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A UNIFIED QUADRATIC SEMI-INFINITE PROGRAMMING

APPROACH TO TIME AND FREQUENCY DOMAIN

CONSTRAINED DIGITAL FILTER DESIGN∗

Y. LIU† , C. H. TSENG‡ , AND K. L. TEO§

Abstract. A unified quadratic semi-infinite programming approach is introduced to solve digital

filter design problems with time or frequency-domain specification. An algorithm based on this

approach is developed and the corresponding convergence result is presented. This computational

method is then applied to the optimum filter design problems subject to time and frequency domain

specifications, namely the time domain envelope constrained filter design problems and the frequency-

domain least square FIR filter design problems. For illustration, two examples are given.

1. Introduction. In signal processing, many filter design problems can often
be cast as constrained optimization problems where the constraints are defined by
the specifications of the filter or by the requirements on the output signal. These
constraints can arise either from practical considerations or from the standards set by
certain regulatory bodies(see e.g., [4]).

In particular, some constraints required to be satisfied are continuous constraints
in either time or frequency domain. Examples include (i) the optimum envelope-
constrained filter design problem [16, 17, 18], where the response of the filter corre-
sponding to a given excitation is required to stay within a specified tolerance about
the desired response in the time domain; and (ii) the optimal least square FIR filtering
problem subject to maximum error constraints in frequency domain [5]. These opti-
mum filter design problems can be formulated as appropriate quadratic semi-infinite
programming problems. Many approaches have been proposed to deal with this class
of optimization problems. The simplest one is to approximate the problem as a fi-
nite quadratic optimization problem via discretization of the index set of the infinite
constraints. However, there is no guarantee that the continuous constraints will be
satisfied in between the discretization points. However, many methods, including the
quadratic programming methods, the H∞ method ([6],[11],[17]), and the H2 methods
([10]), have been used to solve this discretised quadratic programming problem under
various scenarios. The constraint transcription techniques proposed in [12] and [13]
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are popular choices for dealing with semi-infinite programming problems (see [16]).
However, these methods require numerical integration over the index set and feasibil-
ity check of the continuous constraint and hence are numerically expensive. Recently,
a new algorithm based on the dual parameterization approach is developed in [8]
for solving quadratic semi-infinite programming problems. The convergence of the
algorithm is proved.

In this paper, the theory and algorithm obtained in [8] are extended to quadratic
semi-infinite programming problems involving multiple continuous constraints. These
results are then shown to give rise to a unified approach to the optimum filter design
problems with time and frequency domain specifications.

The rest of the paper is organized as follows: In Section 2, a general quadratic
semi-infinite programming problem involving several continuous inequality constraints
formulated and the dual parameterization technique proposed in [7] is used to develop
a computational algorithm. Convergence result is given. In Sections 3 and 4, numer-
ical examples of both time and frequency domain filter design problems are solved by
using the proposed algorithm. Finally, Section 5 concludes the paper.

2. Quadratic Semi-Infinite Programming Algorithm. In this section, we
present an algorithm for solving the following class of quadratic semi-infinite pro-
gramming problems which covers the constrained optimal filter design problems with
frequency and time domain specifications considered in [5] and [15], respectively.
Problem (P)

min
x

f(x)=̂
1
2
x′Qx + c′x(2.1)

subject to g(x, τ)=̂A(τ)x− b(τ) ≤ 0, for all τ ∈ Ω,(2.2)

where the index set Ω is a compact subset of Rs, Q ∈ RN×N is a positive definite
matrix, c ∈ RN , A(·) ∈ C(Ω, Rm×N ) and b(·) ∈ C(Ω, Rm), while C(Ω, Rm×N ) and
C(Ω, Rm) denote, respectively, the classical Banach spaces consisting of all continuous
functions defined on Ω with value in Rm×N and Rm. For numerical reasons, we further
assume that A(·) and b(·) are continuously differentiable on Ω.

Through out this paper, we assume that the Slater constraint qualification holds
at some point x0 ∈ RN , i.e., g(x0, τ) < 0m for all τ ∈ Ω.

Let A : RN → C(Ω, Rm) be the operator defined by the matrix function A(·)
according to

(2.3) (Ax)(τ) = A(τ)x for τ ∈ Ω

and denote by A∗ the dual operator of A. Using the above notations, problem (P)
can be stated as

min
x

(1/2)x′Qx + c′x,

s.t. Ax− b ≤ 0.
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The Dorn’s dual of problem (P) can be written as:
Problem (D)

(2.4)

min
x,Λ

L(x, Λ)

s.t. Qx + c + A∗Λ = 0
Λ ≥ 0

where

L(x, Λ) = (1/2)x′Qx +
∫

Y

b(y)dΛ(y).(2.5)

We state the well known KKT conditions for problem (P) as the following theorem.
Theorem 2.1 (KKT conditions). Let the Slater constraint qualification be satis-

fied. The minimum of problem (P) is achieved at x∗ ∈ Rn if and only if x∗ is feasible
and there exists a Λ∗ ∈ M(Ω) such that

Qx∗ + b + A∗Λ∗ = 0,∫

Ω

(A(τ)x∗ − b(τ))dΛ∗(τ) = 0,

Λ∗ ≥ 0.

The result of [7] can be easily extended to the class of problems described by
problem (P) as follows. The proof is similar to that of [7] and hence is omitted.

Theorem 2.2. Let the Slater constraint qualification be satisfied. Assume that
the optimal solution of the primal problem (P) is achieved at x∗ ∈ RN . Then, the
set of multipliers satisfying the KKT conditions of problem (P) necessarily includes a
measure with finite support at no more than N points.

We note, by Theorem 2.2, that there exits a solution pair (x∗, Λ∗) of the dual
problem (D) of which the measure Λ∗ has a finite support of no more than N points.
Thus, according to the argument of [7], the dual semi-infinite problem (D) can be
reduced to the following finite dimensional optimization problem (PD), called the
parameterized dual of problem (P).

min
(x,t,λ)

Lk(x, t, λ)

s.t. λi ≥ 0, τi ∈ Ω, i = 1, 2, · · · , k

where the integer k is the parameterization number, t = (τ1, . . . , τk), λ = [λ1 λ2 · · ·
λk], λi = [λi,1 λi,2 · · · λi,m]′ ∈ Rm for i = 1, 2, · · · , k, and the cost function Lk(x, t, λ)
is given by

Lk(x, t, λ) =
1
2
x′Qx +

k∑

i=1

b′(τi)λi.

According to the dual parameterization theory, once a solution (x, t, λ) is obtained
for problem (PD), the optimal solution to the primal problem (P) is x. To state
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the algorithm for problem (P), we denote by (PD(t)) the problem obtained from
problem (PD) by fixing t. It is easy to see that (PD(t)) is the dual problem of the
following problem (P(t)) for fixed τi ∈ Ω, i = 1, 2, · · · , k:

min
x

f(x), x ∈ RN

subject to g(x, τi) ≤ 0m, i = 1, . . . , k.

Theorem 2.3. ([8]) Consider problems (P), (P(t)) and (PD). The following
statements hold.

(i). Let x̄ be an optimum solution to problem (P(t)). If x̄ satisfies the infinite
constraint (2.2), then it is the optimal solution for the primal problem (P).

(ii). Let vk be the optimal value of problem (PD) with parameterization number k.
The sequence {vk} is decreasing, and there is an k∗ such that vk∗ = vk, for
all k ≥ k∗. Furthermore, if k∗ ≥ 1, then vk∗−1 > vk∗ .

(iii). The number k∗ in (ii) is the minimum integer such that for k ≥ k∗, a global
solution of the finite problem (PD) provides the solution for the primal prob-
lem (P) in the sense that if (x∗, t∗, λ∗) is a global optimizer of problem (PD),
then x∗ is the global optimizer of the primal problem (P).

(iv). If 0 ≤ k < k∗, then vk > vk+1.

Note that the number k∗ appeared in Theorem 2.3 is called the minimum param-
eterization number. If the optimal primal solution is an interior point of the feasible
region, then k∗ = 0.

Let {ki} be a given sequence of the parameterization numbers satisfying ki ≤ ki+1.
For each i, let Ωi = {τ i

j : j = 1, . . . , ki} be a given subset of Ω, and let ti = (τ i
1, . . . , τ

i
ki

).
Define the density distance between Ωi and Ω as:

d(Ωi,Ω)
4
= max

τ∈Ω
min

1≤j≤`i

|τ − τ i
j |.

Theorem 2.4. [8] Let the sequence {ti} be given as above. Suppose that (x̄i, λ̄i)
is a solution of problem (PD(ti)). If

d(Ωi, Ω) → 0 as i →∞,

then it holds that

(i). {x̄i} converges to the solution of the primal problem (P).
(ii). v(PD(ti)) → v(D), where v(S) denotes the optimal value of a given prob-

lem (S).

The optimization algorithm may now be stated as follows:

Algorithm 2.1.

Step 0 (Initialization) Give a small number ε > 0. Choose a sequence of index sets
{Ωi}. Set i = 1.
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Step 1 (Compute a local optimum) Solve the finite problem (PD(ti)). Denote the
local optimal solution by (xi, λi).

Step 2 (Test improvement of the objective) If i ≥ 2 and |v(PD(ti)) − v(D)| ≤ ε, go
to Step 3, else i = i + 1 and go to Step 1.

Step 3 (Compute the global optimum) Implement a local search for the finite dual
problem (PD) with k = ki. The solution is denoted by (x∗, t∗, λ∗). Then, x∗

is taken as the optimizer for problem (P).

3. Frequency-Domain Least Square FIR Filter Design. Consider the de-
sign of linear-phase FIR digital filters in which the objective is to minimize the
weighted least square error of the actual response with respect to a desired response,
subject to maximum allowable error between the actual and the desired responses
in the passband and stopband. The filter to be designed is a low-pass channel filter
and the corresponding optimization problem is referred to as the peak constrained
weighted least square error (PCWLSE) filter design [1, 2, 5] problem. The actual and
desired frequency responses are, respectively, given by

(3.1) H(x, ω) = A(x, ω)e−jθ(ω)

and

Hd(ω) = Ad(ω)e−jθd(ω)(3.2)

where A(x, ω) and Ad(ω) are real amplitudes of the frequency responses, and θ(ω)
and θd(ω) are continuous phase responses. The frequency domain is divided into the
passband Ωp = [0, ωp], the transition band (or “don’t care” band), and the stopband
Ωs = [ωs, 0.5]. Furthermore, A(x, ω) and Ad(ω) are, respectively, given by

A(x, ω) = ξ′(ω)x, ∀ω ∈ Ωp ∪ Ωs

and

Ad(ω) =

{
1, ω ∈ Ωp

0, ω ∈ Ωs

.

Note that the impulse response x(`) = x(N − 1− `), 0 ≤ ` ≤ N is symmetric. Thus,
the column vector x contains n impulse response coefficients where n = (N + 1)/2
if N is odd and n = N/2 if N is even. ξ(ω) is a column vector containing cosine
functions of ω (see [9]). The phase response is

θ(ω) = 2πω(N − 1)/2,

and the real amplitude corresponding to the actual frequency response is

A(x, ω) =

{ ∑(N−1)/2
`=0 a(`) cos(2πω`) N is odd∑N/2
`=1 b(`) cos[2πω(`− 1/2)] N is even
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where a(0) = x(N−1
2 ), a(`) = 2x(N−1

2 −`), ` = 1, . . . , N−1
2 , and b(`) = 2x(N/2−`), ` =

1, . . . , N/2. The cost function associated with the PCWLSE filter design problem is
then given by

∫

Ωp∪Ωs

{W (ω)|A(x, ω)−Ad(ω)|2}dω

= Wp

∫

Ωp

|A(x, ω)−Ad(ω)|2dω + Ws

∫

Ωs

|A(x, ω)−Ad(ω)|2dω

=
1
2
x′Ψx + p′x + Wpωp(3.3)

where the weighting function W (ω) is given by

W (ω) =

{
Wp if ω ∈ Ωp,

Ws if ω ∈ Ωs,

and the positive definite matrix Ψ (see [5] for details) and the column vector p are,
respectively, given by

Ψ = 2Wp

∫ ωp

0

ξ(ω)ξ′(ω)dω + 2Ws

∫ 0.5

ωs

φ(ω)ξ′(ω)dω,

p = −2Wp

∫ ωp

0

ξ(ω)dω.

Let δp and δs denote the maximum allowable passband and stopband errors,
respectively. The PCWLSE filtering problem can be formulated as the following
semi-infinite programming problem:

min
x

1
2
x′Ψx + p′x(3.4)

s.t. |ξ′(ω)x− 1| ≤ δp, ∀ω ∈ [0, ωp],(3.5)

|ξ′(ω)x| ≤ δs, ∀ω ∈ [ωs, 0.5].(3.6)

This problem is transformed, by mapping the interval [ωs, 0.5] onto [0, ωp] and expand-
ing the constraints into linear constraints, into the form of problem (P) as follows,

min
x

f(x) =
1
2
x′Ψx + p′(3.7)

s.t. A(ω)x− c(ω) ≤ 0, for all ω ∈ Ω(3.8)

where

(3.9) A(ω) =




ξ′(ω)
−ξ′(ω)
ξ′(ωs + 0.5−ωs

ωp
ω)

−ξ′(ωs + 0.5−ωs

ωp
ω)




and c(ω) =




1 + δp

−1 + δp

δs

δs




and

(3.10) Ω = [0, ωp].
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We assume that ξ(ω) ∈ C(Ω, Rn) and the Slater constraint qualification is satisfied.
Thus, Algorithm 2.1 is applicable for solving the PCWLSE filtering problem (3.7)-
(3.10). The corresponding parameterized dual problem is

min
(W,λ)

Lk(x,w, λ)(3.11)

s.t. Ψx + P −
k∑

i=1

A(ωi)T λi = 0(3.12)

0 ≤ ωi ≤ ωp, i = 1, 2, · · · , k,(3.13)

λi ≥ 0, i = 1, 2, · · · , k,(3.14)

where x ∈ RN , w = [ω1, . . . , ωk]′ ∈ Rk, λ = [λ1, λ2, · · · , λk] with λi = [λi
1, λ

i
2, λ

i
3, λ

i
4]

for i = 1, · · · , k, and the cost function is given by

Lk(x,w, λ) =
1
2
x′Ψx +

k∑

i=1

c′λi

where c = [1 + δp,−1 + δp, δs, δs]′.

Consider a lowpass FIR filter of length N = 35 associated with parameters ω̄p =
0.05, ω̄s = 0.1, Wp = 1, and Ws = 1000. Highpass, bandpass, and bandstop filters can
be handled analogously. Let DBp = 20 log10{(1+δp)/(1−δp)} and DBs = 20 log10 δs

represent, respectively, the passband and stopband amplitude ripples measured in
decibels (dB). The design objective requires DBp = 1.0dB and DBs ≤ −40dB.

By using the algorithm of Section 2, problem (3.11)-(3.14) is solved. The nu-
merical result is illustrated by Figures 1 and 2. Figure 1 shows comparison between
the magnitude response of the initial filter x1 and the magnitude response of the
optimal filter xopt obtained from Step 3 of Algorithm 2.1. Clearly, the initial magni-
tude response A(x1, f) does not satisfy the passband and stopband constraints, while
the optimal magnitude response A(xopt, ω) stays completely inside the constraints.
Figure 2 shows the difference between the initial frequency response and the opti-
mal frequency response. The straight dash-dot line depicted in Figure 2 denotes the
constraint in the stopband, where the design of stopband attenuation is set to be
less than or equal to −40dB. The figure shows that the frequency response for the
optimal filter meets all the constraints, while the initial frequency response does not.
Comparison with other methods will be given at the end of Section 4.

4. Time-domain Envelope-Constrained Filter Design. For the optimum
envelope-constrained filter design problem considered in [3], [15] and [18], the design
objective is to process a given input signal s(t), which is corrupted by additive random
noise n(t), in such a way that the output noise enhancement is minimized, while the
noise-free output Φ(t) is required to fit into a prescribed pulse-shaped envelope de-
fined by lower and upper boundaries. The mathematical formulation of this optimum
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constrained filter design problem is:

min
u
‖u‖2(4.1)

s.t. ε−(t) ≤ Φ(t)′ ≤ ε+(t), ∀t ∈ [0,∞)(4.2)

where u(t) ∈ L2[0,∞) is the impulse response of a time-invariant filter, ε− and ε+

are the lower and upper boundaries defining the envelope, and the noiseless output
has support in [0,∞) and is expressed as:

Φ(t) =
∫ ∞

0

u(t)s(t− τ)dτ.

If {φj}∞j=1 is an orthonormal basis of L2[0,∞), then u(t) can be expressed as:

u(t) =
∞∑

j=1

xjφj(t)(4.3)

and

xj = 〈u, ϕj〉, j = 1, 2, · · · .

Under the orthonormal basis {φj}∞j=1, the L2 norm of u ∈ L2(0,∞) can be written as

‖u‖ =

√√√√
∞∑

j=1

x2
j .

We consider the problem in finite time and consider only those filters uN (t) whose
impulse response is represented by finite expansion on the orthonormal basis:

uN (t) =
N−1∑

j=1

xjφj .(4.4)

In this case, the output response can be expressed as

Φ(t) =
∫ T

0

uN (t)s(t− τ)dτ

= Θ′(t)x, ∀t ∈ [0, T ](4.5)

where x = [x0, · · · , xN−1]
′
, Θ(t) = [θ0(t), · · · , θN−1(t)]

′
, and

(4.6) θj(t) =
∫ T

0

φj(τ)s(t− τ)dτ, j = 0, · · · , N − 1.

The norm of uN becomes

(4.7) ‖uN‖ =

√√√√
N−1∑

i=0

N−1∑

j=1

xixj〈φi, φj〉 =
√

x′x



A UNIFIED QUADRATIC SEMI-INFINITE PROGRAMMING APPROACH 407

where 〈φi, φj〉 = δi,j . Under the new settings, problem (4.1)-(4.2) is reduced to

min
x
‖x‖2 = x′x, x ∈ RN(4.8)

s.t. ε−(t) ≤ Θ′(t)x ≤ ε+(t), ∀t ∈ [0, T ].(4.9)

Let

(4.10) A(t) =

[
Θ(t)

′

−Θ(t)
′

]
,

and

(4.11) b(t) = [ε+′(t),−ε−′(t)]
′
.

The above EC filter problem can be written in the form of (2.1)-(2.2), where τ is
replaced by t, f(x) = ‖x‖2 and Ω = [0, T ]. Now, as a specific numerical example,
we consider the design of an equalization filter for a digital transmission channel
consisting of a coaxial cable on which data is transmitted according to the DSX-3
standard [3]. The design objective is to find an equalizing filter to shape the impulse
response of a coaxial cable with a loss of 30 dB at a normalized frequency of 1/β as
input, where β is the baud interval (22.35 × 10−9s). More precisely, an equalizing
filter is to be obtained such that the objective function is minimized, while the output
corresponding to a given input signal (s(t), t ∈ [0, T ]) lies within the envelope given
by the DSX-3 pulse template. The corresponding continuous-time EC filter design
problem with L2([0, T ]) Laguerre orthonormal basis can be formulated in the following
as a quadratic semi-infinite programming problem.

In this example, the interval [0, 32β] is equally partitioned into 210 subintervals.
Then, the interval [0, 32β] is represented by the 210+1 end points of these subintervals.
In this way, the analog input signal is sampled every β/32 time unit. These sample
signals suffice to give a good representation of the continuous signal. Furthermore, the
output mask and the filter output are also discretized into 210 points for the purpose
of better display of the design results. However, we wish to note that the design
technique proposed in this paper for obtaining the optimal solution does not require
any discretization of the input signal, the output mask, or the filter output.

Algorithm 2.1 solves the problem efficiently. Figure 5 shows the comparison be-
tween the initial output response and the optimal output response obtained from
Step 3 of Algorithm 2.1. Note that the optimal output response satisfies the required
continuous envelope constraint at all times, while the initial output response violates
the continuous envelope constraint.

We note that the design problems treated in this and the previous sections were
solved, in [14] and [5] respectively, by a two stage optimization method. It first solves
problem (PD(t)), for some chosen t, to get the optimal value function v(t). Then the
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index vector t is updated by optimization v(t). The algorithm repeats the two steps
until the solution is found. That algorithm suffers from a few disadvantages. First of
all, the algorithm has no guaranteed convergence. The cost function v(t) of the outer
level optimization is not even smooth. In contrast, the new algorithm is supported
by a guaranteed convergence result.

5. Summary and Conclusion. This paper gave a unified quadratic semi-
infinite programming approach to the design of optimal filters subject to either time
or frequency domain specifications. The algorithm so obtained is guaranteed to find
an optimal solution satisfying the continuous constraints of the original problem if
it exists. The proposed design technique has an advantage over existing methods in
terms of computational efficiency and theoretical completeness.
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Fig. 3. Comparison between the optimal output response and initial output response in the

DSX-3 pulse template coaxial cable.


