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SURFACE SEGMENTATION USING GLOBAL CONFORMAL STRUCTURE∗

YALIN WANG†, XIANFENG GU‡, AND SHING-TUNG YAU§

Abstract. Surface segmentation is a fundamental problem in computer graphics. It has various applications such

as metamorphosis, surface matching, surface compression, 3D shape retrieval, texture mapping, etc. All orientable

surfaces are Riemann surfaces, and admit conformal structures. This paper introduces a novel surface segmentation

algorithm based on its conformal structure. Each segment can be conformally mapped to a planar rectangle, and

the transition maps are planar translations. The segmentation is intrinsic to the surface, independent of the embed-

ding, and consistent for surfaces with similar geometries. By using segmentation based on conformal structure, the

mapping between surfaces with arbitrary topologies can be constructed explicitly. The method is rigorous, efficient

and automatic. The segmentation can be applied to surface morphing, construct conformal geometry image, convert

mesh to Spline surface, solve Partial Differential Equations on arbitrary surfaces, etc.

1. Introduction. Surface segmentation is a technique which decomposes a surface

mesh into various sub-meshes. Similar to image segmentation [SM00] in image processing,

one can simplify some problems by surface segmentation. For example, for texture mapping,

it is a standard practice to decompose the surface into several parts, make texture mapping

on each part and merge them to get the final result of the texture mapping [LPRM02]. Sur-

face segmentation benefits various applications, such as metamorphosis [GSL ∗99, STK02],

surface simplification [GWH01], collision detection [LTTH01], control-skeleton extraction

[KT03], and surface matching, etc.

All oriented metric surfaces are Riemann surfaces, and they admit global conformal

parameterization. The global conformal parameterization is such a geometric construction

that can satisfy the segmentation and parameterization requirements. Conformal surface

parameterizations have many merits, such as preserving angular structure, being intrinsic
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to geometry, stable with respect to different triangulations and small deformations. It has

been widely used for many applications, such as non-distorted texture mapping [LPRM02],

[HAT∗00b],[KSG03], surface remeshing [AMD02b], surface fairing [L 0́3], surface matching

[GY02], brain mapping [AHTK99], [GWC∗04] etc.

In this paper we propose a novel surface segmentation algorithm based on global con-

formal structure. There are finite zero points on the global conformal parameterization on a

surface. Our algorithm automatically locate these zero points and trace the horizontal and

vertical trajectories ( roughly iso-parametric curves, details in 2) through zero points, then

partition the surface to segments, such that each segment can be conformally mapped to a

parallelogram on the uv plane. The conformality is also preserved along the boundaries. We

call this kind of segmentation holomorphic flow segmentation. We further demonstrate our

algorithm by applying it on metamorphasis and surface matching problems.

The pictures on the beginning of the paper illustrate some experimental results of our al-

gorithm. The first two figures show the global conformal parameterization of Michelangelo’s

David surface. The second two figures show the result segments both in R and the parameteri-

zation domain, separately. The surface segments are color encoded, and conformally mapped

onto rectangles on the parameter plane.

1.1. Contributions. This paper introduces algorithms to compute surface segmentation

using conformal structure. The method is based on Riemann surface theories and differential

geometry, therefore it is rigorous and general. The method has the following metrics,

1. The algorithm is intrinsic and independent of surface embedding. Because confor-

mal structure is determined by the metric, not the embedding, isometric surfaces will

have the same holormorphic segmentations. For example, the human body surfaces

with different postures can be roughly treated as isometric surfaces, and they can be

segmented consistently. This is valuable for animation purpose.

2. The algorithm is stable with respect to small deformations of the geometry. The

computation of conformal structure is equivalent to solve elliptic partial differential

equations on the surface, whose solutions continuously depend on the geometries.
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So our method is insensitive to the noise of the geometric information, consistent

with different resolutions.

3. The algorithm is general for surfaces with arbitrary topologies, especially good for

surfaces with higher genus.

The segmented results are very useful for further applications. For example, by this

method, 3D metamorphsis can be converted to 2D metamorphsis on rectangles.

Furthermore, with conformal parameterization, only two functions, conformal factor and

mean curvature, are enough to represent a surface [Jos91]. With our holomorphic flow seg-

mentation, one can represent each segment using these two functions defined on the con-

formal parameter domain. This representation is invariant under rigid motion of the surface

and convenient for surface matching. We define surface distance metric based on this unique

representation.

1.2. Previous Works. Different surface segmentation approaches have been studied in

the past. Chazelle et al. [CP97, CDST97] present convex decomposition schemes. However,

small concavities in the objects result in over-segmentation. In [MW99] a watershed decom-

position is described. A post-processing step resolves over-segmentation. One problem with

the algorithm is the dependency on the exact triangulation of the model. In [GWH01], face

clustering is proposed so that the cluster may be well approximated with planar elements. Li

et al. [LTTH01] used skeletonization and space sweep. However, smoothing effects might

cause the disappearance of features for which it is impossible to get a decomposition. Shlaf-

man et al. [STK02] proposed a K-means based clustering algorithm. The meaningful com-

ponents of the objects are found. However, the boundaries between the patches are often

jagged and not always correct. Katz and Tal [KT03] introduced a method using fuzzy cluster-

ing and cuts. It computes a decomposition into the meaningful components of a given mesh

and avoids over-segmentation and jaggy boundaries between the components. The drawback

of this method is that the boundaries between different components depend on the surface

embedding and not intrinsic to the surface geometry. The same geometric surface may get

different segmentation results due to different embedding.

Surface parameterization has been studied extensively in the graphics field. Most works

in conformal parametrization only deal with genus zero surfaces. Eck et al. [EDD ∗95] in-

troduce the discrete harmonic map, which approximates the continuous harmonic maps by

minimizing a metric dispersion criterion. Floater introduces shape-preserving method in

[Flo97]. Then the method is improved in [Flo03] using mean value coordinates. Hormann

and Greiner [HG99] measure the conformality in a different way using most isometric param-

eterizations method. Haker et al. [HAT∗00a] introduce a method to compute a global confor-

mal mapping from a genus zero surface to a sphere by representing the Laplacian-Beltrami

operator as a linear system. Alliez et al. [AMD02a] compute the discrete Dirichlet energy and

apply conformal parametrization to interactive geometry remeshing. Lévy et al. [LPRM02]

compute a quasi-conformal parametrization by approximating the Cauchy-Riemann equation
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using the least squares method. For surfaces with arbitrary topologies, Gu and Yau [GY02]

introduces a general method for global conformal parameterizations based on the structure of

the cohomology group of holomorphic one-forms. They generalize the method for surfaces

with boundaries in [GY03].

2. Theoretic Background. The holomorphic segmentation is based on the fact that

all oriented metric surfaces are Riemann surfaces and admit conformal structures. There-

fore they have global conformal parameterizations. By tracing special curves induced by

the global conformal parameterization, the surfaces can be canonically segmented. Because

the segmentation depends on the conformal structure only, isometric surfaces have the same

segmentations.

Riemann Surface and Global Conformal Parameterization

A Riemann surface is a connected Hausdorff topological surface S with a family of open

coverings {Uα} and a family of mappings zα : Uα → C, satisfying the following conditions:

• zα : Uα → C is a homeomorphism to an open set zα (Uα) in C.

• if Uα ∩Uβ �= φ , function

(1) zβ ◦ z−1
α : zα (Uα ∩Uβ ) → zβ (Uα ∩Uβ )

is holomorphic and the inverse is also holomorphic. (Uα ,zα ) is a local holomorphic

coordinates.

Namely, a holomorphic coordinate is a local conformal parameterization and the first fun-

damental form can be written as

(2) ds2 = λ (z)dzdz̄

( equivalently λ (u,v)(du2 +dv2)), where λ (z) > 0 is the stretching factor, and called confor-

mal factor.

A global conformal parameterization of surface S is a parameterization φ : S → C,

such that equation 2 holds everywhere and there might be several exceptional points. The

complex derivative of a global conformal parameterization is called a holomorphic 1-form.

At each local holomorphic coordinate chart, the holomorphic 1-form can be formulated as

ω = f (z)dz, where f (z) is a holomorphic function. At the exceptional points, f (z) equals to

zero, and these points are called zero points. For genus g ≥ 1 surface, there will be 2g− 2

zero points.

Horizontal Trajectory and Vertical Trajectory

A holomorphic 1-form ω can induce a quadratic differential form, ω 2. A vertical trajectory

c of ω is a curve, such that such that along c ω 2 < 0. A horizontal trajectory c of ω is a

curve, such that such that along c ω 2 > 0. The horizontal and vertical trajectories through

zero points will be used to segment the surface.

Structure of Holomorphic Flow Segmentation

Let S be a compact Riemann surface and ω a holomorphic 1-form on S. Each horizon-

tal or vertical trajectory is a union of closed loops. The horizontal and vertical trajectories
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through zero points can segment the surface to topological disks, each disk can be confor-

mally mapped to a parallelogram on the plane. The conformal mapping can be obtained by

integrating ω on the patch.

For the case of a torus, there is no zero point on a holomorphic 1-form. The whole torus

will be conformally mapped to one parallelogram on the complex plane.

The holomorphic flow segmentation induces a complex G = {V,E,F}, where V are zero

points, E are horizontal and vertical trajectories, F are segments. We call G as holomorphic

flow complex.

Symmetric Surface

For special symmetric surfaces (by symmetry, we mean the canonical period matrix has zero

imaginary part [Jos91]), each segment can be conformally mapped to a rectangle.

In our experiments, we perform topology modification first on genus zero closed surface

in order to improve the quality of their global conformal parameterization, as explained in

[GY02]. Then we double cover the open surface to a closed symmetric one. The following is

the method for double covering, first we get two copies of the same open surface, reverse the

orientation of one of them, and glue two copies along their boundaries.

If the surface is symmetric, the horizontal and vertical trajectories are iso-parametric

curves. For asymmetric surfaces, the algorithms are very similar with extra affine mappings

to covert each parallelogram on the parameter plane to rectangles. In the following discus-

sion, we always assume the surface is symmetric and use vertical trajectory and iso-u curve,

horizontal trajectory and iso-v curve interchangably.

3. Algorithms for Holomorphic Flow Segmentation. We use triangular meshes to ap-

proximate surfaces. Suppose K is a simplicial complex, and a mapping r : |K| → R 3 embeds

|K| in R3. Then (K,r) is called a triangular mesh. The sets Kn, where n = 0,1,2, are the

n− simplicies (sets of vertices, edges, and faces, respectively). The holomorphic 1-form ω
can be represented as a function ω : K1 → R2.

The algorithm for computing Riemann surface structure of a mesh is equivalent to com-

puting a holomorphic 1-form basis. The major steps for computing the complete conformal

parameterization atlas are as follows:

1. Modify the topology of the surface (cut the mesh) in order to improve the quality of

the parameterization.

2. Compute a fundamental domain S̄ from mesh S.

3. Compute a homology basis from the boundary of the fundamental domain S̄.

4. Compute a holomorphic 1-form basis from the homology basis.

5. Select a holomorphic 1-form ω , and integrate ω on S̄ to get a global conformal

parameterization φ .

6. Locate zero points of ω using φ .

7. Trace horizontal and vertical trajectories through the zero points using φ .

8. Segment S by the horizontal and vertical trajectories, using φ to map each segment
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conformally to a rectangle on the plane.

Steps 1-5 compute the global conformal parameterization of the surface. However, the

segments obtained in step 8 may have the images of zero points on the plane. As shown in

Figure 1, the zero points of a parameterization are singularities, or points whose neighborhood

on the surface has a special configuration when mapped to the plane. The details for comput-

ing steps 1-5 and 8 have been thoroughly explained in [GY02], [GY03] and [GWY04]. This

work will focus on steps 6 and 7, namely, locating the zero points of a holomorphic 1-form

and tracing the horizontal and vertical trajectories.

Tracing Vertical Trajectories

Given any u-value u0, we want to trace the vertical trajectories on the surface S. First, we

compute the fundamental domain S̄ of S, the holomorphic 1-form ω , and the conformal map

φ . The algorithm proceeds as follows:

1. Map S̄ to the plane using φ ; φ(S̄) are planar regions.

2. For the chosen parameter u-value u0 (see “Locating Zero Points”, below), slice φ(S̄)
along the line u = u0.

3. When, or if, the curve ends at a boundary on S̄, its connecting curve on S̄ will con-

tinue along another u-value u1 on the plane. The intersection point pi on S̄ between

the vertical trajectories and the boundary maps to two points, one of which we have

just encountered at u-value u0, and its dual boundary point, which has a different

u-value, u1. Locate this point on the plane.

4. Continue slicing S̄ along the vertical trajectory u = u1 until we reach the next bound-

ary point, whose dual point has u-value is u2. Find the dual point, and continue

slicing S̄ along the connecting curve.

5. Repeat this procedure (slice along ui, find dual boundary point, slice along u i+1)

until all the traced curves, which are curved segments joined at the boundaries on S̄,

form a closed loop.

The horizontal trajectories can be traced in the similar way.

Locating Zero Points

Having found a holomorphic 1-form ω , and the fundamental domain S̄, we can estimate the

position of zero points on the mesh. The zero points have the following properties:

• The conformal factor λ (u,v) is zero at zero points.

• The vertical trajectories only intersect at zero points.

Suppose a vertex v0 has neighbors v1,v2, · · · ,vn. First, we estimate the conformal factor

for each vertex by the following formula:

λ (v0) =
1
n

n

∑
i=1

|ω([v0,vi])|2
|r(v0)− r(vi)|2 ,

where [v0,vi] represent the edge from v0 to vi. Then, we choose the vertices with local minimal

λ as the candidates for zero points.

Next, we compute the vertical trajectories through the candidate vertices. By adjusting
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the u value until the corresponding vertical trajectories intersects itself, we can locate the de-

sired zero point, the intersection point of the curve. The configuration of an vertical trajectory

in a neighborhood of a zero point can be classified by three types. Locally, it may look like

one of three curves on the surface (using (u,v) for the local, planar neighborhood of a zero

point): uv = +1, uv = −1, or uv = 0, which we label as types I, II, and III respectively (see

Figure 1). We are looking for a type III vertical trajectory, which will intersect itself at the

zero point. The following is the detailed algorithm to adjust u:

1. Compute the fundamental domain S̄, compute the holomorphic 1-form ω , and com-

pute the conformal mapping φ : S̄ → C.

2. Compute the conformal factor for each vertex; use the vertices with minimal con-

formal factor as the candidates for the zero points.

3. Choose one candidate p, record its u-value u 0, and trace vertical trajectory with this

u-value.

4. Randomly choose another u-value u1 close to u0 and trace the vertical trajectory for

u1 until it is of a different type than the vertical trajectory for u 0.

5. Perform a binary search on u in [u0,u1], until the configuration of the vertical trajec-

tories is of type III. Return the intersection point as the zero point.

If the resolution of the mesh is not high enough, it is possible that we can only get type I

and II vertical trajectories. In this case, we can subdivide the neighborhood of the zero point

and repeat the process.

4. Constrained Harmonic Map. Some researchers report their work on geometric

morphing. Gregory et al. [GSL∗99] and Alexa et al. [ACOL00] present morphing meth-

ods based on volumetric data while Ohtake et al. [OBA∗03] and Praun et al. [PH03] propose

morphing methods which rely on finding the point correspondence between surface vertices.

This section will explain how to match each pair of segments for two surfaces with con-

sistent holomorphic flow segmentation. After segmentation, each segment has a conformal

parameterization, each parameter domain is a parallelogram. By matching the parallograms

by affine maps, the surfaces can be matched by the quasi-conformal maps directly. In appli-

cations, it is always desirable to match the sets of feature points. The constrained harmonic

map will map the feature points and minize the stretching energy.

The basic pipe line is as follows: first we manually label the corresponding feature points;

then we Delaunay triangulate the feature points on one segment, and induce the same trian-

gulation for the second segment; by using a piecewise linear transformation, we find a initial

homeomorphism between the segments; we then refine the mapping by minimizing the har-

monic energy and finally to get a constrained harmonic map. After that, we can construct

two geometry images with the same connectivity for the two segments, and build the morph-

ing between them. The matching problem addressed here is similar to the one in [KSG03].

However, since we use global conformalization method, the geometric and parametric config-

uration of corresponding segments are very similar to each other. The process of computing
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a. Neighborhood of a zero point b. iso-u curve of type I

c. iso-u curve of type II d. iso-u curve of type III

FIG. 1. Algorithm for locating a zero point. The neighborhood of a zero point is shown in (a). The vertical

trajectories (iso-u curves) have 3 types in the neighborhood. Type I is like the hyperbolic curve uv = +1 as shown

in (b), type II uv = −1 in (c), and type III uv = 0 in (d). Suppose the u-value of the zero point is u0, then type I is of

u > u0, type II is of u < u0, by adjusting u-value, we can find type III iso-u curves, the zero point is the intersection

of the iso-u curve of u0.

the constrained harmonic map is simplified, such as it is unnecessary to add Steiner vertices.

Suppose the two surface segments are S and S̃ represented as triangle meshes and we

manually pick the feature points on them. The feature points are subset of vertices including

the four corners of the rectangle on the parameter plane, the points with high Gaussian cur-

vature, and the major geometric features. For the human face example, the feature points are

the tip of the nose, center of the eyes, corner of the mouths and eyes, etc.

Suppose F = {v1,v2, · · · ,vn} are feature points of S, F̃ = {ṽ1, ṽ2, · · · , ṽn} are feature
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points of S̃, we would like to find a smooth map φ : S → S̃, such that

φ(v j) = ṽ j,φ(∂S) = ∂ S̃,

i.e. φ maps feature points to feature points, and maps the boundary of S to that of S̃. In order

to improve the smoothness, we require φ to be harmonic, ∆φ = 0, where ∆ is the Laplace-

Beltrami operator.

It is difficult to find φ directly, instead we can find a harmonic map between the parameter

domain of S and that of S̃. Suppose the conformal parameterization of S is τ , conformal

parameterization for S̃ is τ̃ , then τ(S) and τ̃(S̃) are rectangles in R2. We want to find a

harmonic map µ : R2 → R2, such that

µ ◦ τ(v j) = τ̃(ṽ j),µ ◦ τ(∂S) = τ̃(∂ S̃),∆µ = 0,

where ∆ is the Laplace operator defined on the plane. Then the map φ can be obtained by the

following commutative diagram,

(3)

S S̃

R2 R2

�φ

�
τ

�
τ̃

�
µ

φ = τ̃−1 ◦ µ ◦ τ . Because both τ and τ̃ are conformal, µ is harmonic, therefore φ is also

harmonic.

The algorithms can be summarized as the following,

1. Inital Piecewise linear Map We Delaunay triangulate the feature points F ⊂ τ(S),
and induce a triangulation on F̃ ⊂ τ̃(S̃). Then use piecewise linear map µ0 : τ(S) →
τ̃(S̃) as the initial map.

2. Heat flow minimization We minimize the harmonic energy of the map, using the

following heat flow method:

∂τ
∂ t

= −∆τ

where ∆ is the Laplace operator, until the Laplacian of interior vertices are zero. In

implementation, we use the discrete Laplace operator defined in [AMD02b].

3. Morphing After geting the constrained harmonic map φ , we can construct a geomet-

ric morphing sequence by using the following formulae

r(u,v,t) = f (u,v,t)r(u,v)+ (1− f (u,v, t))r̃(φ(u,v)),

where f (u,v,t) ∈ [0,1] is a blending function depends on both time the parameter

position.

In our implementation, we remesh both the segments of S and S̃ to be conformal geometry

images to improve the efficiency.
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5. Surface Distance Metric. We define a new metric to measure the distance between

two surfaces based on their Riemann surface structure. Given two surfaces S and S̃, we choose

appropriate holomorphic 1-forms, ω on S and ω̃ on S̃, such that the induced holomorphic flow

complexes, G and G̃, are isomorphic. We arrange the segments of G and G̃ in a consistent

way, such that f ∈ G corresponds to f̃ ∈ G̃. Let φ : G → G̃ be the piecewise linear map that

maps the parameter domain of each f to that of f̃ . Then we define an (asymmetric) intrinsic

metric from S to S̃ with respect to ω and ω̃ as

(4) E0(S, S̃,ω , ω̃) = ∑
f∈G

∫
f
(λ (u,v)− λ̃ ◦φ(u,v))2dudv,

and similarly, the extrinsic metric as

(5) E1(S, S̃,ω , ω̃) = ∑
f∈G

∫
f
(H(u,v)− H̃ ◦φ(u,v))2dudv.

Then the (symmetric) intrinsic distance between S and S̃ is

d0(S, S̃) = inf
ω,ω̃

[E0(S, S̃,ω , ω̃)+E0(S̃,S, ω̃,ω)],

and the extrinsic distance between S and S̃ is

d1(S, S̃) = inf
ω,ω̃

[E1(S, S̃,ω , ω̃)+E1(S̃,S, ω̃,ω)],

where ω and ω̃ induces isomorphic holomorphic flow graphs. The intrinsic metric depends

only on the Riemannian metrics and is independent of the embeddings.

6. Experimental Results. The algorithms are developed using C++ on Windows XP

platform, and tested with a dual processor PC with main frequency 3.2GHz. The execution

time statistics are illustrated in table 1.

TABLE 1

Execution time (unit: minute) of the parameterization and segmentation steps. The experiments are conducted

on a dual processor PC (main frequency: 3.2GHz) with Windows XP platform.

Model Genus # Parameterization Segmentation

bull 7 10.5 8.1

horse 4 8.7 6.2

tyra 6 11.2 8.2

sculpture 3 10.5 7.5

We tested our algorithms on several models acquired by laser scanning.

Figure 3 illustrate the experimental results. For the bull surface on the first row, we

introduce small slices at the tips of its horns, feet, tail and mouth. Then we double cover it to

get a genus 6 symmetric surface. Any global conformal surface parameterization has total 10
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zero points. There are five on the outer side of the double covering. The iso-u curves through

these zero points are orthogonal to the boundaries, and segment the surface to several disks.

Each patch is conformally mapped to a rectangle in the last picture on the first row. The horse

model and tyrannosaur model are on the second and third row in Figure 3. They are processed

in the same way. Each of them are segmented using holomorphic flow. Each segment is a

topological disk, and can be conformally mapped to a rectangle. The kissing sculpture (fourth

row in Figure 3) model is of genus 3, there are 4 zero points. The holomorphic flow through

these 4 points segment the whole surface to 6 patches, each patch is a topological cylinder.

Figure 2 illustrate three morphing experiments. The first two rows in Figure 2 shows

a morphing among three surfaces, the Max Planck head (left on the first row) is morphed

to a real male head (left on the second row) first, then morphed to the David head surface

(right on the third row). The morphing is smooth and natural. The fourth and fith rows

show a morphing between high genus surfaces. The vase model and eight model share the

same topology structure although their geometry are much different. The morphing between

human bodies is more complicated. The human surface has 5 boundaries. Its double covering

is genus 4, there are 3 zero points on the surface, two of them are under the armpits, and one

is at the bottom. The holomorphic flow segmentations are consistent through surfaces with

different postures, because they share the same Riemannian metric. It can be verified that the

zero point positioins, the vertical trajectories are consistent. In fact, all segments are mapped

to rectangles on the parameter plane conformally, the shapes of corresponding rectangles are

similar also. The morphing is illustrated in the last two rows in figure 2.

We study the distances between male head model, David head model, and Max Planck

model. With three geometry images used for morphing experiment, we compute the intrinsic

and extrinsic metrics with Equation 4 and Equation 5. The results are listed in Table 2. From

the results, it is clear that the male head model is closer to Max Planck model than to David

head model. It is consistent with our intuition since the hair on David head makes it different

from the other two.

TABLE 2

Computed intrinsic and extrinsic metrics between Max-Male pair and Male-David pair. The metrics are defined

in Equation 4 and Equation 5, separately.

Pair λ distance d0 Mean Curvature Distance d1

Max - Male 0.109611 0.000011

Male - David 0.433798 0.000105

7. Conclusion and Future Work. This paper introduces a novel surface segmentation

method, holomorphic flow segmentation. This method is based on Riemann surface theories

and differential geometry. Following a global conformal parameterization, it automatically

locates zero points and trace horizontal and vertical lines. This method is independent of sur-

face embedding, intrinsic to the geometry, and works with arbitrary surface with high genus
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and multiple boundaries. We further demonstrate our method by applying it to geometric

morphing and surface matching problems.

In the future, we will explore the approach to compute the unique harmonic map be-

tween two surfaces which minimize the distorsion between their conformal structures based

on holomorphic segmentation method. It is also interesting to generalize this segmentation

method to other surface parameterization methods.
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FIG. 2. Geometric Morphing based on holomorphic flow examples. The surfaces are consistently segmented

using holomorphic 1-forms, Segments are matched using constrained harmonic maps.
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FIG. 3. Holomorphic flow segmentation of the bull model (first row), horse model (second row), tytranosaur

model (third row) and kissing sculpture model (fourth row). The segments are color encoded. The first three surfaces

are topologically modified, so their double covered surfaces are symmetric, the conformal parameter domain of each

segment is a rectangle. The vertical trajectories through zero points of the sculpture surface are illustrated in the

last row, each segment is a topological cylinder.
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