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OPTIMIZATION BASED FLOW CONTROL WITH IMPROVED

PERFORMANCE∗
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Abstract. Optimization based flow control has been proposed in [2] to improve the network

performance with congested bottle links. This rate-based technique has advantages over traditional

window based heuristic algorithms in that the optimal performance in terms of maximal aggregate

utility function can be achieved when each source adaptively adjusts its data rate. Several decentral-

ized optimization algorithms have been applied to the flow control. However, one of most important

features of these algorithms: the relation between the convergence speed and network parameters is

not well studied, experimentally or theoretically. The contribution of this paper is two-fold. The first

contribution is that we propose Aitken-extrapolation to accelerate the convergence process. Secondly,

we compare the convergence speed of various algorithms by theoretic analysis and simulations. Based

on the results, the network parameters can be appropriately chosen to improve network performance.

Key words: Optimization, Communication Networks, Decentralization, Flow Control, Gradient

Projection Method, Aitken-Extrapolation.

1. Introduction. Effective rate control is required in order to control network
flow and avoid congestion. A recent approach to flow control is based on optimization
methods, e.g., [2∼14]. In optimization-based flow control, each user is associated
with a utility function, which suggests the portion of sharing of bandwidth with other
users. A constraint is that the aggregate rate in one specific link should be within the
link capacity [1]. The rate control objective is to achieve traffic rates that maximize
the sum of the user utilities. A decentralized algorithm based on the dual model was
proposed by S. Low and his coworkers ina nice paper [2] (also see [3]). They divided the
primal problem into two sub-problems. One is an optimization problem of choosing
the source rates to maximize the total benefit—-subtract the total bandwidth cost
from the total utility function. This part is computed under a given price. On
the contrary, the dual problem is to choose prices that can achieve the minimum
of the dual objective function. This dual method has led the primal problem to a
decentralized solution. A gradient projection method has been proposed in order to
minimize the dual objective function. Two models are discussed: one is a synchronous
distributed model; the other is an asynchronous distributed model. The gradient
projection method was proved to converge under these two circumstances, but the
speed of convergence is very slow. In [3], a Newton-like method was proposed which
uses the diagonal of Hessian matrix to form a scaled algorithm. From experiments, we
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can see that it has a faster convergence speed than the unscaled algorithm. But the
authors of [2] and [3] have not given any theoretical analysis about the convergence
speed of these algorithms. Motivated by this observation and the fact that the speed
of convergence is important in network flow control, we make a further step toward
the problem of optimization-based flow control.

Firstly, we would like to introduce a modified Aitken-Extrapolation algorithm for
flow control in telecommunications networks. Supported by theoretical analysis and
computer simulations, it is shown that the proposed Aitken-Extrapolation algorithm
yields faster convergence than the previous gradient projection algorithm in [2] and
improved performance for various step sizes than the Newton-like algorithm in [3].
In particular, it is shown that the gradient projection algorithm is of the first order
and with geometric convergence speed if the step size is properly chosen. In addition,
the Newton-like algorithm is a derivative from convergence acceleration methodology
and, like the Aitken-extrapolation method, is superlinearly convergent.

The rest of the paper is presented as follows. Section 2 describes the (convex) op-
timization problem for a distributed network. Section 3 recalls the gradient projection
method and a Newton-like algorithm proposed in the recent literature, and presents
our modified Aitken-Extrapolation algorithm. Our main theorems on the theoreti-
cal analysis and rate of convergence of these algorithms are also stated in Section
3. Computer simulations shown in Section 4 validate the effectiveness of our modi-
fied Aitken-Extrapolation algorithm. Some brief concluding remarks are contained in
Section 5.

2. The Optimization Problem. Optimization of communication networks has
been studied in various contexts through the consideration of different objective func-
tions and constraints. In this section we will use a popular optimization problem
model, which leads to the techniques in this paper.

A. Notation

Suppose a network is composed of a set L={1,. . . ,L} of unidirectional links of
capacity cl, l ∈L. A set of sources S={1,. . . ,S} are sharing these links. We introduce
the following notation for this system:

L(s) :a subset of L, which is a set of links which form the path for source s

Us :a utility function for source s which is positive, strictly concave and is of class
C2

Ms :the maximum possible transmission rate for source s

ms :the minimum possible transmission rate for source s

pl :price of link l

p : [p1, p2, ..., pL]T

xs :transmission rate of source s
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Is =[ms,Ms]: the range in which source rate xs must lie
S(l) = {s ∈S|l ∈ L(s)}: the set of sources that use link l

B. Problem Statement
The objective function

P : max
xs∈Is

∑
s

Us(xs)(1)

subject to ∑
s∈S(l)

xs ≤ cl, l = 1, ..., L.(2)

The constraint (2) means the aggregate source rate at any link l should not exceed the
capacity. Since the objective function Us(xs) is strictly concave and hence, a unique
feasible optimal solution exists and should be a global solution.

Solving the primal problem requires coordination among all sources and it is
hard to implement a centralized solution in real networks. This observation leads the
authors of [2], among others, to consider a dual approach.

C. Dual Model
The Lagrangian of the constrained problem is defined as

(3)
L(x, p) =

∑
s

Us(xs) −
∑
l

pl(
∑

s∈S(l)

xs − cl)

=
∑
s

(Us(xs) − xs

∑
l∈L(s)

pl) +
∑
l

plcl.

Necessary conditions of the optimization problem are obtained as follows:

(a) U ′
s(xs) = ps

(b) pl(xl − cl) = 0
(c) pl ≥ 0
(d) xs ∈ Is[ms, Ms]

where

(4) ps =
∑

l∈L(s)

pl,

and

(5) xl =
∑

s∈S(l)

xs.

U ′
s(xs)denotes the first derivative of U . We can see it is hard to implement distributed

algorithms under the primal model. So a practical dual method is proposed in [2].

(6) D(p) = max
xs∈Is

L(x, p) =
∑

s

Bs(ps) +
∑

l

plcl
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where

(7) Bs(ps) = max
xs∈Is

Us(xs) − xsp
s,

the dual problem is:

(8) D : min
p≥0

D(p).

Dual model is actually coordination between different users (sources) and routers
(links).

The purpose of the source algorithm is try to achieve maximum profit for each
user and the link algorithm is for the social welfare by adjusting the link price pl. So
the dual problem

can be solved by decentralized algorithm.

3. Synchronous Distributed Algorithms.

A. Discussion on the gradient projection method

Based on this dual method, we will discuss some synchronous distributed al-
gorithms. In [2], gradient projection algorithms are used to solve the synchronous
problem. The basic algorithm is divided into two parts: one is a link algorithm,
which adjusts prices in opposite direction to the gradient ∇D(p):

(9) pl(t + 1) = [pl(t) − γ∇D(p(t))]+.

We denote [a]+ = max{0, a}, ∇D(p)is a L × 1 vector, the lth element of which is
∂D
∂pl

(p) = cl − xl(p), so we have the dual algorithm which is developed as follows:

Algorithm A1: gradient projection algorithms

Link l’s algorithm:

At time t=1,2. . . , link l:

1. Receives rates xs(t) from all sources s ∈ S(l)that share link l.

2. Computes the aggregate rates at the link l: xl(t) =
∑

s∈S(l) xs(t), then calcu-
lates a new price

(10) pl(t + 1) = [pl(t) + γ(xl(t) − cl)]+.

3. Communicates the new price to all sources that use link l.

Source s’s algorithm:

At time t=1,2. . . , source s:

1. Receives the prices pl(t)from each link the source shares and then get the sum
of the prices

(11) ps(t) =
∑

l∈L(s)
pl(t).
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2. From the necessary condition (a), the new transmission rates should be com-
puted as

(12) xs(t + 1) = min{Ms, max{ms, (U ′
s)

−1(ps(t))}}.

(U ′
s)

−1denotes the inverse function of U ′
s.

3. Communicates new rates xs(t + 1) to links that are used by source s.
This algorithm is implemented in the REM algorithm discussed in [4]. But we can
see from simulations that the convergence of gradient projection algorithm is slow.
Instead of the gradient projection algorithm as used in [2][13], a simplified Hessian
matrix ∇2(D) is employed to improve the convergence speed [3]. This Newton-like
algorithm is in fact a scaled algorithm that neglects the off-diagonal elements in the
Hessian matrix, which is practical for implementation of decentralized algorithms.
More specifically, in [3], the derivative [∇2D(p(t))]ll is approximated by −xl(t)−xl(t−1)

pl(t)−pl(t−1) .
The source’s algorithm is the same as the gradient projection algorithm; the link
algorithm is revised as:

(13) pl(t + 1) ≈ [pl(t) + γH−1
ll (xl(t) − cl)]+

where Hll = max{ε,−xl(t)−xl(t−1)
pl(t)−pl(t−1) }, and ε is a positive parameter used to make

H = diag(Hll) positive definite. This parameter should be chosen carefully, because
in case some diagonal elements in H are non-positive, ε is activated as the scaled
elements. This method was justified by simulation in [3] to converge faster than
gradient projection method. As said, this Newton-like algorithm is obtained from
neglecting the off-diagonal elements and thus it is not necessary to analyze it in the
same way as the general Newton algorithm. So we will derive this method from
another point of view—-convergence acceleration. Using this way, it is easier and
more natural for us to understand this scaled algorithm.

B. Aitken Extrapolation [16]
The link algorithm can be thought of as a root finding process. Define fl(p) =

cl − xl(p) and recall p = [p1, p2, ..., pL]T . From the necessary condition (b), the opti-
mization procedure is to find p to make plfl(p) = 0. This formula can be interpreted
as follows: when fl(p) > 0, pl = 0; and when fl(p) = 0, pl has a non-negative
value. The iterative formula that satisfies the above requirements is described as
pl(t + 1) = [pl(t) − γfl(p)]+ in (10).

Defining φl(p) = [pl − γfl(p)]+, we can solve a fixed-point problem of the form
pl = φl(p) (or p = φ(p)). Now we consider a sequence of pl:

pl(t) = φl(p(t − 1)),(14)

p̄l(t + 1) = φl(p(t)),(15)

pl(t)is the actual price of link l at time t computed by the above gradient projection
algorithm. p̄l(t + 1)is an intermediate price of link l at time t + 1 computed by the
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gradient projection algorithm, but we will change it to pl(t + 1)— an actual price at
time t + 1.

Denote (x∗, p∗) as any pair of primal-dual optimal solution to the dual problem.
As noticed in [2,3,17], p∗ is not unique although x∗ is unique because of the convexity
assumptions made in the optimization problem. Then p∗ = φ(p∗), x∗ = φ(x∗). p∗l
and x∗

s are the lth and sth element of p∗ and x∗, respectively.
From Mean Value Theorem or Taylor expansions, we have

pl(t) − p∗l = φl(p(t − 1)) − φl(p∗) = φ′
l(θ1)(pl(t − 1) − p∗l ),(16)

p̄l(t + 1) − p∗l = φl(p(t)) − φl(p∗) = φ′
l(θ2)(pl(t) − p∗l ).(17)

Whenever p(+∞) = p∗ (we assume this gradient projection method is convergent),
we can take

θ1 = p(t1), t − 1 ≤ t1 ≤ +∞

and

θ2 = p(t2), t ≤ t2 ≤ +∞.

According to Aitken’s formula, if p is near the optimal point p∗, φ
′
l(θ1) is almost

equal to φ
′
l(θ2), i.e. φ

′
l(θ1) ≈ φ

′
l(θ2). So eliminate φ

′
l(θ1), φ

′
l(θ2) from the above two

equations to arrive at:

(18)
pl(t) − p∗l

p̄l(t + 1) − p∗l
≈ pl(t − 1) − p∗l

pl(t) − p∗l
.

Then we obtain

(19) p∗l ≈ p̄l(t + 1) − (p̄l(t + 1) − pl(t))2

p̄l(t + 1) − 2pl(t) + pl(t − 1)
.

So we have the following Aitken’s iteration formula based on the dual model:
Link l’s algorithm at time t − 1, t = 1, 3, ..., 2n + 1, ...n ∈ Z, n ≥ 0:
1. Receive rates xs(t − 1) from all sources s ∈ S(l)that share link l.
2. Compute the aggregate rates at the link l xl(t− 1) =

∑
s∈S(l) xs(t − 1), then

calculate a new price

(20) pl(t) = [pl(t − 1) + γ(xl(t − 1) − cl)]+.

3.Communicate new price pl(t)to all sources that use link l.
Source s’s algorithm at time t − 1, t = 1, 3, ..., 2n + 1, ...n ∈ Z, n ≥ 0:
1. Receive the prices pl(t)from each link the source shares and them get the sum

of the prices ps(t − 1) =
∑

l∈L(s) pl(t − 1).
2. From the necessary condition (a), the new transmission rates should be com-

puted as

(21) xs(t) = min{Ms, max{ms, (U ′
s)

−1(ps(t − 1))}}.
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3. Communicate new rates xs(t)to links that are used by source s.
Link l’s algorithm at time at time t, t = 1, 3, ..., 2n + 1, ...n ∈ Z, n ≥ 0:
4. Receive rates xs(t) from all sources s ∈ S(l)that share link l.
5. Compute the aggregate rates at the link l xl(t) =

∑
s∈S(l) xs(t), then calcu-

late a new price

(22) p̄l(t + 1) = [pl(t) + γ(xl(t) − cl)]+,

(23) pl(t + 1) = [p̄l(t + 1) − (p̄l(t + 1) − pl(t))2

p̄l(t + 1) − 2pl(t) + pl(t − 1)
]+.

6. Communicate new price pl(t) to all sources that use link l.
Source s’s algorithm at time t, t = 1, 3, ..., 2n + 1, ...n ∈ Z, n ≥ 0:
4. Receive the prices pl(t) from each link the source shares and them get the sum

of the prices ps(t) =
∑

l∈L(s) pl(t).
5. From the necessary condition (a), the new transmission rates should be com-

puted as

(24) xs(t + 1) = min{Ms, max{ms, (U ′
s)

−1(ps(t))}}.

6. Communicate new rates xs(t + 1)to links that are used by source s.
It can be seen from the computation procedure that at discrete time 2n+1 (n ≥ 0),

we only implement the usual gradient projection algorithm; while at discrete time 2n

(n ≥ 1) we use not only gradient projection algorithm again, but the combination of
the former two results. This methodology is very effective in improving convergence
speed and reducing the fluctuation as well, as confirmed by our simulations in Section
4.

C. Newton-Like Algorithm
Steven Low and his coworkers [3] proposed a Newton-like algorithm for flow con-

trol, which was illustrated to be superior to the gradient projection algorithm by
experiments.

The link l’s algorithm is scaled by H−1, an approximation of Hessian matrix
(∇2D)−1 as follows.

(25) p(t + 1) = [p(t) − γH(p(t))−1∇D(p(t))]+,

which can be written in a separate way:

pl(t + 1) = [pl(t) − γ[Hll(p(t))]−1 ∂D(p)
∂pl

|p(t)]+

= [pl(t) + γ[Hll(p(t))]−1(xl(t) − cl)]+(26)

= [pl(t) − γ[
∂xl(p)
∂pl

|p(t)]−1(xl(t) − cl)]+.
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Fig. 1. Flow Chart of Gradient Projection Algorithm and Aitken-Extrapolation.

Note that in order to form a decentralized method, the off-diagonal elements
of Hessian matrix ∇2D were arbitrarily set to zero, the diagonal elements ∂xl(p)

∂pl
|p(t)

(l = 1, ..., L) are first-order derivatives being approximated by −xl(t)−xl(t−1)
pl(t)−pl(t−1) . Now we

will show that the Newton-like algorithm in (26) can be deduced from (17). The short
proof we provide below sheds light on the connection between the gradient algorithm
and the Newton-like algorithm.

To keep the technicality to a minimum, we consider the simplified case without
projection [ ]+, that guarantees the differentiability of φ(p). Then, it follows from
(17) that

(φ
′
l(θ2) − 1)p∗l = φ

′
l(θ2)pl(t) − p̄l(t + 1)

= φ
′
l(θ2)pl(t) − [pl(t) + γ(xl − cl)](27)

= (φ
′
l(θ2) − 1)pl(t) − γ(xl − cl).

The range of θ2 is θ2 = p(t2), t ≤ t2 ≤ +∞, here we choose t2 = t, then we have

φ
′
l(θ2) =

∂[pl + γ(xl − cl)]
∂pl

|p(t)

= 1 + γ
∂xl(p)

∂pl
|p(t),(28)
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(29) p∗l = pl(t) − (
∂xl(p)

∂pl
|p(t))−1(xl(t) − cl).

So the result is

p∗l = pl(t) − (
∂xl(p)

∂pl
|p(t))−1(xl(t) − cl).

Usually, we can still add the step size γ. So we get the improved iterative algorithm

(30) pl(t + 1) = [pl(t) − γ(
∂xl(p)
∂pl

|p(t))−1(xl(t) − cl)]+.

This is the Newton-like algorithm proposed by Steven Low and his coworkers, which is
the same as in (26) and can be considered as a convergence acceleration methodology
of the original gradient projection algorithm. Another point of view is to consider
this algorithm as a method of false position, which will be discussed in the Appendix.

D. Speed of Convergence

The convergence of the Aitken-Extrapolation algorithm in scalar form is proved
in [16]. Here we deal with the case where the mapping function φ is vector-valued,
leading to some technical complication.

Theorem I: The gradient projection algorithm reviewed in Section 3.A is con-
vergent with linear convergence speed if the stepsize is appropriately chosen.

Theorem II: The Newton-like algorithm reviewed in Section 3.C is superlinearly
convergent if γ = 1. It is approximately linearly convergent if 0 < γ < 1 and diverges
if γ >> 1.

Theorem III: The Aitken-Extrapolation algorithm proposed in Section 3.B is
superlinearly convergent.

The proofs of these main results will be given in the Appendix.

Remark 1: As said previously, the gradient projection algorithm was first pro-
posed in [2] for network flow control but the authors did not analyze the rate of
convergence. Theorem I complements the theoretical result of [2] by providing ex-
plicit sufficient conditions for geometric convergence.

4. Simulation Results. We have based our simulation on the same model as
in [3]. In Fig.2, five connections Si − Di (i=1,2. . . ,5) with source Si and destination
Di share four links. Connection S1 −D1 spanned links 1,2,3,4; S2 −D2 spanned link
1; S3 − D3 spanned link 2; S4 − D4 spanned link 3; S5 − D5 spanned link 4. All
links were identical with capacity equal to 220 packets per second measuring interval.
Source S1 transmitted data from time 0s to time 300s. The start times of the other
sources are staggered with 40s interval. Sources S2, S3, S4, S5 remain active until
120s, 160s, 200s, 240s, respectively. The utility functions of the sources were set to
ωs log(1 + xs, with ωs equal to 4× 104 for source S1 and 1× 104 for source S2,S3, S4,
S5 respectively. The target bandwidth (cl) was set at 200 packets per 1s measuring
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interval, while the actual bandwidth is set to 220 packets per second, leading to zero
equilibrium buffer occupancy.

The initial conditions of this algorithm are set as follows:

γ = 0.15for gradient projection algorithm in order to achieve convergence; γ = 1
or γ = 0.5 for both Newton-like and Aitken-Extrapolation algorithms.

xs∈S = 0, s = 1, ..., S,

pl∈L = 0, l = 1, ..., L,

ms = 0,

Ms = 300 packets/ sec .

In Fig.4 and Fig.5, we set γ = 1 for Newton-Like and Aitken-Extrapolation algo-
rithms. Their convergence speeds are faster than the gradient projection algorithm,
and the sizes of their buffer occupancy are much smaller (cf. Fig. 6). However, the
value of step size γ affects performance of Newton-Like algorithm enormously. In
Fig. 7, when the step size γ = 0.5 is used, Newton-Like algorithm leads to almost
the same buffer occupancy as the gradient projection algorithm. Simulation results
have shown that Aitken-Extrapolation algorithm yield smaller buffer occupancy than
Newton-Like algorithm, especially under smaller step sizes.

5. Conclusion. The faster convergence rate implies less overloading and hence
much less buffer requirement at the links [3]. In this paper, we have examined the
application of a practical Aitken-Extrapolation algorithm in network flow control. Its
superiority over gradient projection algorithms is illustrated by theoretical analysis.
We also show by simulations that Aitken-Extrapolation is less sensitive to step sizes
than the Newton-like method, although both of which are of superlinear convergence
speed. The convergence speed of Newton-like algorithm is shown to be nearly 1.618
by method of false position.

For the proposed Aitken-Extrapolation algorithm, we use three values at time
t-1, t, t+1 to extrapolate a new value that is closer to the optimal one. Employing
this methodology, it is not difficult to get a more precise algorithm based on the
extrapolation of more than three points. Of course more memory is needed to restore
the old values (prices and sources rates) and more computation task is required.
Another advantage of the Aitken-Extrapolation algorithm is that, even if the original
projection algorithm is not convergent but of the first order, the Aitken-Extrapolation
algorithm is still convergent. We are currently investigating asynchronous distributed
algorithms with this method, and will report on new findings separately.

Appendix – Proofs.

Proof of Theorem I:

As said previously, the authors of [2] have already proved that any limit point
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(x∗, p∗) of the sequence (x(t), p(t)) is primal-dual optimal. In the sequel, we focus on
the rate of convergence and provide conditions for the step size.

Take a sufficiently small ε ∈ RL. From (14), we have

φl(p∗ + ε) = [p∗l + εl + γ(xl(p∗ + ε) − cl)]+(31)

=
[
p∗l + εl + γ

{
xl(p∗) + ∇xl(p∗)T ε

+
1
2
εT∇2xl(p∗ + θε)ε − cl}

]+

, 0 < θ < 1.

If xl(p∗) < cl, then using the necessary condition (b) we have p∗l = 0, and then from
(31) φl(p∗ + ε) = 0. If xl(p∗) = cl, then φl(p∗ + ε) = [p∗l + εl + γET

l ε + εT V T
l ε]+.

Here El = ∇xl(p∗), Vl = ∇2xl(p∗ + θε)/2.
So the gradient projection algorithm is of the first order in the sense that∥∥γET

l ε + εl

∥∥
‖ε‖ ≤ k, l = 1, 2, ..., L,

where k is a positive constant.
Set

E = [E1E2...EL]T .

Here we can use natural norm, so the former expression can be rewritten as:

(32)

∥∥γET ε + ε
∥∥
∞

‖ε‖∞
≤ k.

When k < 1, the algorithm is geometrically convergent (or more precisely, linearly
convergent). Note that

(33) E = R
∂x(p∗)

∂p
= −RW (p∗)RT

whereR is a routing matrix whose (l,s)th entry is Rls = 1 if l ∈ L(s) (or s ∈ S(l)),
and 0 otherwise [2]. We have the similar procedure as that in [2]:

W (p) = Diag(βs(p), s ∈ S)is a S × S diagonal matrix with diagonal elements

(34) βs(p) =

{
1

−U ′′
s (xs(p))

if U
′
s(Ms) ≤ ps ≤ U

′
s(ms),

0 otherwise.

Suppose 0 ≤ βs(p) ≤ ᾱs(p). Define L̄ := maxs∈S |L(s)|, S̄ := maxl∈L |S(l)|,
ᾱ := max{ās(p∗), s ∈ S}. So ‖R‖∞ = S̄,

∥∥RT
∥∥
∞ = L̄, ‖W (p∗)‖∞ = ᾱ. From (32),

we have ∥∥ε + γET ε
∥∥
∞

‖ε‖∞
=

∥∥(I + γET )ε
∥∥
∞

‖ε‖∞
=

∥∥(I − γRW (p∗)RT )ε
∥∥
∞

‖ε‖∞
≤ ∥∥I − γRW (p∗)RT

∥∥
∞ .(35)
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Since RW (p∗)RT is symmetric and positive definite, we have∥∥I − γRW (p∗)RT
∥∥
∞ = |γλm − 1|

where λm > 0 is an eigenvalue of RW (p∗)RT with maximum eigenvalue not large
than S̄L̄ᾱ. Given that −1 < γS̄L̄ᾱ − 1 < 1, i.e., γ < 2/S̄L̄ᾱ, we obtain both∥∥I − γRW (p∗)RT

∥∥
∞ < 1and k¡1. Finally, the algorithm is geometrically convergent.

Q.E.D.
Proof of Theorem II:
Note that the convergence of the Newton-like has been proved in [3,17]. We devote

ourselves to the rate analysis below.
From (13) we see that there are two major differences between Newton-like algo-

rithm and Newton algorithm. One is that the scaled matrix in Newton-like algorithm
retains only the diagonal terms and has zero off-diagonal terms. The second difference
is that the diagonal terms are approximated by finite differences [3]. From another
point of view, we can consider this algorithm as a method of false position. In [16],
convergence speed of false position has been analyzed for one-dimensional variables.
But the algorithm used in [3] is in a vector form, whose convergence analysis is shown
below:

Recall that fl(p) = cl − xl(p), the iterative algorithm in (13) can be written as

(36) pv+1
l = pv

l − γfl(pv)
pv

l − pv−1
l

fl(pv) − fl(pv−1)
.

Here we neglect the parameter ε and projection function for simplicity. We also
assume that fl(p∗) = 0 for all l=1,2,. . . L.

(36) can be rewritten as

p∗l − pv+1
l = p∗l − pv

l + γfl(pv)
pv

l − pv−1
l

fl(pv) − fl(pv−1)
(37)

= γ(p∗l − pv
l )

fl[pv−1, pv] − fl[pv, p∗]
fl[pv−1, pv]

+ (1 − γ)(p∗l − pv
l )

where we define fl[pv−1, pv] ≡ [fl(pv) − fl(pv−1)]/(pv
l − pv−1

l ), fl[pv, p∗] also has the
similar form. By introducing

(38) fl[pv−1, pv, p∗] ≡ fl[pv−1, pv] − fl[pv, p∗]
pv−1

l − p∗l
.

(37) can be simplified to the form

(39) p∗l − pv+1
l = −γ(p∗l − pv

l )(p
∗
l − pv−1

l )
fl[pv−1, pv, p∗]

fl[pv−1, pv]
+ (1 − γ)(p∗l − pv

l ).

By Mean Value Theorem,

(40) fl[pv−1, pv] =
∂fl(ζv

l )
∂pl

,
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(41) fl[pv−1, pv, p∗] =
1
2

∂2fl(ηv
l )

∂p2
l

.

So

p∗l − pv+1
l = −γ

∂2fl(ηv
l )

/
∂p2

l

2∂fl(ζv
l )/∂pl

(p∗l − pv
l )(p

∗
l − pv−1

l ) + (1 − γ)(p∗l − pv
l ).(42)

If we choose γ = 1, then assuming that γ

∣∣∣∣∂2fl(η
v
l )/∂p2

l

2∂fl(ζv
l )/∂pl

∣∣∣∣ ≤ Ml, the vector form of

(42) is bounded as follows:

(43)
∥∥p∗ − pv+1

∥∥
∞ ≤ M ‖p∗ − pv‖∞

∥∥p∗ − pv−1
∥∥
∞ ,

where M =
∥∥∥[ M1 M2 ... ML ]T

∥∥∥
∞

.

Then by setting M ‖p∗ − pv‖∞ ≡ ev, we obtain

(44) ev+1 ≤ evev−1; v = 1, 2, ....

The following procedure is the same as in [16].
If we define max(e0, e1) = δ, from the inequalities (44) we have

(45) ei ≤ δmi , i = 0, 1, 2...,

where m0 = m1 = 1 and mi+1 = mi + mi−1, (i = 1, 2, ..., ). Obviously, mi forms a
well known Fibonacci sequence, which has the solution

mi =
1√
5
(ri+1

+ − ri+1
− ), r± = 1±√

5
2 .

For large i, mi ≈ 1√
5
(ri+1

+ ) ∼= 0.447(1.618)i+1

ev+1

(ev)1.618
∼= 0.447.

That is to say, the order of Newton-like algorithm is approximately 1.618 for γ = 1.
It is superlinearly convergent.

In the case of γ << 1, 1 − γ ≈ 1, from (42), the coefficient before p∗l − pv
l is

−γ
∂2fl(η

v
l )/∂p2

l

2∂fl(ζv
l )/∂pl

(p∗l − pv−1
l ) << 1 − γ given that p∗l − pv−1

l is small. So we have

p∗l − pv+1
l ≈ (1 − γ)(p∗l − pv

l ),

which means the Newton-like algorithm is of approximately linear convergence.
In the case of γ >> 1, we suppose p∗l − pv−1

l is still small (means that pv
l is

convergent). Then
∣∣p∗l − pv+1

l

∣∣ ≈ (γ − 1) |(p∗l − pv
l )| > |(p∗l − pv

l )|, it is divergent,
which leads to a contradiction. So if γ >> 1, the Newton-like algorithm is not
convergent. Q.E.D.

Proof of Theorem III:
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From (14), (15), we have p̄l(t + 1) = φl{φ[p(t− 1)]}. Denote φl[φ(p)] = φlφ(p) so
(19) can be written as

(46) pl(t + 1) = [φlφ(p(t − 1)) − (φlφ(p(t − 1)) − φl(p(t − 1)))2

φlφ(p(t − 1)) − 2φl(p(t − 1)) + pl(t − 1)
]+.

Here t = 1, 3, 5, . . . , p(0) is the initial value, p(0), p(1), p̄(2), p(3), p̄(4), ... are pro-
duced by the gradient projection algorithm, i.e., p(2n + 1) = φ(p̄(2n)), p̄(2n) =
φ(p(2n−1)), p(2n) is obtained by this Aitken-Extrapolation method. Usually, Aitken-
Extrapolation is a separate procedure, but here, we use p(2n) to substitute p̄(2n) as
the input of gradient projection algorithm, i.e., p(2n + 1) = φ(p(2n)). We make this
modification because p(2n) is closer to the optimal point than p̄(2n). For the sake of
simplicity, we still analyze the traditional method instead of the modified one.

Using pto denote the sequence p̄(2n), and gl(p) the sequence p(2n), we can rewrite
(46) as follows:

(47) gl(p) = [φlφ(p) − (φlφ(p) − φl(p))2

φlφ(p) − 2φl(p) + pl
]+.

Now we will show that the rate of convergence of gl(p) is superlinear.
Without loss of generality, we can neglect the positive projection [ ]+, that is,

instead of (47), we can consider

(48)
gl(p) = φlφ(p) − (φlφ(p)−φl(p))2

φlφ(p)−2φl(p)+pl

= plφlφ(p)−φ2
l (p)

φlφ(p)−2φl(p)+pl
.

Indeed, this simplification will not affect the result because of the following formula
[17]:

(49)
∥∥∥[gl(p)]+ − [gl(q)]

+
∥∥∥

2
≤ ‖gl(p) − gl(q)‖2 ,

where ‖•‖2 denotes the Euclidean norm.
Recall that p∗ is the vector optimizer, and p∗l is the scalar optimizer. In [16], we

know that the Aitken-extrapolation is of the second order in the scalar form (S = L =
1). In the general case, recall that we have φl(p) = pl − γfl(p) and φ(p) = p− γf(p),
so

φlφ(p) = pl − γfl(p) − γfl(φ(p)).

It is not difficult to simplify (48) to the following form:

(50) gl(p) = pl − fl(p)
φl(p) − pl

fl(φ(p)) − fl(p)
,

which is the continuous form of (36) with γ = 1., i.e. false position method. From
the previous context and [2], any optimal solution of this dual algorithm (may have
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multiple optimal solution p∗, but unique solution x∗) is also the solution of the primal
optimization problem (1) and (2). The convergence speed analysis is the similar with
Theorem . The difference between this modified Aitken-Extrapolation method and
Newton-like method is that the latter employs extrapolation (or false position) each
step instead of every two steps in the former method. Q.E.D.
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Fig. 2. Network Topology [3].

Fig. 3. Source rates under gradient projection algorithm.
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Fig. 4. Source rates under Newton-like algorithm.

Fig. 5. Source rates under Aitken-Extrapolation algorithm.
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Fig. 6. Comparison of Buffer Occupancy.

Fig. 7. Comparison of Buffer Occupancy.


