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THROUGHPUT OF Q-ARY SPLITTING ALGORITHMS FOR
CONTENTION RESOLUTION IN COMMUNICATION NETWORKS∗

B. VAN HOUDT† AND C. BLONDIA†

Abstract. The throughput characteristics of contention-based random access channels which

use Q-ary splitting algorithms (where Q is the number of groups into which colliding users are split)

are analyzed. The algorithms considered are of the Capetanakis-Tsybakov-Mikhailov-Vvedenskaya

(CTMV) type and are studied for infinite populations of identical users generating packets according

to a discrete time batch Markovian arrival process (D-BMAP). D-BMAPs are a class of tractable

Markovian arrival processes, which, in general, are non-renewal. Free channel-access is assumed in

combination with Q-ary collision resolution algorithms that exploit either binary or ternary feedback.

For the resulting schemes, tree structured Quasi-Birth-Death (QBD) Markov chains are constructed

and their stability is determined. The maximum achievable throughput is determined for a variety

of arrival processes and splitting factors Q. It is concluded that binary (Q = 2) and ternary (Q = 3)

algorithms should be preferred above other splitting factors Q as the throughput for Q > 3 quickly

degrades when subject to bursty arrival streams. If packets arrivals are correlated and bursty, higher

throughput rates can be achieved by making use of biased coins.

Key words: Random access algorithms, contention resolution, tree algorithms, batch Markovian

arrival process (D-BMAP), Matrix Analytic Methods.

1. Introduction. The study of random access systems of the Capetanakis-
Tsybakov-Mikhailov-Vvedenskaya (CTMV) type has a long history, e.g., [7, 28, 10,
18, 12, 13, 11, 8, 23, 14, 6]. Underlying most of the theoretical work done in this area
are the following key assumptions [27, 19]:

1. New arrivals occur according to a Poisson process with rate λ.
2. The number of nodes or stations is assumed to be infinite. In practice, the

number of nodes is always finite. Assuming an infinite number provides us
with pessimistic estimates for finite populations [1, 19]. In particular, each
finite set of nodes can regard itself as an infinite set of virtual stations, one
for each arriving packet. This situation is equivalent to the infinite node
assumption and allows a station with backlogged packets to compete with
itself.

3. A single error free channel provides immediate—that is, at the end of the
slot—binary (collision or not) or ternary (collision, success or empty) feed-
back.

4. If two or more stations transmit simultaneously, then there is a collision,
meaning that the transmissions interfere destructively so that none succeeds.
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5. Time is slotted and may be considered discrete. Users are synchronized with
respect to the time slots. Each slot has a fixed duration equal to the time
required to transmit a packet.

A number of algorithms belonging to the class of the CTMV type have been stud-
ied with some of the assumptions weakened. For instance, Polyzos and Molle [21] have
considered finite population models for the grouped access strategy, which they refer
to as window access. In case of a finite population, one generally assumes that the new
arrivals occur according to a Bernoulli process instead of a Poisson process (in which
case the number of arrivals in consecutive slots is still independent). Finite popula-
tion models were also developed by Boxma, Denteneer and Resing [6], who focused
on approximating the delay characteristics of contention trees. Kessler, Seri and Sidi
[24, 15] have relaxed the third and fourth assumption and studied the performance
of splitting algorithms in noisy channels with memory and Markovian capture. Many
researchers have also considered different types of feedback, e.g., “success—failure”
and “something—nothing”, and early/delayed feedback. A comprehensive overview
of most of the extensions made to a non-standard environment can be found in [19,
Section 6].

What is apparent from this overview is that almost all researchers assume Pois-
son arrivals, except for some of the results on blocked access algorithms and a limited
number of finite population studies that consider Bernoulli arrivals. This might seem
like an obvious choice, especially in case of an infinite population, because the traffic
generated by a very large population with independent users approaches a Poisson
process. Nevertheless, studying the performance of an algorithm with an infinite pop-
ulation under a broad set of arrival processes might be very useful because such an
infinite population model is a pessimistic estimate for a finite population. Thus, we
can further extend the theoretical foundation of algorithms of the CTMV type by
proving that these algorithms have good stability characteristics in such an environ-
ment. In 1998, during the 50-th birthday of the IEEE Transactions on Information
Theory Society, the ignorance of the bursty nature of real sources was identified by
Ephremides and Hajek [9] as one of the key reasons why the union between informa-
tion theory and communication networks has been only partially successful. It is the
bursty nature of the arrivals that separates Markovian arrival processes from Poisson
arrivals.

In this paper we leave the last four above-mentioned assumptions unchanged, in-
stead we greatly relax the assumption made on the arrival process. That is, instead
of assuming Poisson arrivals with a mean rate λ, we consider a rich class of arrival
processes commonly known as discrete-time batch Markovian arrival processes (D-
BMAPs). This class of arrival processes is known to lend itself very well to modeling
bursty and correlated arrival processes commonly arising in computer and communi-
cation applications [4, 16, 20, 31, 25]. Recently, Van Houdt and Blondia [30] studied
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the impact of introducing D-BMAPs arrivals on the stability of CTMV type random
access systems with blocked and grouped access. In [29] Van Houdt and Blondia
demonstrated that the basic binary CTMV algorithm with free access (see Section 2
for a description) can be studied, using matrix analytical methods, by constructing a
tree structured Markov chain of the Quasi-Birth-Death (QBD) type (see Section 4).
In this work we extend the model presented in [29] in a number of ways: (1) we con-
sider both the modified and basic version of the CTMV type algorithms, (2) allow the
splitting factor Q to be larger than 2 and (3) no longer restrict ourselves to fair coins
only. Using various numerical examples we demonstrate that the maximum stable
throughput degrades as the arrival process becomes more bursty. However, for small
splitting factors Q, the degradation is limited and the good efficiency characteristics
of random access systems of the CTMV type with free access remain valid. We also
demonstrate that the optimality of using fair coins for the basic version of the CTMV
type algorithms is a property of the Poisson arrival process only. For correlated arrival
processes, the use of biased coins increases the maximum stable throughput. Finally,
as the Poisson arrival process is a member of the set of all D-BMAP processes, this
paper presents a novel approach to obtain the well known stability results by Mathys
and Flajolet [18].

The paper is organized as follows. Section 2 provides a short description of the
CTMV type algorithms considered. In Section 3 we briefly recall the definition of a
D-BMAP, whereas Section 4 reviews a Quasi-Birth-Death Markov chain with a tree
structure. Next, the analytical models are presented in Section 5. An algorithm to
determine the stability of such a Markov chain is given in Section 6. Finally, some
numerical examples are presented in Section 7, whereas conclusions are drawn and
model extensions are discussed in Section 8.

2. Specification of the Algorithms. In this section, we specify the algorithms
to be analyzed [10, 18]. In a first subsection we describe a set of CTMV type algo-
rithms that require binary feedback, called the basic CTMV algorithms, whereas in
a second subsection the modified CTMV algorithms, exploiting ternary feedback, are
considered. We start by summarizing the common features of both sets of algorithms.

A single channel (bus, cable, broadcast medium) is shared among many users
(sources, nodes, stations) that transmit packetized messages. Time is slotted and
transmissions can only occur at the beginning of a time slot. Each time slot has
a fixed duration equal to the length of a packet. Each transmission is within the
reception range of every user (in a wireless centralized LAN environment the Base
Station could broadcast the result of each uplink transmission).

CTMV type algorithms are collision resolution algorithms for which each user
strives to retransmit its colliding packet till it is correctly received. The users have
to resolve this contention without the benefit of any other source of information on
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other users’ activity. Colliding users are recursively separated, according to some
randomization procedure, into distinct groups. The users of the first group retransmit
in the next slot, while the users of the i-th group, i > 1, wait until the first i − 1
groups are resolved.

Users that hold a packet (at time t) are referred to as active users (at time t).
CTMV algorithms are conveniently implemented by letting each active user maintain
an integer value, referred to as the current stack level. The current stack level held
by a station can be seen as a representation of the number of “groups” that need to
be resolved before a station is allowed to (re)transmit. A user is allowed to transmit
its packet whenever its current stack level equals zero. At the end of each time slot
the current stack level of all active stations is updated. The rules used to update the
current stack level are different for both schemes.

2.1. The Basic Q-ary CTMV Algorithm with Free Access. The basic Q-
ary CTMV algorithms are those corresponding with the original proposals made by
Capetanakis [7]. The current stack level, maintained by each active user, is updated
as follows:

• An active user transmits in a time slot t whenever its current stack level for
slot t is equal to zero. A user that became active during time slot t − 1
initializes the current stack level for slot t at zero.

• At the end of a time slot t in which no collision occurs, users with a stack
level i, i > 0, for slot t set their current stack level for slot t+1 at i−1 (while
a possible successful user becomes inactive).

• At the end of a time slot t in which a collision occurs, all users with a current
stack level i, i > 0, for slot t set their current stack level for slot t + 1 at
i + Q − 1. Users with a current stack level for slot t equal to zero split into
Q distinct groups: a user joins the i-th group with a probability pi−1. Users
that join the i-th group set their current stack level for slot t + 1 equal to
i − 1.

Notice, new packet arrivals are allowed to take part in the scheme without any
further delay. This channel-access technique is commonly known as free access, as
opposed to blocked access schemes were new arrivals have to wait until all prior
collisions have been resolved. Selecting one of the Q distinct groups (after a collision)
can be seen as flipping a Q-sided coin. A distinction is also made between fair coins,
i.e., p0 = . . . = pQ−1 = 1/Q, and biased coins. We will consider both fair and biased
coins (we do assume that all the stations use the same coins, either fair or biased).

2.2. The Modified Q-ary CTMV Algorithm with Free Access. The mod-
ified CTMV algorithms are a well-known improvement of the basic CTMV algorithm
that skips so-called doomed slots [1, 28]. Doomed slots are slots for which all active
stations know that the above-mentioned operation of the basic Q-ary CTMV algo-
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rithm would result in a collision. In order to implement this optimization, one does
require ternary feedback (empty, successful or collision slot). While the basic CTMV
algorithm only requires binary feedback (collision or not). The idea is the following.

Suppose that a collision is followed by Q − 1 empty slots. This implies that all
packets involved in the collision selected the Q-th group. Using the basic Q-ary CTMV
algorithm, these stations would transmit in the next slot (together with possible
newcomers), generating a guaranteed collision. The modified scheme improves the
basic scheme by omitting these slots and by splitting the set of stations that would
otherwise result in a guaranteed collision into Q subsets. If the next Q − 1 slots
are again empty, we would get another guaranteed collision and therefore the next
slot is again skipped. Thus, whenever, for some i ≥ 1, the last 1 + i(Q − 1) slots
contain a collision followed by i(Q− 1) empty slots, this otherwise-wasted slot can be
skipped by having all stations immediately act as if it had occurred. This modified
scheme is conveniently implemented using a current stack level and a simple count
down counter.

Figure 1 presents an example of the transmission process for Q = 3, it also includes
a list of group numbers (1, 2 or 3) for each packet to indicate which group the packet
joins after each collision (in which it is involved). Thus, the list 2, 3, 1, 1, . . . for packet
D indicates that packet D joins the second group as a result of its first collision, the
third as a result of its second collision, the first as a result of its third collision (the
skipped collision) and again the first as a result of its fourth collision.
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3. Discrete Time Batch Markovian Arrival Processes (D-BMAP). The
D-BMAP is the discrete time counterpart of the BMAP [17] and was first introduced
in [3]. Formally, a D-BMAP is defined by an infinite set of positive l × l matrices
(Bn)0≤n<∞, with the property that

(1) B =
∞∑

n=0

Bn

is a transition matrix. By definition the Markov chain associated with B and having
{i | 1 ≤ i ≤ l} as its state space, is controlling the actual arrival process as follows.
Suppose it is in state i at time t. By going to the next time instance t+1, there occurs
a transition to another or possibly the same state, and a batch arrival may or may
not occur. The entries (Bn)i,j represent the probability of having a transition from
state i to j and a batch arrival of size n. So, a transition from state i to j without an
arrival will occur with probability (B0)i,j .

For B aperiodic and irreducible the Markov chain has a unique stationary distri-
bution. Let β be the stationary probability vector of the Markov chain characterized
by B, i.e., βB = β and βe = 1 with e a column vector of 1’s. The mean arrival rate
λ of the D-BMAP (Bn)n is given by

(2) λ = β

( ∞∑
n=1

nBn

)
e.

Many properties like the autocorrelation function or the index of dispersion for count
(IDC) can be found in [3, 4, 5]. Another important characteristic of D-BMAPs is
that any finite superposition of D-BMAPs is again a D-BMAP. Recently, open-source
software became available to match IP traffic by means of a BMAP arrival process
(see [16] and the references therein).

4. Markov Chain of Quasi-Birth-Death Type with a Tree Structure. In
this section, we briefly describe the main characteristics of a tree structured Quasi-
Birth-Death (QBD) Markov chain (MC). This type of MCs was first introduced by
Takine, et al. [26] and Yeung, et al. [32, 33]. Consider a discrete time bivariate MC
{(Xt, Nt), t ≥ 0} in which the values of Xt are represented by nodes of a Q-ary tree,
and where Nt takes integer values between 1 and m. Xt is referred to as the node
and Nt as the auxiliary variable of the MC at time t. A description of the transitions
of the MC is given below.

A Q-ary tree is a tree for which each node has Q children. The root node is
denoted as ∅. The remaining nodes are denoted as strings of integers, with each integer
between 1 and Q. For instance, the k-th child of the root node is represented by k,
the l-th child of the node k is represented by kl, and so on. Throughout this paper we
use lower case letters to represent integers and upper case letters to represent strings
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of integers when referring to nodes of the tree. We use ’+’ to denote concatenation
on the right. For example, if J = j1j2 . . . jv, k = jv+1 then J + k = j1j2 . . . jvjv+1.

The MC (Xt, Nt) is called an MC of the QBD-type with a tree structure if at
each step the chain can only make transitions to its parent, children of its parent, or
to its children. Moreover, if the chain is in state (J + k, i) at time t then the state at
time t + 1 is determined as follows:

1. (J, j) with probability di,j
k , k = 1, . . . , Q,

2. (J + s, j) with probability ai,j
k,s, k, s = 1, . . . , Q,

3. (J + ks, j) with probability ui,j
s , k, s = 1, . . . , Q.

Define m×m matrices Dk, Ak,s and Us with respective (i, j)th elements given by
di,j

k , ai,j
k,s and ui,j

s . Notice that transitions from state (J +k, i) do not dependent upon
J , moreover, transitions to state (J + ks, j) are also independent of k. When the MC
is in the root state (Xt = ∅) at time t then the state at time t + 1 is determined as
follows:

1. (∅, j) with probability f i,j ,
2. (s, j) with probability ui,j

s , s = 1, . . . , Q.

Define the m×m matrix F with corresponding (i, j)th element given by f i,j . We
state that a tree structured QBD MC is stable if and only if for all states (J + k, i),
the probability of eventually reaching a state of the form (J, j) equals one. For a more
detailed description of the notation and algebra see Yeung, et al. [32].

5. Analysis of the Random Access Schemes. The analysis of the random
access schemes is divided into five different parts, each presented in a different subsec-
tion. Each part describes a tree structured QBD MC that is stable, resp. unstable,
whenever either the basic or the modified CTMV algorithm, for specific values of Q,
is stable, resp. unstable. The five subsections are listed below:

1. the basic CTMV algorithm with Q = 2,
2. the basic CTMV algorithm with Q > 2,
3. the modified CTMV algorithm with Q = 2,
4. the modified CTMV algorithm with Q = 3,
5. the modified CTMV algorithm with Q > 3.

With each new subsection some additional complexity is introduced. The MC de-
veloped in the first subsection was first presented in [29] and a short description is
included here for clarity reasons.

5.1. The Basic CTMV algorithm with Q = 2. Consider the following
stochastic process (Xt, Nt = (Yt, Zt)). Let Xt be the backlogged string consist-
ing of the status of all backlogged stations at time slot t. A station is called a
backlogged station whenever its current stack level is larger than 0. For instance,
when Xt = nk . . . n2n1 there are

∑k
i=1 ni backlogged stations, for ni ≥ 0 back-

logged stations the current stack level equals i. In this example there are no stations
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with a stack level larger than k. The sample space of the random variable Xt is
Ω1 = {∅} ∪ {J | J = nk . . . n1, nj ≥ 0, 1 ≤ j ≤ k, k ≥ 1}. Notice that the string
J is allowed to have a number of leading zeros. The random variable Xt has a tree
structure. For instance, the children of j1j2 . . . jn are j1j2 . . . jnk, k ≥ 0. Thus, each
node in the tree has an infinite number of children. Let Yt be the number of sta-
tions that transmit at time slot t. The sample space of the random variable Yt is
Ω2 = {n | n ≥ 0}. Finally, let Zt be the state of the D-BMAP arrival process at the
end of time slot t, hence the sample space Ω3 of Zt is {n | 1 ≤ n ≤ l}.

It is easy to see that (Xt, Nt = (Yt, Zt)) is an MC. The state space of the MC
is Ω1 × (Ω2 × Ω3). In order to study the stability (and to calculate the stationary
distribution) of this MC numerically the nodes of Xt should have a finite number of
children and the auxiliary variable Nt should have a finite range. Therefore, the MC
(Xt, Nt) is approximated by another bivariate MC (Xd

t , Nd
t ). (Xd

t , Nd
t ) is obtained

by setting a maximum d on the number of stations that can have the same current
stack level (including level 0, i.e., the number of stations that transmit in slot t). If
a situation occurs in which d + k, k > 0, stations have the same current stack level,
k stations are assumed to drop their packet. We state that d is chosen sufficiently
large when the ratio of dropped packets due to the introduction of d is smaller than
10−9. This ratio can be obtained by comparing the load of the input D-BMAP and
the probability that a successful transmission takes place. Provided that d is chosen
sufficiently large we can study the stability of (Xt, Nt) by studying the MC (Xd

t , Nd
t ).

Indeed, the chain (Xt, Nt) is unstable whenever the chain (Xd
t , Nd

t ) is unstable.
The stability of the chain (Xd

t , Nd
t ) is not sufficient to formally prove that the chain

(Xt, Nt) is stable. For instance, for every D-BMAP, (X1
t , N1

t ) is stable. Even when d

is chosen sufficiently large, it is still possible that the dropping of these rare packets
(even when we lose less than one in a billion) causes the chain (Xd

t , Nd
t ) to become

stable while (Xt, Nt) is not. Hence, it is possible that we slightly overestimate the
stability point of a particular arrival process. The Poisson results by Mathys and
Flajolet [18] are the only existing point of comparision to get an idea of the margin of
overestimation. Numerical results (not included in Section 7) have indicated that for
d = 10 the overestimation is less than 0.000003 (the chain was unstable for λ = 0.36018
while the exact result by Flajolet states 0.360177). Further increasing d would result
in even smaller overestimation errors. For each of the five models presented in this
paper, the introduction of the parameter d is the only required approximation.

Let us now consider the MC (Xd
t , Nd

t = (Y d
t , Zt)) in more detail. Xd

t is the
backlogged string that holds the status of all backlogged stations. As before, when
Xd

t = nk . . . n2n1 then 0 ≤ ni ≤ d backlogged stations have a the current stack level
equal to i. The sample space of the random variable Xd

t is obviously Ωd
1 = {∅} ∪ {J |

J = nk . . . n1, 0 ≤ nj ≤ d, 1 ≤ j ≤ k, k ≥ 1}. Each node in Ωd
1 has d + 1 children.

As opposed to the general description of the tree structured QBD MC in Section 4
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we represent the children of a node by 0 to d instead of 1 to d + 1. Y d
t represents

the number of stations that transmit in slot t (i.e., the current stack level of these
stations is 0 at time t). The sample space of Y d

t is Ωd
2 = {n | 0 ≤ n ≤ d}. Finally, Zt

is the same random variable as before.
Assume that the MC (Xd

t , Nd
t ) is in node J + k at time t, i.e., Xd

t = J + k.
Either slot t contains a collision, in which case the chain will be in a state of the form
J + ks, 0 ≤ s ≤ d, at time t + 1, or slot t does not hold a collision, meaning that the
chain will be in state J at time t + 1. Therefore, the chain can only make transitions
to its parent or to its children. In order for the MC (Xd

t , Nd
t ) to be a tree structured

QBD MC the following two additional conditions have to be satisfied:
1. The probability of making a transition from state (J + k, (i, j)) to state

(J, (i′, j′)) may not dependent upon J . Clearly, j′, the new state of the
D-BMAP, is solely determined by j, the old state of the D-BMAP, and thus
independent of J . The number of stations that transmit in slot t + 1, that
is, i′, is determined by k, the number of stations that decrease their current
stack level from 1 to 0, and j, the old state of the D-BMAP (because this
state j determines the number of new arrivals in slot t + 1).

2. The probability of making a transition from state (J + k, (i, j)) to state (J +
ks, (i′, j′)) may not dependent upon J or k. Again, j′, the new state of the
D-BMAP, is determined by j, the old state of the D-BMAP. While, s, the
number of stations that increase their current stack level to 1 (as a result of
the coin flipping), is determined by i and the probabilities p0 and p1 = 1−p0.
Finally, i′, the number of stations that transmit in slot t + 1, is determined
by i, p0 and j, the old state of the D-BMAP (because this state j determines
the number of new arrivals).

In conclusion, the MC (Xd
t , Nd

t ) is a tree structured QBD MC. A tree structured
QBD MC is fully characterized by the matrices Dk, Us, Ak,s and F (see Section 4).
In the remainder of this section we indicate how to calculate these matrices. Once
that we obtained these matrices, they are the input variables of the iterative algorithm
described in Section 6. This iterative algorithm determines whether the MC is stable
or not.

The matrix F is of no importance for the stability of the MC, therefore, there is
no need to discuss it in any of the five models considered. The matrices Ak,s hold
the transition probabilities that the chain (Xd

t , Nd
t ) goes from state (J + k, (i, j))

to the state (J + s, (i′, j′)). These transitions are transitions between sibling nodes.
Remember that the chain (Xd

t , Nd
t ) can only make transitions to its parent or to its

children, therefore, the entries of the matrices Ak,s are zero.

The matrices Dk hold the transition probabilities that the chain (Xd
t , Nd

t ) goes
from state (J + k, (i, j)) to the state (J, (i′, j′)). This happens when a collision does
not occur in slot t. Therefore, the state i, the number of stations that transmit in
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slot t, must be equal to 0 or 1. Moreover, the state i′, the number of stations that
transmit in slot t + 1, equals k, the number of stations that decrease their current
stack level from 1 to 0, plus some possible new arrivals. Hence,

(3) Dk((i, j), (i′, j′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bi′−k)j,j′ i ≤ 1, i′ ≥ k, i′ < d,∑
l≥d−k(Bl)j,j′ i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise,

where (Bn)j,j′ holds the probability that n new arrivals occur and that the input
D-BMAP changes its state from j to j′ (see Section 3).

The matrices Us hold the transition probabilities that the chain (Xd
t , Nd

t ) goes
from state (J + k, (i, j)) to the state (J + ks, (i′, j′)). This happens when slot t holds
a collision. Therefore, the state i, the number of stations that transmit in slot t,
must be larger than or equal to 2. Moreover, the state i′, the number of stations
that transmit in slot t + 1, equals i, the number of stations that transmitted in slot
t, minus s, the number of stations that increase their current stack level to 1 (as a
result of the coin flipping), plus some possible new arrivals. Clearly, s can never be
larger than i. Hence,
(4)

Us((i, j), (i′, j′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ci
sp

i−s
0 ps

1(Bi′−(i−s))j,j′ i > 1, i ≥ s, i′ ≥ i − s, i′ < d,

Ci
sp

i−s
0 ps

1

∑
l≥d−(i−s)(Bl)j,j′ i > 1, i ≥ s, i′ ≥ i − s, i′ = d,

0 otherwise,

where Ci
s denotes the number of different possible combinations of s from i different

items.

5.2. The Basic CTMV algorithm with Q > 2. As in the previous subsection,
we will construct a tree structured QBD MC that allows us to study the stability of
the basic CTMV algorithm (but now for Q > 2). In the remainder of this section we
indicate how to construct this MC and how to calculate the matrices that characterize
the MC. These matrices are the input variables of the iterative algorithm described
in Section 6.

Let qi, 0 ≤ i ≤ Q− 1, be the probability that a station increases its current stack
level to i, as a result of the coin flipping procedure, provided that it does not increase
its current stack level to a value above i. Hence,

(5) qi =
pi

1 −∑j>i pj
,

where pi, 0 ≤ i ≤ Q − 1, is the probability that a station increases its current stack
level to i as a result of the coin flip.

Consider the stochastic process (Xt, Nt = (Yt, Zt)), where Xt denotes the back-
logged string consisting of the status of all backlogged stations at time slot t, Yt denotes
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the number of stations that transmit in time slot t and Zt denotes the state of the
input D-BMAP at the end of time slot t. In the previous subsection we showed that
this process (to be correct its approximation (Xd

t , Nd
t )) is a tree structured QBD MC

if Q = 2. For Q > 2, this process is still a tree structured MC, but it is no longer of
the QBD type. For instance, after each slot in which a collision occurs, Q−1 integers
are added to the backlogged string. These Q − 1 integers represent the number of
stations that increase their current stack level to 1, 2, . . ., Q − 1 as a result of their
coin flipping procedure.

We shall reduce the MC (Xk, Nk) to a tree structured QBD MC by constructing an
expanded MC (Xt,Nt = (Yt,Zt,Qt)). The technique used to construct this expanded
MC is similar to Ramaswami’s [22] in order to reduce an M/G/1-type MC to a QBD
MC. The key idea behind this expanded MC is that whenever a transition occurs
that adds Q − 1 integers to the node variable Xk, we split this transition into Q − 1
transitions that each add one integer to the node variable Xt.

Assume a given realization (Xk(w), Nk(w)) of the MC (Xk, Nk). The expanded
chain (Xt,Nt = (Yt,Zt,Qt)) is constructed as follows (the range of Qt is 0 to Q− 2).

Initial state: If (X0(w), N0(w)) = (J, (i, j)), then set (X0(w),N0(w)) = (J, (i, j,
0)). Also, set k = 0 and t = 0, k represents the steps of the original chain and t

represents the steps of the expanded chain. We will establish a one-to-one correspon-
dence between the state (J, (i, j)) of the original chain and the state (J, (i, j, 0)) of the
expanded chain.

Transition Rules: We distinguish between three possible cases: Qt(w) = 0,
Qt(w) > 1 and Qt(w) = 1.

1. Qt(w) = 0: Consider (Xk(w), (Yk(w), Zk(w))), and do one of the following:
• Assume that the k-th time slot does not hold a collision, i.e., Yk(w) ≤ 1.

We set Xt+1(w) = Xk+1(w) and Nt+1(w) = (Yk+1(w), Zk+1(w), 0).
Thus, the transitions that do not correspond to a collision remain iden-
tical. Next, both k and t are increased by one.

• Assume that the k-th time slot does hold a collision, i.e., Yk(w) > 1.
Therefore, Xk+1(w) can be written as Xk(w)+sQ−1sQ−2 . . . s2s1. Then,
(Xt+1(w),Nt+1(w)) = (Xk(w) + sQ−1, (Yk(w) − sQ−1, Zk(w), Q − 2)).
Next, increment both t and k by one.

2. Qt(w) > 1: Xk(w) can be written as J + sQ−1sQ−2 . . . s2s1. Set Xt+1(w) =
Xt(w) + sQt(w) and Nt+1(w) = (Yt(w) − sQt(w),Zt(w),Qt(w) − 1)). Next,
increase t by one and do not alter the value of k.

3. Qt(w) = 1: As before Xk(w) can be written as J + sQ−1sQ−2 . . . s2s1, set
Xt+1(w) = Xt(w) + s1 and Nt+1(w) = (Yk(w), Zk(w), 0). Increase t by one
and do not alter the value of k.
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The expanded MC (Xt,Nt) is a tree structured QBD MC. The only problem is that
every node in (Xt,Nt) has an infinite number of children and the auxiliary variable
has an infinite number of states. As in the previous subsection, we can resolve this
problem by approximating the expanded chain by the chain (X d

t ,N d
t = (Yd

t ,Zt,Qt))
that is obtained by putting a maximum d on the number of stations that are allowed
to have an identical current stack level.

The expanded MC (X d
t ,N d

t ) does not allow transitions between sibling nodes.
Therefore, the entries of the matrices Ak,s are zero. Looking at the transition rules
described above, the transition blocks of the MC (X d

t ,N d
t ) are the following.

The matrices Dk hold the transition probabilities that the chain (X d
t ,N d

t ) goes
from state (J +k, (i, j, m)) to the state (J, (i′, j′, m′)). This can only happen if m = 0,
m′ = 0 and i ≤ 1. Hence,

(6) Dk((i, j, m), (i′, j′, m′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bi′−k)j,j′ m = m′ = 0, i ≤ 1, i′ ≥ k, i′ < d,∑
l≥d−k(Bl)j,j′ m = m′ = 0, i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise,

where (Bn)j,j′ holds the probability that n new arrivals occur and that the input
D-BMAP changes its state from j to j′ (see Section 3).

The matrices Us hold the transition probabilities that the chain (X d
t ,N d

t ) goes
from state (J +k, (i, j, m)) to the state (J +ks, (i′, j′, m′)). We separate three different
cases. First, assume that m = 0. Hence,

Us((i, j, 0), (i′, j′, m′))

=

⎧⎨
⎩Ci

sq
s
Q−1(1 − qQ−1)i−s(Il)j,j′ m′ = Q − 2, i > 1, i′ = i − s,

0 otherwise,
(7)

where Il is an l× l unity matrix. We simply add the number of colliding stations that
increase their current stack level to Q − 1 to the backlogged string X d

t . Second, for
m = 1, we get
(8)

Us((i, j, 1), (i′, j′, m′)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci
sq

s
1(1 − q1)i−s(Bi′−(i−s))j,j′ m′ = 0,

i ≥ s, d > i′ ≥ i − s,

Ci
sq

s
1(1 − q1)i−s

∑
l≥d−(i−s)(Bl)j,j′ m′ = 0, i ≥ s, i′ = d,

0 otherwise.

Here the number of colliding stations that increase their current stack level to 1 is
added to the backlogged string and we take the new arrivals into account. Finally, for
Q − 1 > m > 1, we have

(9) Us((i, j, m), (i′, j′, m′)) =

⎧⎨
⎩Ci

sq
s
m(1 − qm)i−s(Il)j,j′ m′ = m − 1, i′ = i − s,

0 otherwise.
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Once more, the number of colliding stations that increase their current stack level
to m is concatenated to the backlogged string. This completes the discussion of the
basic Q-ary CTMV algorithms. In the next sections we indicate how to adapt the
MC above to model the modified CTMV schemes.

5.3. The modified CTMV algorithm with Q = 2. Consider the stochastic
process (Xt, Nt = (Yt, Zt)), where Xt denotes the backlogged string consisting of the
status of all backlogged stations at time slot t, Yt denotes the number of stations that
transmit in time slot t and Zt denotes the state of the input D-BMAP at the end
of time slot t. For the modified CTMV algorithm, the stochastic process (Xt, Nt =
(Yt, Zt)) is not Markovian. We illustrate this by means of an example. Let Xt =
J + k, k > 1 and Yt = 0. This implies that the t-th time slot is empty and k stations
have a current stack level equal to one. Consider the following two possibilities for
Xt−1.

• Xt−1 = J and Yt−1 = k, in this case slot t − 1 holds a collision of exactly k

stations. The state Xt = J +k and Yt = 0 is reached if each of the k colliding
stations increments its current stack level to 1 (and no new arrivals occur).
Moreover, at the end of slot t all stations know that slot t + 1 would result
in a collision, i.e., is a doomed slot. As a results, all stations immediately act
as if the collision did occur. Therefore, it is possible that Xt+1 = J + s (if s

of the k stations decide to set their current stack level to 1 as a result of the
coin flip).

• Xt−1 = J + k + 0 and Yt−1 = 1, in which case slot t − 1 holds a successful
transmission. As opposed to the first case, the stations do not consider slot
t + 1 as a doomed slot, and the collision in slot t + 1 will take place. This
implies that Xt+1 is equal to J .

In conclusion, the state of the stochastic process (Xt, Nt = (Yt, Zt)) at time t + 1 is
not solely determined by the state a time t, which implies that (Xt, Nt = (Yt, Zt)) is
not Markovian.

Nevertheless, from the stochastic process (Xt, Nt = (Yt, Zt)), we can construct
a tree structured QBD MC by adding a value, say −1, to the range of Yt. Yt = −1
then implies that slot t is empty and the next slot would have been a doomed slot (if
we were using the basic scheme). While Yt = 0 implies that slot t is empty and the
next slot is not considered to be a doomed slot. Denote the stochastic process that is
obtain by adding −1 to the range of Yt as (Xt, Mt = (Yt, Zt)). The transitions to and
from a state with Yt = −1 are as follows. We enter a state with Yt = −1 whenever
a transition occurs from a collision slot to an empty slot. We stay in a state with
Yt = −1 if the next slot is an empty slot, otherwise we enter a state with Yt �= −1.

The stochastic process (Xt, Mt) can be shown to be a tree structured QBD MC
(with similar arguments as in Section 5.1). (Xt, Mt) does however allow transitions
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between sibling nodes. This happens whenever an otherwise doomed slot is skipped. It
is possible to use a more complex (and time consuming) iterative formula (compared
to the one in Section 6), that determines whether a tree structured MC, that does
allow transitions between sibling nodes, is stable. Instead, we construct a new tree
structured QBD MC (Xt,Mt = (Yt,Zt)) that only uses transitions to parent and
child nodes1.

The range of the random variable Yt equals {(0, n) | −1 ≤ n} ∪ {(1, n) | 2 ≤ n}.
We will establish a one-to-one correspondence between the states (J, (i, j)) of the MC
(Xt, Mt) and the states (J, ((0, i), j)) of (Xt,Mt). The idea behind this expanded
chain (Xt,Mt) is that a transition from a node J + k to a node J + s is split into two
transitions, a first one from node J + k to J , followed by a second one from node J

to J + s. When the transition from node J + k to J takes place we store the value of
k in Yt by setting Yt = (1, k). The fact that the first component of Yt is equal to 1
indicates that the next transition has to be the second step of a split transition.

Assume a given realization (Xk(w), Mk(w)) of the MC (Xk, Mk). The expanded
chain (Xt,Mt) is constructed as follows.

Initial state: If (X0(w), M0(w)) = (J, (i, j)), then set (X0(w),M0(w)) = (J, ((0,
i), j)). Also, set k = 0 and t = 0, k represents the steps of the original chain and t

represents the steps of the expanded chain.

Transition Rules: We consider two possibilities: Yt(w) = (0, i) and Yt(w) = (1, i).

1. Yt(w) = (0, i): Consider (Xk(w), Mk(w) = (Yk(w), Zk(w))), and assume
that the k-th time slot holds a collision. We set Xt+1(w) = Xk+1(w) and
Mt+1(w) = ((0, Yk+1(w)), Zk+1(w)). Thus, the transitions remain identical
in case of a collision. On the other hand, if the k-th time slot does not hold a
collision, Yk(w) = 0, 1 or −1. For Yk(w) = −1, we can write Xk(w) as J + s

with s > 1 and we get (Xt+1(w),Mt+1(w)) = (J, ((1, s), Zk(w))). Second, for
Yk(w) �= −1, we get (Xt+1(w),Mt+1(w)) = (Xk+1(w), ((0, Yk+1(w)), Zk+1

(w))). Both k and t are increased by one in each of the cases mentioned
above.

2. Yt(w) = (1, i): Xk(w) can be written as J + s′, set Xt+1(w) = Xt(w)+ s′ and
Mt+1(w) = ((0, Yk(w)), Zk(w)). Next, increase t by one and do not alter the
value of k.

As in the previous subsections, we make the number of children in each node and
the number of states of the auxiliary variable Mt finite by putting a maximum d on
the number of stations that are allowed to have the same current stack level.

1Actually, the MC that is created is called a tree-like process and various iterative algorithms

apart from the one presented in Section 6 can be found in [2].
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Looking at the transitions rules, the transition blocks Dk, 0 ≤ k ≤ d, and Us, 0 ≤
s ≤ d, are the following. The matrices Dk hold the transition probabilities that the
chain (X d

t ,Md
t ) goes from state (J + k, ((m, i), j)) to the state (J, ((m′, i′), j′)). For

m = 0 and i �= −1, we get

(10) Dk(((0, i), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bi′−k)j,j′ m′ = 0, i ≤ 1, i′ ≥ k, i′ < d,∑
l≥d−k(Bl)j,j′ m′ = 0, i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise.

For m = 0 and i = −1, we set
(11)

Dk(((0,−1), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Bi′−k)j,j′ k = 0 or 1, m′ = 0, i′ ≥ k, i′ < d,∑
l≥d−k(Bl)j,j′ k = 0 or 1, m′ = 0, i′ ≥ k, i′ = d,

(Il)j,j′ k > 1, m′ = 1, i′ = k,

0 otherwise,

where Il is an l × l identity matrix. A visit to one of the states (J + k, ((0,−1), j)),
with k = 0 or 1, can never occur (the states are transient with an expected return
probability equal to 0). Nevertheless, we can still make use of the iterative scheme
in Section 6 by making sure that the probability of eventually returning to a state
of the form (J, ((m, i), j)) equals one. We realize this by making sure that the corre-
sponding rows of the matrices D0 and D1 are stochastic. This explains the somewhat
unexpected first two lines in the equation above (we act as if i = 0, but any stochastic
row will do). For m = 1, all entries of Dk, 0 ≤ k ≤ d, are zero.

The matrices Us hold the transition probabilities that the chain (X d
t ,Md

t ) goes
from state (J + k, ((m, i), j)) to the state (J + ks, ((m′, i′), j′)). For i �= s, meaning
that the first group is not empty, we get

Us(((m, i), j), ((m′, i′), j′))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci
sp

s
1p

i−s
0 (Bi′−(i−s))j,j′ m′ = 0, i > 1,

i > s, d > i′ ≥ i − s,

Ci
sp

s
1p

i−s
0

∑
l≥d−(i−s)(Bl)j,j′ m′ = 0, i > 1, i > s, i′ = d,

0 otherwise.

(12)

For i = s, which implies that the first group is empty, we have

(13) Us(((m, i), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ps
1(B0)j,j′ m′ = 0, i > 1, i′ = −1,

ps
1(Bi′ )j,j′ m′ = 0, i > 1, 0 < i′ < d,

ps
1

∑
l≥d(Bl)j,j′ m′ = 0, i > 1, i′ = d,

0 otherwise,
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because the next slot would be doomed if there are no new arrivals when using the
basic CTMV algorithm. Notice that both these sets of equations are valid for m = 0, 1
and also for i = −1.

5.4. The modified CTMV algorithm with Q = 3. For the basic CTMV
algorithm we made use of two different models, one for Q = 2 and another for Q > 2.
For the modified CTMV algorithm we make use of three different models. Each model
description is only valid for the specified range of Q. Rather than going through the
entire process that is used to construct the remaining two models, i.e., tree structured
QBD MCs, we restrict ourselves to a description of the state space of the MCs and
their corresponding transition probabilities. The techniques used to construct both
models are a combination of the methods used to construct the previous two models.

The MC (X d
t ,Md

t = (Yd
t ,Zt)), used to study the modified ternary CTMV algo-

rithm, is defined on the state space Ωd
1 × (Ωd

2 × Ω3), where Ωd
1 = {∅} ∪ {J | J =

nk . . . n1, 0 ≤ nj ≤ d, 1 ≤ j ≤ k, k ≥ 1}, Ωd
2 = {(0, n) | −1 ≤ n ≤ d} ∪ {(1, n) | 0 ≤

n ≤ d} ∪ {(2, n) | 2 ≤ n ≤ d} and Ω3 = {n | 1 ≤ n ≤ l}. The transition matrices
Dk, Us and Ak,s are the following. The entries of the matrices Ak,s are all zero. Thus,
the chain does not allow transitions between sibling nodes.

The matrices Dk hold the transition probabilities that the chain (X d
t ,Md

t ) goes
from state (J + k, ((m, i), j)) to the state (J, ((m′, i′), j′)). For m = 0 and i �= −1, we
get

(14) Dk(((0, i), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bi′−k)j,j′ m′ = 0, i ≤ 1, i′ ≥ k, i′ < d,∑
l≥d−k(Bl)j,j′ m′ = 0, i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise.

For m = 0 and i = −1, we set

(15) Dk(((0,−1), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B0)j,j′ k = 0 or 1, m′ = 0, i′ = −1,

(Bi′ )j,j′ k = 0 or 1, m′ = 0, d > i′ > 0,∑
l≥d(Bl)j,j′ k = 0 or 1, m′ = 0, i′ = d,

(Il)j,j′ k > 1, m′ = 2, i′ = k,

0 otherwise,

where Il is a l × l identity matrix. For m = 1 and 2, all entries of Dk, 0 ≤ k ≤ d, are
zero.

The matrices Us hold the transition probabilities that the chain (X d
t ,Md

t ) goes
from state (J + k, ((m, i), j)) to the state (J + ks, ((m′, i′), j′)). For m = 0 or 2, we
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get

Us(((m, i), j), ((m′, i′), j′))

=

⎧⎨
⎩Ci

sq
s
2(1 − q2)i−s(Il)j,j′ m′ = 1, i > 1, i ≥ s, i′ = i − s,

0 otherwise.
(16)

For m = 1 and i > 0, we get

Us(((1, i), j), ((m′, i′), j′))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci
sq

s
1(1 − q1)i−s(Bi′−(i−s))j,j′ m′ = 0, i ≥ s,

d > i′ ≥ i − s,

Ci
sq

s
1(1 − q1)i−s

∑
l≥d−(i−s)(Bl)j,j′ m′ = 0, i ≥ s, i′ = d,

0 otherwise.

(17)

While for m = 1 and i = 0, we have

(18) Us(((1, 0), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B0)j,j′ m′ = s = 0, i′ = −1,

(Bi′)j,j′ m′ = s = 0, 0 < i′ < d,∑
l≥d(Bl)j,j′ m′ = s = 0, i′ = d,

0 otherwise.

5.5. The modified CTMV algorithm with Q > 3. The MC (X d
t ,Md

t =
(Yd

t ,Zt)), used to study the modified CTMV algorithm with Q > 3, is defined on the
state space Ωd

1 × (Ωd
2 × Ω3), where Ωd

1 = {∅} ∪ {J | J = nk . . . n1, 0 ≤ nj ≤ d, 1 ≤
j ≤ k, k ≥ 1}, Ωd

2 = {(i, n) | 0 ≤ i ≤ Q − 3,−1 ≤ n ≤ d} ∪ {(Q − 2, n) | 0 ≤ n ≤
d} ∪ {(Q − 1, n) | 2 ≤ n ≤ d} and Ω3 = {n | 1 ≤ n ≤ l}. The transition matrices
Dk, Us and Ak,s are the following. As before the entries of the matrices Ak,s are all
zero.

The matrices Dk hold the transition probabilities that the chain (X d
t ,Md

t ) goes
from state (J + k, ((m, i), j)) to the state (J, ((m′, i′), j′)). For m = 0 and i �= −1, we
get

(19) Dk(((0, i), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Bi′−k)j,j′ m′ = 0, i ≤ 1, i′ ≥ k, i′ < d,∑
l≥d−k(Bl)j,j′ m′ = 0, i ≤ 1, i′ ≥ k, i′ = d,

0 otherwise.

For m = 0 and i = −1, we set

(20) Dk(((0,−1), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B0)j,j′ k = 0 or 1, m′ = 0, i′ = −1,

(Bi′ )j,j′ k = 0 or 1, m′ = 0, d > i′ > 0,∑
l≥d(Bl)j,j′ k = 0 or 1, m′ = 0, i′ = d,

(Il)j,j′ k > 1, m′ = Q − 1, i′ = k,

0 otherwise,
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where Il is a l × l identity matrix. For m �= 0, all entries of Dk, 0 ≤ k ≤ d, are zero.
The matrices Us hold the transition probabilities that the chain (X d

t ,Md
t ) goes

from state (J + k, ((m, i), j)) to the state (J + ks, ((m′, i′), j′)). For m = 0 or Q − 1,
we get
(21)

Us(((m, i), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ci
sq

s
Q−1(1 − qQ−1)i−s(Il)j,j′ m′ = Q − 2, i > 1,

i ≥ s, i′ = i − s,

0 otherwise.

For m = 1 and i ≥ 0,

Us(((1, i), j), ((m′, i′), j′))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci
sq

s
1(1 − q1)i−s(Bi′−(i−s))j,j′ m′ = 0, i ≥ s,

d > i′ ≥ i − s,

Ci
sq

s
1(1 − q1)i−s

∑
l≥d−(i−s)(Bl)j,j′ m′ = 0, i ≥ s, i′ = d,

0 otherwise.

(22)

For m = 1 and i = −1,

(23) Us(((1,−1), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(B0)j,j′ m′ = s = 0, i′ = −1,

(Bi′)j,j′ m′ = s = 0, 0 < i′ < d,∑
l≥d(Bl)j,j′ m′ = s = 0, i′ = d,

0 otherwise.

While, for m = Q − 2,
(24)

Us(((Q − 2, i), j), ((m′, i′), j′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci
sq

s
Q−2(1 − qQ−2)i−s(Il)j,j′ m′ = Q − 3, i > 0,

i ≥ s, i′ = i − s,

(Il)j,j′ m′ = Q − 3,

i = s = 0, i′ = −1,

0 otherwise.

Finally, for 1 < m < Q − 2, we have

Us(((m, i), j), ((m′, i′), j′))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci
sq

s
m(1 − qm)i−s(Il)j,j′ m′ = m − 1, i > −1,

i ≥ s, i′ = i − s,

(Il)j,j′ m′ = m − 1, s = 0, i = i′ = −1,

0 otherwise.

(25)
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6. Stability of Tree Structured QBD MCs. In this section, we present an
iterative algorithm that allows us to investigate the stability of a tree structured QBD
MC that only allows transitions to parent and child nodes. The input parameters of
the iterative algorithm are the matrices Dk, 0 ≤ k ≤ d, and Us, 0 ≤ s ≤ d. The
following three sets of matrices play an important role [32].

Let Gk, 0 ≤ k ≤ d, denote the matrix whose (i, v)th element is the probability that
the Markov chain (Xd

t , Nd
t ) is in state (J, v) at the end of the fundamental period given

that this period starts from state (J+k, i). These matrices are stochastic for recurrent
QBD Markov chains with a tree structure (Takine, et al [26]). Define Rk, 0 ≤ k ≤ d,
as the matrix whose (i, v)th element is the expected number of visits to (J + k, v)
given that (Xd

0 , Nd
0 ) = (J, i) before visiting node J again. Finally, let Vk, 0 ≤ k ≤ d,

denote the matrix whose (i, v)th element is the taboo probability that starting from
(J + k, i), the chain eventually returns to a node with the same length as J + k by
visiting (J + k, v), under the taboo of the node J and the sibling nodes of J + k, i.e.,
the nodes J + s, s �= k.

Yeung and Alfa [32] have shown that the matrices Gk and Rk can be expressed
in terms of Vk. Moreover, because the MC does not allow transitions between sibling
nodes, they were able to shown that the following simple expressions hold

Gk = (I − Vk)−1Dk,(26)

Rk = Uk(I − Vk)−1,(27)

Vk = Ak,k +
d∑

s=0

UsGs.(28)

Notice that the matrices Vk, 0 ≤ k ≤ d, are identical if the matrices Ak,k, 0 ≤ k ≤ d,
are identical. Clearly, if the MC only allows transitions to parent or child nodes,
the entries of the matrices Ak,k, 0 ≤ k ≤ d, are equal to zero, resulting in identical
Vk, 0 ≤ k ≤ d matrices. In the remaining part of this section we drop the subscript k

if we refer to Vk. Using equations (26) and (28), we obtain

(29) V =
d∑

s=0

Us(I − V )−1Ds.

As a special case of Theorem 2 in Yeung and Alfa [32], the matrix V can be obtained
as limN→∞ V [N ] from the recursion

(30) V [N + 1] =
d∑

s=0

Us(I − V [N ])−1Ds,

where V [0] = 0. Also, the matrices Gs[N ] = (I − V [N ])−1Ds converge to the sub-
stochastic matrices Gs. We repeat the recursion until all matrices Gs[N ], 0 ≤ s ≤ d,

have stabilized.
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The iterative formula (30) can be further optimized by making use of the struc-
tural properties of the matrices Ds, Us and V [N ]. For the basic and the modified
binary CTMV algorithm, this optimization was limited to an acceleration of the prod-
uct of (I − V [N ])−1 with the matrices Ds, where we made use of the fact that about
80 percent of the rows of Ds contain nothing but zeros. For higher splitting factors Q,
this percentage is even higher (90 to 95 percent). The inversion of the matrix I−V [N ]
was also optimized for Q > 2. We will demonstrate this for the basic CTMV algo-
rithm with Q > 2, the technique is similar (slightly more complex) for the modified
scheme with Q = 3 and Q > 3.

Consider the l(d + 1)(Q− 1)× l(d + 1)(Q− 1) matrix V , that corresponds to the
tree structured QBD MC presented in Section 5.2, whose (i, v)th element is the taboo
probability that starting from (J + k, i), the chain eventually returns to a node with
the same length as J +k by visiting (J +k, v), under the taboo of the node J and the
sibling nodes of J +k. Next, subdivide the matrix V in blocks of size l(d+1)×l(d+1).

(31) V =

⎛
⎜⎜⎝

V0,0 V0,1 . . . V0,Q−2

...
...

. . .
...

VQ−2,0 VQ−2,1 . . . VQ−2,Q−2

⎞
⎟⎟⎠ ,

where the elements of Vq1,q2 are the taboo probabilities that starting from (J +
k, (i, j, q1)), the chain (X d

t ,N d
t = (Yd

t ,Zt,Qt)) eventually returns to a node with
the same length as J + k by visiting (J + k, (v, u, q2)), under the taboo of the node J

and the sibling nodes of J + k. Looking at the transition probabilities of (X d
t ,N d

t ),
these taboo probabilities are equal to zero if q2 �= 0. Thus,

(32) V =

⎛
⎜⎜⎝

V0,0 0 . . . 0
...

...
. . .

...
VQ−2,0 0 . . . 0

⎞
⎟⎟⎠ .

The inverse (I − V )−1 of a matrix V with such a structure is found as

(33) (I − V )−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(I − V0,0)−1 0 0 . . . 0
V1,0(I − V0,0)−1 I 0 . . . 0
V2,0(I − V0,0)−1 0 I . . . 0

...
...

...
. . .

...
VQ−2,0(I − V0,0)−1 0 0 . . . I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, the matrices 0 ≤ V [N ] ≤ V, N ≥ 0, have the same structure as V and
therefore, we can reduce the complexity of the matrix inversion in (30) from l3d3Q3

to l3d3Q. Moreover, the structure of V [N ] also implies that only the first l(d + 1)
columns of the matrix products between the matrices Us and (I − V [N ])−1Ds differ
from zero. Allowing us to reduce the complexity of these products from l3d3Q3 to
l3d3Q2.
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7. Numerical Results. For all the numerical examples presented in this sec-
tion, d is chosen sufficiently large. We state that d is sufficiently large if the ratio of
dropped packet due to the introduction of d is smaller than 10−9. This ratio is found
by comparing the load of the input D-BMAP with the probability ps that a successful
transmission takes place. The value of ps can be calculated by means of the matrices
Rk, 0 ≤ k ≤ d, presented in Section 6. For most examples d = 10 was more than
sufficient.

To test whether a tree structured MC is stable we calculate the matrices Gk, 0 ≤
k ≤ d, (as indicated in Section 6) and check whether they are stochastic. If all the row
sums of Gk are between 1− 10−9 and 1, we conclude that Gk is stochastic. If there is
a row in Gk for which the row sum is below 1− 10−4 we conclude that the matrix Gk

is not stochastic. If the smallest row sum of Gk is between 1− 10−4 and 1− 10−9 we
conclude that the stochastic nature of Gk is undetermined (i.e., the stability of the
chain is unclear).

As with most of the iterative formulas used in the matrix analytical methods
field, the number of iterations required by formula (30) increases significantly when
the MC is close to unstable (whereas 10 to 100 iterations suffice for many stable and
unstable MCs, the number of iterations can become as large as a few thousands when
the chain is (very) close to the instability point). This limits the precision by which
instability points are determined.

We determine the instability point, i.e., maximum achievable throughput, of the
basic and the modified CTMV algorithm for different arrival processes that belong
to the class of the D-BMAP processes. We consider both fair, i.e., p0 = p1 = . . . =
pQ−1 = 1/Q, and biased coins. We start by describing the D-BMAP subclasses that
we considered. Next, we present the results for the basic CTMV algorithm with
fair coins (for different values of Q), followed by the results of the modified CTMV
algorithm with fair coins. Finally, we briefly consider the use of biased coins.

In the remainder of the paper, the instability point is also referred to as the
stability point as this is the point where the CTMV protocol switches between being
stable and unstable.

7.1. The D-BMAP subclasses.

7.1.1. The Poisson Process. Mathys, et all. [18] have studied the stability,
i.e., maximum achievable throughput, of the basic and modified Q-ary CTMV protocol
(with open access) under Poisson traffic by means of functional equations. We will
always start our numerical investigations by confirming their Poisson result. We can
model the Poisson process as a D-BMAP by letting Bn = e−λλn/n!, for n ≥ 0. For
later reference, we abbreviate the Poisson process as PP(λ).

7.1.2. The Erlang Process. We define the Erlang process as follows. The
Erlang process has independent and identically distributed interarrival times that
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obey an Erlang distribution with parameters k and λ. Clearly, for k = 1 the Erlang
process is reduced to the Poisson process. The Erlang process can be modeled as a
D-BMAP in the following way. Let βn = e−λλn/n!, n ≥ 0 and let Bn, n ≥ 0, be k× k

matrices defined as

(Bn)i,j = βnk+j−i nk ≥ j − i,(34)

(Bn)i,j = 0 nk < j − i.(35)

For later reference, we abbreviate the Erlang k process as ER(λ, k).

7.1.3. The Markov Modulated Poisson Process. We restrict ourselves to
the Markov modulated Poisson processes with two states. These processes are char-
acterized by two parameters λ1, λ2 and a 2 × 2 matrix T . The process will generate
arrivals according to a rate λi when the current state is i. Transitions from one state
to another can occur at the end of each time slot according to a 2×2 transition matrix
T

(36) T =

(
1 − 1/e 1/e

1/f 1 − 1/f

)
.

The expected sojourn time in state 1, resp. state 2, is e, resp. f time slots. For later
reference, we abbreviate the Markov Modulated Poisson process with parameters
λ1, λ2, e and f as M (λ1 , λ2 , e, f ).

7.1.4. The Bulk Arrival Process. The Bulk arrival process is defined as a
discrete time arrival process characterized by a 1 × n vector v and a length L. The
arrival pattern of this process consists of a repetition of identical cycles. The first part
of each cycle consists of a set of batches, characterized by v. For instance v = [2, 3, 2]
means that we first have a batch of size 2, in the next time slot we have a batch of
size 3, followed by a batch of size 2. The second part of the cycle is a silent period
with a geometrically distributed length with average L. The Bulk arrival process can
be described by the following D-BMAP. Let v = [v1, . . . , vn] and let Bm, m ≥ 0, be a
set of n + 1 × n + 1 matrices with

(Bvm)m,m+1 = 1,(37)

(B0)n+1,1 = 1/L,(38)

(B0)n+1,n+1 = 1 − 1/L.(39)

The other components of the matrices Bm are equal to zero. The load of a Bulk
arrival process equals

∑
m vm/(L + n). For later reference, we abbreviate the Bulk

arrival process with parameters v and L as B(v ,L).

7.2. The basic CTMV algorithm with fair coins. Table 1 presents the sta-
bility points, i.e., maximum achievable throughput, of nine different arrival processes:
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the Poisson process, three Markov modulated Poisson processes, three Bulk arrival
processes and two Erlang processes and this for Q = 2, 3, 4 and 5. For the Poisson
process and the Erlang processes we start with λ = 0 and increase λ until instability
is reached. For the bulk arrival processes we fix v and decrease L until instability
is reached (we started with a large value of L). Finally, for the Markov modulated
Poisson processes we fix e, f and λ2 (the last one possibly as a function of λ1) and
increase λ1 until instability is reached.

For each couple (a, Q), where a is an arrival process and Q the splitting factor,
Table 1 presents two values x and y. The first x is the lower bound α of the interval
]α, α+0.001[ that holds the instability point of the arrival process a, i.e., the maximum
load of the D-BMAP for which it is stable. The second y indicates the difference
between α and α∗ in multiples of 0.001, where ]α∗, α∗ + 0.001[ holds the instability
point of the Poisson process.

Let us study these results in detail. The Poisson results presented in Table 1
are in complete correspondence with the results obtained in [18]. This means that
the results obtained by Mathys [18] lie within the intervals presented in Table 1.
Replacing the input Poisson process by a Markov modulated Poisson process results
in an inferior stability. This implies that more bursty and more correlated (compare
the second MMPP with the third) input traffic results in a worse stability, i.e., a lower
maximum achievable throughput. Moreover, the higher the splitting factor Q the
larger the throughput degradation, e.g., replacing the Poisson input by M(�, 0, 30, 30)
input results in a loss of 1.2% for Q = 2, 2.6% for Q = 3, 3.5% for Q = 4 and 4.1% for
Q = 5. Therefore, lower splitting factors Q are better equipped to cope with bursty
and correlated input traffic. Intuitively, one can understand this as follows. More
bursty and correlated traffic generally results in more collisions. A collision results
in an increment of the current stack level of all backlogged stations. The higher Q

the higher the increment. Thus, for every collision one needs at least Q− 1 empty or
successful slots in order to return to the same current stack level. Therefore, higher
splitting factors suffer more under increased burstiness (the scheme is unstable if Q

times the probability that a slot holds a collision is larger than 1).

Also, notice that a factor Q = 2 performs better, 0.4%, than a factor Q = 5 for
the M(�, 0, 300, 300) process (for Poisson input it was the complete opposite). As a
matter of fact, for any two factors Q1 and Q2 �= Q1, within the range [2, 5], we can
find some input process in Table 1 for which the factor Q1 outperforms the factor Q2,
except for Q1 = 2 and Q2 = 3.

Let us now consider the Erlang results. Replacing the input Poisson process
by an Erlang process results in a superior stability. This result corresponds with
the previous result, i.e., less bursty traffic results in a higher maximum achievable
throughput. Moreover, the higher the splitting factor Q the larger the increment,
e.g., replacing the Poisson input by ER(�, 3) input results in a gain of 0.7% for Q = 2,
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Table 1

The basic Q-ary CTMV algorithm.

Process Q = 2 Q = 3 Q = 4 Q = 5

PP(�) 0.360 +0 0.401 +0 0.399 +0 0.387 +0

M (�, 2λ1 , 30 , 30 ) 0.358 -2 0.397 -4 0.393 -6 0.380 -8
M (�, 0 , 30 , 30 ) 0.348 -12 0.375 -26 0.364 -35 0.346 -41
M (�, 0 , 300 , 300 ) 0.347 -13 0.373 -28 0.361 -38 0.343 -44

ER(�, 2 ) 0.365 +5 0.419 +18 0.427 +28 0.425 +38
ER(�, 3 ) 0.367 +7 0.427 +26 0.441 +42 0.444 +57

B([2 ], �) 0.348 -12 0.359 -42 0.327 -72 0.291 -96
B([3 ], �) 0.349 -11 0.372 -29 0.352 -47 0.325 -62
B([4 ], �) 0.348 -12 0.371 -30 0.355 -44 0.332 -55

2.6% for Q = 3, 4.2% for Q = 4 and 5.7% for Q = 5. Therefore, higher splitting factors
Q are better equipped to take advantage of less bursty input traffic (the explanation
is the same as before).

The Bulk arrival processes, the most artificial of the processes considered, are
mainly introduced to indicate that exotic arrival patterns can seriously deteriorate
the stability of the basic CTMV algorithm, especially for higher splitting factors Q.
For the binary scheme the loss is only about 1.2% percent, for Q = 5 it varies between
5.5% and 9.6%. If we were to increase Q even more, things only become worse, e.g.,
for Q = 10 the basic CTMV algorithm is unstable for a load of 0.18 under B([2], �)
input traffic.

In conclusion, when implementing the basic CTMV algorithm, one should always
select a splitting factor Q = 2 or 3 because the throughput degradation due to the
introduction of correlation and burstiness is less severe for a low splitting factor Q,
e.g., the difference between the worst possible and the best input traffic is 2.0%
for Q = 2 (see Table 1). Although, the basic ternary CTMV algorithm is more
sensitive to the specific nature of the input process, i.e., the variation of the maximum
achievable throughput is higher compared to the binary scheme, it still remains a
practical optimum because, for each of the nine processes considered, it outperforms
the binary scheme.

7.3. The modified CTMV algorithm with fair coins. Mathys and Flajolet
[18] have shown that the modified CTMV algorithm improves the stability by 2.7%
for Q = 2, by 0.54% for Q = 3, by 0.15% for Q = 4 and 0.05% for Q = 5. In
this subsection we investigate whether the improvements that we get for other input
processes are similar.

Table 2 represents the stability results for the same nine arrival processes studied
in the previous subsection. For each couple (a, Q), where a is an arrival process and
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Table 2

The modified Q-ary CTMV algorithm.

Process Q = 2 Q = 3 Q = 4 Q = 5

PP(�) 0.388 +27 0.406 +5 0.400 +1 0.387 +0

M (�, 2λ1 , 30 , 30 ) 0.384 +26 0.402 +5 0.395 +2 0.381 +1
M (�, 0 , 30 , 30 ) 0.371 +23 0.380 +5 0.365 +1 0.346 +0
M (�, 0 , 300 , 300 ) 0.370 +23 0.377 +4 0.362 +1 0.343 +0

ER(�, 2 ) 0.394 +29 0.424 +5 0.429 +2 0.425 +0
ER(�, 3 ) 0.396 +29 0.432 +5 0.443 +2 0.444 +0

B([2 ], �) 0.377 +29 0.365 +6 0.328 +1 0.291 +0
B([3 ], �) 0.378 +29 0.378 +6 0.353 +1 0.325 +0
B([4 ], �) 0.377 +29 0.378 +7 0.357 +2 0.333 +1

Q the splitting factor, Table 2 presents two values x and y. The first x is the lower
bound α of the interval ]α, α + 0.001[ that holds the instability point of the arrival
process a. The second y denotes the difference between the lower bounds α of the
basic and the modified CTMV algorithm (in multiples of 0.001, i.e., 0.1%).

The results for the Poisson process are in complete correspondence with the results
obtained by Mathys and Flajolet [18]. When we focus on the result for Q = 3, we
see that the MC was unstable for a load of 0.407. Mathys and Flajolet [18] showed
that the actual stability point is 0.40697. This is another indication that the impact
of the parameter d is indeed very small. Recall, the instability of the approximated
MC always implies the instability of the exact MC. The only possible error exists in
the fact that the approximated chain might become stable when the exact chain is
not. This might happen when we choose a load that is fractionally larger than the
actual stability point. The result for Q = 3 shows that this is not the case even if the
difference between both values, i.e., the load and the stability point, is only 0.00003
or 0.003%.

Table 2 indicates that the impact of implementing the modified CTMV algorithm
is more or less the same for each of the arrival processes, e.g., for Q = 2 the increment
varies between 2.3% and 2.7%. Table 2 also confirms that it is hardly worthwhile to
implement the modified CTMV algorithm for Q > 3. The fact that doomed slots occur
less frequent, for large Q, is twofold. First, the probability that all colliding stations
select the last group is smaller (we use fair coins). Second, even if all colliding stations
select the last group, a doomed slot only occurs if the next Q − 1 slots are unused
by new arrivals. Table 2 also indicates that there are arrival processes for which the
modified binary CTMV algorithm outperforms the ternary one, e.g., B([2], �).

7.4. Using Biased Coins. Mathys and Flajolet [18] have shown that the opti-
mal biased coins, for the basic Q-ary CTMV algorithm under Poisson traffic, are fair
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Table 3

The basic Q-ary CTMV algorithm.

PP (�) M(�, 0, 30, 30) ER(�, 2)

p0 α(δ) p0 α(δ) p0 α(δ)

0.6000 0.351 0.5500 0.343 0.6000 0.359
0.5500 0.358 0.5000 0.348 0.5500 0.364
0.5200 0.359 0.4800 0.349 0.5300 0.365 (21.1)
0.5100 0.360 (1.20) 0.4700 0.350 (0.47) 0.5200 0.365 (26.4)

0.5000 0.360 (2.28) 0.4650 0.350 (0.62) 0.5150 0.365 (27.0)

0.4900 0.360 (1.20) 0.4600 0.350 (0.60) 0.5100 0.365 (26.1)
0.4800 0.359 0.4500 0.350 (0.11) 0.5000 0.365 (19.9)
0.4500 0.358 0.4400 0.349 0.4800 0.364
0.4000 0.351 0.4200 0.348 0.4500 0.362

coins. For the modified scheme they demonstrated that the stability, under Poisson
traffic, can be optimized by slightly increasing the probability of selecting the last
group (the probability of selecting either one of the first Q − 1 groups is identical).
In this subsection, we investigate whether these results are also valid for other ar-
rival processes. We restrict ourselves to the basic and the modified binary CTMV
algorithm.

For each arrival process a considered, we vary the probabilities p0 and p1 = 1−p0

and determine the stability point that corresponds to the couple (a, p0). When the
stability point of different couples (a, p0) lies within the same interval ]α, α + 0.001[,
we also add the drift δ to determine which value for p0 performs best. This drift δ

corresponds to the difference between the probability that the MC makes a transition
to a parent node and the probability that the MC makes a transition to a child node,
δ can be calculated from the matrices Rk presented in Section 6. Intuitively, a larger
drift δ implies a more stable MC.

Table 3, resp. 4, represent the stability points, i.e., maximum throughput, as a
function of p0 for the basic, resp. modified, binary CTMV algorithm under Poisson
input traffic, Markov modulated Poisson input traffic and Erlang input traffic. Both
tables confirm the Poisson results obtained by Mathys and Flajolet [18].

Table 3 indicates that the optimal value for p0 for the ER(�, 2) lies somewhere in
the interval ]0.51, 0.52[, whereas the optimal value for the M(�, 0, 30, 30) input traffic
is found in the range ]0.46, 0.47[. We already mentioned that the optimum for Poisson
input is p0 = 0.5. Thus, the burstier the input traffic the lower the optimal value of
p0 becomes. Intuitively, this can be understood as follows, the more bursty the input
traffic becomes the better it is to postpone the retransmission of some of the colliding
packets. Indeed, if a collision occurs, in slot t, under Erlang traffic it is more likely
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Table 4

The modified Q-ary CTMV algorithm.

PP (�) M(�, 0, 30, 30) ER(�, 2)

p0 α(δ) p0 α(δ) p0 α(δ)

0.5000 0.387 0.5000 0.371 0.5000 0.394
0.4500 0.391 0.4500 0.379 0.4500 0.397
0.4300 0.392 0.4200 0.382 0.4400 0.397
0.4100 0.393 (2.27) 0.3800 0.384 (1.83) 0.4200 0.398 (8.27)

0.4068 0.393 (2.35) 0.3750 0.384 (1.89) 0.4175 0.398 (8.36)

0.4050 0.393 (2.32) 0.3700 0.384 (1.81) 0.4150 0.398 (8.23)
0.3800 0.392 0.3600 0.384 (1.25) 0.4100 0.398 (7.28)
0.3500 0.390 0.3400 0.383 0.3900 0.397

that no new arrivals will occur in the next slot, slot t + 1, as opposed to the slots
t + i, i > 1. Therefore, it is better to choose p0 slightly larger than 0.5. Whereas
for the Markov modulated traffic it is more likely that the D-BMAP is transmitting
at a higher rate whenever a collision occurs and therefore it might be interesting to
postpone more than half of the arrivals that occur during this high rate period to a
period where a lower input rate is being used (i.e., the probability that new arrivals
occur in slot t + 1 is larger than in slot t + i, i > 1) . This line of reasoning also
corresponds with the Poisson result: if a collision occurs in slot t, the probability of
having a new arrival in slot t+ i is identical for all i > 0 (= 1−e−λ). Therefore, there
is no reason to prefer the next slot above any of the other slots, i.e., p0 = 0.5.

Table 4 confirms that burstier input traffic also results in a lower the optimal
value of p0 when the modified binary CTMV algorithm is used. However, for the
modified algorithm the maximum throughput that can be achieved with biased coins
differs more from the maximum throughput achieved with fair coins in comparison
with the basic version of the CTMV algorithm. Moreover, the ranges of the optimal
p0 are very different from the ones that we found for the basic scheme (about 0.9
lower). This can be understood as follows. Selecting a smaller value for p0 becomes
more attractive because a lower penalty is paid when all the colliding stations select
the last (second) group (because all the doomed slots are saved).

In conclusion, for bursty and correlated arrival patterns higher throughput results
can be achieved by adapting p0, especially if the modified scheme is used. It is however
hard to predict the exact optimal value for p0 (as it depends upon the specific nature
of the arrival process).

8. Conclusions and Related Work. We have analyzed the maximum stable
throughput of the basic and modified Q-ary CTMV algorithm with free access for
both fair and biased coins by constructing several tree structured QBD MCs and by



162 B. VAN HOUDT AND C. BLONDIA

determining their stability. As opposed to any prior work, we did not restrict our
study to Poisson arrival patterns, but considered a much more general class of input
processes (D-BMAPs). We have shown, by means of numerical examples, that the
binary and the ternary schemes should be preferred above higher splitting factors
Q because they suffer much smaller throughput losses under bursty and correlated
arrival traffic. Moreover, whenever possible, it is worth to exploit ternary feedback,
i.e., implement the modified scheme, for a splitting factor Q = 2 or 3. We also
demonstrated that it might be very useful to use biased coins when the input traffic
is bursty and correlated.

Another important performance characteristic is the mean delay that is suffered
when transmitting a packet. Using the QBD MCs that were constructed in this paper
it is possible to calculate the mean delay and many other performance characteristics.
We demonstrated this for the basic binary CTMV algorithm in [29]. In [29] we studied
both the delay and throughput of the basic binary CTMV algorithm under D-BMAP
input traffic.

The bit error ratio and capture effects are important characteristics of a wireless
channel. It is fairly straightforward to see that one can extend the models presented
in this paper in order to evaluate the CTMV algorithm when applied on a channel
with markovian capture and errors. For instance, one could easily add the state of the
channel as a part of the auxiliary variable of the tree structured QBD MCs. Other
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possible extensions are to create interaction between the channel feedback and the
arrival process. When doing so one can show that even higher throughputs can be
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achieved by adapting the input rate in an appropriate manner. We can also shorten
the length of the collision and empty slots to study the impact of carrier-sense and
collision detection techniques. For instance, Figure 2 indicates the impact of having
a carrier-sense (CS) and/or collision detection (CD) mechanism on the maximum
stable throughput of the basic binary CTMV algorithm. The length of the carrier-
sense window and collision detection times are expressed as a fraction of the packet
length. Obviously, the faster we can identify empty and collision slots the better
the throughput results. Figure 2 shows that implementing collision detection is more
effective to increase the throughput in comparision with a carrier-sense mechanism.
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