
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2004 International Press
Vol. 4, No. 4, pp. 289-300, 2004 002

FAST QUERY OVER ENCRYPTED CHARACTER DATA IN
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Abstract. There are a lot of very important data in database, which need to be protected from

attacking. Cryptographic support is an important mechanism of securing them. People, however,

must tradeoff performance to ensure the security because the operation of encryption and decryption

greatly degrades query performance. To solve such a problem, an approach is proposed that can

implement SQL query on the encrypted character data. When the character data are stored in the

form of cipher, we not only store the encrypted character data, but also turn the character data

into the characteristic values via a characteristic function, and store them in an additional field.

When querying the encrypted character data, we apply the principle of two-phase query. Firstly, we

implement a coarse query over the encrypted data in order to filter the records not related to the

querying conditions. Secondly, we decrypt the rest records and implement a refined query over them

again. Results of a set of experiments validate the functionality and usability of our approach.
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1. Introduction. Traditionally, database security has been provided by phys-
ical security and operating system security. As far as we know, neither of these
methods sufficiently provides a secure support on storing and processing the sensitive
data. Cryptographic support is another important dimension of database security.
It is complementary to access control and both of them should be used to guide the
storage and access of confidential data in a database system. In [1, 2, 3, 4], database
encryption mechanism could provide the following security.

(1) Encryption mechanism can prevent users from obtaining data in an unautho-
rized manner. For example, illegal users can not obtain the readable data without the
proper key to decrypt it, even if they evade the access control of operating system or
database management system.

(2) Encryption mechanism can verify the authentic origin of a data item. An
attacker without knowing how to encrypt will be unable to create legal records which
can be accepted by the database.

(3) Encryption mechanism also prevents from leaking information in a database
when storage mediums, such as disks, CD-ROM, and tapes, are lost. Because the data
are not in a readable format, the person obtaining the data will be of no advantage
without the proper key to decrypt it.
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However, how to query efficiently the encrypted data becomes a challenge. This
usually implies that the system has to sacrifice the performance to obtain the security.
When data are stored in the form of cipher, we have to decrypt all the encrypted data
before querying them. It is impractical because the cost of decryption over all the
encrypted data is very expensive [5].

It is very interesting to develop a method that directly deals with the encrypted
data without decrypting them [7, 8], in which data are encrypted by using the al-
gorithm based the privacy homomorphism. The method can reduce the cost of the
encryption operations and improve the performance. However, there are some dis-
advantages. Firstly, it does not possess the tough ability against attacks. As far as
we know, there is still not a perfect method that ensures security of the encrypted
data. Secondly, it is very difficulty to construct a privacy homomorphism function
in practice. Song [9] presents a new encryption schema that will allow searching
the encrypted data without decryption. But, the encryption algorithm used in their
approach is not adapted for database. Hankan Hacijumus [10] proposes a way of exe-
cuting SQL over the encrypted data in the database-service-provider model. However,
the way is valid only for the numerical data, and is useless for the character data.
Another weakness of the method is that it will output a large number of false joining
records when querying over multi-tables, which leads to greatly the increase in the
cost of decrypting records, so that the way enormously degrades the performance.

In this paper, we propose a framework that can conduct fast query over the
encrypted character data in database. While storing the character data, we not only
encrypt the character data themselves, but also turn the character data into the
characteristic values via the characteristic function, and store them in an additional
field (which we call index field) in the database. Therefore, the encrypted database
is augmented with index field. When querying data, we apply the principle of two-
phase query. In the first phase query (called Coarse Query); we filter the portion
of the records not related to the query conditions by checking the index field. In
the second phase query (called Refined Query); we decrypt the rest of records, and
querying them again. Results of a set of experiments validate the functionality and
usability of our approach.

Following the convention, E denotes the encryption function, D denotes the de-
cryption function. The granularity of encryption is the field level, that is, the sensitive
fields need to be encrypted to protect the sensitive information from exposing to unau-
thorized users.

The rest of the paper is organized as follows: Section 2 presents the architecture
of storage and query over the encrypted character data. In section 3 we discuss how
to store and query the encrypted character data in database. Section 4 analyzes
security, storage space and the efficiency of filtering, and gives the relation among
them. Section 5 gives our experimental results of querying over the encrypted table
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from TPC-H benchmark. Section 6 concludes the paper.

2. The Architecture of Storage and Query. There are a number of ap-
proaches to implement the encrypted operation in database. e.g. application-based,
DBMS-based, OS-based, and even by the way of collaboration among them. Our
proposed system, whose basic architecture is shown in figure 1, is to add an encryp-
tion/decryption layer between the application and DBMS. The purpose of such design
is to implement encrypted storage and efficiently query over character data without
changing the internal architecture of the present DBMS and applications.

Fig. 1. The architecture of encrypted storage and query over character data

In the encryption/decryption layer of figure 1, metadata module contains some
mapping functions and transformation rules. While storing data, metadata is used
to transform querying SQL in order to store the characteristic value of the encrypted
data together with the encrypted data themselves; while querying the encrypted data,
metadata is used to transform querying SQL into appropriate SQL executed on the
encrypted data. Encryption and decryption module contains encryption functions
and decryption functions, which encrypt and decrypt the sensitive fields, respectively.

3. Storage and Query over Encrypted Character Data. In this section,
we firstly design a characteristic function, which extracts the characteristic values
from the character data. Then extend the storage schema in encrypted database in
order to store the characteristic values. Lastly we give how to translate the querying
conditions and present the query algorithm over the encrypted character data.
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3.1. Characteristic Function: Pairs Coding Function.

Definition 1. If there is a function PC: s1 → s2, where s1 denotes a string
of characters c1c2 . . . cn, s2 is a string of bits b0b1 . . . bm−1, bi=0, 0 ≤ i ≤ m −
1, n < m. H denotes a hash function which encodes each connected character pairs
c1c2, c2c3, . . . , cn−1cn of s1 into a number between 0 and m− 1, then the “signature”
of the line c1c2 . . . cn is the string of m bits b0b1 . . . bm−1, where bi = 1 if and only if
H(cjcj+1) = i for some j. We call PC the Pairs Coding Function.

For examplestring s1 is the word “abcehklst”, a hash function maps ab, bc, . . . , st

into a integer between 0 and 15, then s2 = PC(s1) = PC(abcehklst) = (001010001010
1001)2, where there are six bits whose values are 1 in s2. The reason is that some of
eight pairs have the same hash value.

Definition 2. For each relation schema R(X1, . . . , Xr, . . . Xn), where Xr field
need to be encrypted, the corresponding encrypted relation schema is RE(X1, . . . , X

E
r ,

. . . Xn, XS
r ), where, XE

r is the encrypted field, XS
r = PC(Xr) and PC is the pairs

coding function. We call XS
r Pairs Coding Field of Xr, which is also called Index

Field.

3.2. Encrypted Storage. For each relation schema R(X1, . . . , Xr, . . . Xn) in
relational database, where Xr field is a sensitive field and need to be encrypted, we
store an encrypted relation:

RE(X1, . . . , X
E
r , . . . Xn, XS

r )

where, XE
r in the encrypted relation RE stores the encrypted value of Xr in relation

R, viz. XE
r = E(Xr), index Field XS

r stores the characteristic value of Xr in relation
R, viz. XS

r = PC(Xr).

3.3. Query over Encrypted data. According to the extended storage schema
of the encrypted relation, we use two-phase query over the encrypted character data.
In the first phase, the original query is translated to the appropriate query over the
binary bits in the corresponding index field before query. Once the translated query is
executed, we can filter many records not related to the querying conditions. However,
some records, which are not satisfied with the original querying conditions, can still
in the returned record sets, because they can satisfy with the translated conditions.
These records are false, and should be removed from the real result set. Hence, it is
necessary to further process the record sets returned from the first phase again. In
the second phase, after decrypting the returned records, we use a refined query over
the decrypted data to obtain the accurate result set.

3.3.1. Translating Conditions of Query. The essential issue of query is how
to translate the normal query conditions appeared in ‘where’ clause into the cor-
responding conditions over the index field of the encrypted table. This translation
function is denoted as Tran(). We now analyze how to translate the query conditions
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based on the different query categories. In general, we consider query conditions as
the following three categories.

Simple Query. It gives a specific string value of a specific attribute. viz. at-
tribute=value. The translation function is defined as follows:

Definition 3. Tran(aiv) ⇒ as
i = PC(v)

where field ai has been encrypted, string v is the value of the query condition, as
i is

the corresponding index field of ai, PC is the pairs coding function.

For example, Tran(did = davids) ⇒ dids = PC(davids)(0010100010100001)2.

(2) Contain Query. It gives that a specific attribute which contains (or does not
contain) a specific string value. viz. attribute like value, or attribute not like value.
The translation function is defined as follows:

Definition 4. Tran(ai like c1c2 . . . ck) ⇒ ((as
i )H(c1c2) = 1) AND ((as

i )H(c2c3) =
1) AND . . . ((as

i )H(Ck−1ck) = 1);

Definition 5. Tran(ai not like c1c2 . . . ck) ⇒ ((as
i )H(c1c2) = 0) AND ((as

i )H(c2c3)

= 0) AND . . . ((as
i )H(ck−1ck) = 0)

where H is a hash function of the pairs coding function, c1c2 . . . ck is the value of the
query condition, (as

i )H(ci−1ci)) denotes the H(ci−1ci) bit.

For example, Tran(did like vid)⇒ ((dids)H(vi)=1) AND ((dids)H(id)=1).

(3) Boolean Query. It consists of the previous two types of queries combined
with operation AND, OR, NOT, viz. (attribute=value 1) OR (attribute=value 2),
(attribute like value 1) AND (attribute like value 2), (attribute like value 1) AND NOT
(attribute like value 2). More complex query conditions result from the combination
of these operations. The translation function is defined as follows:

Definition 6. Tran((ai = v1) OR (ai = v2)) ⇒ Tran(ai = (PC(v1))) OR Tran
(ai = PC(v2))).

Definition 7. Tran((ai like v1) AND (ai like v2)) ⇒ Tran(ai like (PC(v1))
AND Tran(ai like PC(v2)).

Definition 8. Tran((ai like v1) or (ai like v2)) ⇒ Tran(ai like (PC(v1)) OR
Tran(ailike PC(v2)).

3.3.2. Query Algorithm.

Algorithm 1: two phase query over the encrypted data

First Phase: Coarse Query Phase

(1) Translating the query conditions of SQL using the rules of metadata.

(2) Executing the translated SQL query, returning the records satisfying the trans-
lated query conditions and discarding the index field.

Second Phase: Refined Query Phase

(1) Decrypting the records returned in the first phase.

(2) Executing the original query SQL over the decrypted records and obtaining
actual results.
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In fact, the first phase query in algorithm 1 is used to filter some records not
related with the query conditions in order to reduce the number of records needed
to be decrypted in the second phase. Generally speaking, as we know, the cost of
database decryption operation is far higher than that of query operations. Algorithm
1 improves the query performance through reducing the cost of decryption operation.

For example, consider a relation employee below table 1, in which the field ‘did’
is sensitive and need to be encrypted. After encrypted, the relation is shown in table
2.

Table 1

employee

eid did age Sex

021021 Chessbasketball 24 M

021094 basketballcook 30 F

021095 Languageschat 26 M

021096 programnetwork 21 M

Table 2

employeeE

eid didE age sex dids

021021 100101011001001001011.. . 24 M 1011001011001011

021094 100111100110000110101.. . 30 F 1001100001101011

021095 011010110100011100101.. . 26 M 0110100011100100

021096 111110001110101110011.. . 21 M 0001110101110010

Assuming the original SQL is as follows:
select eid, age from employee where did like ‘chess’.

In the first phase of algorithm 1, SQL is transferred into the follow:
select * from employeeE,

where (dids
H(ch) =1) and (dids

H(he) =1) and (dids
H(es) =1) and (dids

H(ss) =1).
After execution of the transferred SQL, two records will be returned, that is the

first record and the third record.
In the second phase of algorithm 1, it firstly decrypts the returned records and

executes a query over the unencrypted records again, the first record will be returned
in the end.

4. Analyses. In this section, we analyze security, storage space and the efficiency
of filtering, and give the relation among them.

4.1. Security Analysis. In the encrypted relation schema, the values of the
sensitive fields are stored in the form of encryption, so we think that they are safe as
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long as the cipher algorithm and the key are secure. Discussion about the security
of cipher algorithm and the key is out of scope of this paper. We only analyze the
security of the additional index field. The values of the sensitive field are mapped
into the values of the index field via the pairs coding function. In general, it is very
hard for attackers to directly infer the values of the sensitive field from the values of
the index field due to use the hash function in the process of mapping. Take Birthday
Attack as a example, although attackers can perform the collision attack, he does not
infer the plaintext from the value of the index field. However, it is likely to suffer
from the following two attacks in the environment of database.

(1) Statistical attacks. Assuming that the hash value is evenly distributed, when
the number of bits m of the index field is increasing, the probability that different
character pairs correspond to the same binary values in the corresponding index field is
decreasing. That means, it is very possible for different character pairs to be mapped
to the different values in the index field. In this case, attackers can infer the values
of the sensitive field using statistical methods.

For example, there are 100 thousand of records in an encrypted relational table
and m is 32. The attackers can obtain the accumulating occurrence of 1 for each bit
in the index field, viz. n1, n2, . . . , n32, and compute the probabilities of each ni, i.e.
n1/100, 000, n2/100, 000, . . . , n32/100, 000. Moreover, the attackers could also find out
the probabilities of each pair of characters appeared in English. Comparing the two
sets of probabilities, the attackers can infer the values of the sensitive field from the
values of the index field.

This kind of attack is based on the case that the number of bits m of the index
field is great enough. If m is small, different character pairs will probably correspond
to the same bit of the index field. For instance, assuming that there are 26 characters
in English we are going to use, the number of different character pairs is 262, if m is
32 bits, there will be 262/32=21.1 character pairs corresponding to the same bit of
the index field in average. Thus it is very difficulty for the attackers to figure out the
values of the sensitive index in this way.

(2) Plaintext Attacks. Similarly, when the number of bits of the index field is
increasing, different character pairs probably correspond to the different values in the
index field, so that the attackers can infer some sensitive values using plaintext attack.
The reason is that the same (close) values of the sensitive field correspond to the same
(close) values of the index field. For example, assuming that the attacker has known
ei as the value of the index field and the corresponding plaintext pi, if the value of
the index field is also ei in other records, they can infer that the corresponding value
of the sensitive field is pi. When the number of bits of the index field is smaller,
different character pairs will probably correspond to the same bits of the index field.
Consequently, it increases the difficulty of such an attack.
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4.2. Filtering Efficiency Analysis. Result sets returned in the first phase of
algorithm 1 may include some false records, which are not satisfied with the query
conditions. The number of false records is closely related to the number of bits m
of the index field. Assuming that the hash value is evenly distributed, when m is
increasing, the probability, that different character pairs have the same binary value
in the corresponding index field, will decrease. Therefore, the number of false records
returned in the first phase becomes smaller and the filtering efficiency becomes better.
When m is decreasing, it is contrary to the former.

4.3. Storage Space Analysis. In the encrypted table, additional index field
leads to additional storage space. Additional space is related to the number of bits m
of the index field. When m increases, storage space accordingly increases, otherwise,
storage space decreases. Assuming that there are n records in a relation and m bits
in the index field, our proposed schema only need to extend n*m bits.

5. Experiments and Analyses of Performance. The purpose of the experi-
ments is to show the validity and the efficiency of our proposed approach. According
to TPC-H benchmark [11], the 10MB database is automatically created at scale factor
0.01 by utilizing the tool dbgen. TPC-H database include eight tables, of which the
three tables used in our experiment are lineitem, customer and orders tables. The
field comment in the three tables is considered as the sensitive field, which needs to be
encrypted. To encrypt the field comment of the tables, safer++ encryption algorithm
implemented in C is used. In safer++, the number of bits of each block and key are all
128. The experiments are conducted on a personal computer with Pentium IV 2.5GHz
processor and 512 MB RAM. Relevant software components used are Windows NT
as the operating system and SQL Server as the database server.

(a)



FAST QUERY OVER ENCRYPTED CHARACTER DATA 297

(b)

(c)

Fig. 2. Effect of filtering efficiency.

5.1. Experiment 1: Filtering Efficiency of Index Field. In the first set
of experiments, we test the filtering efficiency of the first phase in algorithm 1. We
conduct these tests with the increasing number of bits of the index field, the increasing
length of the character string in query conditions and the increasing length of the
character string need to be encrypted. Figure 2(a) (b) (c) shows the relation between
filtering efficiency and these changing parameters. In order to precisely express the
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filtering efficiency, we define it as follows:
Definition 9. assuming that there are N records in the relation, the number of

records returned in the first phase is n1, and the number of records in actual results
is n2, then the filtering efficiency FE is defined as

FE =
N − n1
N − n2

(1)

where N − n1 and N − n2 in formula (1) denote the number of filtered records in
the first phase and the number of records not satisfied with the query conditions
respectively.

In figure 2(a), the length of the query value is 3 bytes, and different curves denote
different length of the character strings in the sensitive field. In figure 2(b), the length
of the character strings in the sensitive field is 16 bytes, and different curves denote
different length of querying value. SQL is as follows:

select * from lineitem where comment like “query value”.
We can find out from figure 2(a) and 2(b): (1) with the number of bits m of the

index field increasing, filtering efficiency accordingly improves. The reason is that
it is more possible for different character strings to correspond to different values in
the index field when m increases. (2) With the length of the character strings in the
sensitive field decreasing, filtering efficiency gets better. The reason is that it is more
possible for different character strings to correspond to different values in the index
field when length of the character strings in the sensitive field decreases. (3) Filtering
efficiency increases slowly when the number m of bits of the index field is large than
32 bits. That is, it is not obvious to enhance the filtering efficiency by continuously
increasing m when m increases to 32 bits. As we analyzed above, storage space will
increase and security will degrade as m increases.

(a)
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(b)

Fig. 3. Effect of query-execution time.

In figure 2(c), the number of bits of the index field is 32 bits, and different curves
denote different length of the character strings in the sensitive field. SQL is as follows:

select * from lineitem where comment like ‘query value’.
We can find out from figure 2(c): (1) with the length of query value increasing,

filtering efficiency improves. (2) Filtering efficiency can reach about 80% when the
number m of bits of the index field is 32 bits in acceptable circumstance. It indicates
that we can filter out about 80% useless records in first phase of query.

5.2. Experiment 2: Performance of Querying Single Table. In the second
set of experiments, we test the query-execution time on single table in algorithm 1,
and compare the result to the query-execution time in the traditional way that is to
decrypt all encrypted data before querying them. Where, SQL is as follows:

select * from lineitem where comment like ‘query value’.
Figure 3(a) (b) show the cost of query-execution time in the two kinds of querying

methods when the number of bits m of the index field and the length of the query value
change respectively. Where, the axis of X denotes the length of encrypted character
strings and query value respectively, the axis of Y denotes the time cost, and different
curves denote different querying methods.

In the figure 3(a), the length of the query value is 3 bytes. It shows that the
time cost of query-execution varies with m. We can find that the time cost of query-
execution is decreasing with the increasing m. The main reason is due to the de-
creasing number of records needed to decrypt in the algorithm 1. The time cost of
decryption operation is 12 times more than that of querying data. However, it seems
that the performance will not significantly improve if m is larger than 32. The reason
is that the filtering efficiency increases very slowly when m is larger than 32.
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Figure 3(b) shows that the time cost of query-execution varies with the length
of the query value. We can find that the time cost of query-execution is decreasing
while increasing the length of the query value. Obviously the filtering efficiency will
be better if the length of the query value is greater, accordingly, the cost of query
time decreases. We can also find that the query time cost in the algorithm 1 decreases
about 75% compared with that in the traditional way.

6. Conclusions. We present the architecture of storage over the encrypted char-
acter data, the corresponding query algorithm, and implement this proposed ap-
proach. Our solution has a number of advantages. It is so simple and practical
that only need to add a module of encryption and decryption between applications
and Database Management System. Therefore, we can easily integrate this solution
into DBMS without much change. Secondly, this approach uses bit as data type of
the index field, so it only need a little extra storage space. Thirdly, it is quite secure
as long as the number of bits in the index field is not very large. Furthermore, it
is so fast that it can decrease about 75% time cost compared with traditional query
method.
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