 − c∗∗k ≥ c∗∗k − c∗∗k+1 + T k ∈ {1, ..., i− 1}.(50)

Proof. By Corollary 1,

∂p

∂ck
(c∗∗) = 0 k ∈ {1, ..., i− 1}.

That is,

F (c∗∗k−1)− F (c∗∗k ) + f(c∗∗k )(c∗∗k+1 − c∗∗k − T ) = 0.(51)

Consider the case when F (.) is convex.

F (c∗∗k−1)− F (c∗∗k )
c∗∗k−1 − c∗∗k

≥ f(c∗∗k )(52)

or

F (c∗∗k−1)− F (c∗∗k ) + f(c∗∗k )(c∗∗k − c∗∗k−1) ≥ 0.(53)

Subtracting equation 51 from equation 53, we have

f(c∗∗k )
[
(c∗∗k − c∗∗k−1)− (c∗∗k+1 − c∗∗k − T )

] ≥ 0(54)

or

c∗∗k−1 − c∗∗k ≤ c∗∗k − c∗∗k+1 + T.(55)

The case when F (.) is concave can be proven in the same way.

When X is uniformly distributed as U(a, b), the pdf of Y is convex. In the special
case T = 0, we note that the price difference c∗∗k −c∗∗k+1 is increasing with time, whereas
the probability F (c∗∗k ) − F (c∗∗k+1) is decreasing. This conforms to our intuition that
price levels should be closely packed at intervals where pdf of Y is large, such that
the item could be sold at a price ck close to Y .

When X is normal distributed as N(µ, σ2),

F (y) = Q

(
µ− y

σ

)n

,(56)

f(y) = nQ

(
µ− y

σ

)n−1 1√
2πσ

exp(
−(µ− y)2

2σ2
).(57)
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It could be shown that F (y) is convex when y ≤ ψ and concave otherwise, where ψ

is solution to the equation

(n− 1) exp(
−x2

2
) +

√
2πxQ(x) = 0, x =

(µ− ψ)
σ

.(58)

Since the pdf of Y is largest at ψ, the price difference is decreasing at first and starts
increasing again as c∗∗k passes through ψ. That is, price levels are more closely packed
around Y = ψ.

A uniform price decrement strategy is used as a reference in the numerical studies.
The price vector starts at c0 and falls to cmin in M equally spaced steps. We hereafter
refer this strategy as the uniform price decrement strategy. It turns out that this
strategy is optimal in the trivial case as shown in the following theorem.

Theorem 5. Uniform decrement strategy is optimal when
(1)X ∼ U(a, b), c0 ≤ b and a ≤ cmin

(2) n = 1,
(3) T = 0.

The optimal price levels are given by

c∗∗k =
(

M − k

M

)
c0 −

(
k

M

)
cmin, cmin ≥ c0

M + 1
,(59)

c∗∗k =
(

M + 1− k

M + 1

)
c0, cmin ≤ c0

M + 1
.(60)

Proof. We will show that c∗∗ defined in equation 59 and equation 60 satisfies
the KKT conditions. Then we prove that p is concave in the feasible set. Since p is
concave, the optimality of c∗∗ is proved.

F (y) =

{
y−a
b−a a ≤ y ≤ b

0 otherwise
f(y) =

1
b− a

a ≤ y ≤ b.

Substitute to equation 3 we have

p =
1

b− a

M∑

k=1

ck(ck−1 − ck).(61)

Taking partial derivatives w.r.t. ck

∂p

∂ck
=

1
b− a

[(ck−1 − ck)− (ck − ck+1)] k ∈ {1, ..., M − 1},(62)

∂p

∂cM
=

1
b− a

(cM−1 − 2cM ).(63)

Consider the case cmin ≥ c0
M+1 . Substitute the price vector c∗∗ (equation 59) to
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equation 62, we have

∂p

∂ck
(c∗∗) = 0 k ∈ {1, ..., M − 1},(64)

∂p

∂cM
(c∗∗) =

1
b− a

[
−cmin +

(
c0 − cmin

M

)]
(65)

=
1

b− a

[
M − 1

M
(

c0

M + 1
− cmin)

]
(66)

≤ 0.(67)

gk(c∗∗) < 0 ∀k ∈ {1, ...,M}. By construction u∗k = 0, k ∈ {1, ..., M}, so that
equation 12 is satisfied. Moreover, u∗∗M+1 ≥ 0. Thus we have

∂p

∂ck
(c∗∗) = u∗∗k − u∗∗k+1 = 0 k ∈ {1,M − 1},(68)

∂p

∂cM
(c∗∗) = u∗∗M − u∗∗M+1(69)

= −u∗∗M+1 ≤ 0.(70)

Thus the KKT condition 2 is also satisfied. Therefore there exists a non-negative u∗

that satisfies all the KKT conditions.
Consider the case cmin ≤ c0

M+1 . We substitute the price vector c∗∗ (equation 60)
to equation 62, yielding

∂p

∂ck
(c∗∗) = 0 k ∈ {1, ..., M − 1},(71)

∂p

∂cM
(c∗∗) =

1
b− a

(c∗∗M−1 − 2c∗∗M )(72)

= 0(73)

on simplification. Since gk(c∗∗) < 0 for k ∈ {1, ..., M +1}, by equation 12 u∗∗k = 0, k ∈
{1, ..., M + 1} . Thus we have u∗∗k − u∗∗k+1 = 0. All the KKT conditions are satisfied
again for this c∗∗.

To show that c∗∗ is a global maximizer, we proceed to prove the Hessian matrix
H for the objective function p is negative semi-definite. It is trivial to show that

H =
1

b− a




−2 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . . . . . . . . 0
0 · · · 1 −2 1 0
0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2




.

Apply the Gerschgorin’s theorem on each row of H, we show that max(λ) ≤ 0. Thus,
H is negative semi-definite and p is concave.
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So far Theorem 3 is the most important observation. Suppose an auction host
knows the statistics of the individual valuation F . The auction host only needs to
search for different values of s for the optimal value c∗∗1 . The nature of the optimization
problem stipulates that if s = c∗∗1 , then c∗∗ = ĉ(s) is the optimum solution to the
optimization problem. Given s, ĉ(s) can be determined easily by recursively solving
simple algebraic equations (41) M − 1 times. Thus, an exhaustive search of s leads
to the solution for the optimal price settings.

4. Numerical Studies. In this section, we firstly present several numerical ex-
amples to illustrate the properties of c∗∗. Then, the optimal strategy is compared to
the uniform price decrement strategy in the following subsection.

4.1. Illustration of properties of optimal solution. In figure 1, X is uni-
formly distributed as U(700, 1000). There is no discounting factor, i.e. T = 0. The
optimal price c∗∗k at iteration k is plotted for n = 1, 5, 10, 20, 50 respectively. When
n = 1, we observe that the uniform decrement strategy is optimal. Since cmin ≥ c0

M+1 ,
c∗∗ is given by equation 59. As n increases, the pdf of Y shifts to the right. Thus
the price decrement rate is more gradual. When n = 20, cM is approximately equal
to 870. When n = 50, cM is approximately equal to 930. In both cases, we note that
the probability Pr[Y ≤ cM ] is very small. We also observe that the cost difference
c∗∗k − c∗∗k−1 is increasing with k. The observation is in agreement to equation 49 since
FY (y) is convex.

In the following examples, we assume the valuation of a bidder X is normal
distributed with mean 850 and variance 502. The pdf of maximum valuation Y for
different n is shown on figure 2. Note that the pdf becomes more peaked and shifts
to the right as n increases. Figure 3 shows the case when T = 0 and X is normal
distributed as N(850, 502). For all values of n, the price difference is decreasing at first
and increasing towards the end. This agrees with our results for normal distributed
X’s, since F (Y ) changes from convex to concave as Y increases. When n = 1, the pdf
is maximum around µ = 850. Thus, the initial drop in price is fast. After that, the
drop in price is about the same in each iteration. On the other hand, when n = 50,
the pdf is maximum around 960 and tends to zero around 900. Thus, the drop in
price is slowest around 960 and becomes faster after it passes through the pdf maxima.
Note that for n = 10, 20, 50, the iterations end essentially at the point when the pdf
is essentially zero.

In figure 4, a discounting factor of T = 20 is introduced in each iteration. The
price c∗∗k at iteration k is plotted for the cases n = 1, 5, 10, 20, 50. We observe the
inclusion of a non-zero discounting factor T leads to faster price decrements. As
one can read from figure 2, the maxima of f(Y ) occur around 850, 900, 920, 940, 960
respectively when n = 1, 5, 10, 20, 50. The optimal price decrement c∗∗1 lies in the
vicinity of these pdf maxima. We note that when n = 50, the simulation result is
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Fig. 1. Example 1: X uniformly distributed, T = 0

suboptimal. The auction ends at iteration 15 at a price higher than cmin. Thus,
the expected revenue can be further increased by additional price decrements. The
discrepancy is due to numerical inaccuracies that occur at iterations when the pdf of
Y at the selling price is extremely small. In this case, the pdf of Y around c15 is less
than 10−9. Despite the numerical inaccuracies, the proposed method tends to yield
solutions that are nearly optimal since the difference in the expected revenue is small.

In figure 5, we change the discount factor to T = 50. The optimal price decrements
for different n are shown. As predicted, the price decrement is even steeper compared
to the cases where T = 20 and T = 0. In the case n = 20 and n = 50, the iterative
solution fails to touch cmin when the auction ends due to the resolution inaccuracy
in the search. Again, a nearly optimal solution is obtained since the pdf when the
auction ends is very small (less than 10−10).

In figure 6, the price decrements are compared for different discounting factor
T = 0, 5, 10, 20, 50. The number of bidders is n = 10. As T increases, the price
decrement is steeper. Thus, if the resource usage is expensive, the auction host would
prefer a strategy with faster price decrements.
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Fig. 2. pdf of Y for n = 1, 5, 10, 20, 50

Table 1

Revenue ratio of the optimal and the reference strategy when T and n are varied.

n 1 5 10 20 50

T = 0, X ∼ U(700, 1000) 1.0000 1.0012 1.0027 1.0042 1.0058

T = 0, X ∼ N(850, 502) 1.0009 1.0012 1.0018 1.0023 1.0028

T = 20, X ∼ N(850, 502) 1.3920 1.2033 1.1444 1.1000 1.0566

T = 50, X ∼ N(850, 502) 4.8749 1.9413 1.5764 1.3655 1.1948

4.2. Comparison with the uniform decrement strategy. Comparison is
done in terms of the expected revenue p. The ratio p(c∗∗)/p(cref ) is shown in Table
1. We also compare the expected time to sell an item, as shown in Table 2. Suppose
a strategy c is used. Define the expected time to sell an item Ts, given that it is
actually sold when the auction ends as E[Ts|Y ≥ cM ]. It is straightforward to show
that

E[Ts|Y ≥ cM ] =
∑M

k=1 k(F (ck−1)− F (ck))
1− F (cM )

(74)

=
∑M−1

k=0 F (ck)−MF (cM )
1− F (cM )

.(75)
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Fig. 3. Example 2: X normal distributed, T = 0

Table 2

Expected time to sell an item for the optimal and the reference strategy.

n 1 5 10 20 50

T = 0, X ∼ U(700, 1000) 10.50/3.67 8.10/5.42 7.30/3.25 7.06/1.98 6.89/1.22

T = 0, X ∼ N(850, 502) 11.41/11.23 9.87/9.69 9.76/7.82 9.57/6.19 8.98/4.31

T = 20, X ∼ N(850, 502) 1.65/11.23 1.57/9.69 1.49/7.82 1/41/6.19 1.29/4.32

T = 50, X ∼ N(850, 502) 1.25/11.23 1.24/9.69 1.20/7.82 1.15/6.19 1.08/4.32

As illustrated in Table 1, the ratio of expected revenue for the optimal strat-
egy over the reference strategy is shown. When T = 0, the optimal strategy offers
marginal improvement over the uniform price decrement strategy. This is true in
general irrespective of the distribution of X. In general, the successful bidder will pay
a little less than his valuation of the good under all price decrement strategies. The
strategies are different mainly in the expected time that the product is sold. Since
there is no discounting of revenue with time, the expected revenue of all strategies
should appear the same. Applying this result to the context of wireless Dutch auc-
tion, we infer that a uniform decrement strategy is nearly optimal if the resource and
processing overhead is low.
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Fig. 4. Example 3: X normal distributed, T = 20

When the discounting factor is non-zero, the optimal strategy outperforms the
alternate strategy by a large margin. In our studies, the difference is more remarkable
when n is small or T is large. When T is large, it is desirable to sell an item sooner
to reap more profits. Reading from Table 2, the expected time to sell the good is
much shorter for the optimal strategy. Thus, the optimal strategy is significantly
better when T is large. In a wireless Dutch auction, it is reasonable to assume the
number of bidders n = 5 or n = 10. For the case T = 50, the optimal strategy is
superior to the uniform strategy by 94% and 57% respectively as read from Table 1.
Thus, in a wireless Dutch auction, we should refrain from using the uniform strategy
if communication resources are expensive. Similarly, when the value of a good suffers
from fast time discounting, as in perishable goods such as Dutch tulips, the uniform
strategy should not be used.

From figure 2 we observe that the pdf shifts to the low price region when n is
small. For the uniform decrement strategy, it takes many iterations until the item is
sold. Thus the revenue suffers from large time discounting. In the optimal strategy,
the initial price decrements are steep so that the maximum valuation is reached upon
several iterations. In practice, a Dutch auction is usually started at a very high initial
price c0 À Y > cmin. The maximum valuation Y is substantially below c0. The use
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Fig. 5. Example 4: X normal distributed, T = 50

of the optimal strategy leads to significant gain over the uniform decrement strategy
by significantly shortening the auction time and the corresponding amount of time
discounting.

We have demonstrated that when the time discounting factor T is large and
when the number of bidders n is small, the optimal strategy have the potential to
outperform the uniform decrement strategy by a large margin. The underlying reason
for the performance difference is that the auction time is significantly shortened for
the optimal strategy as illustrated in Table 2. More generally, when parameters such
as cmin, σ and M are varied, the auction time may be adversely prolonged by using
the uniform decrement strategy. Thus under certain parameter settings, we also
observe a large performance margin between the optimal and the uniform decrement
strategy. Specifically, when the lower price limit cmin and individual valuations Xi are
small compared with the initial price c0, the auction time for the reference strategy
is considerably longer. Similarly, when the variance of the individual valuations σ is
small, the maximum valuation over all bidders Y is also smaller, thus prolonging the
auction time of the uniform decrement strategy. Finally, when the number of allowed
iterations M in an auction increases, the resultant price decrement interval of the
uniform strategy is finer. This also adversely affect the performance of the reference
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Fig. 6. Example 5: X normal distributed, n = 10

strategy relative to the optimal strategy.

Table 3

Revenue ratio of the optimal and the reference strategy when cmin, σ and M are varied.

Parameters revenue ratio

T = 10, n = 10, cmin = 100, M = 20, σ = 50, X ∼ N(300, 502) 1.6168

T = 10, n = 10, cmin = 100, M = 20, σ = 100, X ∼ N(300, 502) 1.3256

T = 10, n = 10, cmin = 100, M = 20, σ = 25, X ∼ N(300, 502) 1.8736

T = 10, n = 10, cmin = 100, M = 10, σ = 25, X ∼ N(300, 502) 1.5414

T = 10, n = 10, cmin = 100, M = 30, σ = 25, X ∼ N(300, 502) 2.3685

As a simple illustration we consider 5 more numerical examples with results shown
in Table 3. In all the five examples, the lower price limit is cmin = 100. Individual
valuations are modeled as i.i.d. Gaussian random variables with mean µ = 300 and
variance σ2 = 502. The revenue ratio of the optimal strategy relative to the uni-
form decrement strategy is found to be more than 60%. This confirms our intuition
that when c0 À Y > cmin, the optimal strategy outperforms the reference strategy
by a large margin. In the second and third examples, the variance of the individ-
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ual valuations is varied as σ2 = 1002 and σ2 = 252 respectively. The corresponding
revenue ratios are 1.3256 and 1.8736. Our results show that as the variance σ2 in-
creases, the revenue ratio also increases. When the valuations of the bidders show
smaller randomness, it is unlikely that the maximum valuation is much higher than µ.
This decreases the efficiency of the uniform decrement strategy considerably. Finally,
in the fourth and fifth examples we vary the number of iterations to M = 10 and
M = 30 respectively. The corresponding revenue ratios are 1.5414 and 3.1962. This
shows that when the number of iterations is large, the optimal strategy may lead to
an improvement that is quite significant, as much as three times the revenue of the
reference strategy.

5. Conclusion. In this paper, we present the optimal price decrement strategy
for Dutch auction. It is shown in a system with inexpensive resources/low time
discounting factor, the uniform decrement strategy is nearly optimal irrespective of the
distribution of X. When resources are expensive/time discounting is high, the optimal
strategy has steeper price decrements and is more favorable to the uniform strategy.
Finally when the initial price is very high compared with the maximum valuation
and the lower price limit, as in a practical Dutch auction, the optimal strategy is
significantly better than the uniform strategy. We conclude that the optimal price
decrement strategy is useful in a variety of contexts such as the wireless Dutch auction
or online auction houses.

Appendix. In this appendix an argument to show why the objective function p

is not concave in general is described.
In order to render p(c) concave, the Hessian matrix H = {hk,j} must be negative

semi-definite, where

hk,j =
∂2p

∂cj∂ck
.

Recall that

p(c) =
M∑

k=1

(ck − kT )(F (ck−1)− F (ck)) + c0(1− F (c0)).

Taking partial derivatives with respect to ck,
∂p

∂ck
= F (ck−1)− F (ck) + f(ck)(ck+1 − ck − T ) k ∈ {1, ..., M − 1}(76)

∂p

∂cM
= F (cM−1)− F (cM ) + (cM −MT )(−f(cM )).(77)

Differentiating w.r.t. cj again. For k ∈ {1, ..., M − 1}, we have

hk,j =





f(ck−1) j = k − 1
−2f(ck) + f ′(ck)(ck+1 − ck − T ) j = k

f(ck) j = k + 1
0 o.w.
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Whereas, for k = M , we have

hM,j =





f(cM−1) j = M − 1
−2f(cM ) + (−f ′(cM ))(cM −MT ) j = k

0 o.w.

We observe that H is tri-diagonal with negative entries along the diagonals and
positive entries adjacent to the diagonal entries. A sufficient condition to guarantee
that H is negative semi-definite is to ensure its row sums are smaller than or equal
to zero. However, this does not hold in general unless T is very large.

To give an example, we consider the case where M = 1, n = 1, and X is an
exponential random variable with mean equal to 1. In this case,

p = c0(1− F (c0) + (c1 − T )(F (c0)− F (c1)).

Differentiating this function twice, we have

d2p

dc2
1

= (c1 − T − 2)e−c1 ≥ (cmin − T − 2)e−c1 .

If T < cmin − 2, then p is not concave.
To estimate the range of T such that p is concave, or H is negative semi-definite,

one can use inclusion theorems on eigenvalues such as the Gerschgorin’s theorem[11].
Since H is symmetric, all the eigenvalues are real. Applying the Gerschgorin’s theorem
on H, each eigenvalue λi must satisfy

λi ≤ hi,i +
M∑

j=1,j 6=i

|hi,j |

in the feasible set. Thus H is negative semi-definite if maxi hi,i +
∑M

j=1,j 6=i |hi,j | ≤ 0.
On substitution, we have

−f(c1) + f ′(c1)(c2 − c1 − T ) ≤ 0(78)

f(ck−1)− f(ck) + f ′(ck)(ck+1 − ck − T ) ≤ 0(79)

f(cM−1)− 2f(cM )− f ′(cM )(cM −MT ) ≤ 0.(80)

Note that equation 78 holds in the feasible set. If equation 79 is true, then

T ≥ f(ck−1)− f(ck)
f ′(ck)

+ (ck+1 − ck).

One can set ck = ck−1 = c0 and ck+1 = cmin for example. Then T ≥ c0 − cmin must
be satisfied to ensure p is concave.
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