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Abstract. The size, scale and multiple ownership of communication network resources makes it

important to consider an economic framework wherein we can investigate the efficiency of network

operation taking agents’ incentives into account. Such a framework has been considered in the

design and analysis of pricing mechanisms to regulate congestion and share bandwidth over short

time scales. We consider time scales of a few months over which owners of communication links lease

bandwidth to network service providers. As is well-known, economic efficiency is related to how

close an allocation is to a competitive equilibrium. We first show that achieving economic efficiency

through a market mechanism depends on network topology. We then show that in finite networks

a competitive equilibrium may not exist. But a competitive equilibrium does exist in an idealized

continuum model, in which all agents are infinitesimal compared with the size of the network. This

suggests that approximate competitive equilibria with good performance may be attainable in real

networks. We finally introduce a market mechanism called the combinatorial seller’s bid double

auction whose outcome, in the continuum model, is a competitive equilibrium.

1. Introduction. Communication networks have increased in scale and hetero-
geneity. There are multiple network owners and operators, each with their own hetero-
geneous endowments and privately known cost and revenue models. So, an allocation
of network resources efficient from an engineering perspective need not be realized in
the market. Hence, it is useful to find economic mechanisms that result in efficient
resource allocations among selfish agents.

The efficiency of bandwidth allocation among competing users in a communica-
tion network has been studied within an economic framework before. The previous
research literature focuses attention on congestion that results when aggregate user
demand exceeds capacity, and proposes usage-dependent pricing as a method for con-
trolling congestion [23, 24]. However, several difficulties must be faced in coming up
with a good price-adjustment mechanism. First, congestion occurs over a very short
time scale: Aggregate traffic is bursty and exceeds nominal capacity for periods of
a few seconds [10]. So the pricing mechanism must react very quickly to changes in
aggregate demand. Second, the ‘correct’ congestion price depends on how much users
are willing to pay for the service, which is not known. This has prompted invention
of distributed price iteration algorithms that converge to the ‘correct’ price [16, 22].
These algorithms are not practical but permit a re-interpretation of TCP-like proto-
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cols as rate-control algorithms that embody user responses to congestion notification
signals that serve as price surrogates [18, 21].

In contrast with this literature on congestion control, this paper is concerned
with the long-term economic efficiency of a communication network. Multiple agents
are involved in a large scale communication network such as the Internet. There
are owners of capacities on communication links like AT&T and Sprint and network
service providers like AOL and Earthlink. In the current Internet, there are many
such entities all over the world. Currently, the service providers enter into long-term
bilateral contracts with capacity owners. However, such bilateral exchanges do not
result in efficient allocation and we must seek other ways of promoting it.

In the late 90s, Enron Broadband joined by Williams Communications proposed
the setting of an exchange where transmission capacity (bandwidth) is traded like
a ‘commodity’. However, the market failed to establish itself. There were too few
market players, each big enough to influence the market. The lack of sufficient number
of pooling points made efficient trading of bandwidth difficult. Excess capacity also
compounded the problem. This situation however may change in the future [8, 20].

We investigate the following questions: When is economic efficiency achievable
in a communication network through a market mechanism? How does economic
efficiency depend on network topology? What market mechanisms are available to
achieve economic efficiency?

We study such markets within mathematical models that emphasize certain dis-
tinctive features. First, capacity is traded in indivisible units: One can buy or sell
multiple trunks on a link, each with a fixed bandwidth, say OC-3, but not a fraction
of a trunk. Second, demand for bandwidth is combinatorial: A buyer must purchase
bandwidth in several links to create an end-to-end route; a seller owning two links
may wish to sell at least one of them. (Indivisibility and combinatorial demand are
also characteristic of spectrum and logistics auctions.)

We formulate the exchange between network players as a double auction, which
allows room for a study of agents’ strategic behavior. However, our emphasis is on
competitive equilibria, that is, allocations in which aggregate demand equals aggregate
supply, and prices that support such allocations. It is well-known that economic
efficiency i.e., maximization of social welfare is related to competitive equilibrium
[26]. We thus study the existence of competitive equilibrium and market mechanisms
whose outcome are a competitive equilibria.

The set-up is as follows: Consider a network G = (N,L) with a finite set of nodes
N , and links L. A link l’s capacity Cl is an integer number of trunks, each trunk
with the same bandwidth. There are M agents, each with an initial endowment of
money and link bandwidth. We conduct a double auction between buyers and sellers:
each buyer specifies the bundle of links (comprising a route), the bandwidth (number
of trunks) on each link, and the maximum price it is willing to pay for the bundle;
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each seller specifies a similar bundle and the minimum price it is willing to accept.
We assume that each agent’s preferences are monotonic over the bundle (they prefer
larger bundles to strictly smaller ones) and continuous in money. Moreover, we assume
that buyers insist on getting the same bandwidth on all links in their bundles. The
framework is quite general and can be extended to the case where the network consists
of several autonomous systems and their owners are trying to negotiate service level
agreements (SLAs) about capacity, access and QoS issues.

We first show that when agents have quasi-linear utility functions, existence of
competitive equilibrium, and hence of economically efficient market mechanisms de-
pends on network topology. We show an example of a finite network with a finite
number of agents, for which no competitive equilibrium exists. We then model a
perfect competition economy as one with a continuum of agents, each with negligi-
ble influence on the final allocation and prices [3]. Such idealized models are used
frequently in economics. They are helpful in characterizing and finding approximate
equilibria that are nearly efficient for finite settings. We show that a competitive
equilibrium exists in a continuum model of a network. This is accomplished using the
Debreu-Gale-Nikaido lemma, a useful corollary of Kakutani’s fixed point theorem.

In the second part of the paper, we propose and analyze a combinatorial double
auction mechanism that maximizes the social surplus. While the auction mechanism is
general enough for any combinatorial auction, we keep the bandwidth trading market
foremost in our mind.

There is much recent work on combinatorial auctions [19, 35], and interest in the
interplay between economic, game-theoretic and computational issues leading to new
areas such as algorithmic mechanism design [30]. There are a number of mechanisms
for combinatorial auctions that are iterative, ascending price and achieve efficiencies
close to the Vickrey auction. Some of them rely on approximation of the integer
program [27] while others rely on linear programming [6]. The focus of this paper is
on combinatorial double auction mechanism design, which is relatively unexplored. A
modified Vickrey double auction, related to the k-double auction, is presented in [38],
while [9] considers truthful double auction mechanisms and obtain upper bounds on
the profit of any such auction. But the setting for both papers is non-combinatorial
and these results for single-item auctions and/or single-sided auctions do not extend
to combinatorial double auctions.

We consider multi-item combinatorial double auctions. We assume that sellers
offer “loose” bundles, each with just one link (or one type of item). For example, if a
seller has 5 units of link A and 5 units of link B, he makes two OR offers, one with 5
units of link A and another with 5 units of link B, but then within each bundle only
a fraction of the units may get sold, say 3 out of 5 units. The buyer’s bundles on the
other hand are of “all-or-none” kind. If a buyer bids for 5 units of both link A and
link B, and if this bid is accepted, the buyer must receive all 5 units on each of the
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two links. As mentioned earlier, this requirement is motivated by realistic situations
where buyers want to acquire routes on communication networks. The assumption of
“loose” bundles for sellers allows us to define uniform prices on links.

The allocation reached by the auction is obtained by solving a linear integer
program that maximizes the trade surplus. Based on the allocation, the mechanism
declares the highest matched seller’s ask-bid as the price on the link. The mechanism
thus specifies the ‘rules of a game’ among buyers and sellers. It is known that when
there is only one type of good, the Nash equilibrium strategies of the associated game
converge to truth-telling [11, 36]. Moreover, the rate of convergence is O(1/n), where
n is the number of players on each side of the market [32]. When all players bid
truthfully, the allocation determined by the mechanism is efficient.

Our proposed mechanism called c-SeBiDA (combinatorial sellers’ bid double auc-
tion) is combinatorial and in a framework that allows us to define uniform and anony-
mous (competitive) prices on the links. Such prices are highly desirable from an
economic perspective as they yield socially efficient and Pareto-optimal outcomes.
This is achieved by few auction mechanisms.

The analysis of combinatorial auctions is usually very difficult, and even more
so for combinatorial double auctions. We thus consider the continuum model and
show that the auction outcome is a competitive equilibrium. While the model is an
idealization of the scenario where there are a large number of agents such that no
single agent can affect the auction outcome by himself, it suggests that the auction
outcome is likely an approximate competitive equilibrium, and hence close to efficient.
The methodology used in the proof is novel in that it casts the mechanism in an
optimal control framework and appeals to the maximum principle to conclude that
the outcome is indeed a competitive equilibrium. The c-SeBiDA mechanism has been
implemented in a web-based software test-bed [2] and has been used in experiments
to validate the mechanism.

The paper is organized as follows: In section 2, we present some examples of finite
networks, and show that if bandwidth is indivisible, a competitive equilibrium may
not exist. Section 3 presents existence results for the continuum model of a network.
Section 4 introduces the combinatorial sellers’ bid double auction algorithm. Section
5 presents analysis of the proposed mechanism. Section 6 presents conclusions. The
proofs of the main theorems are technical and presented in the appendices.

2. Network Topology and Competitive Equilibrium. We first prove that a
competitive equilibrium exists if the routes that buyers want form a tree and all agents
(buyers and sellers) have utilities that are linear in bandwidth and money. Examples
are given to show that a competitive equilibrium may not exist if the routes do not
form a tree or if utilities are nonlinear.

Links are indexed j = 1, 2, · · · ; link j provides Cj trunks of bandwidth (Cj an
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integer). Its owner, j, can lease yj ≤ Cj trunks and has a per trunk reservation price
or cost aj . Buyer i, i = 1, 2, · · · , wishes to lease xi trunks on each link j in route
Ri. The value to buyer j of one trunk along route Ri is bi. Let A = {Aij} be the
edge-route incidence matrix, i.e. Aij = 1(0), if link j ∈ (�∈)Ri.

With this notation, the allocation (x∗, y∗) with the maximum surplus solves the
following integer program:

max
x,y

∑
i

bixi −
∑

j

ajyj(1)

s.t.
∑

i

Aijxi ≤ yj ≤ Cj , ∀j(2)

xi, yj ∈ {0, 1, 2, · · · }, ∀i, j.(3)

The allocation (x∗, y∗) together with a link price vector p∗ = {p∗j} is a competitive
equilibrium if every buyer i maximizes his surplus at x∗i ,

max
xi=0,1,···

(bi −
∑
j∈Ri

p∗j)xi,

and every seller j maximizes his profit at y∗j ,

max
yj=0,1,··· ,Cj

(p∗j − aj)yj .

A matrix is totally unimodular (TU) if the determinant of every square submatrix
is 0, 1 or -1 [33]. If the routes that buyers want in a network form a tree, its edge-route
incidence matrix is TU.

Theorem 1. If A is TU, in particular if the routes form a tree, there is a
competitive equilibrium.

Proof. Consider the relaxed LP version of problem (1) in which the integer con-
straint (3) is dropped. Because A is TU, the convex set of allocations (x, y) that satisfy
constraint (2) has integer-valued vertices. Hence there is an optimal solution (x∗, y∗)
to the LP problem which is integer-valued. The Lagrange multipliers {p∗j} associated
with the constraint (2), together with (x∗, y∗), form a competitive equilibrium, as can
be verified from the Duality Theorem of LP.

The proposition has a partial converse: If (p∗, (x∗, y∗)) is a competitive equilib-
rium, (x∗, y∗) is a solution to the relaxed LP problem.

It is well known that a competitive equilibrium exists if every buyer i (seller j)
has a utility (cost) function ui(xi)(vj(yj)) that is concave (convex), monotone and
continuous (along with some boundary conditions) [1] and fractional trunks can be
traded. This fact is exploited in [16, 18] to infer existence of competitive equilibrium
prices for bandwidth on each link.

Examples 1,2 are non-TU networks that do not have a competitive equilibrium.
Example 1. Consider the cyclic network in figure 1 with buyers 1, · · · , 4, who

want routes {e1, e2}, {e2, e3}, {e3, e1}, and {e3}, respectively. Buyers 1, 2, 3 receive
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e1 e2

e3

Fig. 1. A cyclic network that is not TU.

3 41 2e1 e2 e3

e4

Fig. 2. An acyclic network that is not TU.

benefit bi = 1 per trunk; buyer 4 receives b4 = α(< 0.5). Sellers own one trunk on
each link, and their reservation price aj = 0 for all links. The network is not TU,
as can be easily checked. Surplus maximization allocates route {e1, e2} to user 1 and
{e3} to user 4. If prices p1, p2, p3 were to support this allocation, they must satisfy the
conditions, 1 = p1 + p2 ≤ min(p2 + p3, p1 + p3) and 0.5 > α ≥ p3, which is impossible.
So there is no competitive equilibrium.

Example 2. Consider the acyclic network of figure 2 again with buyers 1, · · · , 4,
desired routes {e1, e2}, {e2, e3}, {e1, e4, e3}, and {e3} and benefits bi as before. Each
link supports one trunk, and the sellers are as before. Surplus maximization again
allocates route {e1, e2} to user 1 and {e3} to user 4. Competitive prices supporting
this allocation must satisfy 1 = p1 + p2 ≤ min(p2 + p3, p1 + p4 + p3), 0.5 > α ≥ p3,
and p4 = 0, which is impossible.

Next we see a TU network with nonlinear concave utilities for which there is no
competitive equilibrium.

Example 3. Consider a network with two links, each with two trunks of capacity.
There are two buyers. Buyer 1 wants a route through both links with bandwidth x1

and has concave utility function:
u1(x; {l1, l2}) = 1.1x, 0 ≤ x ≤ 1; = x+ 0.1, 1 ≤ x ≤ 2.
Buyer 2 demands bandwidth x2 only on link 2 and has concave utility function:
u2(x; l2) = 1.5x, 0 ≤ x ≤ 1; 1.1(x− 1) + 1.5, 1 < x ≤ 1 + ε; (x − 1 − ε) + 1.6, 1 + ε <

x ≤ 2, where ε = 0.1/1.1.
The sellers have reservation price of 0 on each link. It is easy to check that if fractional
trunks can be traded there is a competitive equilibrium with allocation x∗ = (0.4, 1.6)
and prices p∗ = (0, 1.1). However, if trades must be in integral trunks, there is no
competitive equilibrium.

A competitive equilibrium is efficient, because it maximizes total surplus
∑

i bixi−∑
j ajyj . To find an equilibrium, one normally proposes an iterative mechanism (often
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called ‘Walrasian’) involving an ‘auctioneer’ who in the nth round proposes link prices
{pn

j }, to which agents respond: buyer i places demand xn
i , seller j offers to supply

yj ≤ Cj trunks. The auctioneer calculates the ‘excess demand’ on link j, ξn
j =∑

Aijx
n
i − yn

j , and begins round n + 1 with price pn+1
j higher or lower than pn

j ,
accordingly as ξn

j is positive or negative. The equilibrium is reached when ξj ≤ 0 for
all j.

Two questions arise: Will the iterations converge? And are such mechanisms
practically implementable? Of course, if there is no competitive equilibrium, caused
perhaps by indivisibilities, the price-adjustment algorithms will not converge and no
practical mechanisms can exist. Thus, in the next section we study the existence of
competitive equilibrium in an ideal model.

3. Economic Efficiency in an ideal model. Consider a competitive commu-
nication network with indivisible trunks. We assume that there is perfect competition
in which no single agent can influence the outcome, by considering a continuum of
agents (buyers and sellers). The continuum network economy first introduced by
Aummann [3] is an idealized model of perfect competition in which no agent has sig-
nificant ‘market power’ to be able to alter the outcome. From a practical perspective,
the existence of a competitive model in the ideal model can be used to establish ex-
istence of approximate competitive equilibria (which are approximately efficient) in
finite network economies.

With money. Consider a network G with L links (goods 1, · · · , L), each with
capacity Cl (which is integral), and bandwidth on each link is available in integral
(discrete) units. Also assume that there is money (denoted as good 0) which however
is divisible. There is a continuum of agents indexed t ∈ X = [0,M ], with a given
non-atomic measure space (X,B(X), µ). Suppose there are M routes and each agent t
demands some route Ri. For example, all agents t ∈ (m,m+ 1] demand route Rm+1,
for m + 1 ≤ M . Agents’ preferences �t are monotonic, and continuous in money.
(Monotonicity simply means that if A ⊆ B, then B �t A. Continuity means that
if An → A and B �t An, then B �t A.) As a result preferences are continuous.
A particular example of such preferences is when utility functions are quasi-linear
in money, i.e., linear in money. Agent t has an initial endowment ωt, which is a
L + 1-tuple. Though the following discussion and the results are for any general
initial endowment, a particular example is of an auction setting when agent 0 is an
auctioneer, endowed with ω0 = (0, C1, · · · , CL) (the whole network) and any other
agent t(> 0) has ωt = (mt, 0, · · · , 0), in which mt is t’s money endowment. Similarly,
the price vector p = (p0, p1, · · · , pL) is a L+ 1-tuple; p0 is the price of money and pl

is the price of unit bandwidth on link l. We will call a system as described above a
network exchange economy E .

We begin with a few definitions: Let p ∈ Θ = R
L+1
+ be a price vector. By p > 0,
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we shall mean that all components are non-negative with p �= 0, and by p 	 0, we
shall mean that all components are strictly positive.
Commodity space: Ω = R+ × Z

L
+. Thus, ω = (ω0, · · · , ωL) ∈ Ω denotes ω0 units of

money and ωl units of good l, for l = 1, · · · , L. Note that ωl for l > 0, must be an
integer, indicating indivisibility.
Unit price simplex: ∆ = {p ∈ Θ : ΣL

0 pl = 1}. Prices lie in the unit simplex. Later,
we can normalize prices so that the price of money, p0 = 1, and we get the prices of
other goods in terms of money.
Budget set: Bt(p) = {z ∈ Ω : p.z ≤ p.ωt}, which gives the allocations that agent t can
afford based on its initial endowment at given prices p.
Preference level sets: Pt(z) = {z′ ∈ Ω : z′ �t z}, is the set of allocations preferred by
agent t to the allocation z.
Individual demand correspondence: ψt(p) = {z ∈ Bt(p) : z �t z

′, ∀z′ ∈ Bt(p)}. At
given prices p, ψt(p) is the set of t’s most-preferred allocations. There may be more
than one most preferred allocation, so ψt is a demand correspondence rather than a
demand function.
Aggregate excess demand correspondence:

Φ(p) =
∫

X

ψt(p)dµ−
∫

X

ωtdµ.

We denote the first integral by Ψ(p)—the aggregate demand correspondence, and the
second integral by ω̄, the total endowment of all agents, or the aggregate supply.

Definition 1 (Competitive Equilibrium). A pair (x∗, p∗) with p∗ ∈ ∆ and
x∗ ∈ Ω is a competitive equilibrium if x∗t ∈ ψt(p∗) and 0 ∈ Φ(p∗).

A competitive equilibrium comprises an allocation and a set of prices such that
the prices support an allocation for which aggregate demand equals aggregate supply,
or in other words, the aggregate excess demand is zero. Moreover, the allocation to
each agent is what it demands at those prices.

We make the following assumptions:

Assumptions.

1. ω̄ 	 0 (component-wise positive), and ωt > 0, ∀t (component-wise non-
negative with some component positive).

2. Φ(p) is homogeneous in p.
3. Boundary condition: Suppose pν → p∗, and p∗l = 0 for some l. Then, zν

l → ∞,
∀zν ∈ Φ(pν).

4. Walras’ Law holds: p.z = 0, ∀z ∈ Φ(p), ∀p ∈ ∆0, the relative interior of ∆.
The first assumption simply states that there is a strictly positive endowment

of each good (capacity on each link), and moreover each agent has a strictly positive
endowment of some good (either money, or capacity, or both). The second assumption
ensures that scaling of prices does not alter the competitive allocation if it exists. The
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third assumption is a boundary condition that holds in the absence of undesirable
goods. The fourth assumption, Walras’ law, can be shown to hold for the economy
under consideration. But we shall assume it without proof. Essentially, it means that
if there is positive excess demand for a good at given prices, its price can be reduced
still further towards zero.

Now we can show the following:

Theorem 2 (Existence). Under assumptions (1)-(4), a competitive equilibrium
exists in the network exchange economy E.

The proof is long and technical, and relegated to the appendix. It relies on
lemma 1 which is a corollary of Kakutani fixed point theorem and the Lyapunov-
Richter theorem which states that the integral of a correspondence with respect to a
non-atomic measure is closed and convex-valued [4]. We can set the price of money
p0 = 1, and we get the other prices in units of money. Since we only require that
preference be monotonic (and not strictly monotonic), the next result follows.

Corollary 1. If demands are for source-destination pairs (and agents are in-
different between different routes for same source-destination pair), then theorem 2
still holds. And in that case, prices for various alternative routes (given by the sum
of link prices along the routes) for a given source-destination pair are same.

Without money. The role of money is crucial in the above result. The following
example shows that in the absence of money, a competitive equilibrium may not exist
even in a continuum network exchange economy.

Example 4. Consider the networks of figure 1, with demands as discussed before
in example 3. Now instead of one user of each type demanding a particular route,
we have a continuum of users. Let X = [0,M ] and let all users in [0, 1], where M
is the total number of routes, demand the same route and have identical preferences.
We make the same assumption for the other M disjoint intervals of unit length. This
reduces the continuum case to the same as example 3, for which a competitive equi-
librium does not exist.

4. Combinatorial Sellers’ Bid Double Auction (c-SeBiDA). We now pro-
pose a combinatorial double auction mechanism for bandwidth trading. A buyer
places buy bids for bandwidth along his route. A buyer’s bid is combinatorial or ‘all
or nothing’: he must receive the same bandwidth on every link along the route or
nothing at all. On the other hand, sellers make separate ask bids on individual links.

The mechanism collects all announced bids, matches a subset of these to maximize
the ‘surplus’ ((4), below) and declares a settlement price for bandwidth on each link at
which the winning buy and ask bids—which we call the matched bids—are transacted.
This constitutes the payment rule. The announced prices are uniform (i.e., same for
all items of the same type) and anonymous (i.e., same for all players independent of
their bids and true valuations). As will be seen, each matched buyer’s buy bid is



314 JAIN AND VARAIYA

larger, and each matched seller’s ask bid is smaller, than the settlement price, so the
outcome respects individual rationality.

There is an asymmetry: buyers make multi-link combinatorial bids, but sellers
make single-link bids. This permits the mechanism to select uniform and anonymous
settlement prices for each link.

A player can make multiple bids. The mechanism treats these as XOR bids, so
at most one bid per player is a winning bid. Therefore the outcome is the same as
if a matched player only makes (one) winning bid. Thus, in the formal description
of the combinatorial Sellers’ Bid Double Auction (c-SeBiDA), each player places only
one bid. c-SeBiDA is a ‘double auction’ because both buyers and sellers bid; it is a
‘sellers’ bid’ auction because the settlement price depends only on the matched sellers’
bids, as we will see.

Formal mechanism. Consider a network with links 1, · · · , L. Buyer i has (true)
reservation value vi ∈ [0, V ] per trunk along route Ri, and submits a buy bid of bi per
trunk and demands δi ∈ [0, D] trunks along the route. Seller j has (true) per trunk
cost cj ∈ [0, C] and offers to sell up to σj ∈ [0, S] trunks in link lj at a unit price of
aj . Denote Lj = {lj}.

The mechanism receives all these bids, and matches some buy and sell bids. The
matches are described by 0-1 variables xi, yj : xi is 1, if buyer i’s buy bid is accepted,
0 otherwise; similarly, yj is 1 if seller j’s ask bid is accepted, 0 otherwise.

The mechanism determines the allocation (x∗, y∗) as the solution of the surplus
maximization problem MIP:

max
x,y

∑
i

xiδibi −
∑

j

yjσjaj(4)

s.t.
∑

j

yjσjI1(l ∈ Lj) −
∑

i

xiδiI1(l ∈ Ri) ≥ 0, ∀l ∈ [1 : L],

xi ∈ {0, 1}, ∀i, yj ∈ [0, 1], ∀j.
MIP is a mixed integer program: Buyer i’s bid is either fully matched, or not at
all (x∗i δi ∈ {0, δi}); but seller j’s bid may be partially matched (y∗jσj ∈ [0, σj ]).
Nevertheless,

∑M
j=1 y

∗
jσjI1(l ∈ Lj) is integral for all l.

The settlement price is the highest ask bid among matched sellers,

(5) p̂l = max{aj : y∗j > 0, l ∈ Lj}.
The payments are determined by these prices. Matched buyers pay the sum of the
link prices along their route; matched sellers receive a payment equal to the number
of trunks sold times the price for the link. Unmatched buyers and sellers do not
participate. This completes the mechanism description.

For use later, we will also define the following quantity:

p̌l := min{aj : yj = 0, l ∈ Lj}.
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If i is a matched buyer (x∗i = 1), his bid bi ≥
∑

l∈Ri
p̂l; for otherwise, the surplus

(4) can be increased by eliminating this bid. Similarly, if j is a matched seller (y∗j > 0),
and l ∈ Lj , his bid aj ≤ p̂l, for otherwise the surplus can be increased by eliminating
his bid. Thus the outcome of the auction respects individual rationality.

It is easy to understand how the mechanism picks matched sellers. For each link
j, a seller with lower ask bid will be matched before one with a higher bid. So sellers
with bid aj < p̂l sell all their bandwidth (y∗j = 1). At most one seller with ask bid
aj = p̂l sells a fraction of his bandwidth (y∗j < 1). On the other hand, because their
bids are combinatorial, the matched buyers are selected only after solving MIP.

Our focus is on price determination, so we will assume that the quantities in
players’ bids (namely, {δi, σj}) are fixed. A strategy for seller i is a buy bid bi, a
strategy for buyer j is an ask- bid aj . Let θ denote a collective strategy. Given θ,
the mechanism determines the allocation (x∗, y∗) and the prices {p̂l}. So the payoff
of buyer i and seller j are, respectively,

ub
i(θ) = x∗i δi(vi −

∑
l∈Ri

p̂l),(6)

us
j(θ) = y∗jσj(

∑
l

p̂lI1(l ∈ Lj) − cj).(7)

The bids bi, aj may be different from the true valuations vi, cj , which however figure
in the payoff calculations above.

5. Analysis of c-SeBiDA. We would like to know the behavior of the outcome
of this auction as the number of players is large enough such that no single player by
himself can affect the outcome. As before, we consider a continuum of agents. Since
each agent cannot by himself alter the outcome, we will assume that the bids are
truthful and analyze if the auction outcome is a competitive equilibrium, and hence
efficient.

Assume the continuum of buyers indexed by t ∈ [0, 1], and continuum of sellers
indexed by τ ∈ [0, 1]. There are N types of buyers and M types of sellers. Let
B1, · · · , BN and S1, · · · , SM partition [0, 1] so that all buyers in Bi demand the same
set of items Ri (corresponding to a route), and all sellers in Sj offer the same item lj ,
Lj = {lj}. We assume that the partitions Bi’s and Sj ’s are subintervals.

A buyer t ∈ Bi has true value v(t), bids p(t) per unit for the set Ri, and demands
δ(t) ∈ [0, D] units. Suppose v(t), p(t) ∈ [0, V ]. A seller τ ∈ Sj has true cost c(τ) and
asks q(τ) for the item(s) Lj with supply σ(τ) ∈ [0, S] units, with c(τ), q(τ) ∈ [0, C].
Let x(t) and y(τ) be the decision variables, i.e. buyer t’s x(t) is 1, if bid is accepted, 0
otherwise. And similarly seller τ ’s y(τ) is 1 if offer is accepted, 0 otherwise. Without
loss of generality, we assume that within each partition Bi, the buyers’ bid function
b(t) is non-increasing, and within each partition Sj , the sellers’ bid function q(τ) is
nondecreasing.
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Denote the indicator function by I1(·) and as before, consider the surplus maxi-
mization problem cLP:

sup
x,y

∫ 1

0

N∑
i=1

x(t)δ(t)p(t) I1(t ∈ Bi)dt−
∫ 1

0

M∑
j=1

y(τ)σ(τ)q(τ) I1(τ ∈ Sj)dτ,(8)

s.t.
∫ 1

0

M∑
j=1

y(τ)σ(τ) I1(l ∈ Lj, τ ∈ Sj)dτ −
∫ 1

0

N∑
i=1

x(t)δ(t) I1(l ∈ Ri, t ∈ Bi)dt ≥ 0, ∀ l,

x(t), y(τ) ∈ {0, 1}, ∀ t, τ ∈ [0, 1].

The mechanism determines ((x∗, y∗), p̂) where (x∗, y∗) is the solution of the above
continuous linear program and for each l ∈ [1 : L],

p̂l = sup{q(τ) : y(τ) > 0, τ ∈ Sl, l ∈ Lj},

and

p̌l = inf{q(τ) : y(τ) = 0, τ ∈ Sl, l ∈ Lj}.

The mechanism announces prices p̂ = (p̂1, · · · , p̂L); the matched buyers (those for
which x∗(t) = 1) pay the sum of the prices in their bundle while the matched sellers
(those for which y∗(τ) = 1) get a payment equal to the number of their items sold
times the price of the item.

When buyers and sellers bid truthfully, the following result holds:
Theorem 3. Suppose that the bid function of the sellers q : [0, 1] → [0, C] is

piecewise continuous and nondecreasing (i.e. continuous and nondecreasing in each
partition Sj of [0, 1]), then (x∗, y∗) is a competitive allocation and p̂ is a competitive
price.

The proof is technical and is relegated to the appendix. It casts the surplus
maximization problem cLP in the optimal control framework to conclude the existence
of (x∗, y∗) and the dual variables λ∗ = (λ∗1, · · · , λ∗L) using the maximum principle [28].
The assumptions are then used to conclude that p̂ = λ∗, and hence are competitive
prices.

In section 3, the existence result we established was in a much more general
framework though we considered money as another good in the economy. In this
section, the existence result is for the special framework of a combinatorial double
auction, and we do not consider money as another good.

We now show that the assumption that the sellers’ bid function is piecewise
continuous and nondecreasing is necessary for the c-SeBiDA’s prices to be competitive
prices.

Example 5. Suppose there is only one item. Buyers t ∈ [0, 0.5] have valuation
1 while buyers t ∈ (0.5, 1] have valuation 4. Sellers t ∈ [0, 0.5] have valuation 3 while
sellers t ∈ (0.5, 1] have valuation 2. The mechanism will match buyers in (0.5, 1] and
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sellers (0.5, 1] with surplus 0.5 × 2 = 1. Thus, p̂ = 2 which is not equal to p̌ = 3. As
can be easily checked, the competitive price in this case is λ∗ = 3 different from p̂.

Remarks. The outcome of the designed auction mechanism is a competitive
equilibrium if players are truthful. But it is not clear how it relates to the Nash
equilibria of the game. This is a very difficult question that has drawn the attention
of mathematical economists for a long time.

The problem of relating Nash equilibria of games to competitive equilibrium was
first investigated in [29], in which it is shown that when consumers announce their
preferences, then as the economy is replicated, the gain that any player can achieve
by misrepresenting his demand goes to zero. In [12] it is shown that under cer-
tain regularity conditions, the economy replicated enough has an allocation which is
incentive-compatible, individually-rational and ex-post ε-efficient. In [13] it is shown
that the demand functions that an agent might consider based on strategic consider-
ations converge to the competitive demand functions. Further, under certain condi-
tions on beliefs of individual agents, not only do the strategic behaviors of individual
agents converge to the competitive behavior but the Nash equilibrium allocations also
converge to the competitive equilibrium allocation [14].

A buyer’s bid double auction with single type of item that maximizes surplus
is studied in [37]. It is shown that with Bayesian Nash strategies, the mechanism
is asymptotically incentive efficient in the sense that a player’s maximum expected
payoff using any strategy is the same as his competitive payoff when the number of
players is sufficiently large. The rate of convergence of the Nash equilibria to the
competitive equilibria for single-item buyer’s bid double auction is investigated in
[11, 31, 32]. Implementation and mechanism design in the continuum setting are
discussed in [25].

6. Conclusions. We studied combinatorial bandwidth trading markets. We
showed that for finite networks, prices that yield socially efficient allocation may not
exist. We then used a model of perfect competition with a continuum of agents,
and showed that with money, it is possible to support the socially efficient allocation
with a certain price vector. The key here is the Lyapunov-Richter theorem that
enables a convexification of the economy. However, such a result does not hold for
countable economies. The main reason is that defining the average of a sequence of
correspondences is trickier as the limit may not exist.

The continuum model is useful in showing the existence of enforceable approx-
imate equilibria (when we require that supply exceeds demand) in finite networks.
Such approximate equilibria were presented in [15]. It is well-known that the set of
the competitive allocations is contained in the core (the set of Pareto-optimal allo-
cations). However, it is unknown if the two sets are equal. This is an interesting
question and part of future work.
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We presented the combinatorial seller’s bid auction mechanism. Since uniform
and anonymous prices are very desirable, we designed the auction for the case when
sellers do not submit bundle bids. We showed that under the continuum model,
the prices the mechanism announces are competitive prices and the allocation is a
competitive allocation.

Apendix. Proof of theorem 2.
Proof. Consider any non-empty, closed convex subset S of ∆. We will first make

some claims about the properties of the aggregate excess demand correspondence 1.
Claim 1. Φ is non-empty and convex-valued on S.
From assumption 1, Φ is non-empty. Fix p ∈ S. By Lyapunov-Richter’s theo-

rem [4] with µ a non-atomic measure on X , and ψt(p) a correspondence for each p,∫
X ψt(p)dµ(t) is convex. Hence, Φ is convex.

Claim 2. Φ is compact-valued, hence bounded on S.
Note that S is compact and for each p ∈ S, p	 0. Write

ψt(p) =
⋂

z∈Bt(p)

[Bt(p) ∩ Pt(z)].

Then, Pt(z) is closed by continuity of preferences. Bt(p) is closed and bounded for
p 	 0. Thus, their intersection is closed. And so is the outer intersection. It is
bounded as well. Thus, ψt(p) is compact for each p	 0.

Claim 3. p · z ≤ 0, ∀p ∈ ∆0, z ∈ Φ(p).
Fix p ∈ ∆0. By definition,

p · z ≤ p · ωt, ∀z ∈ ψt(p), ∀t ∈ X.

Or, with an abuse of notation:
∫

X

p · ψt(p)dµ ≤
∫

X

p · ωtdµ,

p · Ψ(p) ≤ p · ω̄,

p · Φ(p) ≤ 0,

Claim 4. ψt is closed and upper semi-continuous (u.s.c.) in S ∀t ∈ X. Hence,
Φ is closed and u.s.c. in S.

Fix t ∈ X . To show ψt is closed, we have to show that for any sequences,
{pν}, {zν}, [pν → p0, zν → z0, zν ∈ ψt(pν)] =⇒ z0 ∈ ψt(p0). From the definition of
demand correspondence, pν ·zν ≤ pν ·ωt. Taking limit as ν → ∞, we get p0 ·z0 ≤ p0 ·ωt,

i.e. z0 ∈ Bt(p0). It remains to show: z0 �t z, ∀z ∈ Bt(p0).

1A good discussion of properties of correspondences can be found in [5].
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Consider any z ∈ Bt(p0). Then
Case 1: p0 · z < p0 · ωt.
Then, for large enough ν, pν · z < pν · ωt. This implies that z ∈ Bt(pν). Now,
zν ∈ ψt(pν). Hence, zν �t z. And by continuity of preferences, we get z0 �t z.
Case 2: p0 · z = p0 · ωt.
Define z′ν := ((1−1/ν)z0, z1, · · · , zL) ∈ Ω, by divisibility of money. So, p0·z′ν < p0·ωt.
Then, by the same argument as above: z0 �t z

′ν. And by continuity of preferences,
we get z0 �t z.

This implies z0 ∈ ψt(p), i.e. it is closed. Now, to show it is u.s.c., we have to
show by proposition 11.11 in [7], that for any sequence pν → p0, and any zν ∈ ψt(pν),
there exists a convergent subsequence {zνk} whose limit belongs to ψt(p0).

Now, pν → p0 	 0. Hence, ∃ν0 s.t. pν 	 0, ∀ν > ν0. Define

π := inf{pν
l : ν > ν0, l = 0, · · · , L}.

Then, pν · zν ≤ pν · ωt implies for all ν > ν0,

0 < zν ≤ pν · ωt

π
,

i.e. the sequence {zν} is bounded. By the Bolzano-Weierstrass theorem, there exists
a convergent subsequence {zνk} converging to say, z0. Since ψt is closed in S, z0 ∈
ψt(p0). Thus, it is upper semi-continuous in S.

We now show that Φ is u.s.c (hence closed) as well. Let pν → p0 in S. Consider
ξν ∈ Ψ(pν) =

∫
X
ψt(pν)dµ. Then, ∃zν

t s.t. ξν =
∫

X
zν

t dµ. Now, ψt is compact-valued
and u.s.c. in S. Thus, by proposition 11.11 in [7], the sequence {zν

t } has a convergent
subsequence {zνk

t } s.t. zνk
t → z0

t ∈ ψt(p0). Define ξ0 :=
∫

X
z0

t dµ. Thus,

ξ0 ∈
∫

I

ψt(p0)dµ = Ψ(p0).

As argued before, Ψ is compact-valued. Hence, by reapplication of the same theorem,
it is u.s.c. in S. And so is Φ.

We now need the following lemma.
Lemma 1 (Debreu-Gale-Nikaido). 2 Let S be a non-empty closed convex subset

in the unit simplex ∆ ⊂ R
n. Suppose the correspondence Φ : ∆ → P(Rn) satisfies the

following:
(i) Φ is non-empty, convex-valued ∀p ∈ S,
(ii) Φ is closed,
(iii) p · z ≤ 0, ∀p ∈ S, z ∈ Φ(p),
(iv) Φ(p) is bounded ∀p ∈ S.
Then, ∃ p∗ ∈ S and z∗ ∈ Φ(p) s.t. p · z∗ ≤ 0, ∀p ∈ S.

2This can be found in [1, 7].
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Then, using the above lemma, we get the following proposition.
Proposition 1. For any non-empty, closed convex subset S of ∆0, ∃p0 ∈ S, z0 ∈

Φ(p0) s.t. p · z0 ≤ 0, ∀p ∈ S.
Consider a increasing sequence of sets Sν ↑ ∆. Let pν , zν be those given by the

above proposition. Then, pν ∈ Sν ⊂ ∆, which is compact. Thus, ∃ a convergent
subsequence pνk → p∗ ∈ ∆.

Without loss of generality, consider this subsequence as the sequence. Consider
any zν ∈ Φ(pν). We have the following lower bound on the sequence

(9) zν ≥ −ω̄, ∀ν.

To get an upper bound, take any p̃ 	 0 ∈ Sν . It exists because Sν ↑ ∆. Using the
proposition above, we get

(10) p̃ · zν ≤ 0,

for large enough ν. Equations (9) and (10) imply {zν}(⊂ Ω) is bounded. Thus, there
exists a convergent subsequence with limit say, z∗.

By assumption 1, ω̄ 	 0. Also, p∗ ∈ ∆. Hence, p∗ · ω̄ > 0. Further, p∗ 	 0 since
if p∗l = 0 for some l, zνk

l → ∞, by the boundary condition, which then contradicts the
boundedness of the subsequence above. Further, since Φ is closed, z∗ ∈ Φ(p∗).

This establishes the following lemma.
Lemma 2. ∃p∗ 	 0 ∈ ∆, z∗ ∈ Φ(p∗) s.t. pν → p∗, zν → z∗, and p·z∗ ≤ 0, ∀p ∈ ∆.
We are now ready to prove the theorem: Walras’ law implies p · z = 0, ∀z ∈ Φ(p),

and ∀p ∈ ∆0. This implies p∗ · z∗ = 0. From lemma above, p∗ · z∗ ≤ 0, and p∗ 	 0.
This yields z∗ = 0.

Proof of theorem 3.
Proof. We first show the existence of (x∗, y∗) and λ∗ = (λ∗1, · · · , λ∗L), the dual

variables corresponding to the demand less than equal to supply constraints. We
do this by casting cLP above as an optimal control problem and then appeal to
Pontryagin’s maximum principle [34]. Define

ζ̇(t) := ΣN
i=1x(t)δ(t)p(t) I1(t ∈ Bi) − ΣM

j=1y(t)σ(t)q(t) I1(t ∈ Sj),

ξ̇l(t) :=
M∑

j=1

y(t)σ(t) I1(l ∈ Lj, t ∈ Sj) −
N∑

i=1

x(t)δ(t) I1(l ∈ Ri, t ∈ Bi),

θ(t) := (ξ1(t), · · · , ξL(t), ζ(t))′ ,

where θ is the state of the system, x and y are controls, and ζ(t) and ξ(t) describe
the state evolution as a function of the controls. The objective is to find the optimal
control (x∗, y∗) which maximizes ζ(1). Let

Σ(t) := {θ̇(t) : xl(0) = 0, ∀l and x(t), y(t) ∈ {0, 1}, ∀t ∈ [0, 1]}.
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Observe that Σ(t) has cardinality at most 2L+1 in IRL+1.
∫ 1

0 Σ(τ)dτ is the set of
reachable states under all allowed control functions, namely, all measurable functions
x and y with x(τ), y(τ) ∈ {0, 1}. Note that ζ(1) is the total surplus; i.e., buyer surplus
minus seller surplus, and ξl(1) is the excess supply for item l; i.e., total supply minus
total demand for item l. Define

Γ := {θ(1) ∈ IRL+1 : θ(1) ∈
∫ 1

0

Σ(τ)dτ, ξl(1) ≥ 0, ∀l},

the set of final reachable states under all control functions such that state evolution
happens according to the equations above, and excess supply is non-negative.

Lemma 3. Γ is a compact, convex set.
Proof. By assumption, δ(t), p(t), σ(t), and q(t) are bounded. By Lyapunov-

Richter theorem [4],
∫ 1

0 Σ(τ)dτ is a closed and convex set. Since x and y are bounded
functions, the integral is bounded as well. Thus, it is also compact. Moreover,
ξl(1) is a hyperplane, and ξ(1) ≥ 0 defines a closed subset of IRL. Therefore,
{θ(1) : θ(1) ∈ ∫ 1

0
Σ(τ)dτ}⋂{θ(1) : ξl(1) ≥ 0, l = 1, · · · , L} is a compact, convex

set.
Our optimal control problem is: supθ(1)∈Γ ζ(1). But observe that one component

of θ(1) is ζ(1). Since Γ is compact and convex, the supremum is achieved and so an
optimal control exists. By the maximum principle [28], there exist adjoint functions
p∗0(t) and p∗l (t), l = 1, · · · , L such that ṗ∗0(t) = 0, and ṗ∗l (t) = 0, (i.e., p∗l (t) = λ∗l , a
constant) for l = 0, · · · , L.

Defining the Lagrangian over the objective function and the third (demand less
than equal to supply) constraint

L(x, y;λ) = ζ(1) +
L∑

l=1

λlξl(1),

we get from the saddle-point theorem [34],

L(x, y;λ∗) ≤ L(x∗, y∗;λ∗) ≤ L(x∗, y∗;λ).

This leads to the next lemma.
Lemma 4. If ((x∗, y∗), λ∗) is a saddle point satisfying the inequality above, the

λ∗ are competitive equilibrium prices. Moreover, p̂l ≤ λ∗l ≤ p̌l, ∀l = 1, · · · , L.
Proof. Rewrite the Lagrangian as

L(x, y;λ) := ΣN
i=1

∫
Bi

δ(t)x(t)(p(t) − Σl∈Rtλl)dt+ ΣM
j=1

∫
Sj

σ(τ)y(τ)(λl(τ) − q(τ))dτ.

where l(τ) is the item offered by seller τ . Using the first saddle-point inequality, we
get x∗(t) = I1(p(t) > Σl∈Rtλ

∗
l ) and y∗(τ) = I1(q(τ) < λ∗l(τ)), which imply that the

Lagrange multipliers are competitive equilibrium prices. To prove the second part,
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note that by definition, for a given τ , y(τ) > 0 implies q(τ) ≤ λ∗l for τ ∈ Sl, which
gives the first inequality. Again from the definition, y(τ) = 0 implies that q(τ) ≥ λ∗l
for τ ∈ Sl, which gives the second inequality.

To conclude the proof of the theorem, we observe that if q is continuous and
non-decreasing in each interval Sj of [0, 1], then p̂l = p̌l for each l, which then equals
λ∗l by lemma 4.
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