
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2003 International Press
Vol. 3, No. 2, pp. 139-152, October 2003 004

FAST CODES FOR LARGE ALPHABETS∗

BORIS RYABKO† , JAAKKO ASTOLA‡ , AND KAREN EGIAZARIAN§

Abstract. We address the problem of constructing a fast lossless code in the case when the

source alphabet is large. The main idea of the new scheme may be described as follows. We group

letters with small probabilities in subsets (acting as super letters) and use time consuming coding

for these subsets only, whereas letters in the subsets have the same code length and therefore can be

coded fast. The described scheme can be applied to sources with known and unknown statistics.

Keywords. fast algorithms, source coding, adaptive algorithm, cumulative probabilities, arith-

metic coding, data compression, grouped alphabet.

1. Introduction. The computational efficiency of lossless data compression for
large alphabets has attracted attention of researches for ages due to its great impor-
tance in practice. The alphabet of 28 = 256 symbols, which is commonly used in
compressing computer files, may already be treated as a large one, and with adoption
of the UNICODE the alphabet size will grow up to 216 = 65536. Moreover, there
are many data compression methods where the coding is carried out in such a way
that, first input data are transformed by some algorithm, and then the resulting se-
quence is compressed by a lossless code. It turns out that very often the alphabet of
the sequence is very large or even infinite. For instance, the run length code, many
implementations of Lempel- Ziv codes, Grammar - Based codes [4, 5] and many meth-
ods of image compression can be described in this way. That is why the problem of
constructing high-speed codes for large alphabets has attracted great attention by re-
searches. Important results have been obtained by Moffat, Turpin [8, 10, 9, 12, 19, 11]
and others [3, 6, 7, 14, 15, 2, 18].

For many adaptive lossless codes the speed of coding depends substantially on the
alphabet size, because of the need to maintain cumulative probabilities. The time of
an obvious (or naive) method of updating the cumulative probabilities is proportional
to the alphabet size N . Jones [3] and Ryabko [14] have independently suggested two
different algorithms, which perform all the necessary transitions between individual
and cumulative probabilities in O(log N) operations under (log N + τ)- bit words,
where τ is a constant depending on the redundancy required, N is the alphabet size.

∗Received on December 30, 2002; accepted for publication on June 26, 2003. Supported by the

INTAS under the Grant no. 00-738.
†Professor, Siberian State University of Telecommunication and Computer Science, Kirov Street,

86, 630102 Novosibirsk, Russia. E-mail: ryabko@adm.ict.nsc.ru, URL: http://www.ict.nsc.ru/ryabko
‡Professor, Tampere University of Technology, P.O.B. 553, FIN- 33101 Tampere, Finland. E-mail:

jta@cs.tut.fi
§Professor, Tampere University of Technology, P.O.B. 553, FIN- 33101 Tampere, Finland. E-mail:

karen@cs.tut.fi

139

140 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

Later many such algorithms have been developed and investigated in numerous papers
[8, 15, 2, 10, 9].

In this paper we suggest a method for speeding up codes based on the following
main idea. Letters of the alphabet are put in order according to their probabilities
(or frequencies of occurrence), and the letters with probabilities close to each others
are grouped in subsets (as new super letters), which contain letters with small prob-
abilities. The key point is the following: equal probability is ascribed to all letters
in one subset, and, consequently, their codewords have the same length. This gives
a possibility to encode and decode them much faster than if they are different, since
each subset of the grouped letters is treated as one letter in the new alphabet, whose
size is much smaller than the original alphabet. Such a grouping can increase the
redundancy of the code. It turns out, however, that a large decrease in the alphabet
size may cause a relatively small increase in the redundancy. More exactly, we sug-
gest a method of grouping for which the number of the groups as a function of the
redundancy (δ) increases as c(log N +1/δ)+c1, where N is the alphabet size and c, c1

are constants.

In order to explain the main idea we consider the following example. Let a source
generate letters {a0, . . . , a4} with probabilities p(a0) = 1/16, p(a1) = 1/16, p(a2) =
1/8, p(a3) = 1/4, p(a4) = 1/2, correspondingly. It is easy to see that the following
code

code(a0) = 0000, code(a1) = 0001, code(a2) = 001, code(a3) = 01, code(a4) = 1

has the minimal average codeword length. It seems that for decoding one needs to
look at one bit for decoding a4, two bits for decoding a3, 3 bits for a2 and 4 bits for
a1 and a0. However, consider another code

c̃ode(a4) = 1, c̃ode(a0) = 000, c̃ode(a1) = 001, c̃ode(a2) = 010, c̃ode(a3) = 011,

and we see that, on the one hand, its average codeword length is a little larger than
in the first code (2 bits instead of 1.825 bits), but, on the other hand, the decoding
is simpler. In fact, the decoding can be carried out as follows. If the first bit is 1,
the letter is a4. Otherwise, read the next two bits and treat them as an integer (in a
binary system) denoting the code of the letter (i.e. 00 corresponds a0, 01 corresponds
a1, etc.) This simple observation can be generalized and extended for constructing a
new coding scheme with the property that the larger the alphabet size is, the more
speeding-up we get.

In principle, the proposed method can be applied to the Huffman code, arithmetic
code, and other lossless codes for speeding them up, but for the sake of simplicity, we
will consider the arithmetic code in the main part of the paper, whereas the Huffman
code and some others will be mentioned only briefly, because, on the one hand, the

FAST CODES FOR LARGE ALPHABETS 141

arithmetic code is widely used in practice and, on the other hand, generalizations are
obvious.

The rest of the paper is organized as follows. The second part contains estimations
of the redundancy caused by the grouping of letters, and it contains examples for
several values of the redundancy. A fast method of the adaptive arithmetic code for
the grouped alphabet is given in the third part. Appendix contains all the proofs.

2. The redundancy due to grouping. First we give some definitions. Let A =
{a1, a2, . . . , aN} be an alphabet with a probability distribution p̄ = {p1, p2, . . . , pN}
where p1 ≥ p2 ≥ . . . ≥ pN , N ≥ 1. The distribution can be either known a priori or
it can be estimated from the occurrence counts. In the latter case the order of the
probabilities should be updated after encoding each letter, and it should be taken into
account when the speed of coding is estimated. A simple data structure and algorithm
for maintaining the order of the probabilities are known and will be mentioned in the
third part, whereas here we discuss estimation of the redundancy.

Let the letters from the alphabet A be grouped as follows : A1 = {a1, a2,

. . . , an1}, A2 = {an1+1, an1+2, . . . , an2}, . . . , As = {ans−1+1, ans−1+2, . . . , ans} where
ns = N, s ≥ 1. We define the probability distribution π and the vector m̄ = (m1,

m2, ..., ms) by

(1) πi =
∑

aj∈Ai

pj

and mi = (ni − ni−1), n0 = 0, i = 1, 2, . . . , s, correspondingly. In fact,the grouping
is defined by the vector m̄. We intend to encode all letters from one subset Ai by
the codewords of equal length. For this purpose we ascribe equal probabilities to the
letters from Ai by

(2) p̂j = πi/mi

if aj ∈ Ai, i = 1, 2, . . . , s. Such encoding causes redundancy, defined by

(3) r(p̄, m̄) =
N∑

i=1

pi log(pi/p̂i).

(Here and below log() = log2().)

The suggested method of grouping is based on information about the order of
probabilities (or their estimations). We are interested in an upper bound for the
redundancy (3) defined by

(4) R(m̄) = sup
p̄∈P̄N

r(p̄, m̄); P̄N = {p1, p2, . . . , pN} : p1 ≥ p2 ≥ . . . ≥ pN}.

The following theorem gives the redundancy estimate.

142 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

Theorem 1. The following equality for the redundancy (4) is valid.

(5) R(m̄) = max
i=1,...,s

max
l=1,...,mi

l log(mi/l)/(ni + l),

where, as before, m̄ = (m1,m2, ...,ms), ni =
∑i

j=1 mj , i = 1, ..., s.

The proof is given in Appendix.
The practically interesting question is how to find a grouping which minimizes

the number of groups for a given upper bound of the redundancy δ. Theorem 1 can
be used as the basis for such an algorithm. This algorithm is implemented as a Java
program and has been used for preparation of all examples given below. The program
can be found on the internet and used for practical needs, see

http : //www.ict.nsc.ru/ r̃yabko/GroupY ourAlphabet.html.

Let us consider some examples of such grouping carried out by the program
mentioned.

First we consider the Huffman code. It should be noted that in the case of the
Huffman code the size of each group should be a power of 2, whereas it can be any
integer in case of an arithmetic code. This is because the length of Huffman codewords
must be integers whereas this limitation is absent in arithmetic code.

For example, let the alphabet have 256 letters and let the additional redundancy
(2) not exceed 0.08 per letter. (The choice of these parameters is appropriate, because
an alphabet of 28 = 256 symbols is commonly used in compressing computer files,
and the redundancy 0.08 a letter gives 0.01 a bit.) In this case the following grouping
gives the minimal number of the groups s.

A1 = {a1}, A2 = {a2}, . . . , A12 = {a12},

A13 = {a13, a14}, A14 = {a15, a16}, . . . , A19 = {a25, a26},

A20 = {a27, a28, a29, a30}, . . . , A26 = {a51, a52, a53, a54},

A27 = {a55, a56, . . . , a62}, . . . , A32 = {a95, . . . , a102},

A33 = {a103, a104, . . . , a118}, . . . , A39 = {a199, . . . , a214},

A40 = {a215, a216, . . . , a246}, A41 = {a247, . . . , a278}.

We see that each of the first 12 subsets contains one letter, each of the subsets
A13, . . . , A19 contains two letters, etc., and the total number of the subsets s is 41. In
reality we can let the last subset A41 contain the letters {a247, . . . , a278} rather than

FAST CODES FOR LARGE ALPHABETS 143

the letters {a247, . . . , a256}, since each letter from this subset will be encoded inside
the subset by 5- bit words (because log 32 = 5).

Let us proceed with this example in order to show how such a grouping can be
used to simplify the encoding and decoding of the Huffman code. If someone knows
the letter probabilities, he/she can calculate the probability distribution π by (1) and
the Huffman code for the new alphabet Â = A1, . . . , A41 with the distribution π. If
we denote a codeword of Ai by code(Ai) and enumerate all letters in each subset Ai

from 0 to |Ai| − 1, then the code of a letter aj ∈ Ai can be presented as the pair of
the words

code(Ai) {number of aj ∈ Ai},

where {number of aj ∈ Ai} is the log |Ai| - bit notations of the aj number (inside
Ai). For instance, the letter a103 is the first in the 16- letter subset A33 and a246 is
the last in the 32- letter subset A40. They will be encoded by code(A33) 0000 and
code(A40) 11111, correspondingly. It is worth noting that the code(Ai) , i = 1, . . . , s,

depends on the probability distribution whereas the second part of the codewords
{number of aj ∈ Ai} does not do that. So, in fact, the Huffman code should be
constructed for the 41- letter alphabet instead of the 256- one, whereas the encoding
and decoding inside the subsets may be implemented with few operations. Of course,
this scheme can be applied to a Shannon code, alphabetical code, arithmetic code
and many others. It is also important that the decrease of the alphabet size is larger
when the alphabet size is large.

Let us consider one more example of grouping, where the subset sizes don’t need
to be powers of two. Let, as before, the alphabet have 256 letters and let the additional
redundancy (2) not to exceed 0.08 per letter. In this case the optimal grouping is as
follows.

|A1| = |A2| = . . . , |A12| = 1, |A13| = |A14| = . . . = |A16| = 2, |A17| = |A18| = 3,

|A19| = |A20| = 4, |A21| = 5, |A22| = 6, |A23| = 7, |A24| = 8, |A25| = 9,

|A26| = 11, |A27| = 12, |A28| = 14, |A29| = 16, |A30| = 19,

|A31| = 22, |A32| = 25, |A33| = 29, |A34| = 34, |A35| = 39.

We see that the total number of the subsets (or the size of the new alphabet) is
less than in the previous example (35 instead of 41), because in the first example the
subset sizes should be powers of two, whereas there is no such limitation in the second
case. So, if someone can accept the additional redundancy 0.01 per bit, he/she can use
the new alphabet Â = {A1, . . . , A35} instead of 256- letter alphabet and implement

144 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

the arithmetic coding in the same manner as it was described for the Huffman code.
(The exact description of the method will be given in the next part). We will not
consider the new examples in details, but note again that the decrease in the number
of the letters is grater when the alphabet size is larger. Thus, if the alphabet size is
216 and the redundancy upper bound is 0.16 (0.01 per bit), the number of groups s

is 39, and if the size is 220 then s = 40 whereas the redundancy per bit is the same.
(Such calculations can be easily carried out by the above mentioned program).

The required grouping for decreasing the alphabet size is based on the simple
theorem 2, for which we need to give some definitions, standard in source coding.

Let γ be a certain method of source coding which can be applied to letters from
a certain alphabet A. If p is a probability distribution on A, then the redundancy of
γ and its upper bound are defined by

(6) ρ(γ, p) =
∑

a∈A

p(a)(|γ(a)|+ log p(a)), ρ̂(γ) = supp ρ(γ, p),

where the supremum is taken over all distributions p, |γ(a)| and p(a) are the length of
the code word and the probability of a ∈ A, correspondingly. For example, ρ̂ equals
1 for the Huffman and the Shannon codes whereas for the arithmetic code ρ̂ can be
made as small as it is required by choosing some parameters, (see, for ex., [8, 10, 16]).
The following theorem gives a formal justification for applying the above described
grouping for source coding.

Theorem 2. Let the redundancy of a certain code γ be not more than some ∆
for all probability distributions. Then, if the alphabet is divided into subsets Ai, i =
1, . . . , s, in such a way that the additional redundancy (3) equals δ, and the code γ is
applied to the probability distribution p̂ defined by (2), then the total redundancy of
this new code γgr is upper bounded by ∆ + δ.

The proof is given in Appendix.

Theorem 1 gives a simple algorithm for finding the grouping which gives the
minimal number of the groups s when the upper bound for the admissible redundancy
(4) is given. On the other hand, a simple asymptotic estimate of the number of such
groups and the group sizes can be interesting when the number of the alphabet letters
is large. The following theorem can be used for this purpose.

Theorem 3. Let δ > 0 be an admissible redundancy (4) of a grouping.

i) If

(7) mi ≤ b δ ni−1 e /(log e− δ e) c,

then the redundancy of the grouping (m1,m2, . . .) does not exceed δ, where ni =∑i
j=1 mj , e ≈ 2.718....).

ii) the minimal number of groups s as a function of the redundancy δ is upper

FAST CODES FOR LARGE ALPHABETS 145

bounded by

(8) c log N/δ + c1,

where c and c1 are constants and N is the alphabet size, N →∞.

The proof is given in Appendix.

Comment 1. The first statement of the theorem 3 gives construction of the δ−
redundant grouping (m1,m2, ...) for an infinite alphabet, because mi in (7) depends
only on previous m1,m2, . . . , mi−1.

Comment 2. Theorem 3 is valid for grouping where the subset sizes (m1,m2, . . .)
should be powers of 2.

3. The arithmetic code for grouped alphabets. Arithmetic coding was
introduced by Rissanen [13] in 1976 and now it is one of the most popular methods
of source coding. The practically used efficient algorithms of arithmetic code were
developed by Moffat [8, 9, 10]. In this part we give first a simplified description of
the arithmetic code in order to explain how the suggested method of grouping can be
implement along with the arithmetic code.

As before, consider a memoryless source generating letters from the alphabet
A = {a1, ..., aN} with unknown probabilities. Let the source generate a message
x1 . . . xt−1xt . . ., xi ∈ A for all i, and let νt(a) denote the occurrence count of letter
a in the word x1 . . . xt−1xt. After first t letters x1, . . . , xt−1, xt have been processed
the following letter xt+1 needs to be encoded. In the most popular version of the
arithmetic code the current estimated probability distribution is taken as

(9) pt(a) = (νt(a) + c)/(t + Nc), a ∈ A,

where c is a constant (as a rule c is 1 or 1/2). Let xt+1 = ai, and let the interval
[α, β) represent the word x1 . . . xt−1xt. Then the word x1 . . . xt−1xtxt+1, xt+1 = ai

will be encoded by the interval

(10) [α + (β − α) qt
i , α + (β − α) qt

i+1) ,

where

(11) qt
i =

i−1∑

j=1

pt(aj).

When the size of the alphabet N is large, the calculation of qt
i is the most time

consuming part in the encoding process. As it was mentioned in the introduction,
there are fast algorithms for calculation of qt

i in

(12) T = c1 log N + c2,

146 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

operations under (log N + τ)- bit words, where τ is the constant determining the
redundancy of the arithmetic code. (As a rule, this length is in proportional to the
length of the computer word: 16 bits, 32 bits, etc.)

We describe a new algorithm for the alphabet whose letters are divided into
subsets At

1, . . . , A
t
s, and the same probability is ascribed to all letters in the subset.

Such a separation of the alphabet A can depend on t which is why the notation At
i

is used. But, on the other hand, the number of the letters in each subset At
i will not

depend on t which is why it is denoted as |At
i| = mi.

In principle, the scheme for the arithmetic coding is the same as in the above
considered case of the Huffman code: the codeword of the letter xt+1 = ai consists of
two parts, where the first part encodes the set At

k that contains ai, and the second
part encodes the ordinal of the element ai in the set At

k. It turns out that it is easy to
encode and decode letters in the sets At

k, and the time consuming operations should
be used to encode the sets At

k, only.
We proceed with the formal description of the algorithm. Since the probabilities

of the letters in A can depend on t we define in analogy with (1),(2)

(13) πt
i =

∑

aj∈Ai

pj , p̂ t
i = πt

i/mi

and let

(14) Qt
i =

i−1∑

j=1

πt
j .

The arithmetic encoding and decoding are implemented for the probability distri-
bution (13), where the probability p̂ t

i is ascribed to all letters from the subset Ai. More
precisely, assume that the letters in each At

k are enumerated from 1 to mi, and that
the encoder and the decoder know this enumeration. Let, as before, xt+1 = ai, and let
ai belong to At

k for some k. Then the coding interval for the word x1 . . . xt−1xtxt+1

is calculated as follows

(15) [α + (β − α)(Qt
k + (δ(ai)− 1) p̂ t

i) , α + (β − α)(Qt
k + δ(ai) p̂ t

i)),

where δ(ai) is the ordinal of ai in the subset At
k. It can be easily seen that this

definition is equivalent with (10), where the probability of each letter from Ai equals
p̂ t

i . Indeed, let us order the letters of A according to their count of occurrence in the
word x1 . . . xt−1xt, and let the letters in At

k, k = 1, 2, ..., s , be ordered according to the
enumeration mentioned above. We then immediately obtain (15) from (10) and (13).
The additional redundancy which is caused by the replacement of the distribution
(9) by p̂ t

i can be estimated using (3) and the theorems 1-3, which is why we may
concentrate our attention on the encoding and decoding speed and the storage space
needed.

FAST CODES FOR LARGE ALPHABETS 147

First we compare the time needed for the calculation in (10) and (15). If we
ignore the expressions (δ(ai) − 1)p̂ t

i and δ(ai)p̂ t
i for a while, we see that (15) can be

considered as the arithmetic encoding of the new alphabet {At
1, At

2, ..., At
s}. Therefore,

the number of operations for encoding by (15) is the same as the time of arithmetic
coding for the s letter alphabet, which by (12) equals c1 log s + c2. The expressions
(δ(ai)−1)p̂ t

i and δ(ai)p̂ t
i require two multiplications, and two additions are needed to

obtain bounds of the interval in (15). Hence, the number of operations for encoding
(T) by (15) is given by

(16) T = c∗1 log s + c∗2,

where c∗1, c
∗
2 are constants and all operations are carried out under the word of the

length (log N + τ)- bit as it was required for the usual arithmetic code. In case s is
much less than N , the time of encoding in the new method is less than the time of
the usual arithmetic code, see (16) and (12).

We focused on the cost of calculating a code and did not take into account the time
needed for codeword generation. This time is largely the same for both algorithms.

We describe briefly decoding with the new method. Suppose that the letters
x1 . . . xt−1xt have been decoded and the letter xt+1 is to be decoded. There are two
steps required: first, the algorithm finds the set At

k with the usual arithmetic code
that contains the (unknown) letter ai. The ordinal of the letter ai is calculated as
follows:

(17) δ() = b(code(xt+1...)−Qt
j)/p̂ t

i c,

where code(xt+1...) is the number that encodes the word xt+1xt+2.... It can be seen
that (17) is the inverse of (15). In order to calculate (17) the decoder should carry
out one division and one subtraction. That is why the total number of decoding
operations is given by the same formula as for the encoding, see (16).

It is worth noting that multiplications and divisions in (15) and (17) could be
carried out faster if the subset sizes are powers of two. But, on the other hand, in this
case the number of the subsets is larger, that is why both version could be useful.

So we can see that if the arithmetic code can be applied to an N − letter source,
so that the number of operations (under words of a certain length) of coding is

T = c1 log N + c2,

then there exists an algorithm of coding, which can be applied to the grouped alphabet
At

1, . . . , A
t
s in such a way that, first, at each moment t the letters are ordered by

decreasing frequencies and, second, the number of coding operations is

T = c1 log s + c∗2

148 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

with words of the same length, where c1, c2, c
∗
2 are constants.

As we mentioned above, the alphabet letters should be ordered according to their
frequency of occurrences when the encoding and decoding are carried out. Since
the frequencies are changing after coding of each message letter, the order should
be updated, and the time of such updating should be taken into account when we
estimate the speed of the coding. It turns out that there exists an algorithm and data
structure (see, for ex.,[8, 10, 18]) , which give a possibility to carry out the updating
with few operations per message letter, and the amount of these operations does not
depend on the alphabet size and/or a probability distribution. That is why the last
estimation of the number of coding operations is valid even if we take into account
operations needed for order updating.

It is worth noting that the technique of swapping symbols to keep track of the
probability ordering is well known, and has been used, for example, as long ago as
dynamic Huffman coding implementation was suggested by Moffat. Since then just
about everyone who considers adaptive coding and their changing frequency counts
has required a similar mechanism, see for example, [8, 10, 9, 18].

The described method of grouping was applied to arithmetic block code in such
a way that a block of several letters was coded using almost the same number of
operations as a usual arithmetic code uses for one letter. The preliminary results
show that the suggested algorithm essentially speeds up the compression methods,
see [17].

4. Appendix. The proof of Theorem 1. It is easy to see that the set P̄N of
all distributions which are ordered according to the probability decreasing is convex.
Indeed, each p̄ = {p1, p2, . . . , pN} ∈ P̄N may be presented as a linear combination of
vectors from the set

(18) QN = {q1 = (1, 0, . . . , 0), q2 = (1/2, 1/2, 0, . . . , 0), . . . , qN = (1/N, . . . , 1/N)

as follows:
N∑

i=1

i(pi − pi+1)qi

where pN+1 = 0.

On the other hand, the redundancy (3) is a convex function, because the direct
calculation shows that its second partial derivatives are nonnegative. Indeed, the
redundancy (3) can be represented as follows.

r(p̄, m̄) =
N∑

i=1

pi log(pi) −
s∑

j=1

πj(log πj − log mj) =

N∑

i=2

pi log(pi) −
s∑

j=2

πj(log πj − log mj) +

FAST CODES FOR LARGE ALPHABETS 149

(1−
N∑

k=2

pk) log(1−
N∑

k=2

pk) − (1−
s∑

l=2

πl)(log(1−
s∑

l=2

πl)− log m1).

If ai is a certain letter from A and j is such a subset that ai ∈ Aj then, the direct
calculation shows that

∂r/∂pi = log2 e (ln pi − ln πj − ln(1−
N∑

k=2

pk) + ln(1−
s∑

l=2

πl)) + constant,

∂2r/∂2pi = log2 e ((−1/πj + 1/pi) + (−1/π1 + 1/p1)).

The last value is nonnegative, because, by definition, πj =
∑nj+1−1

k=nj
pk and pi is one

of the summands as well as p1 is one of the summands of π1.
Thus, the redundancy is a convex function defined on a convex set, and its extreme

points are QN from (18). So

supp̄∈P̄N
r(p̄, m̄) = max

q ∈ QN

r(q, m̄).

Each q ∈ QN can be presented as a vector q = (1/(ni + l), . . . , 1/(ni + l), 0, . . . , 0)
where 1 ≤ l ≤ mi+1, i = 0, . . . , s − 1. This representation, the last equality, the
definitions (18) , (3) and (4) give (5).

Proof of the theorem 2. Obviously,
∑

a∈A

p(a)(|γgr(a)|+ log p(a)) =

(19)
∑

a∈A

p(a)(|γgr(a)|+ log p̂(a)) +
∑

a∈A

p(a)(log(p(a)/p̂(a)).

Having taken into account that p(a) is the same for all a ∈ Ai and |γgr(a)| is the
same for all a ∈ Ai, i = 1, ..., s, we define p̈(i) = p(a), a ∈ Ai, l(i) = |γgr(a)|, a ∈ Ai,

for all i = 1, ..., s. From those definitions, (1),(2) and (19) we obtain

∑

a∈A

p(a)(|γgr(a)|+ log p̂(a)) =
s∑

i=1

(l(i) + log p̈(i))(
∑

a∈Ai

p(a)) =

s∑

i=1

(l(i) + log p̈(i))
∑

a∈Ai

p̂(a) =
∑

a∈A

p̂(a)(|γgr(a)|+ log p̂(a)).

This equality and (19) gives
∑

a∈A

p(a)(|γgr(a)|+ log p(a)) =

∑

a∈A

p̂(a)(|γgr(a)|+ log p̂(a)) +
∑

a∈A

p(a)(log(p(a)/p̂(a)).

150 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

From this equality, the statement of the theorem and the definitions (3) and (6) we
obtain

∑

a∈A

p(a)(|γgr(a)|+ log p(a)) ≤ ∆ + δ.

Theorem 2 is proved.
The proof of the theorem 3. The proof is based on the theorem 1. From (5) we

obtain the following obvious inequality

(20) R(m̄) ≤ max
i=1,...,s

max
l=1,...,mi

l log(mi/l)/ni.

Direct calculation shows that

∂(log(mi/l)/ni)/∂l = log2 e (ln(mi/l)− 1)/ni,

∂2(log(mi/l)/ni)/∂l2 = − log2 e/(l ni) < 0

and consequently the maximum of the function log(mi/l)/ni is equal to mi log e/(e ni),
when l = mi/e. So,

max
l=1,...,mi

l log(mi/l)/ni ≤ mi log e/(e ni)

and from (20) we obtain

(21) R(m̄) ≤ max
i=1,...,s

mi log e/(e ni).

That is why, if

(22) mi ≤ δ e ni/ log e

then R(m̄) ≤ δ. By definition (see the statement of the theorem) , ni = ni−1 + mi

and we obtain from (22) the first claim of the theorem. Taking into account that
ns−1 < N ≤ ns and (21), (22) we can see that, if

N = ć1(1 + δe/ log e)s + ć2,

then R(m̄) ≤ δ, where ć1 and ć2 are constants and N → ∞. Taking the logarithm
and applying the well known estimation ln(1+ ε) ≈ ε when ε ≈ 0, we obtain (8). The
theorem is proved.

FAST CODES FOR LARGE ALPHABETS 151

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ulman, The desighn and analysis of computer algo-

rithms, Reading, MA: Addison-Wesley, 1976.

[2] P. Fenwick, A new data structure for cumulative probability tables, Software – Practice and

Experience, 24:3(1994) pp. 327–336, (Errata published in vol. 24, no. 7, p. 667, July 1994.)

[3] D. W. Jones, Application of splay trees to data compression, Communications of the ACM,

31:8(1988), pp. 996-1007.

[4] J. C. Kieffer and E. H. Yang, Grammar-based codes: a new class of universal lossless source

codes, IEEE Trans. Inform. Theory, 46:3(2000), pp. 737–754.

[5] J. C. Kieffer, E. H. Yang, G. J. Nelson, and P. Cosman, Universal lossless compression via

multilevel pattern matching, IEEE Trans. Inform. Theory, 46:4(2000), pp. 1227–1245.

[6] S. T. Klein, Skeleton trees for the efficient decoding of Huffman encoded texts, Information

Retrieval, 3:1(2000), pp. 7–23.

[7] M. Liddell and A. Moffat, Hybrid Prefix Code for Practical Use, In: Procedeengs of IEEE

Data Compression Conference, (DCC’2003), 2003, pp. 392–401.

[8] A. Moffat, Linear time adaptive arithmetic coding, IEEE Transactions on Information Theory,

36:2(1990), pp. 401–406.

[9] A. Moffat, An improved data structure for cumulative probability tables, Software – Practice

and Experience, 29:7(1999), pp. 647-659.

[10] A. Moffat, R. Neal, and I. Witten, Arithmetic Coding Revisited, ACM Transactions on

Information Systems,16:3(1998), pp. 256–294.

[11] A. Moffat and A. Turpin, On the implementation of minimum redundancy prefix codes, IEEE

Transactions on Communications, 45:10(1997), pp. 1200–1207.

[12] A. Moffat and A. Turpin, Efficient Construction of Minimum-Redundancy Codes for Large

Alphabets, IEEE Trans. Inform. Theory,44:4(1998), pp. 1650–1657.

[13] J. Rissanen, Generalized Kraft inequality and arithmetic coding, IBM J. Res. Dev., 20:5(1976),

pp. 198–203.

[14] B. Ya. Ryabko, A fast sequential code. Dokl. Akad. Nauk SSSR 306:3(1989), pp. 548–552

(Russian); translation in: Soviet Math. Dokl., 39:3(1989), pp. 533-537.

[15] B. Ryabko, A fast on-line adaptive code, IEEE Trans. Inform. Theory, 38:4(1992), pp. 1400–

1404.

[16] B. Ryabko and A. Fionov, Fast and Space-Efficient Adaptive Arithmetic Coding, in: Pro-

ceedings of Cryptography and Coding, 7th IMA International Conference, Cirencester, UK,

December 1999. LNCS 1746, pp. 270–279.

[17] B. Ryabko, G. Marchokov, K. Egiazarian, and J. Astola, The fast algorithm for the block

arithmetic code and its applications to image compression, in: International Workshop

”Trends and recent achivments in information technology”, 16 - 18 May 2002, Cluj Napoca,

Romania, pp. 58–61.

[18] B. Ryabko and J. Rissanen, Fast Adaptive Arithmetic Code for Large Alphabet Sources with

Asymmetrical Distributions, IEEE Communications Letters, 7:1(2003), pp. 33–35.

[19] A. Turpin and A. Moffat, On-line adaptive canonical prefix coding with bounded compression

loss, IEEE Trans. Inform. Theory, 47:1(2001), pp. 88- 98.

152 BORIS RYABKO, JAAKKO ASTOLA, AND KAREN EGIAZARIAN

