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ON INTRACTABILITY OF SPATIAL RELATIONSHIPS IN

CONTENT-BASED IMAGE DATABASE SYSTEMS∗

QING-LONG ZHANG† AND STEPHEN S.-T. YAU‡

Abstract. An image stored in image database systems is assumed to be associated with some

content-based meta-data about that image, that is, information about objects in the image and

absolute/relative spatial relationships among them. An image query for such an image database

system can generally be handled in two ways: exact picture matching and approximate picture

matching. In this paper we show the intractability of matching of spatial relationships between a

query image and an image stored in the database. In particular, our results suggest that one would

not expect to have polynomial-time algorithms for finding the exact picture-matching and computing

the maximal similarity between a query picture and a database picture, unless P = NP.

1. Introduction. Image database systems have been very active over the past
20 years. With the explosive interest for the last 10 years in multimedia systems,
content-based image retrieval has attracted the attention of researchers across several
disciplines, including computer vision, pattern recognition, human-computer interac-
tion, and image databases. A recent survey on content-based image retrieval was given
by Smeulders et al. [5]. We [8, 9, 10, 11, 12] have proposed to develop a mathematical
and algorithmic approach to modelling content-based image database systems.

In this short paper, we intend to show the intractability of matching of spatial
relationships between a query image and an image stored in the database. In partic-
ular, one would not expect to have polynomial-time algorithms for finding the exact
picture-matching and computing the maximal similarity between a query picture and
a database picture, unless P = NP.

2. Specifying a General User Query. We first show how to specify a general
user query, discussed in [12].

A real picture is assumed to be associated with some content-based meta-data
about that picture, that is, information about objects in the picture and absolute/rela-
tive spatial relationships among them. An object in a real picture corresponds to a sig-
nificant element of the image. Depending on the application, the significant elements
of the image can be pixels, lines, regions, etc. A spatial relationship among objects
is relative if it is determined by the position of the centroid of its objects. A spatial
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relationship is absolute if it is determined by the absolute position of its objects in the
image. The following various absolute spatial relationships are of common interest in
pictorial databases: left-of, right-of, in-front-of, behind, above, below, inside, outside,
and overlaps. Only the first six spatial operators are considered for relative spatial
relationships, since inside, outside, and overlaps operators are not applicable. Note
that the first six spatial operators are directional and the last three spatial operators
are topological.

We will use xa and xr to indicate the absolute spatial operator x and the relative
spatial operator x respectively. Note that right-of and above are dual spatial operators
of left-of and below respectively, and in-front-of and behind spatial operators are only
applicable for three dimensional pictures. Let

(1) R = {left-of a, left-of r, belowa, below r, inside, outside, overlaps}.

Clearly we can just use these seven spatial operators in R to specify spatial constraints
among objects in a planar (i.e., two-dimensional) picture. Then an image stored in
the image database is assumed to be represented by objects in the image and the
complete information about absolute/relative spatial relationships of R among them.

Now a user query is of the following form:

An image query Q: Find images containing a nonempty finite

set OQ of objects and another set (possibly null) F Q of(2)

absolute/relative spatial relationships of R among them.

That is, an image f stored in the image database is matched by an image query Q if
f contains a set OQ of objects satisfying spatial constraints F Q among these objects
in OQ. We call it an exact picture-matching between Q and f . Note that the set
F Q in the image query Q implicitly indicates the conjunction of all absolute/relative
spatial relationships in F Q using the ∧ (i.e., AND) logical operator. A more general
user query is indeed the disjunction of the above user queries in (2) using ∨ (i.e., OR)
logical operators. Therefore, a more general user query can always be handled via
its user subqueries in (2); that is, the query outcome of a more general user query
consists of all query outcomes of its user subqueries in (2).

3. Intractability of Spatial Constraints in an Image Query. In this section
we show the intractability of matching of spatial relationships between a query image
and an image stored in the database.

A real picture is represented by objects in the picture and spatial relationships
among them for storage and retrieval. Spatial relationships may be absolute or rela-
tive, and directional or topological. The 2D string approach developed by Chang et
al. [1] is based on (relative) directional spatial relationships: left-of, right-of, above,
and below. Spatial relationships used in [4] are (absolute) directional or (absolute)
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topological. Spatial relationships proposed in our work [8, 9] are more general, can be
(absolute) directional, (relative) directional, or (absolute) topological. Tucci et al. [6]
proved that the type-1 symbolic picture matching, developed in [1], is NP-complete.
Zhang [7] formulated a small class of picture retrieval problem in picture retrieval sys-
tems [4], and proved that the exact picture matching problem is NP-complete; then
showed that, as a corollary, if there exists a polynomial-time algorithm to compute the
maximal similarity between a query picture and a database picture, then P = NP.
In fact, Zhang’s results [7] are also valid in our framework of content-based image
database systems [11]. Here we follow [7] to briefly present the proofs.

3.1. The Exact Picture Matching Problem. Let PLOB be a collection of
planar (i.e., 2-dimensional) pictures, in which each object has only its name and no
other information such as its description of properties (e.g., attributes), and each
spatial relationship is only directional (i.e., left-of a, left-of r, belowa, or below r), and
O left-of a O′ (O belowa O′, respectively) is in the picture if and only if O left-of r O′

(O belowr O′) is in the same picture too.

One can use the simple transitive rule, for each x ∈ {left-of a, left-of r, belowa,
below r}, to deduce the directional spatial relationship AxC from the directional spatial
relationships AxB and BxC. Let F be a set of directional spatial relationships
involving only left-of a, left-of r, belowa, and below r. Then the transitive closure of F ,
denoted by CL{F }, is the biggest set of directional spatial relationships, deducible
from F using the transitive rule, including all directional spatial relationships in F .

Given a picture f , we will use Of and F f , respectively, to denote a collection of
objects in f and a set of spatial relationships among objects in f . Given a set F of
spatial relationships among objects in O, we will also use F (O′) to denote the set of
spatial relationships in F among objects only in O′ ⊆ O.

In the following Definitions 3.1 and 3.2, any two objects O and O′ in PLOB
are the same if they have exactly the same name; and any two directional spatial
relationships O1xO2 and O′

1yO′
2 in PLOB are the same if x = y (i.e., both are left-of a,

left-of r, belowa, or below r), and O1 = O′
1, O2 = O′

2. Then any two sets F1 and
F2 of directional spatial relationships in PLOB are the same if the objects and the
directional spatial relationships in both sets are the same respectively.

Definition 3.1. Given a user query Q with OQ = {O1, O2, . . . , Oq} and a
picture f in PLOB, f is called a type-1 satisfied picture of the query Q if there is a
subset O′f = {O′

1, O
′
2, . . . , O

′
q} ⊆ Of such that Oj = O′

j(1 ≤ j ≤ q) and CL{F Q} =
CL{F f}(O′f ).

Definition 3.2. Given a user query Q with OQ = {O1, O2, . . . , Oq} and a
picture f in PLOB, f is called a type-0 satisfied picture of the query Q if there is a
subset O′f = {O′

1, O
′
2, . . . , O

′
q} ⊆ Of such that Oj = O′

j(1 ≤ j ≤ q) and CL{F Q} ⊆
CL{F f}(O′f ).
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Given a user query Q and a picture f in PLOB, determining whether f is a type-
1 (type-0, respectively) satisfied picture of Q is called the type-1 (type-0) picture
matching problem (in PLOB of our framework). We also call, both the type-1 and
type-0 picture matchings, the exact picture matching. Now we can prove as in [7] that
the type-1 picture matching problem is an NP-complete problem.

3.1.1. The NP-completeness of Type-1 Symbolic Picture Matching. A
picture or a pattern is represented by an m × n matrix containing objects/entries
which are denoted by a set of symbols V , for symbolic picture retrieval [1].

Definition 3.3. ([1]) Given a set of symbols V , a symbolic picture f on V is a
mapping M × N −→ W , where M = {1, 2, . . . , m}, N = {1, 2, . . . , n}, and W is the
power set of V .

It is proved in [6] that determining whether a pattern p is a type-1 subpicture of
a picture f is an NP-complete problem.

The type-1 symbolic picture matching (T-1M) problem is formulated as follows:

Instance: An m× n matrix F (picture) and an s× t matrix P (pattern) of symbols
from an alphabet A.

Question: Is P a type-1 subpicture of F , i.e., do there exist two ascending sequences
of indices r = (r1, r2, . . . , rs) and c = (c1, c2, . . . , ct) such that F (ri, cj) = P (i, j) for
1 ≤ i ≤ s, and 1 ≤ j ≤ t.

Theorem 3.4. ([6]) The type-1 symbolic picture matching (T-1M) is NP-comp-
lete.

In the proof of Theorem 3.4 given in [6], the number of elements in each entry of
a symbolic picture f is bounded by 1. So, we can modify the above Definition 3.3 of
a symbolic picture as follows: a symbolic picture f on V is a mapping M × N −→
V ∪{blank}. Furthermore, when a row or a column is empty, it can be removed. Thus,
in the following Section 3.1.2, we shall assume that f maps M × N to V ∪ {blank},
and each row and each column of f must contain at least one element.

3.1.2. The NP-completeness of Type-1 Picture Matching in PLOB.

Now we want to prove that the type-1 picture matching problem in PLOB of our
framework is an NP-complete problem.

The type-1 picture matching (T-1EPM) problem in PLOB of our framework is
formulated as follows:

Instance: A user query Q with |OQ| = q and a picture f with |Of | = N in PLOB,
and a set C of all object names from which the name of each object in Q and f is
chosen.

Question: Is f a type-1 satisfied picture of Q?

Theorem 3.5. The type-1 picture matching in PLOB of our framework is NP-
complete.

Proof. It follows from a similar proof in [7].
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It is easy to see that T-1EPM ∈ NP . Since a nondeterministic algorithm needs
only to guess a subset O′f ⊆ Of with |O′f | = q, and checks whether OQ = O′f and
CL{F Q} = CL{F f}(O′f ). The check could be done in polynomial-time (Note that
the polynomial with order 3 is enough, since we can have such an efficient algorithm
with order 3 to calculate the transitive closure CL{F } of a given set F of spatial
relationships).

We now transform the above type-1 symbolic picture matching (T-1M) in Sec-
tion 3.1.1 into our T-1EPM.

Given an m×n matrix F (picture) and an s×t matrix P (pattern) of symbols from
an alphabet A, the corresponding instance of T-1EPM can be obtained by setting:

Of : A collection of objects fi (1 ≤ i ≤ N) such that each fi has only its name and
no attributes, and its name is the same nonblank symbol as some entry in matrix F .
Each nonblank entry in matrix F corresponds to one object fi, 1 ≤ i ≤ N , where N

is the total number of nonblank entries.

F f : A collection of all directional spatial relationships among fi’s involving only
left-of a, left-of r, belowa, and belowr. If object fi and object fj , 1 ≤ i, j ≤ N , are
in the k-th row (column, respectively) and l-th row (column) of matrix F , respec-
tively, and k < l, then F f contains the relationships fj belowa fi and fj belowr fi

(fi left-of a fj and fi left-of r fj).

OQ (= {O1, O2, . . . , Oq}) and F Q for the corresponding user query Q can be defined
similarly as the picture f . And

C: Just the alphabet A.

Clearly the transformation is polynomial-time in the size of the instance of T-1M
(Note that the polynomial with order 2 is enough, since F f and F Q have at most
4 ∗ N∗(N−1)

2 and 4 ∗ q∗(q−1)
2 relationships respectively).

Example. Suppose that we have a symbolic picture F (3 × 3 matrix) and a
pattern P (2 × 2 matrix), where all nonblank entries in F and P are: F (1, 1) = d,
F (2, 2) = b, F (2, 3) = c, F (3, 1) = a; and P (1, 2) = c, P (2, 1) = a; and A = {a, b, c, d}.
Then,

Of = {f1(a), f2(d), f3(b), f4(c)},
F f = {f1 left-of a f3, f1 left-of r f3, f1 left-of a f4, f1 left-of r f4, f2 left-of a f3,

f2 left-of r f3, f2 left-of a f4, f2 left-of r f4, f3 left-of a f4, f3 left-of r f4,

f1 belowa f3, f1 below r f3, f1 belowa f4, f1 belowr f4, f1 belowa f2,

f1 below r f2, f3 belowa f2, f3 belowr f2, f4 belowa f2, f4 below r f2},
OQ = {O1(a), O2(c)},
F Q = {O1 left-of a O2, O1 left-of r O2, O1 belowa O2, O1 below r O2}, and

C = A = {a, b, c, d}.
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Note that we have CL{F f} = F f and CL{F Q} = F Q for the above transforma-
tion.

Suppose that P is a type-1 subpicture of F , i.e., there exist two ascending se-
quences of indices r = (r1, r2, . . . , rs) and c = (c1, c2, . . . , ct) such that F (ri, cj) =
P (i, j) for 1 ≤ i ≤ s and 1 ≤ j ≤ t. Let O′f = {O′

1, O
′
2, . . . , O

′
q} and F ′f be

the collections of objects and relationships, respectively, defined from the submatrix
F (r, c) formed by s rows r and t columns c in matrix F , under the above definition of
transformation. Then OQ = O′f ⊆ Of and F Q = F ′f = F f (O′f ). So f is a type-1
satisfied picture of Q.

Conversely, suppose that f is a type-1 satisfied picture of Q, i.e., there exists a
subset O′f ⊆ Of such that OQ = O′f and F Q = F f (O′f ). This means that both
O′f and F f (O′f ) together have the same information as both OQ and F Q together.

Lemma. Let H be an s × t matrix and h be the picture obtained from H under
the above transformation, then H can be uniquely determined by Oh and F h.

Proof of Lemma. Firstly let us reconstruct a matrix H ′ from Oh and F h. Since,
the lengths (i.e., the number of relationships in the sequence) of the longest sequences
in F h involving only left-of a (left-of r, alternatively) and belowa (below r, alterna-
tively), respectively, are just t−1 and s−1, so H ′ is an s× t matrix. Furthermore, for
any object hi in Oh, the position of hi in the matrix H ′ can be uniquely determined
by its relative position given by left-of a (left-of r, alternatively) and belowa (below r,
alternatively) relationships in F h, that is, there exist two longest sequences involving
the object hi and only left-of a, respectively, and belowa relationships in F h,

e1 left-of a e2 left-of a . . . left-of a el = hi left-of a . . . left-of a et, and

e′1 belowa e′2 belowa . . . belowa e′k = hi belowa . . . belowa e′s,

and the positions, l and k, of hi in any such two longest sequences are uniquely fixed,
then hi is in the (s−k+1, l)-entry of the matrix H ′. Now, we can easily check H ′ = H

from the construction. This ends the proof of lemma.
So, by the Lemma, an m × n matrix F and an s × t matrix P , respectively, can

be uniquely reconstructed from the picture f and the query Q; and both O′f and
F f (O′f ) together determine an s×t matrix P ′, which is just the same as P . Note that
every two objects in O′f have the same relative order in both matrix F and matrix
P ′. For example, two objects in O′f are in the same row (column, respectively) of
matrix F if and only if they are in the same row (column) of matrix P ′; and any
number of objects in O′f are in the same row (column, respectively) of matrix F if
and only if they are in the same row (column) of matrix P ′. Now, choose one object
ei, 1 ≤ i ≤ s, (one object e′j , 1 ≤ j ≤ t, respectively) from the i-th row (j-th column)
in P ′, and let each ei (e′j , respectively) be in the ri-th row (cj-th column) of F , then
r1 < r2 < . . . < rs and c1 < c2 < . . . < ct. Let F (r, c) be the submatrix of F formed
by s rows r = (r1, r2, . . . , rs) and t columns c = (c1, c2, . . . , ct) in matrix F . Then we
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can easily check F (r, c) = P ′ from the construction, since, for any object O′
i in O′f ,

1 ≤ i ≤ q, let O′
i be in the same k-th row with the object ek and the same l-th column

with the object e′l in the matrix P ′, then O′
i is also in the same rk-th row with the

object ek and the same cl-th column with the object e′l in the matrix F , that is, O′
i

is in the (k, l)-th entry of P ′ if and only if it is in the (rk, cl)-th entry of F . Hence P

is a type-1 subpicture of F .

This concludes the proof of NP-completeness of T-1EPM in PLOB of our frame-
work. �

Theorem 3.5 indicates that even a small class of picture matching problem in
PLOB of our framework is NP-complete. Observe that the type-1 picture matching
is a particular part of the type-0 picture matching. One would expect that the exact
picture matching (i.e., the type-0 picture matching) in PLOB of our framework is
NP-complete.

3.2. The Maximal Similarity Problem. While the exact picture matching
yields the query outcome consisting of only those stored images matched exactly by a
user query, it might take much long time to perform the query processing for certain
irregular stored images because of NP-completeness of the exact picture matching. To
address this type of inefficiency, approximate or heuristic picture matching algorithms
need to be developed to help improve the performance of pictorial retrieval. Image
retrieval based on similarity measures can be found in the literature.

For our framework of content-based image database systems, a real image is repre-
sented by its description of objects in the image and absolute/relative spatial relation-
ships among them for storage and retrieval. To develop approximate image retrieval
by similarity measures, one may give the notion of similarity Sim(·, ·) between two
objects, two absolute/relative spatial relationships, and two images. The similarity
value is either negative infinity or between 0 and 1. Specifically, the similarity measure
in the small class PLOB defined above in Section 3.1 should be straightforward.

In PLOB, given a user specified object O and a system specified object O′, the
similarity Sim(O, O′) of O and O′ is 1 if and only if both O and O′ have the same
name. Let r = O1xO2 and r′ = O′

1yO′
2 be user specified and system specified direc-

tional spatial relationships respectively. Then the similarity Sim(r, r′) of r and r′ is
1 if and only if both directional spatial relationship operators x and y are same (i.e.,
both left-of a, both left-of r, both belowa, or both below r), and O1 = O′

1 and O2 = O′
2.

Let Q = (O1, O2, . . . , On, r1, r2, . . . , rm) and f ′ = (O′
1, O

′
2, . . . , O

′
n, r′1, r

′
2, . . . , r

′
m)

be the descriptions of a user specified picture and a system specified picture respec-
tively. Then the type-1 similarity Sim(Q, f ′) of Q and f ′ under the natural order
(i.e., Oj and rk in Q correspond to O′

j and r′k in f ′, respectively, for 1 ≤ j ≤ n and
1 ≤ k ≤ m) is 1 if and only if Oj = O′

j for 1 ≤ j ≤ n, and rk = r′k for 1 ≤ k ≤ m;
and the type-0 similarity Sim(Q, f ′) of Q and f ′ under the natural order is 1 if and
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only if Oj = O′
j for 1 ≤ j ≤ n, and either rk is null spatial relationship or rk = r′k for

1 ≤ k ≤ m.
In the following Definitions 3.6 and 3.7, F f is assumed to have the complete

information about absolute/relative spatial relationships in a picture f . Given a set
F of spatial relationships, we use MAX{F } to denote the set of all deducible spatial
relationships from F under a system of rules (i.e., the maximal set of F ), defined in
[8, Chapter 2] [9]. Now we define the maximal similarity MaxSim(Q, f) between a
query picture Q and a database picture f .

Definition 3.6. Given a user query Q and a picture f , let type-1 MaxSim(Q, f)
be the maximal one among all type-1 similarities Sim(Q, f ′) of Q and subpicture f ′ in
f under the natural order, where OQ = {O1, O2, . . . , Oq} and Of ′

= {O′
1, O

′
2, . . . , O

′
q}

⊆ Of (some O′
j could be null objects); and set l = max(|MAX{F Q}|, |F f (Of ′

)|),
then (r1, r2, . . . , rl) and (r′1, r′2, . . . , r′l), respectively, are the enumeration sequences
from MAX{F Q} and F f (Of ′

) (some rj and r′k could be null spatial relationships if
necessary); now Q = (O1, O2, . . . , Oq, r1, r2, . . . , rl) and f ′ = (O′

1, O
′
2, . . . , O

′
q, r′1, r′2,

. . . , r′l).
Definition 3.7. Given a user query Q and a picture f , let type-0 MaxSim(Q, f)

be the maximal one among all type-0 similarities Sim(Q, f ′) of Q and subpicture f ′ in
f under the natural order, where OQ = {O1, O2, . . . , Oq} and Of ′

= {O′
1, O

′
2, . . . , O

′
q}

⊆ Of (some O′
j could be null objects); and set l = max(|F Q|, |F f (Of ′

)|), then
(r1, r2, . . . , rl) and (r′1, r

′
2, . . . , r

′
l), respectively, are the enumeration sequences from

F Q and F f (Of ′
) (some rj and r′k could be null spatial relationships if necessary);

now Q = (O1, O2, . . . , Oq, r1, r2, . . . , rl) and f ′ = (O′
1, O

′
2, . . . , O

′
q, r

′
1, r

′
2, . . . , r

′
l).

Theorem 3.8. If there exists an algorithm with the time complexity TC to com-
pute the type-1 MaxSim(Q, f) of a user query Q and a picture f , then there is also
an algorithm with the time complexity of the same order as TC to answer the type-1
picture matching problem in PLOB.

Proof. Suppose that the assumption is true and A is the required algorithm with
the time complexity TC. Now, given a user query Q and a picture f in PLOB, we
use algorithm A to compute type-1 MaxSim(Q, f), and also check whether type-1
MaxSim(Q, f) = 1. Note that f is a type-1 satisfied picture of Q if and only if type-
1 MaxSim(Q, f) = 1. Hence, we have this algorithm to answer the type-1 picture
matching problem in PLOB of our framework. �

Theorem 3.9. If there exists an algorithm with the time complexity TC to com-
pute the type-0 MaxSim(Q, f) of a user query Q and a picture f , then there is also
an algorithm with the time complexity of the same order as TC to answer the type-0
picture matching problem in PLOB.

Proof. Apply the similar proof of Theorem 3.8, using type-0 instead of type-1. �
Theorem 3.10. If there exists a polynomial-time algorithm to compute the type-1

MaxSim(Q, f) of a user query Q and a picture f , then P = NP.
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Proof. Immediately from the above two Theorems 3.5 and 3.8. �
As suggested in the above Section 3.1, we would expect that the exact pic-

ture matching (i.e., the type-0 picture matching) in PLOB of our framework is NP-
complete. Thus, in view of Theorem 3.9, we would also expect that the similar result
of Theorem 3.10 holds for the case of type-0 MaxSim(·, ·); that is, if there exists a
polynomial-time algorithm to compute the type-0 MaxSim(Q, f) of a user query Q

and a picture f , then P = NP.

“Does P = NP?” arising in the field of Computer Science has become one of
the well-known hardest questions in Mathematics [2, 3]. For example, it is one of
the seven million-dollar Millennium Prize Problems listed by the Clay Mathematics
Institute (see www.claymath.org). As mentioned in [2, 3], people would expect that
P 	= NP though it still remains open. That means, in view of Theorems 3.5 and
3.10, one would not expect to have polynomial-time algorithms for finding the exact
picture-matching and computing MaxSim(·, ·) between a query picture and a picture
stored in the database, unless P = NP.

In [12], we have addressed the approximate picture matching problem, and have
presented a stepwise approximation of intractable spatial constraints in an image
query. Especially, this stepwise approximation may be pre-processed on an im-
age query before an advanced picture matching algorithm is invoked. Advanced
polynomial-time algorithms for the approximate picture matching need to be much
developed to help improve the performance of image retrieval due to the NP-complete-
ness of the exact picture matching.
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