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Abstract. We consider a heterogeneous (also called “hybrid”) ad-hoc network with wired

and wireless links. This type of network was previously considered by Kulkarni and Viswanath

in [9] where achievable transport capacity growth rates were demonstrated for a structured wired

infrastructure. The present paper improves on this work by demonstrating that efficiency can be

increased significantly if the wired links are introduced at random.

1. Introduction. In this paper we consider the effect of adding a wired in-
frastructure to an unstructured (ad-hoc) wireless network. The impact of such a
modification on the original wireless network can be tremendous. Unlike the wireless
channel, which suffers both from interference issues as well as from path loss over
large distances, the wired infrastructure can provide low-cost transport of a signifi-
cant amount of data over large distances without interference with other simultaneous
communications. However, the existence of such an infrastructure often carries a sig-
nificant cost in and of itself. Thus, in particular, one would like to use as little wired
infrastructure as necessary.

A systematic study of scaling laws in ad-hoc wireless networks has been initiated
in the work of Gupta, Kumar and Xie [6],[21] and [5]. In particular, Xie and Kumar
showed that for a large range of path loss models the transport capacity (the distance
- bandwidth product) of a purely wireless network scales no better than Θ(

√
n) when

the network size is fixed. Furthermore, Gupta and Kumar demonstrated how such
scaling laws are achievable for all path loss models using an interference-avoiding
communications protocol.

The recent work by Kulkarni and Viswanath [10] gives a simple deterministic
protocol that achieves the scaling laws of Gupta and Kumar [6] eliminating much
of the complexity of the original routing protocol. The protocol in [10] is based on
the related problem of packet routing on a square grid of parallel processors [7],[11].
The protocol is straightforward and deterministic and thus provides a natural starting
point to include a wired infrastructure into the ad-hoc wireless network. The reference
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[9] studies the effect of this infrastructure on the resulting heterogenous network. A
similar model is studied in [12].

The infrastructure considered in [9] is highly structured. It involves a square
grid of wired access points overlayed on top of the wireless network. All the wired
access points are interconnected and the bandwidth of the overall wired system is
assumed to be large enough so that any data rate required by the wireless network
can be effectively supported. The wireless users incur no penalty for using the wired
infrastructure per se, however transmission (and therefore throughput) delays are
incurred because contention arises when packets need to enter and exit the wired
infrastructure. Using this approach and arguments from [10], it is shown in [9] that
the wired infrastructure described improves the scaling law of the wireless network if
there are at least Ω(

√
n) access points located at most O( 4

√
n) apart from each other.

We continue building on [10] and [9] by considering an ad-hoc (or more specifically
random) wired infrastructure placed on top of a wireless ad-hoc network. The wireless
transmission protocol we assume is that of [10] and therefore the results of [10] are
directly applicable here. However, unlike [9], our wired infrastructure is comprised of
point-to-point links placed in a random fashion. This particular approach is motivated
by the concept of a “small world network” (SWN) which has received significant
attention in recent years in the study of interactions that occur in social networks.

The rest of the paper is organized as follows. In Section 2 we provide a short
overview of some concepts and literature in the “small world network” realm. In
Section 3 we derive the scaling laws of an ad-hoc heterogenous network with random
point-to-point wired links. As a by-product of our investigation we obtain certain
results about random graphs that may be of interest beyond our specific application.

In Section 4 we compare our results with those of [9] and observe that we are able
to achieve significantly better transport capacity scaling laws for the same growth
rate in point-to-point wired links.

Before we proceed, it is helpful to discuss the “rate of growth” notation used
in this paper. This notation is meant to be consistent with the standard computer
science notation as defined in e.g. [2]. Let f(n) and g(n) be two positive functions.
Then

• We write f(n) = O(g(n)) if f(n) grows no faster then g(n). Strictly, f(n) =
O(g(n)) if there exist positive constants c, n0 such that 0 ≤ f(n) ≤ cg(n) for
all n ≥ n0.

• We write f(n) = Ω(g(n)) if f(n) grows at least as fast as g(n). Strictly,
f(n) = Ω(g(n)) if there exist positive constants c, n0 such that 0 ≤ cg(n) ≤
f(n) for all n ≥ n0.

• We write f(n) = Θ(g(n)) if f(n) grows exactly at the same asymptotic rate
as g(n). Strictly, f(n) = Θ(g(n)) if there exist positive constants c1, c2, n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0. We note that f(n) =
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Θ(g(n)) ⇔ f(n) = O(g(n)) and f(n) = Ω(g(n))
• Finally, the notation f(n) = o(g(n)) is used if f(n) grows strictly slower then

g(n), i.e. for any positive c there exists a positive n0 such that 0 ≤ f(n) ≤
cg(n) for all n ≥ n0.

2. A Small World Network Overview. To introduce small world networks,
we start with two concepts that are central to the study of these networks: the mean
path length on a graph, and clustering. Roughly speaking, clustering describes the
extent to which two neighboring (connected) nodes share other neighbors. Regular
networks, such as lattices, have a high degree of clustering, however the mean path
length scales linearly with the number of nodes. On the other hand, a purely random
network has a low degree of clustering since the edges are assigned at random. How-
ever, it is known that the mean path length scales logarithmically with the network
size, provided the edge density is sufficiently high to ensure connectivity with high
probability. Thus, it is intuitive to think of mean path length and clustering as dual
concepts: reducing one increases the other.

A small world network is a network that maintains the high clustering typical of a
highly structured network while exhibiting the logarithmic mean-path weight scaling
typical of a random graph. Such networks turn out to be excellent models in several
real-world scenarios. Some examples from [19] include:

• Social networks of friends. Networks of friends exhibit very high clustering.
We tend to be members of “circles of friends:” groups of people where everyone
is friends with everyone else. We also typically have a few friends outside
of such circles where none of our other friends are friends of these people.
However such relationships are usually in the minority.
On the other hand, as has been popularized by the “six degrees of separation”
principle, we are but a few (colloquially 6) “hand-shakes” away from almost
anyone else in the world. It turns out that the few friends we tend to have
outside of tight-knit circles are the key to this property.

• Continental electric power grids which exhibit highly localized networks
(around population centers) connected by a very small number of long links.

• Neural networks of worms and, by extension, possibly neural networks of
more complex animals.

While it seems that “small-world” ideas have been appearing in various literature
for a long time, the first clear identification of this effect is apparently due to Watts
and Strogatz [20]. In particular, this work demonstrated that a SWN can be built by
taking a simple highly-structured graph, such as a 1-D circular grid and introducing
a small number of randomly placed shortcuts. The ideas leading to this work seem to
originate from the dissertation research of Watts [18].

The initial work by Watts and Strogatz generated significant interest, particularly
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in the study of infectious disease spread and other percolation phenomena. Some of
the references which may be of particular interest are as follows:

• [8] and [13] provide analysis which is helpful in establishing an “expected”
minimum distance for SWNs.

• [15] discusses in detail the scaling of the minimum distance in SWN and in
particular shows that to get SWN behavior the average number of shortcuts
per node should be on the order of unity.

• [3] considers a modified concept which may be of particular interest to us
because it incorporates the ideas of “broadcasting.”

• A recent overview of the research may be found in [17].
• Finally, we note that while most of these papers address the original “ring”

network, a two-dimensional rectangular grid is addressed in [14, 15].
In the rest of this paper we build a small-world network from a square grid. This

model allows us to directly import from [10] the wireless communication protocol for
ad-hoc nets, which is built up on a square-grid partition of the network. However, in
the process of turning this grid into a SWN, some results are obtained which may be
of general interest to the study of SWN’s built on a square grid.

3. A Scaling Law for a Heterogeneous Network.

3.1. A Basic Square Grid with Shortcuts. Consider a square K × K grid,
which is a graph GK = (VK , EK). The nodes of the grid are integer pairs from the
set VK

def= {1, . . . , K} × {1, . . . , K}. If a ≡ (x1, y1) and b ≡ (x2, y2) are nodes in GK ,
then the node distance between a and b in GK is defined as

(1) d(a, b) def= |x1 − x2| + |y1 − y2|.

There is an edge between a and b if and only if d(a, b) = 1, i.e. (a, b) ∈ EK ⇔ d(a, b) =
1.

The average number of hops between any two randomly selected nodes in GK is
just the average node distance. This can be found by evaluating

(2) E[d(A, B)] = E[|X1 − X2|] + E[|Y1 − Y2|] = 2E[|X1 − X2|].

Carrying out the computation, one finds that

E[d(A, B)] =
K(K + 2)
2(K + 1)

=
1
2

(
(K + 1) − 1

K + 1

)
≈ 1

2
(K + 1)(3)

where the approximation is quite accurate even for relatively low values of K, e.g. for
K = 10 it holds to within 1%. Clearly, on a square grid, the average distance between
nodes scales as Θ(K).
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To turn the square grid into a small world network we introduce shortcuts into
this otherwise very locally connected network. A shortcut is an edge (a, b) such that
d(a, b) > 1. Our hope is that the scaling law of the average number of hops between
two arbitrarily selected nodes can be reduced significantly by addition of relatively
few shortcuts.

Developing an exact answer for the average number of hops in a graph with
shortcuts is difficult. However, we can simplify the problem significantly by ignoring
“edge effects,” that is by considering only nodes sufficiently in the middle of a graph.
In fact, as the network grows, most of the nodes do wind up “in the middle,” provided
that “the middle” is appropriately defined. Thus, given that we are interested in the
scaling laws of the network as it grows, this approach yields the correct answer. An
important consequence of this assumption is that the network appears to be the
same from any node that we are considering and we may therefore utilize symmetry
to simplify our arguments. Therefore we proceed through most of this section by
ignoring edge effects. In the last section, we return to this issue and argue that
indeed these do not affect the validity of the results that we obtained.

Additionally, we restrict ourselves to using at most one shortcut for any source-
destination pair and we use a shortcut if and only if this reduces the number of
hops needed to travel between the two selected nodes. Otherwise, we assume that
the regular edges on the square grid are used and the cost of travel is equal to the
distance between the nodes.

One can take many approaches to populate the graph with shortcuts. Our ap-
proach differs from what is generally done in the SWN literature, but we believe that
it lends itself better to the type of analysis required for our problem. As an initial
step, let Φ be the set of all possible shortcuts. Let each shortcut in Φ be introduced
to the graph equiprobably and independently with probability φ.

Fix D, and fix a pair of nodes a and b “sufficiently inside the grid” such that
d(a, b) = D. Let us find l(a, b), the expected number of hops needed to get from a to
b.

There is only one way that l(a, b) = 1 and that is if there is a shortcut between
a and b. By definition this happens with probability φ. If l(a, b) = 2 then there must
be a shortcut between a and one of the 4 nodes adjacent to b, or between b and one of
the 4 nodes adjacent to a. The probability that none of the 8 possible shortcuts exist
is (1 − φ)8 and thus the probability that at least 1 of them is present is 1− (1 − φ)8.
Clearly, to find the expected value of l(a, b) we need to carry this process out through
D. To do so, we make the following definitions and observations.

• Given a node a sufficiently inside the grid, the number of nodes b such that
d(a, b) = n is 4n if n > 0 and 1 if n = 0.

• The number of possible shortcuts between a set of n nodes and a set of m

nodes is given by nm.
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• Given that we want l(a, b) = L let T (L) be the number of possible shortcuts
that would supports this. Then,

(4) T (L) =

⎧⎪⎨
⎪⎩

1 if L = 1

8(L − 1) + 16
L−2∑
i=1

i(L − 1 − i) if L > 1.

We also let T (0) ≡ 0 for convenience. We note that for L ≥ 2, T (L) is
specified by the polynomial

(5) T (x) =
8
3
(x3 − 3x2 + 5x − 3) =

8
3
(x − 1)(x2 − 2x + 3).

We will find it useful to utilize (5) as an approximation to T (L) for all values
of L. We note that T (L) is a strictly increasing function. This is easily seen
by noting that the derivative of T (x) is

(6) T ′(x) = 8x2 − 16x +
40
3

> 0 ∀x.

With these observations, we can now compute the expected value of l(a, b). Since
l(a, b) takes values on positive integers, we have

(7) E[l(a, b)] =
∞∑

L=1

P(l(a, b) ≥ L) = 1 +
D∑

L=2

P(l(a, b) ≥ L).

The event (l(a, b) ≥ L) means that no shortcuts that support l(a, b) < L are available,
therefore

(8) P(l(a, b) ≥ L) =
L−1∏
m=1

(1 − φ)T (m) = (1 − φ)
∑L−1

m=1 T (m).

Thus,

(9) E[l(a, b)] = 1 +
D∑

L=2

(1 − φ)
∑L−1

m=1 T (m) =
D−1∑
L=0

(1 − φ)
∑L

m=0 T (m)

where we changed the summation limits by substituting (L− 1) ⇒ L and noting that
the term inside the sum evaluates to 1 if L = 0. Let

S(L) def=
L∑

m=0

T (m) = 1 +
L∑

m=2

T (m)

=
1
3
(
2L4 − 4L3 + 10L2 − 8L + 3

)
, L ≥ 1

(10)

with S(L) ≡ 0 for L ≤ 0. Additionally, as we did with T (x), we will find it useful to
extend S(L) to the reals by defining

(11) S(x) def=
1
3
(
2x4 − 4x3 + 10x2 − 8x + 3

)
, x > 0
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with S(x) ≡ 0 for x ≤ 0. We note that in this case the extension is exact for all
positive integers.

Clearly, as long as both a and b are sufficiently inside the grid, the expected value
of l(a, b) is a function of only φ and D. That is, we may define

(12) l̄(φ, D) def= El(a, b) for a, b such that d(a, b) = D.

Moreover, as D increases, l̄(φ, D) converges to a finite value for all φ ∈ (0, 1) and
therefore we may define

(13) l̄(φ) def= lim
D→∞

l̄(φ, D) =
∞∑

L=0

(1 − φ)S(L).

The convergence of l̄(φ, D) is shown rigourously in Appendix A.
Let us demonstrate some of the properties of l̄(φ, D). If we fix φ, then l̄(φ, D)

rapidly reaches its asymptotic value as D grows. This is illustrated by the two plots
in Figure 1. Thus, for sufficiently large values of φ we can plot limD→∞ l̄(φ, D) by
plotting l̄(φ, D) for D = 100. This is shown in Figure 2.

3.2. Extending the basic model. A significant problem with the above for-
mulation is that while the expected number of hops between two nodes is upper
bounded by a constant, the expected number of shortcuts originating at each node
grows in proportion to the number of nodes and the total number of shortcuts grows
in proportion to the square of the number of nodes. Indeed, the expected number of
shortcuts of radius no more than R originating at any given node is given by

(14)
R∑

k=2

4kφ = Θ(R2) = Θ(n)

where n is the total number of nodes at most R away from a given node.
In order to study the scaling laws of our heterogeneous network, we would like to

introduce some control over the rate of growth of the number of shortcuts with the
size of the network. One method for doing so is to weigh shortcuts of different length
differently. In particular, let us assume that the probability that a shortcut of length
k is present in the network is given by φ

kp where 0 < φ < 1 and p > 0 are parameters
of the network. This modification provides us with significant control. Indeed, the
expected number of shortcuts of radius no more than R originating at any node is
now given by

(15)
R∑

k=2

4k
φ

kp
=

⎧⎪⎨
⎪⎩

O(1) if p > 2
Θ(logR) = Θ(log n) if p = 2
Θ(R2−p) = Θ(n1− p

2 ) if p < 2.

To understand how this modification affects the expected number of hops between
two randomly selected nodes, we re-trace the steps we used to get to (9) and study
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Fig. 1. l̄(φ, D) for φ = 10−3 and φ = 10−4

El(a, b) as a function of φ and D. We begin by randomly selecting two nodes (a and
b) at a distance D away from each other and considering a shortcut that reduces the
number of hops between a and b to L. Let us bound the length of the shortcut. If
the shortcut connects two nodes in a shortest path from a to b, then it’s length is
(D − L). This is the lower bound on the length and we can expect that usually a
shortcut would have to span a longer distance. In this case we have

(16) P(l(a, b) ≥ L) ≥
L−1∏
m=1

(
1 − φ

(D − m)p

)T (m)

.

The upper bound on the graph distance spanned by a shortcut is 2D. If a shortcut



A “SMALL WORLD” APPROACH TO HETEROGENEOUS NETWORKS 333

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

35

φ

Expected minimum distance with D = 100

Fig. 2. l̄(φ, D) for D = 100

spans such a distance, the total graph distance from the source to the shortcut entry
point and from shortcut to destination must be at least D. Since this is the graph
distance between the nodes, any shortcuts that are longer than this would not be
used. In this case we have

(17) P(l(a, b) ≥ L) ≤
L−1∏
m=0

(
1 − φ

(2D)p

)T (m)

=
(

1 − φ

2pDp

)S(L−1)

.

In order to keep the dependence on φ and D explicit denote

(18) l̄p(φ, D) def= E[l(a, b)].

Then, using the property (7) and retracing the steps used to get to (9) we get

l̄p(φ, D) ≥ 1 +
D∑

L=2

L−1∏
m=1

(
1 − φ

(D − m)p

)T (m)

=
D−1∑
L=0

L∏
m=0

(
1 − φ

(D − m)p

)T (m)

(19)

and

l̄p(φ, D) ≤
D−1∑
L=0

L∏
m=0

(
1 − φ

(2D)p

)T (m)

=
D−1∑
L=0

(
1 − φ

2pDp

)S(L)

.(20)
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On one hand, the problem has now become more complicated, since, as we show
in Appendix A, if p > 0, l̄p(φ, D) → ∞ as D → ∞. However, as we demonstrate next,
this modification gives us a fairly precise control over the scaling law of the number
of hops in the network.

Theorem 1. Fix p ≥ 0. Then for any 0 < φ < 1,

(21) l̄p(φ, D) =

{
O
(
Dp/4

)
if p < 4

O(D) if p ≥ 4.

Proof. The second line of (21) is trivial. We simply note that for all p

(22) l̄p(φ, D) ≤
D−1∑
L=0

1 = D.

Next, we start with (20) and write

l̄p(φ, D) ≤
D−1∑
L=0

exp
(

S(L) log
(

1 − φ

2pDp

))
(23)

≤
D−1∑
L=0

exp
(
−φS(L)

2pDp

)
.(24)

Now, S(L) is a 4th order polynomial with the leading coefficient equal to 2
3 . We may

therefore write for any ε > 0,

(25) l̄p(φ, D) ≤ C +
D−1∑
L=0

exp
(
− φ

2p

(
2
3
− ε

)
L4

Dp

)
,

where C is a finite constant that absorbs the difference from some initial and finite
number of terms where S(L) <

(
2
3 − ε

)
L4. Specifically, let L̃ be such that for all

L > L̃,
(

2
3 − ε

)
L4 < S(L). Then L̃ is necessarily finite and

(26) C
def= 1 +

L̃∑
L=0

exp
(
−φS(L)

2pDp

)
−

L̃∑
L=0

exp
(
− φ

2p

(
2
3
− ε

)
L4

Dp

)
.

Finally, for p < 4 we have from Lemma A.4

(27)
D−1∑
L=0

exp
(
− φ

2p

(
2
3
− ε

)
L4

Dp

)
= Θ

(
Dp/4

)
,

where the lemma can be applied by taking

(28) α ≡ exp
(
− φ

2p

(
2
3
− ε

))
.

This completes the proof of the theorem.
A critical consequence of Theorem 1 is that not only does the expected number

of hops scale as Dmin( p
4 ,1), but as D grows large so does the maximal number of
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hops that we expect to observe. This statement is a direct consequence of Markov’s
Inequality [1] which states that for any non-negative r.v. X and any λ > 0

(29) P (X ≥ λEX) ≤ 1
λ

.

Now let ω(·) denote any function such that ω(·) → +∞. We note that the rate of
growth of ω may be extremely slow, for example we may take ω(x) = log(1 + log(1 +
· · · log(1 + x))). Then, by Markov’s Inequality we immediately have that as D → ∞

(30) l(a, b) < ω(D)Dmin( p
4 ,1) in probability

or, alternatively,

(31) P
[
l(a, b) ≥ ω(D)Dmin( p

4 ,1) i.o.
]

= 0.

The probability in (30) and (31) arises as we consider the random placement of short-
cuts according to our imposed probability law as parameterized by p and φ. In other
words the above statement means the following:

The probability that the placement of shortcuts is such that for any
choice of nodes a and b such that the grid distance between them is
D and some ω(·) → ∞ l(a, b) exceeds ω(D)Dmin( p

4 ,1) infinitely often
is 0.

We note here that since we have not placed any restrictions on how slowly ω(·) may
grow towards infinity, we will at times simply state that min(p

4 , 1) is the asymptotic
rate of growth of the l(a, b) and it is always to be understood that the actual growth
rate is “just a little faster” than that.

The convergence in probability demonstrated in (30) may not always be sufficient
and a stronger probabilistic statement may be desired. This can be achieved by
placing additional restriction on ω(·), as demonstrated in the following lemma.

Lemma 1. For any choice of nodes a and b with grid distance D

(32) ∀ε > 0 P

[
lim sup
D→∞

l(a, b)
4
√

log(D)Dmin( p
4 ,1)

> ε

]
→ 0,

which may be alternatively stated as

(33) l(a, b) < Cas
4
√

log(D)Dmin( p
4 ,1) almost surely ,

where Cas is an appropriately chosen constant that does not depend on D.
Proof. The necessary result can be demonstrated using (30) by additionally show-

ing that the Borel-Cantelli Lemma [1] holds. To show the latter, we need to demon-
strate that the series

(34)
∑
D

P
(
l(a, b) ≥ ω(D)D

p
4

)
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converges, where ω(D) is an increasing function of D.
Examining (34) we can use (17) to write

∑
D

P
(
l(a, b) ≥ ω(D)D

p
4

)
≤
∑
D

(
1 − φ

2pDp

)S
(

ω(D)D
p
4
)

(35)

=
∑
D

(
1 − φ

2pDp

)ω̃(D)S̃(D)

,(36)

where we recall that S(·) is a fourth order polynomial and therefore in decomposing
S
(
ω(D)D

p
4
)

into ω̃ and S̃ we may write S̃(D) = Θ(Dp) and ω̃(D) = Θ
(
(ω(D))4

)
.

We then continue

∑
D

P
(
l(a, b) ≥ ω(D)D

p
4

)
≤
∑
D

exp
(

ω̃(D)S̃(D) log
(

1 − φ

2pDp

))
(37)

≤
∑
D

exp

(
−φω̃(D)S̃(D)

2pDp

)
.(38)

We now note that since S̃(D) = Θ(Dp), φS̃(D)
2pDp = Θ(1). Let Cconv be a constant

chosen so that φS̃(D)
2pDp = Cconv + o(ω̃(1)). Then, if we take ω̃(D) def= 2

Cconv
log(D) we

have

∑
D

P
(
l(a, b) ≥ ω(D)D

p
4

)
≤
∑
D

exp [−2 log(D)](39)

=
∑
D

D−2 < ∞.(40)

We conclude that (34) converges if ω̃(D) = Θ(log(D)) provided that the constant
factor is large enough. Finally we have ω̃(D) = Θ

(
(ω(D))4

)⇒ ω(D) = Θ
(
(ω̃(D))

1
4

)
which proves the lemma. The constant factor Cas depends on Cconv and the poly-
nomial S(·) in a highly non-trivial way and we do not derive it here explicitly. For
our purposes, it is sufficient to note that Cas is finite and positive, and although it
depends on p and φ, it is independent of D.

3.3. A Scaling Law on a Square Grid with Shortcuts. We are now ready to
proceed with the derivation of the scaling law for a particular heterogeneous network
with a wired infrastructure. We make the following assumptions on our network.

• The wireless protocol operates according to the “protocol” interference model
of [6]. This is the same assumption as is made in [10].

• A network of n nodes is divided into n
2 point-to-point source-destination pairs.

The selection of node-destination pairs is arbitrary. This is done prior to
the beginning of any transmission and remains fixed. When the selection
of source-destination pairs is arbitrary (as opposed to random) we assume,
as does [10], that sum-distance between all source-destination pairs scales as
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Θ(n). When the selection is random, we use the conditions on the growth
of cn (described below) under which [10] demonstrates that the sum-distance
between all source-destination pairs grows as Θ(n).

• The wired infrastructure is setup prior to the beginning of transmission and
remains fixed while the network is active.

• Prior to the beginning of any transmission, each source-destination pair se-
lects the best route utilizing at most a single wired link.

To set up our communication protocol, we proceed as in [10]. We consider a
square of area 1 with n nodes in it. Each node has at most m packets to transmit.
We divide the area into small squares called squarelets having side length (size) sn

and let cn denote the maximum number of nodes in each squarelet, which in [10]
is called the crowding factor. We further impose the restriction that each squarelet
must contain at least one node. For a purely wireless network, [10] shows the following
result

Theorem 2. The throughput capacity in bit-meters per second (and bits per
second) for a purely wireless network with squarelet size sn and crowding factor cn is
Ω
(

nsn

cn

)
. Moreover, the maximum total number of packets at each squarelet is given

by mcn.

It will be useful for us to outline the proof of this statement since we use it to prove
our own results. The proof relies on the following result from the parallel processing
community. Consider a square grid of l× l processors each with k packets to transmit
to one of the other processors. The problem is referred to as k×k permutation routing.
The following result is shown in [7], [11].

Lemma 2. k × k permutation routing in a l × l mesh can be performed deter-
ministically in kl

2 + o(kl) steps with maximum queue size at each processor equal to
k. Further, every routing algorithm takes at least kl

2 steps.

We now return to the proof of Theorem 2 as provided in [10]

Proof. Note the following equivalences between our wireless network and the k×k

permutation routing problem:

• Each squarelet is equivalent to a processor: l ≡ 1
sn

• The total number of packets that each squarelet needs to transmit is upper
bounded by mcn, thus k ≡ mcn.

• The squarelets are divided into K2 equivalence classes, where K is a constant
that is determined by the parameters of the protocol model. See [10] for
details about how it is obtained. It is assumed that the nodes within a
squarelet time-slot their transmissions.

Under these assumptions, we can use Lemma 2 and argue (see [10] for details)
that all the packets can get to their destination in a number of time slots which is at
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most

(41) O

(
4K2 k

2l

)
= O

(
2K2mcn

sn

)
.

Due to the condition we imposed on the source-destination pair distance, the total
distance travelled by the packets is Θ(mn) giving us the desired transport capacity
result.

The maximal size of the queue per squarelet follows directly from the equivalence
of k in the k × k permutation routing problem and mcn in our problem.

In particular, with the best possible node configuration, we have sn = 1√
n

and
cn = O(1), in which case Ω(

√
n) transport capacity is attained. Furthermore, the

following is proven in [10].

Lemma 3. Let the nodes of the network be i.i.d. distributed over the unit square
and the source-destination pairs be selected at random. Then, as n → ∞ the following
hold.

• With a squarelet size of sn =
√

3 log n√
n

no squarelet is empty almost surely.
• cn ≤ 3e logn almost surely.
• The sum of the distances between sources and their respective destinations

grows as Θ(n) almost surely.

Thus, [10] concludes that the transport capacity scales as Ω
( √

n√
log n

)
almost surely.

Let us now take the network above and add wired shortcuts. This is done as
follows. Consider a square grid of squarelets, i.e. let each squarelet be a node on the
square grid. The wired link representing the shortcut may be physically connected to
any of the nodes in a squarelet. It is added according to the probabilistic model that
we studied. The shortcuts are added before any transmission starts and remain fixed
while the network is active. The source-destination pairs always choose the route that
involves the lowest number of wireless hops.

Because the assumption that the grid appears identical to all nodes is essential to
our results on the square grid with shortcuts, it is necessary to impose a “symmetry”
assumption on the distribution of nodes among the squarelets of our wireless network.
We make this assumption precise:

Consider a collection of N random variables indexed according to
the index set I def= {1, . . . , N}. If J ⊂ I then let PJ denote the
marginal joint distribution of the random variables whose indices are
in J . Then the random variables are said to be “symmetrically dis-
tributed” if for any I ′ ⊂ I and I ′′ ⊂ I such that |I′| = |I′′| we have
PI′ = PI′′ and moreover PI′ is a symmetric function of its arguments
- i.e. it is invariant to permutations of the arguments.
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With this definition, we can make the following statement about the number of
shortcuts originating or terminating at a node that actually wind up being used. For
the remainder of this section let vi denote the number of utilized shortcuts that either
originate or terminate in a squarelet i. Then we have the following

Theorem 3. For any squarelet sufficiently inside the grid

(42) vi = O(ω(n)ns2
n) in probability

where ω(·) is any positive function such that ω(·) → ∞. The probability is with respect
to the random placement of shortcuts onto the grid.

Proof. Recall that we have exactly n source-destination pairs and that each
source-destination pair may use no more then one shortcut to communicate. There-
fore, the total number of used shortcuts is upper bounded by n. Let S be the set of
squarelets. Then we have

(43)
∑
i∈S

vi ≤ n ⇒
∑
i∈S

Evi ≤ n.

Since we are interested only in nodes that are “sufficiently inside the grid,” it follows
by symmetry that the marginal probability law of each vi should be the same, and in
particular,

(44) Evi = Evj ∀i, j ∈ S.

Given that the total number of squarelets is s−2
n , we conclude that

(45) Evi ≤ ns2
n.

Finally, since vi ≥ 0, we apply Markov’s Inequality to the above and conclude

(46) vi = O(ω(n)ns2
n) in probability

for any node sufficiently inside the grid. This proves the first assertion of the theorem.

Using the results above we can now make a statement about the achievable trans-
port capacity in our network. Because Theorem 3 provides results for asymptotic
growth in probability only, we only make the following statement in probability as
well.

Theorem 4. Consider a network where the distribution of nodes between square-
lets is symmetric. Then in probability

i) The throughput in bit-meters per second (and in bits per second) in the re-
sulting heterogeneous network grows as

(47) Ω

⎛
⎝min

[
ns

min(p/4,1)
n , s−2

n

]
ω(n)cn

⎞
⎠ .
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ii) The required capacity of any wired link is upper bounded by

(48) O(ω(n)ns2
nmcn).

Here, as before, ω(·) is any function that grows to +∞.1 The probability is with respect
to the random placement of shortcuts onto the grid.

Proof. Clearly, the total distance travelled by all the packets is still Θ(mn).
Thus, we need to understand how the time that it takes a packet to get from source
to destination scales. Each packet can travel in one of two ways: either purely through
the wireless channel or using one, but only one, of the shortcuts.

Let the maximal number of hops between any two nodes on this grid grow as
Mn. If the packet travels through the wireless channel only, the total number of hops
taken by any packet is upper bounded by Mn by assumption. Thus, it takes at most
O(Mnmcn) slots to get to the destination.

If the packet uses a shortcut, it takes at most Mn hops to get to the entry point
for the shortcut and at most Mn hops to get from the exit point to its destination.
As in [9], we need to be concerned about the queueing at the exit point of a shortcut.
To upper bound the amount of queuing, we need to upper bound the number of used
shortcuts that originate or terminate at each node. We note up front, and this will
become evident shortly, that most shortcuts are not actually used.

The deduction above immediately leads to the following conclusions. In probabil-
ity:

• The delay sustained in getting a packet across grows as the faster growing
of the two contributions: the delay required to get the packet across the
wireless network, which is O(Mnmcn); and the delay sustained in access-
ing/exiting the wireline network, which is O(ω(n)ns2

nmcn). The transport
capacity therefore grows as

(49) Ω
(

n

max [Mncn, ω(n)ns2
ncn]

)
.

• The number of packets carried on any wired link is O(ω(n)ns2
nmcn), which

proves the second statement of the theorem.
To complete the proof, we need to express Mn in terms of sn. To do so, recall

that we have n (or Θ(n)) source-destination pairs whose sum-distance is Θ(n). Recall
that none of the source-destination pair distances may exceed 1: 1 is the length of
the side of our square network. It follows that there is a non-vanishing portion of the
source-destination pair with distances Θ(1). If the latter statement were not true, we
could not have the sum of source-destination pair distances be Θ(n).

1We note that under the assumption of a symmetric distribution of nodes over squarelets, it may

be possible to express the rate of growth of cn in terms of sn. We leave our results in terms of cn

for consistency with [9].
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Take a pair of nodes such that the number of squarelet-hops required to get
from one to another is D. Our results in Section 3.2 indicate that in probability
the presence of shortcuts between squarelet reduces the number of hops required to
O
(
ω(n)Dmin(p/4,1)

)
.

We note that 1
sn

is the number of squarelets along the side of our unit-square.
Moreover, recall that there is a non-vanishing proportion of source-destination pairs
with distances Θ(1). Substituting the number of squarelets for the distance units we
get that there is a non-vanishing proportion of source-destination pairs with distances
Θ
(

1
sn

)
. Thus, we may substitute as D = Θ

(
1

sn

)
and write the maximal number of

hops as

(50) Mn = O

(
ω(n)

s
min(p/4,1)
n

)
.

We can substitute for Mn into (49) to obtain a transport capacity of

(51) Ω

⎛
⎝min

[
ns

min(p/4,1)
n , s−2

n

]
ω(n)cn

⎞
⎠

and the theorem follows.
We call attention to a fact that is not readily apparent from the statement and

proof of the theorem, but should become apparent when it is applied to some specific
situations below. In the majority of cases the transport capacity in our heterogeneous
network as given by (47) is determined by the time it takes for packets to traverse the
wireless network and not the access/exit queue wait times in the wired infrastructure.
This is in fact the primary cause of our ability to improve upon the results in [9] where
the wait times to enter/exit the network limited the achievable transport capacity.

Using the results of [10] as cited above, and noting that both the “best” and the
uniformly random allocation of nodes satisfy our symmetry assumption, we have the
following immediate corollary

Corollary 1. Under the best node allocation, transport capacity of

(52) Ω

(
nmax(1− p

8 , 1
2 )

ω(n)

)

is attainable in probability.
Using the random uniform allocation of nodes, transport capacity of

(53) Ω

(
nmax(1− p

8 , 1
2 )

ω(n) log nmin(1− p
8 , 1

2 )

)

is attainable in probability.
Proof. The results above are readily observed by substituting for sn and cn from

[10] into (47). We note that in both cases the resulting transport capacity growth
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rate is determined by the wireless transmission time and not by the access/exit waits
for the wired infrastructure.

To conclude this discussion, we return now to the problem of obtaining the results
in the stronger, almost sure sense. Although we were not able to show non-trivial
almost sure convergence for Theorem 3, we conjecture that it holds if ω(·) in the
statement of the theorem is replaced by [log(·)]r for some r, 0 < r < ∞. This was
certainly the case for the number of hops, as shown in Lemma 1. If this is so, then
the results of Theorem 4 and Corollary 1 also follow with ω(·) replaced by a positive
power of log.

3.4. Edge effects. We now return to the issue of edge effects. There are two
places in the development above where edge effects need to be addressed. The first
is in counting the number of shortcuts that may be used from node a to node b

to attain a particular number of hops (equation (4)). Let both the source and the
destination nodes be the corner nodes on the square grid. Certainly, this is the worst
case scenario in terms of breaking down the “middle of the grid” assumption. In this
case the number of shortcuts available is reduced by approximately a factor of 16
(only a quarter of the neighborhood is available for each node). However, the rate of
polynomial growth of available shortcuts is not affected. This still grows as the cube
of the required number of hops. Since of all of our results depend only of the rate of
polynomial growth of T (L), these are not effected.

The second place where the “middle of the graph” assumption is used is in the
proof of Theorem 4. Specifically, the symmetry argument used in (44) relies on this
assumption. We show that the results obtained under this assumption are not affected
by edge effects so long as p < 4.

To do so, consider adding a strip of squarelets of width O(sp/4
n ) (recall that sn

is the size of the squarelet which decreases with n) around the edges of the original
network (of width 1). These squarelets are used as fake wireline access points and
nodes within a strip of edge squarelets of width O(sp/4

n ) inside the original grid may
select them.

Consider now squarelets that are located at least O(sp/4
n ) inside the original grid.

To wired access points inside these squarelets, the network appears completely sym-
metric since

• They each have a neighborhood of possible sources/destination of radius
O(sp/4

n ).
• Each of the possible sources/destination in the neighborhood of such a wired

access point is equally likely to use it since it has a neighborhood of other
possible candidates of radius O(sp/4

n ) around it.
• Neighborhoods of radii larger the O(sp/4

n ) are irrelevant since no packet uses
more then O(sp/4

n ) hops to get from the source to the destination.



A “SMALL WORLD” APPROACH TO HETEROGENEOUS NETWORKS 343

Finally, let us discard any source-destination pairs that do not use a wired access
point that is at least O(sp/4

n ) inside the original grid. Clearly, from the point of
view of any remaining wired access points the network is completely symmetric. It
remains to verify that the scaling laws have not been affected. To do so, we simply
note that we have removed only some of the source-destination pairs with at least
one of the two end-nodes located in O(s−p/4

n ) squarelets from the network. Since
the distribution of nodes among the squarelets is by assumption symmetric, we may
apply Markov’s Inequality to conclude that we removed no more then O(ω(n)ns

p/4
n )

source-destination pairs. Since sn = o(1), as long as p < 4, the number of source
destination pairs removed is o(1) and the number of source destination pairs remaining
is Θ(1) − o(1) = Θ(1). Since there are Θ(1) pairs of distance 1 (as we argued in the
proof of Theorem 4), the scaling law of the transport capacity is not affected.

4. Summary and Conclusions. To summarize the results obtained in this
paper and put them into proper perspective it is useful to start by comparing our
results with those in [9]. The simplest scenario for such an illustration is the best
possible node distribution among squarelets. Recall that in this case [9] achieves a
transport capacity of

(54) Θ(an +
√

n),

where an is the number of access terminals as a function of n. In our context, it is not
useful to talk of “access points” since every node is a potential access point. However,
we can compare the two results in terms of point-to-point links. Using the “cellular”
wired architecture of [9] each access point is connected to all other access points and
therefore Wn, the number of wired links grows as Wn = O(a2

n). Thus, in terms of
wired links, the architecture of [9] can deliver at best

(55) Θ(
√

Wn +
√

n)

growth in transport capacity. In fact, when the average number of links per node
grows as O(1) with the number of nodes, we are only able to “break even” in terms
of the usefulness of the wired infrastructure.

In contrast, up to an additional factor of ω(n), our approach can deliver growth
rates of at least

(56) Θ
(
Wmax(1−p/8,1/2)

n +
√

n
)

.

Additionally, with p in the range between 2 and 4, the expected number of wired links
per node is O(1), however, an overall improvement in the scaling law of the transport
capacity is observed.

We believe that a key contribution of our work stems from the fact that the im-
provements over [9] are due exclusively to the fact that the queueing at the wired link
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access point is reduced. Whereas in [9] each access point has to support a potentially
large number of links, in our scenario each access point supports only O(ω(n)m) num-
ber of links or just slightly worse than constant per packet per node. It is by reducing
the queueing load at the access points that the randomized wired infrastructure en-
ables us to improve upon the more structured approach. This intuition may lead
to alternative structured approaches to introduce wired links into wireless networks
that provide performance similar to the one described in this paper. Moreover, we
believe that this intuition can be exported to networks where node distributions are
not symmetric (see [9] for some examples) and should lead to a guiding principle for
populating such networks with wired access point as well.

This paper is intended as a introductory step towards the study of how wired links
may assist in wireless ad-hoc networks. While it demonstrates that this approach
may yield fruitful results, it leaves several important issues unresolved. First, it
would be desirable to demonstrate almost sure results as opposed to the in probability
statements made here. Additionally, one may wish to remove the rather constraining
restriction of a single hop and consider the scaling laws of a network where any
arbitrary number of hops is permitted. Other approaches towards creating a wired
infrastructure should be studied. In particular it is interesting to see whether a simple
deterministic scheme can achieve or exceed the scaling laws delivered by our randomly
created network.

In a broader sense, one may wish to get away from the protocol model of [6] and
introduce multi-user communication approaches into the network. While the work of
[21] showed that this does not affect the scaling laws in the wireless network, it is not
clear that the same should hold for a heterogeneous network.

Finally, the connection between packet passing schemes in discrete processor
architectures and ad-hoc networks needs deeper exploration and one may consider
whether the results obtained here have applications of interest to the processor com-
munity.

Appendix

A. Supporting results for convergence properties of l̄p(φ, D). The con-
vergence properties of l̄p(φ, D) are demonstrated in Section 3 using the following series
of results.

Lemma A.1. For all φ ∈ (0, 1) and any S(L) = s0L
t +o(Lt) for t ≥ 1 and s0 > 0

(57) lim
D→∞

D−1∑
L=0

(1 − φ)S(L) < ∞.

Additionally,

(58) lim
φ→0

lim
D→∞

D−1∑
L=0

(1 − φ)S(L) = ∞.
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Proof. Choose M and 0 < ε < s0 such that S(L) ≥ (s0 − ε)L for all L > M .
Thus, we have for K

def=
∑M−1

L=0 (1 − φ)S(L) < ∞,

∞∑
L=0

(1 − φ)S(L) ≤ K +
∞∑

L=M

(1 − φ)(s0−ε)L(59)

= K +
(1 − φ)(s0−ε)M

1 − (1 − φ)(s0−ε)
< ∞.(60)

This proves the first part of the lemma. To prove the second part, we would like to
switch the order of the limits, i.e. we would like to write

(61) lim
φ→0

∞∑
L=0

(1 − φ)S(L) =
∞∑

L=0

lim
φ→0

(1 − φ)S(L) =
∞∑

L=0

1 = ∞.

To make the statement above rigorous, define εL such that

(62) 1 − εL = (1 − φ)S(L).

Clearly, for all L, εL → 0 as φ → 0. If this convergence were uniform then the state-
ment in (61) would follow directly. However, as we show next, uniform convergence
is not required. Fix any positive integer N and select φ such that εL ≤ 1

N+1 for all
L ≤ N . Then for such a choice of φ we have

∞∑
L=0

(1 − φ)S(L) ≥
N∑

L=0

(1 − φ)S(L)(63)

≥
N∑

L=0

(1 − εL)(64)

≥ (N + 1) − (N + 1)
1

N + 1
(65)

= N.

We conclude that
∑∞

L=0(1 − φ)S(L) may be made arbitrarily large for a sufficiently
small choice of φ and the lemma follows.

Lemma A.2. For all φ ∈ (0, 1), all p > 0 and any T (L) = t0L
t + o(Lt) for t ≥ 0

and t0 > 0

(66) lim
D→∞

D−1∑
L=0

L∏
m=0

(
1 − φ

(D − m)p

)T (m)

= ∞.
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Proof. Fix D̃ < ∞. Then, for any such choice of D̃,

lim
D→∞

D−1∑
L=0

L∏
m=0

(
1 − φ

(D − m)p

)T (m)

≥ lim
D→∞

D−1∑
L=0

L∏
m=0

(
1 − φ

(min(D − m, D̃))p

)T (m)

(67)

= lim
D→∞

⎡
⎣D−D̃∑

L=0

L∏
m=0

(
1 − φ

D̃p

)T (m)

+
D−1∑

L=D−D̃+1

⎛
⎝D−D̃∏

m=0

(
1 − φ

D̃p

)T (m)

(68)

×
L∏

m=D−D̃+1

(
1 − φ

(D − m)p

)T (m)
⎞
⎠
⎤
⎦

≥ lim
D→∞

D−D̃∑
L=0

L∏
m=0

(
1 − φ

D̃p

)T (m)

(69)

= lim
D→∞

D∑
L=0

(
1 − φ

D̃p

)∑L
m=0 T (m)

.(70)

It follows that

lim
D→∞

D−1∑
L=0

L∏
m=0

(
1 − φ

(D − m)p

)T (m)

≥ lim
D̃→∞

lim
D→∞

D∑
L=0

(
1 − φ

D̃p

)∑L
m=0 T (m)

(71)

= lim
φ→0

lim
D→∞

∞∑
L=0

(1 − φ)
∑L

m=0 T (m) = ∞,(72)

where the last equality follows by Lemma A.1.
Lemma A.3. For any α ∈ (0, 1) and γ ∈ (0, 1)

(73)
D−1∑
L=0

α
L

Dγ = Θ (Dγ) .

Proof. We have

(74)
D−1∑
L=0

α
L

Dγ =
1 −

(
αD−γ

)D

1 − αD−γ =
1 − αD1−γ

1 − αD−γ .

Thus, the asymptotic rate of growth of
∑D−1

L=0 α
L

Dγ is the same as the asymptotic rate
of growth of

(75) f(x) def=
1 − αx1−γ

1 − αx−γ .
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To understand the asymptotic rate of growth f(x), first note that

(76) lim
x→∞αx1−γ

= 0

and

(77) lim
x→∞αx−γ

= 1.

Then take some r > 0 and consider

lim
x→∞

f(x)
xr

= lim
x→∞

x−r

1 − αx−γ(78)

= lim
x→∞

−rx−r−1

γ ln(α)αx−γ x−γ−1
(79)

= lim
x→∞

−r

γ ln(α)
xγ−r.(80)

Thus,

(81) lim
x→∞

f(x)
xr

=

⎧⎪⎨
⎪⎩

0 if r > γ

− 1
ln α if r = γ

∞ if r < γ

which completes the proof of the lemma.
Lemma A.4. Consider 0 < α < 1, and q > p > 1 then

(82)
D∑

L=0

α
Lq

Dp = Θ
(
D

p
q

)
.

Proof. Let L∗ denote the highest integer L such Lq

Dp ≤ 1. Thus,

(83) L∗ = D p
q �.

Then

D∑
L=0

α
Lq

Dp ≤ L∗ + 1 +
D∑

L=L∗
α

Lq

Dp .(84)

Recalling now that for L > L∗ Lq

Dp ≥ 1, we have

(85)
D∑

L=L∗
α

Lq

Dp ≤
D∑

L=L∗
α

L

Dp/q = O
(
D

p
q

)
,

where the last equality follows by Lemma A.3 and we use O(·) and not Θ(·) because
the contribution from the missing leading terms grows with D and may reduce the
overall rate of growth. The lemma follows since L∗ = Θ

(
D

p
q

)
.
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