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COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES∗

XIANFENG GU† , YALIN WANG‡ , AND SHING-TUNG YAU§

Abstract. This work introduces a system of algorithms to compute period matrices for general

surfaces with arbitrary topologies. The algorithms are intrinsic to the geometry, and independent of

surface representations. The computation is efficient, stable and practical for real applications. The

algorithms are experimented on real surfaces including human faces and sculptures, and applied to

surface identification problems. It is the first work that is both theoretically solid, and practically

robust and accurate to handle real surfaces with arbitrary topologies.
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1. Introduction. Geometric matching and surface classification are fundamen-
tal problems in computer vision, computer graphics, and medical imaging fields. Con-
formal geometry provides solid theoretic foundation to solve these problems. All ori-
entable surfaces are Riemann surfaces, hence, by Riemann Uniformization theorem,
they can be conformally mapped to three canonical spaces: the sphere, the plane and
the Poincaré space. Surface matching problems can be converted to planar image
matching problems on these canonical spaces.

Surfaces can be classified by the conformal transformation group. If two surfaces
can be conformally mapped to each other, they are conformally equivalent. The clas-
sification by conformal equivalence is much refiner than topological classification, and
more flexible than classification by rigid motions. The complete conformal invariants
are described by a g by g complex matrix, the so called period matrix, where g is the
genus of the surface.

We tested our algorithms on real surfaces laser scanned from real sculptures and
ones reconstructed from medical images. The computation process is intrinsic to the
geometry, and independent of the data structure, insensitive to noise. The process
does not require the computation of curvatures, so it is much more efficient than
traditional methods.

To the best of knowledge, the algorithm in this work is the first practical algorithm
that is able to handle real surfaces with arbitrary topologies. The computation is
efficient and stable, and the period matrices obtained are accurate.

1.1. Previous Work. Conformal geometry has been applied in computer graph-
ics for texture mapping purposes. The algorithms for computing conformal maps from
a topological disks to the plane have been studied in [4, 12, 13, 1]. In the medical
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(a) Original Surface (b) Conformal map to (c) Texture mapped
the plane surface

Fig. 2.1. Conformal mapping. The original surface is a real human face (a), which is confor-

mally mapped to a square (b). A checker board texture is mapped back to the face. All the right

angles on the texture are preserved on (c).

imaging field, [2, 10] introduce a method for computing conformal map between a
closed genus zero surface to the sphere.

For surfaces with arbitrary topologies, Gu and Yau introduce an algorithm based
on Hodge theory. The algorithm for computing conformal structures of real surfaces
has been introduced in [7]. Then the method is applied to brain mapping [5, 6, 14] in
medical imaging, surface classification in [9], and global surface parameterizations in
[8].

1.2. Organization of the Paper. In section 2, the concept of conformal map-
ping will be explained briefly. In section 3, the main concepts and definitions in con-
formal geometry will be systematically introduced in the setting of discrete surfaces.
Section 4 introduces the algorithms in details. Section 5 generalizes the algorithms
to surfaces with boundaries. Section 6 demonstrates the experimental results on real
surfaces. We summarize the paper in the final section 7.

2. Riemann Surface. This section concentrates on the concepts of conformal
map, conformal structure and Riemann surface, which are introduced in [3] and [11].

Suppose S1 and S2 are two regular surfaces, parameterized by (x1, x2). Let
a mapping φ : S1 → S2 be represented in the local coordinates as φ(x1, x2) =
(φ1(x1, x2), φ2(x1, x2)).

Suppose the first fundamental forms (Riemannian metrics) of S1 and S2 are

ds2
1 =

∑

ij

gijdxidxj(1)

ds2
2 =

∑

ij

g̃ijdxidxj .(2)
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The pull back metric on S1 induced by φ is

(3) φ∗ds2
2 =

∑
mn

∑

ij

g̃ij(φ(x1, x2))
∂φi

∂xm

∂φj

∂xn
dxmdxn.

Definition 2.1 (conformal mapping). φ is a conformal mapping between S1 and
S2, if there exists a positive function λ(x1, x2) such that

(4) ds2
1 = λ(x1, x2)φ∗ds2

2.

Especially, if the map from S1 to the local coordinate (x1, x2) plane is conformal,
we say (x1, x2) is a conformal coordinate of S1, or isothermal coordinate. Using
conformal coordinates, the metric can be formulated as ds2 = λ(x1, x2)(dx2

1 + dx2
2).

Figure 2.1 demonstrates a conformal map between a human face surface and a
square on the plane. The conformality is illustrated by texture mapping a checker-
board to the surface. It is easy to verify that all right angles on the checkerboard are
preserved on the surface.

Definition 2.2 (conformal structure). A conformal structure of a surface S is
an atlas, where each chart is a conformal coordinates of S, and the transition function
between two charts are holomorphic.

Definition 2.3 (Riemann surface). A surface which admits a conformal struc-
ture, is called a Riemann surface.

All orientable surfaces are Riemann surfaces. If there is a conformal mapping
φ : S1 → S2 between two surfaces S1 and S2, then S1 and S2 are conformally equiv-
alent, namely, they share the same conformal structure. The complete invariants of
conformal structures can be represented as period matrices, which will be explained
in details in the next section.

The main goal of this paper is to design algorithms to compute period matrices.
In practice, the surfaces are represented by triangular meshes. In the next section,
we will define the concepts of conformal geometry in the discrete surface cases.

3. Discrete Riemann Surface. Suppose K is a simplicial complex, and a map-
ping f : |K| → R3 embeds |K| in R3, then M = (K, f) is called a triangular mesh.
Kn are the sets of n-simplicies, where n = 0, 1, 2. We use σn to denote a n-simplex,
σn = [v0, v1, · · · , vn], where vi ∈ K0.

3.1. Homology Group. We define chain spaces as the linear combination of
simplices,

(5) Cn(M) = {
∑

j

cjσ
n
j |cj ∈ Z, σn

j ∈ Kn}, n = 0, 1, 2.

The elements in Cn are called n-chains. Notably, the summation of all faces
∑

k fk

is in C2. We also use M to denote this special 2-chain. Next we define boundary
operators among the chain spaces.
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Definition 3.1 (boundary operator). Boundary operator ∂n : Cn → Cn−1 is a
linear operator. Suppose σn ∈ Kn, σn = [v0, v1, · · · , vn−1], then

(6) ∂nσn =
n−1∑

i=0

(−1)i[v0, · · · , vi−1, vi+1, · · · , vn−1].

Then for a n-chain in Cn, the boundary operator is defined as

(7) ∂n

∑
ciσ

n
i =

∑
ci∂nσn

i .

We use ker∂1 ⊂ C1 to denote the null space of ∂1, which represents all the closed
curves on M . We use img∂2 ⊂ C1 to denote the image space of ∂2, representing all
possible surface patch boundaries. It is easy to verify that all boundaries of surface
patches are closed curves, namely

(8) ∂1 · ∂2 = 0.

Hence img∂2 ⊂ ker∂1.

Definition 3.2 (homology group). The homology group of M Hn(M,Z) is
defined as

(9) Hn(M,Z) =
ker∂n

img∂n+1
.

Intuitively, H1(M,Z) represents all the closed loops which are not the boundaries
of any surface patch on M . The topology of M is determined by H0(M,Z),H1(M,Z),
and H2(M,Z).

Let M be a closed mesh of genus g, and B = {γ1, γ2, . . . , γ2g} be an arbitrary
basis of its homology group. We define the entries of the intersection matrix C of B

as

(10) cij = −γi · γj

where the dot denotes the algebraic number of intersections, counting +1 when the
direction of the cross product of the tangent vectors of ri and rj at the intersection
point is consistent with the normal direction and −1 otherwise.

3.2. Cohomology Group. Then we consider the homeomorphisms between
chain spaces to R, which we can call co-chain spaces,

(11) Cn(M) = Hom(Cn,R), n = 0, 1, 2,

where Hom(Cn, R) means the set of all homeomorphisms between Cn to R. The
elements in Cn are called n-cochains or n-forms. Similar to the boundary operators
among chain spaces, we can define the coboundary operators δn : Cn → Cn+1 as
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the dual operators to ∂n. Suppose ωn ∈ Cn is an n-form and cn+1 ∈ Cn+1 is an
n+1-chain, then

(12) (δnωn)(cn+1) = ωn(∂n+1cn+1).

It is easy to verify that δ1 · δ0 = 0.
Definition 3.3 (cohomology group). The cohomology group Hn(M,R) is defined

as

(13) Hn(M,R) =
kerδn

imgδn−1
.

1-forms in kerδ1 are called closed 1-forms and 1-forms in imgδ0 are called exact
1-forms. Two close 1-forms are called cohomologous if they differ by an exact 1-form.
Cohomology group H1(M,R) is isomorphic to homology group H1(M,Z).

We can naturally define integration of an n-form along an n-chain. Suppose
cn ∈ Cn and ωn ∈ Cn, then the integration is denoted as

(14) < ωn, cn >= ωn(cn).

The boundary and coboundary operators are related by the Stokes’ formula

(15) < ωk−1, ∂kck >=< δk−1ωk−1, ck > .

3.3. Wedge Product. Cohomology group is not only a group, but also a ring.
Besides addition, there are also product operators for 1-forms.

Definition 3.4 (wedge product). Wedge product is a bilinear operator ∧ : C1×
C1 → C2. Suppose f ∈ K2 is a face on M , ∂2f = e0 + e1 + e2, ω, τ ∈ C1, then

(16) ω ∧ τ(f) =
1
6

∣∣∣∣∣∣∣

ω(e0) ω(e1) ω(e2)
τ(e0) τ(e1) τ(e2)

1 1 1

∣∣∣∣∣∣∣
.

We can define star wedge product operator in a similar way,
Definition 3.5 (star wedge product). A bilinear operator star wedge product

∧∗ : C1 × C1 → C2 is defined as follows: suppose f ∈ K2, the lengths of three edges
are l0, l1, l2 and the area of f is A, then

(17) ω ∧∗ γ(f) = ΩGΓt,

where

Ω = (ω(e0), ω(e1), ω(e2))(18)

Γ = (γ(e0), γ(e1), γ(e2))(19)

and quadratic form G has the form

(20) G =
1

24s




−4l20 l20 + l21 − l22 l20 + l22 − l21

l21 + l20 − l22 −4l21 l21 + l22 − l20

l22 + l20 − l21 l22 + l21 − l20 −4l22


 .
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3.4. Harmonic 1-forms. We can associate the so called harmonic energy with
all closed 1-forms.

Definition 3.6 (harmonic energy). Suppose ω ∈ C1, and we define the harmonic
energy of ω as

(21) E(ω) =
∑

e∈K1

weω(e)2,

where we is defined in the following way: suppose there are two faces f0, f1 attached
to an edge e, then angles α, β are on f0, f1 against e respectively, then

(22) we =
1
2
(cotα + cotβ).

Suppose e is a boundary edge, e ∈ ∂2M , then e only attaches to one face f0, in this
case

(23) we =
1
2
cotα.

In the following discussion, we always assume the triangulation of the mesh can
guarantee the positiveness of we. The existence of such a triangulation can be proven
by Riemann uniformization theorem.

Definition 3.7 (harmonic 1-form). A closed 1-form ω ∈ kerδ1 is called a
harmonic 1-form if it minimizes the harmonic energy.

The Laplacian operator is an operator from C1 to C0, ∆ : C1 → C0,

(24) ∆ω(u) =
∑

[u,v]∈K1

w[u,v]ω([u, v]).

A closed 1-form is harmonic if and only if its Laplacian is zero.

For each cohomology class, there only exists a unique harmonic 1-form. All
harmonic 1-forms form a group, denoted as H, which is isomorphic to H1(M,R).

Definition 3.8 (dual harmonic 1-form basis). Suppose M has a homology basis
{r1, r2, · · · , r2g} and a harmonic 1-form basis {ω1, ω2, · · · , ω2g}, such that

(25) < ri, ωj >= −γi · γj , i, j = 1, 2, · · · , 2g,

where −γi · γj is the algebraic intersection number of γi and γj, then the homology
basis and harmonic 1-form basis are said to be dual to each other.

3.5. Holomorphic 1-form. Given a harmonic 1-form ω ∈ H(M), there is a
unique conjugate harmonic 1-form ω∗, such that

(26) < τ ∧ ω∗,M >=< τ ∧∗ ω, M >, ∀τ ∈ H(M),

where M represents the special 2-chain consisting of all faces.
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Definition 3.9 (holomorphic 1-form). Suppose ω is harmonic, and ω∗ is its
conjugate harmonic 1-form, then the pair ω +

√−1ω∗ is called a holomorphic 1-form.
All holomorphic 1-forms form a group Ω1(M), which is isomorphic to H1(M,R).

The basis of Ω1(M) can be constructed directly from a basis of the harmonic 1-form
group. Using previous notation, if {ω1, ω2, · · · , ω2g} is a basis of the harmonic 1-form
group, then {ω1 +

√−1ω∗1 , ω2 +
√−1ω∗2 , · · · , ω2g +

√−1ω∗2g} is a basis of Ω1(M).

3.6. Period Matrix. The conformal structure of a surface can be represented
by a special matrix, the period matrix.

Definition 3.10 (period matrix). Let S be a Riemann surface with genus g.
Suppose B = {a1, a2, · · · , ag, b1, b2, · · · , bg} is a canonical basis of H1(M,Z) and B∗ =
{ω1, ω2, · · · , ω2g} is the dual basis of Ω1(M), then matrix R = (ri,j) is called the period
matrix, where

(27) rij =
∫

bi

ωj , i, j = 1, 2, · · · , g.

4. Algorithms for Computing Period Matrices. This section introduces a
series of practical algorithms to compute the period matrices. We first introduce the
algorithms to compute the homology and cohomology of a surface, then the algorithms
to compute harmonic one-forms and holomorphic one-forms.

4.1. Fundamental Domain. First we compute a fundamental domain DM of
a mesh M such that DM is a topological disk and covers M once.

Algorithm 1. Computing a fundamental domain of mesh M .

Input : A mesh M .

Output: A fundamental domain DM of M .

1. Choose an arbitrary face f0 ∈ M , let DM = f0,

∂ DM = ∂ f0, put all the neighboring

faces of f0 which share an edge with f0 to a queue Q.

2. While Q is not empty

a.remove the first face f in Q, suppose

∂ f = e0 + e1 + e2.

b. DM = DM ∪ f .

c.find the first ei ∈ ∂ f , such that −ei ∈ ∂ DM ,

replace −ei in ∂ DM by {ei+1, ei+2}
(keeping the order).

d.put all the neighboring faces which share

an edge with f and not in DM or Q to Q.

3. Remove all adjacent oriented edges in ∂ DM , which

are opposite to each other, i.e. remove all pairs

{ek,−ek} from ∂ DM .
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The resulting DM includes all faces of M , which are sorted according to their
queuing order. The non-oriented edges and vertices of the final boundary of DM form
a graph G, which is called a cut graph. We will compute the homology basis of G,
namely H1(G,Z), which is equivalent to H1(M,Z).

4.2. Homology Basis. For the cut graph G, we can compute its homology
generators, which is also the homology basis of M .

Algorithm 2. Computing a homology basis of M .

Input : A mesh M .

Output: Homology basis {γ1, γ2, · · · , γ2g}.
1. Compute a fundamental domain DM of M , get the cut

graph G.

2. Compute a spanning tree T of G, suppose

G/T = {e1, e2, · · · , e2g}.
3. Choose a root vertex r ∈ T , depth first traverse T .

4. Suppose ∂ ei = ti − si, there are paths from root r

to ti and si, denoted as [r, ti], and [r, si], then

connect them to a loop γi = [r, ti] + [ti, si]− [r, si].

5. Output { γ1, γ2, · · · , γ2g } as a basis of H1(G,Z), also H1(M,Z).

4.3. Computing Cohomology. We want to explicitly construct a basis for the
cohomology group of M , H1(M,R). We will find a set of closed 1-forms {ω1, ω2, · · · ,
ω2g}, such that

(28) < γi, ωj >= δj
i .

where δj
i is the Kronecker symbol and {γi} is a homology basis.

Algorithm 3. Computing a cohomology basis of M .

Input : A Mesh M .

Output : Cohomology Basis {ω1, ω2, · · · , ω2g} .

1. Compute a fundamental domain DM , the cut graph G,

and a spanning tree T , G/T = {e1, e2, · · · , e2g }.
2. let ωi( ei ) = 1 and ω(e) = 0, for any edge e ∈ T .

3. Suppose DM is ordered in the way that

DM = {f1, f2, . . . , fn}, reverse the order of DM to

{fn, fn−1, · · · , f1}.
4. While DM is not empty

a. get the first face f of DM , remove f from DM ,

∂ f = e0 + e1 + e2.

b. divide {ek} to two sets,

Γ = {e ∈ ∂ f | − e ∈ ∂ DM}, Π = {e ∈ ∂ f | − e 6∈ ∂ DM}.
c. choose the value of ωi(ek), ek ∈ Π arbitrarily,
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such that
P

e ∈ Π ωi( e ) = − P
e ∈ Γ ωi( e ),

if Π is empty, then the right hand side is zero.

d. Update the boundary of DM , let

∂ DM = ∂ DM + ∂ f .

5. Output ωi’s.

Once we compute {ω1, ω2, · · · , ω2g}, we can use linear transformation to transform
them to the dual of homology basis {γ1, γ2, · · · , γ2g}, such that

(29) < γi, ωj >= −γi · γj .

4.3.1. Computing Harmonic 1-forms. In this step, we would like to diffuse
the 1-forms computed in the last step to be harmonic. Given a closed 1-form ω, we
would like to find a function f ∈ C0(M), such that ∆(ω + δf) = 0.

Algorithm 4. Diffuse a closed 1-form to a harmonic 1-form.

Input : A Mesh M , a closed 1-form ω.

Output : A harmonic 1-form, cohomologous to ω.

1. Choose f ∈ C0(M), build the linear system

∆ (ω + δ f) ≡ 0.

2. Solve the above sparse linear system to get f .

3. Output ω + δ f .

where

(30) ∆(ω + δf)(u) =
∑

[u,v]∈M

wu,v(ω([u, v]) + f(v)− f(u)), u ∈ K0.

4.4. Computing Holomorphic 1-form Basis. For each harmonic 1-form,
there exists a conjugate harmonic 1-form as defined in (26). The problem is to deter-
mine the uniqueness of the conjugate harmonic 1-form and find a way to compute it
out.

Suppose {ω1, ω2, · · · , ω2g} is a harmonic 1-form basis. By definition, the conjugate
harmonic 1-form ω∗ should satisfy the following condition

(31) < ωi ∧ ω∗,M >=< ωi ∧∗ ω, M >, ∀ωi ∈ H.

Because ω∗ is also harmonic, we can represent it as a linear combination of ωi’s

(32) ω∗ =
2g∑

k=1

λkωk,

and we get the following linear system

(33)
2g∑

j=1

λj < ωi ∧ ωj ,M >=< ωi ∧∗ ω, M > .
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We want to show the linear system (33) is of full rank. We can prove the following
theorem:

Theorem 4.1. For any harmonic 1-form, its conjugate harmonic 1-form exists
and is unique.

The proof is not elementary, we will use the duality between homology and co-
homology from algebraic topology. Suppose the homology basis is {γ1, γ2, · · · , γ2g},
and

(34) < ωi, γj >= −γi · γj ,

then

(35) < ωi ∧ ωj ,M >= γi · γj ,

where · represents the algebraic intersection number between two closed loops. Hence,
the linear system in equation (33) is the intersection matrix of homology basis, which
is definitely non-degenerated. The solution to (33) exists and is unique.

5. Surfaces With Boundaries. In this section, we want to generalize the
method for closed meshes to meshes with boundaries. Given a surface M with bound-
ary ∂M , ∂M 6= φ, we want to compute the global conformal structure for M . We
need to compute the holomorphic 1-form on M first.

5.1. Doubling. Given a surface M with boundaries ∂M , we can construct a
symmetric closed surface M̄ , such that M̄ covers M twice. That is, there exists an
isometric projection π : M̄ → M , which maps a face f̄ ∈ M̄ isometrically to a face
f ∈ M . For each face f ∈ M , there are two preimages in M̄ . We call M̄ a doubling
of M .

The following is the algorithm to compute the doubling of mesh with boundaries.

Algorithm 5. Compute Doubling of an Open Mesh

Input : A mesh M with boundary

Output : The doubling of M , M̄

1. Make a copy of M , denoted as −M .

2. Reverse the orientation of −M .

3. For any boundary vertex u ∈ ∂ M , there exists a

unique corresponding boundary vertex −u ∈ ∂−M ,

hence for any edge on e ∈ ∂M , there exists a

unique boundary edge −e ∈ ∂(−M). Find all the

correspondences.

4. Glue M and −M , make their corresponding boundary

vertices and edges identical. The resulting mesh is

the doubling M̄ .
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The doubling algorithm is very general for arbitrary surfaces with boundaries,
and can be generalized to higher dimensional complexes. The purpose for doubling is
to convert the surfaces with boundaries to closed symmetric surfaces.

Given a mesh M with boundaries, we would like to compute the basis of holo-
morphic 1-forms on M . We first compute the doubling M̄ for M . For each interior
vertex u ∈ M , there are two copies of u in M̄ , we denote them as u1 and u2, and say
they are dual to each other, denoted as

(36) ū1 = u2, ū2 = u1.

For each boundary vertex u ∈ ∂M , there is only one copy in M̄ , we say u is dual to
itself, i.e. ū = u.

We now compute the harmonic 1-forms on M̄ . According to Riemann surface
theories [3], all symmetric harmonic 1-forms of M̄

(37) ω([u, v]) = ω([ū, v̄]).

are also harmonic 1-forms on M .
Define the dual operator for each harmonic 1-form ω as follows:

(38) ω̄([u, v]) = ω([ū, v̄]).

Any ω can be decomposed to a symmetric part and an asymmetric part

(39) ω =
1
2
(ω + ω̄) +

1
2
(ω − ω̄),

where 1
2 (ω + ω̄) is the symmetric part.

The following algorithm computes the holomorphic 1-form basis for surfaces with
boundaries.

Algorithm 6. Computing a set of holomorphic 1-form

basis for meshes with boundaries.

Input : Mesh M with boundaries

Output: Holomorphic 1-form basis for mesh M

{τ1 +
√−1τ∗1 , τ2 +

√−1τ∗2 , · · · , τk +
√−1τ∗k }.

1. Compute the doubling of M , M̄ .

2. Compute the harmonic 1-form basis of M̄

{ω1, ω2, · · · , ω2g }.
3. Assign τi = 1

2
(ω + ω̄), remove redundant ones.

4. Compute conjugate harmonic 1-forms of τi,

denoted as τ∗.

5. Output holomorphic basis

{τ1 +
√−1τ∗1 , τ2 +

√−1τ∗2 , · · · , τk +
√−1τ∗k }.

Then, we can use the holomorphic 1-form to compute the period matrix of M as
described in previous section.



164 XIANFENG GU, YALIN WANG, AND SHING-TUNG YAU

(1) a0 (2) a1 (3) a2

(4) b0 (5) b1 (6) b2

Fig. 6.1. The homology basis for the genus three sculpture model.

6. Experimental Results. We tested our algorithms using real surfaces laser
scanned from sculptures and human faces. The surfaces are represented using triangle
meshes. The optimization is based on the conjugate gradient method, and the data
structure is mainly half edge boundary representation.

6.1. Genus Three Sculpture Model. The sculpture model is shown in figure
6.1 with genus three. The canonical homology basis are also illustrated.

The period matrix is computed and display as the following:

(40) R =




0.0143 + 0.6991i -0.0018 + 0.0068i -0.0000 + 0.0067i
-0.0018 + 0.0064i -0.0103 + 1.6003i -0.0047 - 0.1894i
-0.0000 + 0.0067i -0.0047 - 0.1898i 0.0010 + 1.2844i


 .

It is easy to verify that the matrix is symmetric, and the imaginary part is positive
definite.

6.2. Human Face Surfaces With Feature Regions Removed. The face
models are obtained by laser scanning real human faces. We locate the feature curves
of the surfaces, and slice the surfaces along these feature curves. We double the
resulting surfaces, and compute the period matrices of them.

Figure 6.2 (1) and (2) demonstrate the surfaces with feature regions removed.
Figure 6.3 shows the holomorphic one-form basis for the female face surface using
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(1) female face (2) male face (3) female face (4) male face

Fig. 6.2. The human face surfaces are preprocessed. In (1) and (2), feature curves are located

and the surfaces are sliced along these curves. In (3) and (4), feature points are computed first, then

these feature points are removed. The surfaces can be identified by comparing the period matrices.

texturemapping a checkerboard. Figure 6.4 shows the holomorphic one-form basis for
the male face surface.

(1) ω1 (2) ω2 (3) ω3

Fig. 6.3. Holomorphic one-forms on female face model.

(1) ω1 (2) ω1 (3) ω3

Fig. 6.4. Holomorphic one-forms on male face model.

The doubling surfaces are symmetric, the real parts of the period matrices are
zero. In the following, only the imaginary parts are illustrated.
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The male surface figure 6.2 (2) has the following period matrix:

(41)
√−1




0.6814 0.1642 0.1756
0.1642 0.4741 0.1582
0.1756 0.1582 0.6474


 ,

the eigen vectors are

(42)




-0.6634 -0.6915 0.2860
-0.4321 0.0419 -0.9009
-0.6109 0.7212 0.3265


 ,

the eigen values are

(43)




0.9500 0 0
0 0.4833 0
0 0 0.3647


 .

The period matrix for the female surface figure 6.2 (1) is

(44)
√−1




0.5335 0.1747 0.1775
0.1747 0.6464 0.1925
0.1775 0.1925 0.6540


 ,

the eigenvectors are

(45)




0.4861 0.8739 -0.0052
0.6121 -0.3448 -0.7117
0.6237 -0.3428 0.7025


 ,

the eigenvalues are

(46)




0.9812 0 0
0 0.3950 0
0 0 0.4577


 .

6.3. Human Face Surfaces With Feature Points Removed. We locate the
feature points on the male face and the female face manually, and punch small holes
centered at the feature points as shown in figure 6.2(3) and (4). Then we compute
the doubling the surfaces. Because the surfaces are symmetric, the real parts of the
period matrices are zero. In the following we display the imaginary part.



PERIOD MATRICES 167

The period matrix of the male surface in figure 6.2 (3) is

(47)




0.9406 0.0821 0.3773 0.1518 0.1719 0.0859 0.2036
0.0821 0.9386 0.1551 0.3824 0.0860 0.1738 0.2096
0.3773 0.1551 1.1511 0.2953 0.2183 0.1488 0.3798
0.1518 0.3824 0.2953 1.1706 0.1477 0.2207 0.3873
0.1719 0.0860 0.2183 0.1477 0.9518 0.1654 0.2781
0.0859 0.1738 0.1488 0.2207 0.1654 0.9557 0.2855
0.2036 0.2096 0.3798 0.3873 0.2781 0.2855 1.3235




.

The eigenvectors for the period matrix are

(48)




-0.2830 -0.4842 0.3167 -0.5459 0.4957 0.1635 0.1214
-0.2889 0.4640 0.3150 0.4781 0.5758 0.1829 -0.0919
-0.4401 -0.4742 0.3437 0.5116 -0.3892 -0.0946 0.2028
-0.4495 0.4754 0.3566 -0.4501 -0.4372 -0.0826 -0.2103
-0.2800 -0.2319 -0.3483 0.0698 -0.0961 0.5278 -0.6737
-0.2848 0.2136 -0.3648 -0.0624 -0.1269 0.5316 0.6615
-0.5303 0.0040 -0.5483 -0.0155 0.2342 -0.6024 -0.0045




.

The eigenvalues for the period matrix are

(49)




2.4899 0 0 0 0 0 0
0 1.1251 0 0 0 0 0
0 0 0.9622 0 0 0 0
0 0 0 0.6338 0 0 0
0 0 0 0 0.6467 0 0
0 0 0 0 0 0.8217 0
0 0 0 0 0 0 0.7524




.

The period matrix for the female face surface shown in figure 6.2 (4) is

(50)




1.3530 0.2170 0.2821 0.3944 0.2956 0.3804 0.2053
0.2170 0.9282 0.0921 0.3711 0.1754 0.1617 0.0867
0.2821 0.0921 0.9641 0.1515 0.2020 0.1964 0.1464
0.3944 0.3711 0.1515 1.1036 0.2145 0.3190 0.1637
0.2956 0.1754 0.2020 0.2145 1.0087 0.1539 0.0897
0.3804 0.1617 0.1964 0.3190 0.1539 1.1237 0.3767
0.2053 0.0867 0.1464 0.1637 0.0897 0.3767 0.9245




.
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The eigen vectors are

(51)




0.5418 0.1011 -0.3935 -0.7038 0.0688 -0.2015 -0.0272
0.2868 0.4014 0.4411 0.1789 -0.1561 -0.4985 -0.5071
0.2803 -0.0654 -0.4871 0.3904 -0.7230 0.0647 -0.0203
0.4359 0.3087 0.4704 -0.0350 -0.1747 0.3964 0.5518
0.3022 0.3468 -0.3613 0.5196 0.6158 0.0817 0.0446
0.4327 -0.5458 0.2067 0.0427 0.1553 0.4557 -0.4883
0.2775 -0.5576 0.1366 0.2175 0.1192 -0.5790 0.4436




.

The eigenvalues are

(52)




2.5050 0 0 0 0 0 0
0 1.0645 0 0 0 0 0
0 0 0.9877 0 0 0 0
0 0 0 0.8562 0 0 0
0 0 0 0 0.7553 0 0
0 0 0 0 0 0.6330 0
0 0 0 0 0 0 0.6041




.

It is straightforward to identify two surfaces by comparing the eigenvalues of their
period matrices. The computation process is global, and insensitive to the local noise,
it is stable enough for real applications.

7. Summary and Conclusion. This paper introduces algorithms to compute
period matrices for real surfaces. The algorithms compute the homology, cohomology,
harmonic one-form basis and holomorphic one-form basis. The algorithms are intrinsic
to the geometry of the surfaces, independent of the surface representation, and robust
to the noise.

Period matrices can be used in surface classification and surface recognition. It
is a challenging problem to qualitatively measure the dependency between the period
matrices and the Riemann metric tensor. We will conduct future research along this
direction and explore more applications of period matrices.
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