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Abstract. Cryo electron microscopy is a measurement modality which provides images from

which 3-D reconstructions of biological particles such as viruses can be estimated. When the specimen

is composed of mixtures of particles of different types, the 3-D reconstruction problem must be

solved jointly with a pattern classification problem. The performance of the estimators is not well

understood because the computations are not suitable for analytical results and are too large for

extensive Monte Carlo results. The problem formulation typically has nuisance parameters and

different treatments of the nuisance parameters lead to different estimators. In this paper two types

of estimators and two model problems are studied with the conclusion that it is difficult to improve

upon maximum likelihood estimators based on integrating out the nuisance parameters.

1. Introduction. Cryo electron microscopy (cryo EM) is a biophysical method
for determining the 3-D structure of a particle, for example, a virus. There are
many different types of cryo EM reconstruction problems and we focus on problems
where an ensemble of identical particles is available, the particles do not associate
to form crystalline structures, and each particle has internal symmetries (such as
the icosahedral symmetry that is present in a broad class of viral particles). The
measurements are images of single particles. Each image is basically a linearly-filtered
2-D projection of the 3-D electron scattering intensity of the particle where the linear
filter is due to the electron optics of the microscope and is called the contrast transfer
function (CTF). There are several major challenges in computing a 3-D reconstruction
from a set of cryo EM images. The particles are highly sensitive to the electron beam.
Therefore only one projection image is recorded from any particular particle (hence
the need for an ensemble of identical particles) and, because the beam current is
minimized, the image is highly noisy, with an SNR less than 1. Because the SNR is low,
it is difficult to determine the center of the particle in the image. Because the particles
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are small, a typical virus measures 102–103Å in diameter, the particle is placed in the
microscope in a random orientation and an image is then recorded. Therefore the
orientation of the projection is not known. Under standard physics assumptions the
functional form of the CTF is known [1] and typically the parameter values are at least
approximately known. However, in the 2-D spatial frequency domain, the CTF has
zeros in the range of spatial frequencies necessary for computing a 3-D reconstruction.
In summary, the challenges include unknown projection orientation, unknown location
of the center of the particle, zeros in the CTF, and low SNR.

The origin of the quantitative image formation model on which the 3-D recon-
structions are based is as follows: Let the real-valued positive scattering density of the
particle be denoted by ρ(x) with 3-D Fourier transform denoted by P (k). We con-
sider only the first order image formation theory [2, 3, 4]. Because the sample is thin,
the EM image depends only on the projection of the 3-D scattering density onto the
2-D object plane. This projection is denoted by σ(χ) with Fourier transform Σ(κ).
Let the image be denoted by σi(χ) with Fourier transform Σi(κ). The key result [2,
Eq. 11c] is that Σ and Σi are closely related. Let the contrast transfer function (CTF)
be denoted by G(κ), noting that it only depends on the magnitude of the 2-D spatial
frequency vector κ [1]. Then, in terms of these definitions, the Fourier transforms of
the measured image and the projection are related by Σi(κ) = exp(−iκT χ0)G(κ)Σ(κ)
where χ0 is the origin location in the image. This theory can be elaborated to include
the effects of specimen thickness (leading to varying levels of defocus), chromatic aber-
ration, partial coherence, etc. In order to relate the projection σ with 2-D Fourier
transform Σ to the 3-D Fourier transform P of the scattering density ρ we use the 3-D
version of the projection slice theorem [5, Eq. 6.2.5, p. 130]. For projections in the z

direction, it is easy to see from the definition of the 3-D Fourier transform in rectangu-
lar coordinates that Σ(κ) = P ((κT , 0)T ). In the case of general projection orientation
there is a set of Euler angles, denoted by α, β, and γ, such that the desired projection
is the z direction projection of the rotated scattering density ρ′(x) = ρ(R−1

E (α, β, γ)x).
Since the Fourier transform of ρ′, denoted by P ′, is P ′(k) = P (R−1

E (α, β, γ)k) it fol-
lows that Σ(κ) = P ′((κT , 0)T ) = P (R−1

E (α, β, γ)(κT , 0)T ) which is the 3-D projection
slice theorem. Therefore the Fourier transform of the measured image is

(1) Σi(κ) = exp(−iκT χ0)G(κ)P (R−1
E (α, β, γ)(κT , 0)T ).

2. Current methods for computing 3-D reconstructions. A large body of
research has been devoted to methods for computing 3-D reconstructions. Detailed
discussions, with extensive references, include Refs. [6, 7, 8, 9, 10, 11]. Assume that
G(κ) is known or even that G(κ) = 1. The key complexity in Eq. 1 is then that
the values of χ0 ∈ IR2, α ∈ [0, 2π), β ∈ [0, π], and γ ∈ [0, 2π), which differ from
image to image, are unknown. If these five numbers were known, then Eq. 1 describes
a linear relationship between the 2-D Fourier transform of the image and the 3-D
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Fourier transform of the particle’s electron scattering intensity evaluated on a 2-D
plane through the origin so standard tomographic ideas can be applied. Therefore an
important theme in Refs. [6, 7, 8, 9, 10, 11] is to estimate values for z = (χ0, α, β, γ),
use these values with Eq. 1 to compute a 3-D reconstruction, and then iterate where
iteration involves improving the accuracy of the z values, including additional images
that were initially excluded, increasing the range of image spatial frequencies that are
used in the reconstruction, and increasing the spatial resolution of the reconstruction.
Because χ0 can be estimated by methods as simple as human examination of each
image, we will focus on methods for estimating (α, β, γ). In particular, we will focus
on the so-called common lines methods and correlation methods.

The common lines method (e.g., Ref. [12] and the references therein) exploits
the symmetry of the particle. Let Rg ∈ IR3×3, R−1

g = RT
g , det(Rg) = +1, g ∈

{0, . . . , Ng − 1}, and R0 = I3 (the 3 × 3 identity matrix) be matrices that de-
scribe the symmetry, i.e., ρ(x) = ρ(R−1

g x) for all g ∈ {0, . . . , Ng − 1} and all
x ∈ IR3. By direct computation it can be shown that the Fourier transform P (k)
has the same symmetry: P (k) = P (R−1

g k) for all g ∈ {0, . . . , Ng − 1} and all
k ∈ IR3. Ignoring the CTF (G(κ)) and origin uncertainty (χ0), the image forma-
tion process is Σ0(κ) = P (R−1

α,β,γ(κT , 0)T ). By the symmetry of P (·) it follows that
Σ0(κ) = P (R−1

α,β,γ(κT , 0)T ) = P (R−1
g R−1

α,β,γ(κT , 0)T ) = Σg(κ). Σ0(·) and Σg(·) are
two identical images that come from evaluating P (·) on different slices through k

space, specifically, the slices defined by R−1
α,β,γ(κT , 0)T and R−1

g R−1
α,β,γ(κT , 0)T . Both

slices include the origin in k space and intersect in a line. On the line of intersection,
the two images are equal. However, and this is the key fact clearly illustrated in
Ref. [10, Figs. 7.68–7.69, pp. 245–246], the intersection line in Σ0(·) is a certain κ

line while the intersection line in Σg(·) is a different κ line. Since Σ0(κ) = Σg(κ),
this construction has located two lines in the image (whose location is a function of
g, α, β, γ), along which the image has the same value. These are the so-called com-
mon lines. The common lines are used to determine (α, β, γ) for a particular image by
the following type of procedure: Define a measure of difference for the values of Σ(·)
along two radially directed lines. This measure usually depends on the phases of the
complex-valued Σ(·) image. Then estimate (α, β, γ) to have that value which results
in a minimum value for the measure when evaluated on the two lines determined
by (g, α, β, γ). Because the images are small (e.g., 102 × 102 pixels) and noisy (e.g.,
SNR less than 1), this would be an inaccurate estimator if applied to only one pair
of common lines. Therefore, it is applied jointly to all possible pairs of common lines
which, in the common case of icosahedral symmetry, is 37 pairs of common lines [12,
p. 49]. The common lines are computed in terms of standard matrix operations as
follows: Define Sg,α,β,γ = Rα,β,γRg. Define a partition of Sg,α,β,γ such that the first
two rows are Ug,α,β,γ ∈ IR2×3 and the third row is vT

g,α,β,γ ∈ IR1×3. Σ0(·) and Σg(·)
are identical images which, however, depend on P (·) evaluated on different planes in
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k space. The two planes can be described by vT
0,α,β,γk = 0 and vT

g,α,β,γk = 0, respec-
tively. Both planes include the origin in k space and, in the general case, intersect in
a line1. In order to describe this line, define

Vg,α,β,γ =

[
vT

0,α,β,γ

vT
g,α,β,γ

]
∈ IR2×3

which has a 1-D null space described by the unit vector ug,α,β,γ ∈ IR3. Then, for the
first image, k = R−1

α,β,γ(κT , 0)T ⇔ Rα,β,γk = (κT , 0)T ⇔ vT
0,α,β,γk = 0 and, for the

second image, k = R−1
g R−1

α,β,γ(κT , 0)T ⇔ k = (Rα,β,γRg)−1(κT , 0)T ⇔ Rα,β,γRgk =
(κT , 0)T ⇔ vT

g,α,β,γk = 0 so the line of intersection is determined by Vg,α,β,γk =
(0, 0)T which has the solution k = ug,α,β,γt for t ∈ IR. This line in k space corre-
sponds to different lines in κ space in the two images. Specifically, for the first image,
k = R−1

α,β,γ(κT , 0)T ⇔ u0,α,β,γt = R−1
α,β,γ(κT , 0)T ⇔ Rα,β,γu0,α,β,γt = (κT , 0)T ⇔

κ = U0,α,β,γu0,α,β,γt and, for the second image, k = R−1
g R−1

α,β,γ(κT , 0)T ⇔ k =
(Rα,β,γRg)−1(κT , 0)T ⇔ ug,α,β,γt = (Rα,β,γRg)−1(κT , 0)T ⇔ Rα,β,γRgug,α,β,γt =
(κT , 0)T ⇔ κ = Ug,α,β,γug,α,β,γt so the two lines are κ = U0,α,β,γu0,α,β,γt and
κ = Ug,α,β,γug,α,β,γt for t ∈ IR.

The correlation method (e.g., Ref. [13] and the references therein) is based on a
3-D mathematical model for the electron scattering intensity ρ(x). From this model,
a library of projections at different projection orientations (i.e., different values of
(α, β, γ)) is computed. In order to determine the projection orientation (i.e., a value
of (α, β, γ)) for a particular image, the image is correlated with each projection in the
library and the estimated projection orientation is chosen to be the orientation of the
library member with highest correlation. This search procedure can be accelerated by
using so-called polar Fourier transforms [13]. Once a projection orientation for each
image has been estimated, a 3-D reconstruction can be computed and the resulting
reconstruction used as a new model in an iterative procedure. An important issue
is how to determine the initial model. The sources that have been used include [13]
(1) idealized models, such as an icosahedrally-symmetric collection of spheres with the
correct total scattering intensity and the correct quasisymmetry [14]; (2) 3-D recon-
structions from any source (e.g., crystal x-ray diffraction or cryo electron microscopy)
of a virus expected to have a similar structure to the virus under investigation; and
(3) a 3-D reconstruction of the virus under investigation based on a single image.

3. Our approach to computing 3-D reconstructions. We are developing
a system for computing 3-D reconstructions from cryo EM images [15, 16, 17, 18,
19]. Related work includes the “ROSE” algorithm [20, 21, 22] and the algorithm of
Ref. [23]. Please see Ref. [15] for a detailed comparison. Our approach is fundamen-
tally statistical, in particular, it is a maximum likelihood estimator. The particle (we

1We will not consider all of the details needed to deal with the special cases.
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have focused on viruses) is represented as a weighted sum of basis functions which are
products of harmonics and radial functions and therefore 3-D reconstruction is equiv-
alent to determining the vector of weights. This approach is particularly attractive
for viruses which generally have rotational symmetries because the symmetry opera-
tions then effect only the harmonic factor of the basis function. The most common
symmetry is icosahedral symmetry, which is the symmetry we have focused on and
which we exactly incorporate without needing constraints on the weights by using
icosahedral harmonics [24, 25].

After sampling the image in κ space and grouping the samples from the ith image
as a column vector denoted by yi, the measurement model, based on Eq. 1, is [17]

yi = L(zi)c + ni, i ∈ {1, . . . , Nv}(2)

where c is the vector of weights, yi is the ith image represented as a vector, zi is the
projection orientation (three Euler angles) and particle center location in the image (a
two-component vector in a Euclidean space) for the ith image, L(zi) is the resulting
linear transformation from weights to noise-free image, and ni is the noise represented
as a vector. Typical dimensions [15] are images of 117× 117 pixels, 720 weights, and
Nv = 583 images. We assume that c is deterministic but unknown. We assume
that zi are i.i.d. random variables where the projection orientation components are
independent of the particle center location components, the orientations are uniform
over the product of the unit sphere and the unit circle, and the center location is
uniform over a 2-D disk. We assume that the ni are i.i.d. zero-mean Gaussian random
variables with a diagonal covariance matrix which we adaptively estimate from the
image data. We assume that zi and ni are independent.

Using the statistical model of the previous paragraph, we solve a maximum likeli-
hood (ML) estimation problem for the c weights after integrating out the zi variables
which we regard as nuisance parameters. Our primary software solves the ML opti-
mization problem using an expectation maximization algorithm, where the zi are the
“missing” data, although we are currently investigating alternatives such as conjugate
gradients. This is quite different from most existing systems [6, 7, 8, 9, 10, 11, 26, 27,
28, 29] which iterate between estimating orientations and center locations (i.e., zi) and
estimating 3-D structure (i.e., c) and biologists are sometimes even surprised that it
is possible to compute reconstructions without estimating the projection orientation
of each image.

In this paper three aspects of this problem are investigated in an attempt to con-
trast our work with more standard approachs: First, the ML estimator of the previous
paragraph is compared with an ML-MAP (maximum a posteriori) estimator where
the c weights are estimated by ML and the zi nuisance parameters are estimated by
MAP. The ML-MAP estimator is roughly the customary approach to these problems
in the biological literature. Note that in the cryo EM problem, there is no a priori
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probabilistic information available about c and hence performance has to be deter-
mined as a function of c. The second aspect considered is the performance of both
ML and ML-MAP estimators when the a priori probability distribution used in the
MAP calculations is not accurate. This problem arises in practice for the following
reason. The orientation of the particle in the electron microscope is random but the
probability distribution is complicated due to the physics. In particular, the specimen
is a thin film, rapidly frozen, of particles in water and the orientation of particles in
the film is, in part, controlled by their structure by mechanisms such as the interaction
of the particle with the water-air interface. In practice, the histogram of estimated
projection directions (which is equivalent to the histogram of particle orientations) is
not uniform but rather shows peaks [11, p. 871]. This nonuniform probability distri-
bution is difficult to model, for instance, because of its dependence on the unknown
structure, and so we have used a uniform distribution but desire to have at least a
qualitative understanding of the effect of that assumption. Finally, the third aspect
considered is estimator performance: for the ML estimator described in Ref. [17], we
have not been able to compute its performance analytically and, because each 3-D
reconstruction computation described in Ref. [15] takes a day or two on a 32-node PC
cluster, we have also not been able to compute performance by Monte-Carlo meth-
ods. Therefore, in this paper, simpler model problems are considered which allow
performance computations (bias and estimation error variance) to be performed by
Monte-Carlo methods.

The problem described in Eq. 2 is actually simpler than the main problem de-
scribed in Refs. [15, 16, 17]. In particular the problem described in Eq. 2 assumes
that all images are of the same type of particle. However, viruses undergo a se-
quences of changes, called maturation, as they self-assemble into an infectious parti-
cle. This process is of great biological interest and experiments have been done (and
it is straightforward to conceive of further experiments of this type) where the thin
film of particles in water contains a mixture of particles in different maturation states
and therefore the cryo EM images show a mixture of particle types. This motivates
the generalization of the problem described in Eq. 2 to

yi = L(zi)cηi + ni, i ∈ {1, . . . , Nv}(3)

where ηi ∈ {1, . . . , Nη} is a label describing the type of particle (e.g., maturation
state) shown in the ith image and Nη is known. The goal is to estimate the 3-D
reconstruction of each type of particle. Thus this is a joint pattern recognition and
3-D signal reconstruction problem. In Refs. [15, 16, 17] the ηi are modeled as i.i.d.
with a known probability mass function and the ηi are merged with the zi to form
a more complicated nuisance parameter. The resulting nuisance parameter is then
integrated out and an ML problem is solved for c. However, it would be of interest to
consider ML-MAP estimators which treat 3-D reconstruction and pattern recognition
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more equally. The reason the simpler problem of Eq. 2 is emphasized in this paper is
that it is difficult to find model problems corresponding to Eq. 3 for which analytical
calculations are possible.

4. The definition of the estimators. If r is the data and ω are the pa-
rameters then a ML estimate is ω̂ = arg maxω p(r|ω) and a MAP estimate is ω̂ =
arg maxω p(ω|r) = arg maxω p(ω, r). When ω can be partitioned into ω1, which is
deterministic but unknown (corresponding to the 3-D virus structure) and ω2, which
is Bayesian (corresponding to the projection orientations and boxed image origin lo-
cations) then there are two natural approaches to estimating ω1:

ω̂ML
1 = arg max

ω1

∫
p(r|ω1, ω2)p(ω2)dω2

ω̂ML−MAP
1 = arg max

ω1

max
ω2

p(r|ω1, ω2)p(ω2).

The properties of both of these estimators are considered in this paper.

5. Model problems.

5.1. Random (real-valued) gain model. The first model problem has a col-
lection of Nv real-valued measurements that are related to the structure by a random
gain:

yi = zic + ni

i ∈ {1, . . . , Nv}
zi ∼ i.i.d. N(mz, σ

2
z)

ni ∼ i.i.d. N(0, σ2),

where N(m, σ2) denotes the Gaussian probability density function with mean m and
variance σ2 and the sequences {zi} and {ni} are independent. By direct computation
it can be shown that

p(yi|zi, c)p(zi) =
s(c)√
2πσσz

exp
(
−1

2
δi(c)

)
N

(
µi(c), s2(c)

)
(zi)(4)

µi(c) =
yicσ

2
z + mzσ

2

c2σ2
z + σ2

s2(c) =
σ2σ2

z

c2σ2
z + σ2

δi(c) =
(yi − cmz)

2

c2σ2
z + σ2

.
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After further computing, it can be shown that the ML estimator is determined by the
real roots of the cubic polynomial

0 = c3
(
σ4

z

)
+ c2

(
mzσ

2
z ȳ

)
+ c1

[
σ2

(
σ2

z + m2
z

) − σ2
zry

]
+ c0

(
mzσ

2ȳ
)

ȳ =
1

Nv

Nv∑
i=1

yi

ry =
1

Nv

Nv∑
i=1

y2
i .

The particular root is that root which maximizes the log likelihood function

lML(c) = −Nv

2
ln

(
c2σ2

z + σ2
) − Nv

2
ln (2π) − Nv

2
ry − 2mzȳc + m2

zc
2

c2σ2
z + σ2

.

After further computing based on Eq. 4, it can be shown that the ML-MAP estimator
is determined by the roots of the quadratic polynomial

0 = c2
(
ȳmzσ

2
z

)
+ c1

(
m2

zσ
2 − σ2

zry

)
+ c0

(−ȳmzσ
2
)
.

Since the discriminant is
(
m2

zσ
2 − σ2

zry

)2+(2ȳmz)
2
σ2

zσ2 ≥ 0, it follows that the roots
are always real. The particular root is that root which maximizes the maximum (with
respect to zi, i ∈ {1, . . . , Nv}) of the log likelihood function

lML−MAP(c) = −Nv ln (2πσσz) − Nv

2
ry − 2ȳcmz + c2m2

z

c2σ2
z + σ2

.

The measure of SNR used in cryo EM is the square root of the ratio of energy in
the 2-D projection of the 3-D scattering intensity to energy in the noise. Therefore,
the analogous measure in the model problem is

SNR1(c) =
√

E[(zic)2]/E[n2
i ]

= c
√

σ2
z + m2

z/σ.(5)

5.2. Random phase model. The second model problem has a collection of Nv

complex-valued measurements that are related to the structure by a random phase
(i.e., a rotation in the 2-D complex plane):

yi = exp(jφi)c + ni

i ∈ {1, . . . , Nv}
φi ∼ i.i.d. uniform on [−π, +π]

(�{ni},�{ni})′ ∼ i.i.d. N
(
0, σ2I2

)
,

where the sequences {φi} and {ni} are independent, 0 = (0, 0)′, I2 is the 2×2 identity
matrix, and j =

√−1. We allow c to be complex although we will only be able to
estimate |c| from this data.
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By direct computation it can be shown that the log likelihood function for the
ML estimate of c is

lML(c) = −Nv ln
(
2πσ2

) − Nv

2σ2

(
ry + |c|2) +

Nv∑
i=1

ln I0

( |c||yi|
σ2

)
,(6)

where Iν(·) is the modified Bessel function of the first kind of order ν [30, p. 376,
Eq. 9.6.19]. Notice that there is no sufficient statistic for this problem and that the
log likelihood function is a function of |c| alone. We have not been able to analytically
maximize this expression with respect to c and thereby determine the estimator an-
alytically. Therefore we use numerical optimization based on the log likelihood and,
optionally, its gradient which for c ∈ IR and c ≥ 0 is [30, p. 376, Eq. 9.6.27]

dlML

dc
(c) = −Nv

σ2
c +

Nv∑
i=1

|yi|
σ2

I1

(
c|yi|
σ2

)
I0

(
c|yi|
σ2

) .

In order to check for a boundary maximum, it is also necessary to know that

lML(0) = −Nv ln
(
2πσ2

) − Nv

2σ2
ry

which follows from I0(0) = 1. Finally, it can be shown that the log likelihood function
for the ML-MAP estimator is

lML−MAP(c) = −Nv ln
(
2πσ2

) − Nv ln(2π) − 1
2σ2

Nv∑
i=1

(|yi| − |c|)2

so that the ML-MAP estimator is

ĉML−MAP = my exp(jθ)(7)

my =
1

Nv

Nv∑
i=1

|yi|(8)

for arbitrary θ ∈ IR.
The origin of the SNR definition used in cryo EM was described in Subsection 5.1.

Applying that definition to the second model problem gives the result that

SNR2(c) =
√

E[| exp(jφi)c|2]/E[|ni|2]
= c/(

√
2σ).(9)

6. Numerical results. All performance calculations were done by Monte Carlo
using 1000 trials. Since c is deterministic but unknown, performance is described as
a function of the true value of c. For each value of c, the computations used the
same pseudo-random numbers in order to achieve variance reduction. For the second
model problem, the ML estimate is found using Matlab function fminbnd which is
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a scalar optimization algorithm that exploits bounds on the feasible set which were
max(0, min(c−1, .8c)) and max(c+1, 1.2c). The other three estimators are computed
directly from the formulae given in Section 5.

We have explored the performance of these four estimators over a range of param-
eter values for both matched and mismatched cases. Here we can only give typical
examples and have chosen examples close to the cryo EM application, especially in
terms of the SNR value of 1. In Figure 1 the matched performance is shown. In the
first model problem with gain zi the ML-MAP estimator is clearly inferior to the ML
estimator since the ML-MAP estimator has both larger bias and larger variance. In
the second model problem with phase φi the situation is more ambiguous since the ML-
MAP estimator has larger bias but smaller variance than the ML estimator. Therefore,
in an ad hoc manner, we attempted to find an estimator with a more attractive bias-
variance tradeoff by subtracting the bias of the ML-MAP estimator at the estimated
value of c from the estimate. Specifically, define bML−MAP(c) = E[ĉML−MAP(y)|c]− c

which is the bias. [bML−MAP(·) is computed by Monte-Carlo on a 1-D grid with
step size 0.05 and then is linearly interpolated between grid points.] Define a new
estimator ˆ̂cML−MAP(y) = ĉML−MAP(y) − b(ĉML−MAP). As shown in Figure 1, the
ˆ̂cML−MAP(y) estimator has lower bias but greater variance than ĉML−MAP(y). Nei-
ther ĉML(y), ĉML−MAP(y), nor ˆ̂cML−MAP(y) has both lower bias and lower variance so
a choice among them must be based on application issues, including computational
complexity which is markedly lower for ĉML−MAP(y) since no numerical optimization
is required to compute ĉML−MAP(y). Note also that the ˆ̂cML−MAP(y) estimate can-
not be computed in the cryo EM problem because the bias must be evaluated by
Monte-Carlo methods which are far too costly in the cryo EM problem.

In Figure 2 the mismatched probability distribution and the resulting perfor-
mance is shown. Recall that the mismatch is in the a priori probability distribution
used in the MAP calculations, i.e., in the distribution for zi or for φi. This is a severe
mismatch. For instance, based on the strongly localized histograms seen in cryo EM
problems, the probability distributions used to generate the data are discrete even
though the distributions used to derive the estimators are continuous (Gaussian or
uniform). Except for different scaling of the independent variable, the same mis-
matched distribution is used in both model problems. In the second model problem
with phase φi the results for the mismatched case are similar to the results for the
matched case. The reason is that the noise ni has a circularly-symmetric probability
density function (pdf). Specifically, the model is yi = exp(jφi)c + ni which is equiv-
alent to yi = exp(jφi)[c + exp(−jφi)ni] which is equivalent to yi = exp(jφi)(c + ni)
because of the circular symmetry of the pdf of ni. Then, since the estimators depend
only on |yi| (Eq. 6 or Eqs. 7 and 8), it follows that performance is not altered if the
pdf is mismatched. However, in the first model problem with gain zi, results are
significantly degraded by the mismatched pdf on zi in comparison with the matched
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case. In particular, typical biases are three times larger though the standard devia-
tions are much less increased. Also, unlike the matched case where the ML estimator
had both smaller bias and smaller variance, in the mismatched case the ML estimate
has greater bias and smaller variance. It is difficult to know which model problem and
what type of mismatch correctly models the cryo EM problem and so the conclusion
regarding mismatched calculations seems not to favor one estimator over the other.

Finally, in order to show the connection with the cryo EM problem, examples
of experimental cryo EM images and a surface rendering of the resulting 3-D recon-
struction for Nudaurelia Omega Capensis Virus [31] are shown in Figure 3. Note the
low SNR of the two typical cryo EM images that are shown. It is clearly difficult to
precisely determine the center of the virus particle in these images and certainly dif-
ficult to extract much information about the projection orientation. These problems
motivate our study of comprehensive statistical approaches to this 3-D reconstruction
problem.

7. Discussion. Two model problems and two types of estimator have been stud-
ied. Unlike the situation in the motivating cryo EM problem, for these model prob-
lems it is possible to do both analytical and Monte-Carlo calculations. In these model
problems the ML estimator appears to have a modest performance advantage over the
ML-MAP estimator which, however, vanishes when the probabilistic assumptions on
the nuisance parameters are mismatched. In order to make concrete the connection
with cryo EM, an example of a 3-D reconstruction of Nudaurelia Omega Capensis
Virus is also given. Finally, as described in detail in the final paragraph of Section 3,
the most interesting cryo EM problem combines 3-D reconstruction with pattern clas-
sification in order to determine which image comes from which type of virus particle.
However, even the simplest model problem for such joint pattern classification and
signal reconstruction problems is a very challenging problem from the point of view
of analytical calculations and so we have not discussed them in this paper.
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(a)
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Fig. 3. Two cryo EM images [Panels (a) and (b)] and a surface rendering of the resulting 3-D

reconstruction [Panel (c)] for Nudaurelia Omega Capensis Virus [31]


