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EEG OCULAR ARTIFACT REMOVAL THROUGH ARMAX MODEL

SYSTEM IDENTIFICATION USING EXTENDED LEAST SQUARES∗

SHANE M. HAAS† , MARK G. FREI‡ , IVAN OSORIO§ , BOZENNA PASIK-DUNCAN¶,

AND JEFF RADEL‖

Abstract. The removal of ocular artifact from scalp electroencephalograms (EEGs) is of con-

siderable importance for both the automated and visual analysis of underlying brainwave activity.

Traditionally, subtraction techniques use linear regression to estimate the influence of eye movements

on the electrodes of interest. These methods are based on the assumption that the underlying brain-

wave activity is uncorrelated when, in general, it is not. Furthermore, regression methods assume

that the ocular artifact propagation is frequency independent, i.e. all waveforms of the ocular artifact

propagate similarly. In this paper, we examine relaxing these assumptions by using a more general

autoregressive (AR) moving average (MA) exogenous (X) model and the extended least squares

(ELS) algorithm to remove ocular artifact. We demonstrate that in some cases this general ARMAX

model can decrease ocular artifact not removable by standard regression techniques. We also show

that the incorporation of a forgetting factor to exponentially weight past data can improve ocular

artifact removal even for the traditional subtraction method.

Keywords. Ocular artifact removal; System identification; Extended least squares; Adaptive

noise cancellation; Epilepsy; Electroencephalogram signal processing; Weighted least squares

1. Introduction.

1.1. Ocular Artifact in EEGs. Ocular artifact (OA) refers to the electromag-
netic potentials superimposed on EEGs associated with eye movements (EM) and/or
blinks. These potentials originate from the electric dipole between the cornea and
retina and depend on its orientation with respect to the eyelid [1], [2]. These larger
artifacts sometimes obscure the smaller amplitude underlying brainwave activity, mak-
ing its visual or automated inspection difficult. The goal of ocular artifact removal
(OAR) methods is to remove ocular artifacts from scalp recorded EEGs, leaving the
underlying background signals due to brain activity.
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Prior to the introduction of automated OAR methods, subjects were asked to
stare at a fixed object or picture to reduce eye movements. Another early solution
was simply to discard data corrupted with severe artifact. Neither of these methods
produced satisfactory results. The latter produced large amounts of lost data [3],
and the former did not account for blinks or small involuntary eye movements [4].
Automated OAR methods, like the subtraction method discussed in the next section,
allow for online removal of ocular artifacts. For a survey of OAR methods see [5].

Figure 1 shows a segment of EEG signals corrupted with ocular artifact. Notice
the large dips on channels FP1-F3, FP2-F4, FP1-FP7, and FP2-F8. The blink ar-
tifacts are so prominent on these channels because they are located nearest to the
eyes (Figure 2(a)). Subtraction OAR methods use electrodes placed near the eyes to
measure eye movements and then subtract them from the EEG.

We will examine and expand on these subtraction OAR methods in this paper,
which is structured as follows. The remaining introductory sections explain the sub-
traction OAR technique, and then extend this method to a more general ARMAX
model. The extended least squares and order estimation algorithms are also intro-
duced to estimate the parameters of the ARMAX model. Section 2 describes our data
collection procedures and techniques to evaluate the performance of OAR. Section 3
demonstrates our ARMAX model subtraction OAR method and compares them to
the standard linear regression subtraction method.

1.2. Subtraction Ocular Artifact Removal Methods. Subtraction meth-
ods are based on the assumption that the measured EEG is described as a linear
combination of the underlying cortical activity, or background EEG, and the corrupt-
ing ocular artifact [5]. They generally use a variation of the following model to relate
the measured EEG, background EEG, and ocular artifact

(1) y(n) =
N∑

i=1

biui(n) + w(n),

where y(n) ∈ R = { Set of Real Numbers } is a single channel/electrode of measured
EEG at time n, ui(n) ∈ R, i ∈ {1, . . . , N} is the ocular artifact as measured from
electrodes placed near the eyes called electrooculograms (EOG), and w(n) ∈ R is the
true background EEG. The integer N varies from method to method, depending on
how the signals ui are defined. The constants bi ∈ R, i ∈ {1, . . . , N} are sometimes
called transmission coefficients, and they determine how much OA is prevalent in the
measured EEG y(n). Subtraction OAR methods estimate these coefficients, and then
subtract the ocular artifact from the measured EEG to obtain the background EEG.
The background EEG, which can be viewed as an error term, is then assumed to be
the underlying brain activity. These subtraction methods can also be viewed in the
framework of the adaptive noise cancellation problem, and are discussed as such in
[6] and [7].
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Subtraction OAR methods vary in how the ocular artifact signals, ui(n), i ∈
{1, . . . , N}, are defined. These definitions are sometimes chosen to measure certain
types of eye movements such as horizontal and vertical motions or nonlinear interac-
tions between ocular dipoles. Another consideration for choosing them is to minimize
the number of electrodes required for OAR. Figure 2(b) shows frequently used elec-
trode placements for measuring eye movements. The voltage signals are measured
with respect to a reference generated by electrodes placed at the mastoids located
behind each ear. Instead of nontrivial linear combinations and/or products of signals
obtained from the electrodes near the eyes we instead use the raw signals themselves
for the exogenous inputs. Doing so encompasses most previous models found in the
literature (see, e.g., [5], [8], [9], [10], [11]).

The regression model of (1) usually assumes the following:
A1 The background EEG w(n) is uncorrelated (white) noise with zero mean ([5],

[11]);
A2 All frequencies of the EOG have the same propagation characteristics. In other

words, y(n) is not dependent on ui(t) for t < n ([12], [11], [5]);
A3 The EOG ui(n), i ∈ {1, . . . , N} and background EEG w(n) are uncorrelated

([12], [5]);
A4 All types of eye movements (e.g., blinks, saccades, etc.) have the same propaga-

tion characteristics (i.e., transmission coefficients) ([5]);
A5 The transmission coefficients do not vary with time ([5]).

For least squares estimation of the transmission coefficients, these assumptions are
necessary for the estimates to converge in probability to the true coefficients [13].
Without A1, the estimates might no longer converge in probability, but still remain
equal to the true values in expectation [14]. In practice A1 does not hold because the
underlying brainwave activity is significantly correlated [15], [16], [17]. To account
for this correlation, van den Berg-Lenssen in [11] proposed to model the background
EEG as the moving average of uncorrelated noise, i.e. (1) becomes

(2) y(n) =
N∑

k=1

bkuk(n) +
r∑

k=1

ckw(n− k) + w(n),

where w(n) is assumed to be uncorrelated and mean zero. Jervis in [18] recommended
using differenced data to overcome background EEG correlation. Differenced data are
obtained by subtracting the value of the data at time n−1 from that at time n. Using
differenced data leads to the model

(3) y(n) = y(n− 1) +
N∑

k=1

bk (uk(n)− uk(n− 1)) + w(n)− w(n− 1),

which is a special case of the ARMAX model discussed in the next section. Tuan
noted in [19], however, that using differenced data may reduce autocorrelation, but
only removes it when the process is first order autoregressive with a unit coefficient.
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To relax assumption A2, Jervis in [5], van den Berg-Lenssen in [11], and Sadasivan
in [6] incorporated past EOG measurements in modeling the current measured EEG,
i.e. (1) becomes

(4) y(n) =
q∑

k=0

N∑

i=1

bkiui(n− k) + w(n),

where bki, i ∈ {1, . . . , N}, k ∈ {1, . . . , q} are the transmission coefficients and q is a
positive integer [19]. This model is also a special case of the more general ARMAX
model presented in the next section.

In practice, assumption A3 does not hold because the EOG contains a small
amount of background EEG and other non-ocular artifacts. Background EEG is
most prevalent on the EOG electrodes placed above the eyes; therefore, Jervis in
[18] recommends using the smallest number of these electrodes for OAR subtraction.
Using too few, however, might result in bias due to omitting necessary regressors [20].

Also, all types of eye movements do not propagate to the scalp electrodes in
the same manner due to their physiological origin, violating assumption A4. For
example, ocular artifact from small deflection eye movements originates primarily
from deflections of the two ocular dipoles. Ocular artifact, however, from voluntary
blinks originate primarily from interactions between the dipoles, eyelids, and muscles
surrounding the eye. Gratton et al. noted this observation in [21] showing the dif-
ferences between transmission coefficients estimated from voluntary and involuntary
eye movements. To distinguish between different types of eye movements, and build
appropriate models for each, is a very time-consuming procedure, and usually not
suitable for online applications [5]. For this reason, we will generally assume that
A4 holds, but take into account the possible time-varying behavior by introducing
a“forgetting factor” weighting in our estimation algorithm (see, e.g., [22]).

Gratton also showed in [21] that for a given subject, the parameter estimates
were not constant during or between experimental sessions. They also noted that the
variation between sessions was larger than that during the same session. These results
contradict assumption A5, and suggest that an OAR method needs to adapt over time
to track the transmission coefficients. Introducing a forgetting factor [23] or weighting
[24] to the recursive least squares algorithm can place more emphasis on recent data,
allowing the estimator to track time-varying coefficients. Other algorithms such as
least mean squares (LMS) [25] or stochastic approximation [26] can also track a time
varying system.

1.3. ARMAX Models and Their Application to OAR. We will now gen-
eralize models (1), (2), (3), and (4) used in the previously mentioned studies to relax
assumptions A1 and A2 by modeling the measured EEG as an ARMAX process
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described as

(5) yn =
p∑

k=1

Akyn−k +
q∑

k=0

Bkun−k +
r∑

k=1

Ckwn−k + wn,

where we represent all measured EEG channels as a d1-dimensional vector yn ∈ Rd1 ,
all measured EOG channels as a vector un ∈ Rd2 , and wn ∈ Rd1 is a mean zero
uncorrelated process generating the background EEG. For convenience, we will adopt
the subscript notation to represent time. The model order is defined as the triplet
(p, q, r). An ARMA, ARX, and XMA model would then have orders expressed as
(p,-1,r), (p,q,0), and (0,q,r), respectively. The coefficients of the model are matrices,
Ak ∈ Rd1×d1 , k ∈ 1, . . . , p, Bk ∈ Rd1×d2 , k ∈ 1, . . . , q, and Ck ∈ Rd1×d1 , k ∈ 1, . . . , r.

Notice that the models presented in the previous section are special cases of (5).
Models (1), (2), (3), and (4) are (0,0,0), (0,0,r), (1,1,1), and (0,q,0) ARMAX models,
respectively. Thus, an ARMAX model encompasses many of the models proposed by
other authors.

To extract the background EEG from (5), we must examine how wn and un

become stored in the autoregressive terms. Define

A(z) = A1 + A2z + · · ·+ Apz
p−1,(6)

B(z) = B0 + B1z + · · ·+ Bqz
q,(7)

C(z) = I + C1z + · · ·+ Crz
r,(8)

where z denotes the backshift operator. We can then write (5) as

(9) yn = A(z)yn−1 + B(z)un + C(z)wn.

Assuming yn = 0, n < 0 and iterating gives

(10) yn = An(z)B(z)u0 + An−1(z)B(z)u1 + · · ·+ B(z)un + vn,

where we have defined vn as

(11) vn =

{
0 n < 0
A(z)vn−1 + C(z)wn n ≥ 0

,

or, equivalently, as

(12) vn =

{
0 n < 0
A(z)vn−1 + yn −A(z)yn−1 −B(z)un n ≥ 0

.

The ARMA process vn is the portion of yn without ocular corruption, i.e. the back-
ground EEG. From (12), we see that only A(z) and B(z) need to be estimated to
calculate the background EEG. The next section shows how to estimate the matrix
coefficients of (5) using the extended least squares algorithm.
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1.4. ARMAX Model Identification Using Extended Least Squares. De-
fine the true coefficients of (5) as θ ∈ R(p+r)d1+(q+1)d2xd1

(13) θT = [A1 · · ·Ap B0 · · ·Bq C1 · · ·Cr] ,

and the true regressor ψn ∈ R(p+q)d1+(q+1)d2 as

(14) ψT
n =

[
yT

n · · · yT
n−p+1 uT

n+1 · · ·uT
n−q+1 wT

n · · ·wT
n−r+1

]
,

where T denotes the matrix transpose operator. Then (5) becomes

(15) yn = θT ψn−1 + wn.

Define the estimated regressor vector φn ∈ R(p+q)d1+(q+1)d2 as

(16) φT
n =

[
yT

n · · · yT
n−p+1 uT

n+1 · · ·uT
n−q+1 ŵT

n · · · ŵT
n−r+1

]
,

where

(17) ŵn = yn − θ̂T
n φn−1,

and θ̂n is the estimate for θ to be defined shortly. Denote the collection of past data
as

Y T
n = [y1 · · · yn] ,(18)

ΦT
n = [φ0 · · ·φn] .(19)

The extended least squares estimate at time n denoted as θ̂n is

(20) θ̂n = arg min
θ
‖ (Yn − Φn−1θ)

T
Rn (Yn − Φn−1θ) ‖,

where θ̂0 is chosen arbitrarily and Rn is a symmetric matrix of weighting coefficients.
Based on modifications from results in [26] and [27] the extended least squares estimate
is

θ̂n =
(
ΦT

n−1RnΦn−1

)−1
ΦT

n−1RnYn,(21)

assuming that the inverse of ΦT
n−1RnΦn−1 exists. In practice, we will ensure this

invertibility by adding a small positive multiple of the identity matrix to ΦT
n−1RnΦn−1.

If Rn = diag{a0λ
n, · · · , an−1λ, an}, where an ∈ R is a weighting sequence and 0 <

λ ≤ 1 is the forgetting factor, then we can write

(22) θ̂n =

(
n∑

k=1

λn−kakφk−1φ
T
k−1 +

λn

α
I

)−1 n∑

k=1

λn−kakφk−1y
T
k ,

where α ∈ R, and is included to ensure invertibility. Define

(23) Pn =

(
n∑

k=1

λn−kakφk−1φ
T
k−1 +

λn

α
I

)−1

.
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Then, the recursive extended least squares estimator with exponential forgetting fac-
tor 0 < λ ≤ 1 and weighting sequence an ∈ R can be recursively written as

θ̂n = θ̂n−1 + anPnφn−1

(
yT

n − φT
n−1θ̂n−1

)
, and(24)

Pn =
(
λP−1

n−1 + anφn−1φ
T
n−1

)−1
(25)

= λ−1Pn−1 −
λ−1Pn−1φn−1φ

T
n−1Pn−1

λ/an + φT
n−1Pn−1φn−1

,(26)

with P0 chosen as αI. The derivation of this estimator is based on a combination of
proofs given by [23], [26], [28], and [24].

We will now examine the conditions necessary for strong consistency of the ex-
tended least squares estimator. Define

(27) rn = tr
{
P−1

n

}
= tr {αI}+

n∑

k=1

λn−kakφT
k−1φk−1.

With λ = 1 = an ∀n, Chen and Guo in [29] showed strong consistency of the ELS
estimate under the following assumptions:
A6 The noise {wn, Fn−1} is a martingale difference sequence with respect to a family

of non-decreasing σ-algebras {Fn} and supn≥0 E
{‖wn‖β |Fn−1

}
< ∞ a.s.

(almost surely) for some β ≥ 2;
A7 un is Fn−1-measurable;
A8 C(z)−1 − 1

2I is strictly positive real (SPR) where C(z) = I + C1z + · · ·+ Crz
r.

Under the above assumptions, if β > 2 then

(28) ‖θ̂n − θ‖ = o

((
log rn

λn
min

) 1
2
)

a.s.,

where λn
min is the minimum eigenvalue of P−1

n . We use the notation fn = o(gn) for
two sequences fn and gn to mean that limn→∞ fn/gn = 0. If β = 2 then for any c > 1

(29) ‖θ̂n − θ‖ = o

((
log rn(log log rn)c

λn
min

) 1
2
)

a.s.

In practice, assumption A6 means that wn is mean zero, uncorrelated, and has a finite
higher moment. Taken together, A6 and A7 imply that un and wn are uncorrelated,
i.e. assumption A3. We can interpret A8 as saying the moving average noise is not
too different from white noise [13]. Under similar assumptions, Bercu in [24] and Guo
in [30] showed strong consistency of the weighted least squares estimator for λ = 1 and
an satisfying certain conditions of admissibility. Solo in [23] illustrated the estimator’s
behavior for an = 1 ∀n and 0 < λ ≤ 1.

For the purpose of OAR, we do not require the estimation of Ck, k ∈ {1, . . . , r}
because by (12) we can estimate the underlying background EEG with estimates of
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Ak, k ∈ {1, . . . , p} and Bk, k ∈ {1, . . . , q}. This observation is important because we
are unable to verify assumption A8 for EOG and EEG data and believe that it is
unlikely to be satisfied for these data. Although we do not know the true model for this
data, the characteristic roots of the estimated polynomial for C(z) are inside the unit
circle, which violates the SPR condition [31]. So we wish to relax assumption A8, yet
still estimate the autoregressive and exogenous coefficients. We have conjectured and
confirmed through simulations that under assumptions A6 and A7, but not A8, that
the autoregressive and exogenous coefficient estimates converge to their true values,
but the moving average coefficient estimates converge with a bias. If our conjecture
is true, as suggested by simulation, estimates of the background EEG using the ELS
should be representative of the true background regardless of conditions on C(z).

1.5. Order Estimation. The choice of ARMAX model order is a very difficult
problem because the actual physiological mechanism for ocular artifact propagation is
unknown. Hence, we are attempting to fit a finite order, causal, time-invariant, linear
model to a possibly infinite order, non-causal, time-variant, non-linear phenomenon.
The only justification for doing so, stems from the observation that the ocular artifacts
in the measured EEG seem to be of similar shape and occur at similar times to those
appearing in the measured EOG. Similar to approximating a continuous function
locally with a finite order polynomial, we hope to approximate the actual mechanism
with our finite order model.

If this mechanism really behaves as an ARMAX model, then offline methods do
exist to consistently estimate its order. Chen and Guo in [26] offer order estimation
techniques based on the CIC information criterion for ARMAX models with and
without a priori bounds on the model order. Other information criterion are presented
in [32], [33], and [34] to estimate the order of an ARMA model. All these methods,
however, require searching over a large number of data points and model orders to
minimize the information criterion. Furthermore, to show strong consistency of the
order estimates requires complicated assumptions that are not verifiable for unknown
systems.

These methods, however, provide a loose framework for us to choose the model
order. We will use a modification of the CIC information criterion discussed in [26]
and [14]. We will choose (p, q, r) to minimize

(30) CIC(p, q, r)n = σn(p, q, r) + (p + q + r + 1) log(n− n0)γ,

where

(31) σn(p, q, r) =
n∑

k=n0

‖ŵk‖2,

(32) γ = var{wn},
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ŵk is defined in (17), and n0 is a delay or starting time. We also have explicitly
included the dependency of the estimator (22) on the selected order (p, q, r) in the
previous equations. The cumulative error in (31) is a measure of how well a (p, q, r)
model “fits” the observed data. The second term in (30) penalizes higher order models
based on the “principle of parsimony” of model-building, meaning that all other things
being equal, the model with the smallest number of parameters is preferable [14]. The
positive constant γ scales this second term so it is of comparable magnitude to the
first. Its inclusion is necessary when dealing with a finite amount of data because
σn(p, q, r) might be less than log n for all orders, which would result in selection of
the trivial (0,-1,0) model. When dealing with EEG data, we choose γ to be the
variance of a channel not significantly corrupted with ocular artifact, such as the
one located farthest from the eyes, because we have found this choice to effect a
reasonable scaling. The starting time, n0, reduces the estimator’s transient effects on
the cumulative error. When estimating the order for the EEG and EOG model, we
chose n0 to be approximately half the length of the data set.

We will use the search mechanism proposed in [26] to minimize CIC(p, q, r)n.
This mechanism does not search over all possible order triplets, but instead determines
a bound on the order then proceeds to estimate each order in the triplet individually
as follows:

m̂n = arg min
0≤k≤log n

CIC(k, k, k)n,(33)

p̂n = arg min
0≤p≤bmn

CIC(p, m̂n, m̂n)n,(34)

q̂n = arg min
0≤q≤bmn

CIC(p̂n, q, m̂n)n,(35)

r̂n = arg min
0≤r≤bmn

CIC(p̂n, q̂n, r)n.(36)

To verify that the order estimates are reasonable, in this search’s implementation we
record the two terms in (30). Afterwards, we can interpret the estimator’s choice
based on the minimization of each term separately.

We evaluated the performance of this order estimator through simulation. In
general, this method seems to produce reasonable estimates of the model order, but
are not always correct due to finite data sets and the inapplicability of assumptions
required for consistent estimation.

Another approach to estimating model order is to over-parameterize the model.
For example, if the true model order is, say (4,4,4), then estimating the coefficients
assuming a (6,6,6) model would yield estimates with the two higher order coefficients
approximately zero. Model order could then be chosen as the highest order with
approximately non-zero coefficients. This method has many practical flaws. First, it
assumes an upper bound on the model order. Second, determining which coefficients
are negligible is not well defined. Third, as the estimator order increases, its variance
does as well, resulting in less certain estimates. An advantage of this method, however,
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is that it is quicker than performing an extended search to minimize an information
criterion.

Another consideration when choosing model order is its physical interpretation.
From model (10) with order (p, q, r) we see that the underlying brainwave activity
is described by the ARMA process (11) of order (p,−1, r). If the noise wn of this
ARMA process is not white, then a bias will result in the ARMAX model estimates
[14]. A bias in the estimates will result in too much or too little subtraction of
ocular artifact, resulting in poor removal. Hence, p and q must be chosen so that the
underlying brainwave activity, or background EEG, is appropriately modeled as an
ARMA process with white noise excitation.

2. OAR Methodology. This section discusses the methods we used to collect
the EEG and EOG data and evaluate the performance of the OAR methods.

2.1. Data Collection. A BMSI System 4000 (Los Gatos, CA) collected the
EEG and EOG data using a 239.75 Hz sampling rate with 10 bits of precision across
a ±300µV range. Prior to sampling, the signals were filtered by anti-aliasing filters
with nominal -3 dB passbands of 0.3-70 Hz. After digitization, we low-pass filtered
the data with a digital Butterworth filter having a 50 Hz -3 dB cutoff frequency with
at least a -100 dB attenuation for frequencies greater than or equal to 60 Hz. This
filter removed the 60 Hz noise that was very prevalent in the data. The data were
collected from two subjects for approximately 30 minutes each. During this time,
the subjects performed various natural and prompted eye movements such as blinks,
saccades, fixation, and smooth pursuit movements. We then selected segments of data
exhibiting large amounts of ocular artifact but little muscle artifact for input into the
OAR algorithm.

2.2. Evaluating the Performance of OAR Methods. No standard exists
to quantitatively evaluate the performance of OAR methods [8]. Several methods,
however, can qualitatively assess OAR performance. The most obvious method is
visual inspection. Ocular artifact has distinct waveshapes recognizable by a trained
observer. After OAR, these waveshapes are either removed or diminished; therefore,
visual inspection provides an initial measure of OAR performance. Jervis in [35]
suggests, however, that visual comparison of EEG before and after OAR may not be
sufficient to fully evalutate performance.

Another commonly used method to evaluate OAR performance is the minimiza-
tion of the cumulative error in (31) [11]. After all, this is the error that the least
squares method tries to minimize. For the subtraction OAR model of (1), mini-
mization of (31) is equivalent to the minimization of the estimated background EEG
variance. The weakness of this OAR evaluation procedure is its reliance on assump-
tion A3, i.e., that EOG and EEG are uncorrelated. When this assumption fails, the
subtraction OAR method not only removes ocular artifact from the measured EEG,
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but background EEG as well. The unintentional removal of background EEG reduces
the cumulative error (31), yet is undesirable.

Similar to the previous method, the statistical properties of ŵn can also indicate
OAR performance [11]. If assumption A1 is true, i.e., background EEG is white,
and ŵn converges to wn, then ŵn should be uncorrelated. If we examine its sample
autocorrelation function,

(37) R bw bw(τ) =
1
n

n∑

k=1

ŵkŵk+τ ,

it should be approximately zero for τ 6= 0, assuming ŵn is ergodic. For the model
(1), wn is rarely uncorrelated, meaning this test is not valid. For the model (5), this
whiteness test is only valid when ŵn consistently estimates wn. If we only consistently
estimate the polynomials A(z) and B(z) needed for OAR, we cannot use this method
either.

Jervis in [36] did present a quantitative method for assessing OAR methods. This
method, however, required the subject to perform periodic vertical or horizontal eye
movements, which produced rectangular waveforms in the EOG. The autocorrelation
function of periodic rectangular waves is a periodic sequence of triangular waves.
Measuring the residual of this triangular waveform in the autocorrelation function
of the corrected EEG provides a performance index of the OAR procedure. This
quantitative measure only works for data acquisition systems that do not significantly
distort the rectangular waves produced by vertical eye movements, and assumes that
natural eye movements produce rectangular waves. Unfortunately, we could not use
this measure in this paper because the anti-aliasing filters of our data acquisition
system did appreciably distort these rectangular waveforms.

In this paper, we use a combination of visual inspection and minimization of the
cumulative error (31) to evaluate OAR performance.

3. OAR Examples. In this section we present examples to compare the AR-
MAX and linear regression OAR subtraction methods. Our first example analyzes a
20 second segment of data that begins with 5 voluntary blinks followed by a series of
horizontal and vertical eye movements. We fit a (10,10,10) model to the data using
24 channels of measured EEG as yn and 4 channels of measured EOG as un. We did
not use all 7 channels shown in Figure 2(b) as EOG inputs, but instead used only the
lower four as EOG and the upper 3 as EEG. We did so for three reasons. First, chan-
nels FP1, FPz, and FP2 had more ocular artifact than the other EEG channels, and
therefore provide a challenging “test-bed” for comparing performance of the removal
algorithms and allow reliance on “gold-standard” visual inspection of results to judge
performance. Second, Jervis et al. in [5] did not have good results using these lower
4 electrodes in the regression OAR subtraction method, thereby allowing the work
herein to demonstrate an improvement upon their results. Finally, Jervis et al. in [18]
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recommends using the fewest number of channels located above the eyes to reduce
the correlation between EEG and EOG, in an attempt to ensure that assumption A3

is satisfied.

Figure 3 shows the 20 seconds of measured EOG and EEG data referenced to
the mastoids. The four EOG channels appear first followed by the 24 EEG channels.
Figure 4 shows the estimated background EEG using the ELS estimator with λ = 1 =
an ∀n. There was a significant decrease in the magnitudes of AR and MA coefficient
estimates beyond first order, making it appear that a (1,1,1) model is sufficient for
OAR. We will see later, however, that when we perform OAR on a single EEG channel,
a (1,1,1) model leads to poor performance. We also observed that the matrices for
the autoregressive and moving average terms are approximately diagonal, indicating
that each channel of measured EEG’s AR and MA terms are primarily a function
of previous values of the same channel and not those from other channels. This
observation suggests that each EEG channel should be used separately to perform
OAR, thereby significantly reducing the required computations and variance of the
estimator.

We next applied the order estimation procedure described in Section 1.5 using
λ = 1 = an ∀n on a 100 second section of data. Figure 5 shows the CIC values,
cumulative errors (the first term in (30)), and order costs (the second term in (30))
for each order triplet (k, k, k), k ∈ {0, 1, . . . , 11}. The algorithm chose a maximum
model order of 3, and then proceeded to determine individually the orders of the
autoregressive, exogenous, and moving average terms, arriving at a selected order
of (3,3,2). In general, as the model order increased, the cumulative error decreased,
with the largest percentage decrease occurring when the autoregressive order increased
from zero to one. Other than this sharp decrease, the order estimation procedure did
not produce clear results. Beyond the addition of an autoregressive term, the choice
of (3,3,2) seems somewhat arbitrary because the CIC curves for moving average and
exogenous orders did not appear to have definitive minimums.

As previously mentioned, another way to empirically determine model order is to
over-parametrize the model and choose the highest model order that produces non-
zero coefficient estimates. We systematically tested ARMAX models of increasing
order on a 300 second segment of data containing significant eye movements, both
voluntary and involuntary. Figures 6-7 show the last 100 seconds of the four EOG
channels (LOC, LIO, RIO, ROC), the raw ocular artifact corrupted EEG recorded
on the FP1 channel and the results of ocular artifact removal for various and mod-
els/orders. Figure 6(b) illustrates the improvement obtained when using a forgetting
factor to weight the data and thereby track potentially time-varying coefficients with
ELS as compared to the unweighted results shown in Figure 6(a). A forgetting factor
with a 2 second half-life was chosen, accounting for the timescale of the artifacts.
Figures 7(a),(b),(c) show that failure to incorporate an autoregressive term in the
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model results in poor performance. Without an autoregressive term, the OAR per-
formance does not improve but, in fact, even degrades as the orders of exogenous
and/or moving average terms are increased. These data suggest that increasing the
order of exogenous or moving average terms by themselves does not improve perfor-
mance (see Figures 7(a),(b)) but increasing these orders in combination with that of
the autoregressive term (as seen in Figures 6(b) and 7(c)) does result in performance
improvements up until order four or five. Increases of order beyond these levels can
actually degrade performance.

4. Conclusions. In this paper, we expanded the zero order exogenous regres-
sion model (1) traditionally used for OAR into a general autoregressive (AR), moving
average (MA), and exogenous (X) model (5). Using the extended least squares algo-
rithm with a two second half-life exponential weighting of past data, removed some
ocular artifact that the regression model could not. On the other hand, the regression
model better removed other types of artifacts such as blinks. In general, we observed
that some models removed certain types of artifact quite well, while at the same time
they removed other types poorly.

Furthermore, low order ARMAX models did not remove artifact as effectively as
the regression model, possibly because a bias developed due to the undermodeling of
the background EEG. This bias would cause the improper subtraction of the artifact
and even might introduce artifact not present in the original EEG. This bias was not
present in the regression model method, because undermodeling the background EEG
in this model results in a suboptimal, yet unbiased, estimator.

We also examined an ARMAX order estimation algorithm based on the CIC infor-
mation criterion. This algorithm produced third order models, yet we saw that these
third order models did not necessarily remove ocular artifact as well as the regression
model or fourth/fifth order ARMAX models. We also observed that increasing the
model order did not necessarily produce better ocular artifact removal.

In addition, we saw that the introduction of a forgetting factor in the recursive
least squares estimator for all model orders removed ocular artifact better than assum-
ing a time-invariant model. This forgetting factor was essential for good performance
of the ARMAX model OAR.

In summary, high order ARMAX models can sometimes remove ocular artifact
that regression models cannot; however, they do so at the expense of increased al-
gorithm complexity, and the risk of introducing new ocular artifact if they do not
properly model the underlying background EEG. Regression models, while being
suboptimal, are simpler to implement and do not incur this undesirable risk. The
regression models can also remove some types of artifact better than the ARMAX
models.
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Fig. 6. ARMAX OAR examples with (a) λ = 1 = an ∀n, (b) λ = 0.9986 (2 second half-life

@240 Hz) and an = 1 ∀n.
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Fig. 7. Examples illustrating (a) XMA models, (b) Exogenous models, and (c) ARMAX models

with zero order exogenous terms. All models have λ = 1 = an ∀n, (b) λ = 0.9986 (2 second half-life

@240 Hz) and an = 1 ∀n.


