
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2004 International Press
Vol. 4, No. 4, pp. 325-340, 2004 004

A NEW DATA MINING APPROACH TO PREDICTING MATRIX

CONDITION NUMBERS∗

SHUTING XU† AND JUN ZHANG‡

Abstract. Condition number of a matrix is an important measure in numerical analysis and

linear algebra. The general approach to obtaining it is through direct computation or estimation.

The time and memory cost of such approaches are very high, especially for large size matrices. We

propose a totally different approach to estimating the condition number of a sparse matrix. That

is, after computing the features of a matrix, we use support vector regression (SVR) to predict its

condition number. We also use feature selection strategies to further reduce the response time and

improve accuracy. We use a feature selection criterion which combines the weights from SVR and

the weights from comparison of matrices with their preconditioned counterparts. Our experiments

show that the response time of the prediction method is on average 15 times faster than the direct

computation approaches, which makes it suitable for online condition number query. The accuracy of

our prediction method is not as precise as the general direct computation methods. However, many

people only care about whether a matrix is well-conditioned or ill-conditioned or the order of the

condition number, not the exact value of the condition number. For such users, a rough prediction

with quick response time probably is a better choice than a precise value after waiting for hours or

days.

Key words: condition number, support vector machine, feature selection, preconditioning

1. Introduction. The condition number k(A) of a nonsingular matrix A with
respect to a matrix norm is formally defined as ||A||·||A−1|| [6]. The condition number
corresponding to the Frobenius norm will be denoted by kF (A) and the condition
number corresponding to the p-norm will be denoted by kp(A). There are some
relationships among the condition numbers based on different norms. For example, if
A ∈ Rn×n, then

1
n

k2(A) ≤ k1(A) ≤ nk2(A),

1
n

k∞(A) ≤ k2(A) ≤ nk∞(A),

1
n2

k1(A) ≤ k∞(A) ≤ n2k1(A).

∗(Eds.) Wai Lam, Rui-song Ye, Haiying Wang, and Jun Zhang. The research work of S. Xu was

supported by NSF under grant ACR-0234270. The research work of J. Zhang was supported in part

by NSF under grants CCR-0092532 and ACR-0202934, by DOE under grant DE-FG02-02ER45961,

and by the University of Kentucky Faculty Research Support Program.
†Laboratory for High Performance Scientific Computing and Computer Simulation, Department of

Computer Science, University of Kentucky, Lexington, KY 40506–0046, USA. E-mail: sxu2@uky.edu,

URL: http://www.csr.uky.edu/∼sxu2.
‡Correspondent. Laboratory for High Performance Scientific Computing and Computer Simula-

tion, Department of Computer Science, University of Kentucky, Lexington, KY 40506–0046, USA.

E-mail: jzhang@cs.uky.edu, URL: http://www.cs.uky.edu/∼jzhang.

325

326 SHUTING XU AND JUN ZHANG

In this paper, we only stress on the condition number corresponding to the 1-norm
k1(A). If k(A) is relatively small, then the matrix A is called a well-conditioned
matrix, but if k(A) is large, then A is an ill-conditioned matrix (e.g., around 105 for
a 5 × 5 Hilbert matrix).

Condition number is a widely used matrix feature in many areas, such as in
numerical analysis and linear algebra. In numerical analysis, the condition number
is basically a measure of stability or sensitivity of a matrix (or the linear system it
represents) to numerical operations. For example, the condition number associated
with the linear equation Ax = b gives a bound on how inaccurate the solution will be
after the numerical solution. Suppose A is nonsingular, x̂ is an approximate solution
to x, r is the residual, and b �= 0, then:

1
k(A)

||r||
||b|| ≤

||x − x̂||
||x|| ≤ k(A)

||r||
||b|| .

It means that the relative error in the computed solution is bounded by the condition
number of the matrix A times the relative size of the residual. If A is ill-conditioned,
the relative error may not be small even if the relative size of the residual is small.
k(A) can also measure how close A is to being singular:

1
k(A)

= min
||A − B||

||A|| , B is singular.

A can be approximated by a singular matrix B if and only if k(A) is large.
Condition number can also be used to predict the convergence of iterative meth-

ods. For example, for the conjugate gradient (CG) method, the error can be bounded
in terms of k2(M−1A) [2], where M is a preconditioner. If A is symmetric positive
definite, then for CG with a symmetric positive definite preconditioner M , it can be
shown that:

||x̂(i) − x||A ≤ 2α||x̂(0) − x||A,

where α = (
√

k2(M−1A)− 1)/(
√

k2(M−1A) + 1) [7, 13]. We will use condition num-
ber as one of the key features to predict the convergence of preconditioned iterative
solvers in our Intelligent Preconditioner Recommendation System (IPRS) [25, 26].
This system provides recommendation on which preconditioned solver to choose for
a given coefficient matrix.

There are several ways to obtain condition number. The direct method is to
compute A−1 first and then multiply its norm with the norm of A. However, com-
puting A−1 is equivalent to solving a linear system which is very time and memory
consuming. Another method is using a less expensive algorithm to estimate the con-
dition number. There are some estimation algorithms in literature [10]. For example,
LAPACK uses subroutine SGECON to compute the condition number. Its time cost
is O(n2) extra beyond the O(n3) cost of solving Ax = b, where n is the dimension of

A NEW DATA MINING APPROACH 327

A. If the size of the matrix is relatively large (e.g., n > 20000), the memory will be
depleted before the computation is completed on our SunBlade 150 workstations. In
most cases, the estimated condition number is within a factor of 10 of the true con-
dition number, but there exist some counter-examples with large estimation errors.
MATLAB uses LINPACK [5] for computing reciprocal of k1(A) and uses Higham’s
modification [10] of Hager’s method to estimate k1(A). Such methods have similar
problems with respect to memory and computing costs for large size matrices.

We propose a new approach to estimating the condition number of a sparse matrix.
Instead of direct computation or estimation, we predict condition number from matrix
features using data mining techniques. The predictor used is SVM regression (SVR)
[9, 21, 23]. We also apply some feature selection methods [8, 17] to further reduce
the time cost and improve precision. We propose a feature selection criterion which
combines the weights from SVR with the weights from comparison of matrices with
their preconditioned counterparts. Although the condition number predicted is not
as precise as the above-mentioned direct computation methods, (in our experiments,
if a relative deviation of 102 between the computed values and the predicated values
of the condition number is acceptable, our prediction error is smaller than 25%), it
has much smaller time and memory cost, especially for large size matrices, which
is suitable for online condition number query. Furthermore, many users are only
interested in knowing whether a matrix is well-conditioned or ill-conditioned, or the
approximate order of the condition number. In these situations, response time and
reliability are at least as important as accuracy.

The structure of the paper is as follows: We briefly review SVM regression in
Section 2. In Section 3, we introduce the matrix features used to predict condition
number. Three feature selection methods are described in Section 4. The computa-
tional experiments are carried out and the results are discussed in Section 5. We sum
up this paper in Section 6.

2. SVM Regression. SVM regression is an approach to predicting real-valued
outputs. It has been successfully applied in many areas such as financial forecasting
[22, 27], image recognition [14, 23] and signal processing [23]. SVM regression using
the ε-insensitive loss function is called ε-SV regression [24]. In ε-SV regression, the
goal is to find a function f(x) that has at most ε deviation from the actually obtained
targets yi for all the training data, and at the same time is as flat as possible [21].
We can visualize this as a tube of size 2ε around f(x) and data fall out of the tube
are errors [4].

Suppose a linear function f(x) is of the form:

f(x) =< w, x > +b, w ∈ X, b ∈ �,

where < w, x > denotes the dot product of the vectors w and x. To account for the
errors, we introduce slack variables ξi and ξ∗i . ξi computes the error for underesti-

328 SHUTING XU AND JUN ZHANG

mating the function while ξ∗i computes the error for overestimating the function. The
ε-insensitive loss function |ξ|ε is expressed as:

|ξ|ε :=

{
0, if |ξ| ≤ ε,

|ξ| − ε, otherwise.

Then we have the following convex optimization problem:

minimize
1
2
‖ w ‖2 +C

l∑
i=1

(ξi + ξ∗i),

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi− < w, xi > −b ≤ ε + ξi,

< w, xi > +b − yi ≤ ε + ξ∗i ,

ξi, ξ∗i ≥ 0,

C > 0,

where C determines the trade-off between the flatness of f(x) and the amount up to
which deviation larger than ε is tolerated.

The above optimization problem can be solved more easily in its dual formulation
[21]. We can use a standard dualization method utilizing Lagrange multipliers. After
solving it, we can get:

(1) w =
l∑

i=1

(αi − α∗
i)xi,

(2) f(x) =
l∑

i=1

(αi − α∗
i) < xi, x > +b.

The variable b can be computed as:

b =

{
yi− < w, xi > −ε, for αi ∈ (0, C),
yi− < w, xi > +ε, for α∗

i ∈ (0, C).

For the nonlinear case, we apply a mapping Φ : X → F to map input space into some
feature space F . Here we use a kernel function, K(x, xi) =< Φ(x), Φ(xi) >, which
is a symmetric function and satisfies the Mercer’s condition. We substitute K(x, xi)
for the dot product, which maps the input space into some reproduced kernel feature
space. The commonly used kernel functions are:

Polynomial : K(x, xi) = (< x, xi > +c)d,

RBF : K(x, xi) = e−
||x−xi||2

2σ2 ,

Neural Network : K(x, xi) = tanh(η < x, xi > +ϑ).

A NEW DATA MINING APPROACH 329

3. Matrix Feature Extraction. The features of a matrix used are directly
related with the precision of the prediction system. We will compute the features of
a matrix first and then use such information to predict its condition number. We list
below some matrix features such as structure, value, bandwidth and diagonal related
statistics. Yet there may be more useful features that we can extract in the future
and add them in the feature space.

3.1. Structure. This group of features describe the distribution of nonzero
entries of a matrix. For example, we consider the sparsity rate (the number of
nonzero elements divided by the number of all elements) of the whole matrix (nnzrt),
of the lower diagonal part (lowfillrt), of the upper diagonal part (upfillrt) and
of the main diagonal (diagfillrt). Other features include the average nonzero en-
tries per row (avnnzprow) and the standard deviation (sdavnnzprow), the average
nonzero entries per column (avnnzpcol) and the standard deviation (sdavnnzpcol),
the maximum and minimum number of nonzero elements per column and per row
(maxnnzpcol, minnnzpcol, maxnnzprow, minnnzprow). Sometimes we also want to
know the total number of non-void diagonals (nzdiags), i.e., the number of diagonals
which have at least one nonzero element among the 2n − 1 diagonals of the matrix.

The attribute symmc measures whether a matrix is symmetric, i.e., A = AT .
relsymm describes the relative symmetric rate of a matrix. It is the ratio of the
number of elements that matches divided by nnz. An element a(i, j) in the matrix
A matches if it satisfies the following condition: if a(i, j) is nonzero then a(j, i) is
nonzero. If a matrix is a normal matrix, normal is equal to 1, otherwise it is 0.

The attribute blocksize reflects whether a matrix has a block structure. The
matrix has a block structure if it consists of square blocks that are dense. The value
of blocksize greater than one represents the size of the largest block.

3.2. Value. The attributes in this group sum up the value distribution of a
matrix. For example, the one norm (onenorm), the infinity norm (infnorm), and
the Frobenius norm (frnorm) of a matrix are computed. This group also includes
the minimum of the sum of the columns (minonenorm), the minimum of the sum
of the rows (mininfnorm), the Frobenius norm of the symmetric part of a matrix
(symfnorm), and of the unsymmetric part (nsymfnorm).

We also consider average value of all nonzero entries (avnnzval) and the standard
deviation (sdavnnzval), the average of the main diagonal entries (avdiag) and the
standard deviation (sdavdiag), the average of the upper triangular entries (avuptrig)
and the standard deviation (sdavuptrig), as well as the average of the lower triangular
entries (avlowtrig) and the standard deviation (sdavlowtrig).

3.3. Bandwidth. This group of features describe the bandwidth of a matrix.
Bandwidth provides a measure of the clustering of nonzero entries about the main
diagonal. Lower bandwidth of a matrix (lowband) is defined as the largest value of

330 SHUTING XU AND JUN ZHANG

i−j, where a(i, j) is nonzero. On the contrary, upper bandwidth of a matrix (upband)
is defined as the largest value of j − i. Maximum bandwidth (maxband) is defined as
max(max(j)−min(j)). Average bandwidth (avband) is defined as the average width
of all columns.

3.4. Diagonal. The features in this group are diagonal related. For instance,
we include the average distance from each entry to the diagonal (avdisfd) and the
standard deviation (sdavdisfd), the average of the difference from each of the entry
to its diagonal value (avvalfd) and the standard deviation (sdavvalfd), the average
of the difference from the largest value in a row to the diagonal value (avmaxvalfd)
and the standard deviation (sdavmaxvalfd).

Other features in this category include the percentage of weakly diagonally dom-
inant columns (diagdomcol) and the percentage of weakly diagonally dominant rows
(diagdomrow). diagvalrate is the ratio of the minimum diagonal element value (ex-
cept zero) to the maximum diagonal element value.

3.5. Others. We also include some features used to predict the solvability of
preconditioned iterative linear system solvers, such as strzpiv - the number of struc-
tural zero pivots, that is, a null column above or null row to the left of a zero diagonal
element; zpivrow - whether a matrix has a null row to the left of a zero diagonal
element; zpivcol - whether a matrix has a null column above a zero diagonal element;
zpivdiag - whether a matrix has a zero diagonal element with the dot product of its
left vector and up vector is zero; szvdiag - the smallest nonzero diagonal element with
the dot product of its left vector and up vector being zero; minvalcol - if a diagonal
element has value 0, find the smallest nonzero value in that column, and minvalcol

is the minimum of such values among all columns. For more detailed description on
the matrix features, please see [26].

4. Feature Selection. Our experiments show that the accuracy of the condition
number predicted based on the above features seems to be good. But such a collection
of features may contain some redundant information. We apply feature selection
methods to remove the redundancy. Feature selection may also bring other benefits:
reduce the computation time, save memory space, remove noise and possibly optimize
the prediction accuracy. For an online condition number prediction system, it is crucial
to lower the response time and improve precision. In this section we investigate 3
feature selection methods.

4.1. Correlation. Correlation is one of the simplest feature selection methods.
It computes the correlation of the input vector xi and the target vector y as follows:

Cori =
∑m

k=1(xk,i − x̄i)(yk − ȳ)√∑m
k=1(xk,i − x̄i)2

∑m
k=1(yk − ȳ)2

,

A NEW DATA MINING APPROACH 331

where the bar stands for an average over the index k. In linear regression, Cor2
i

represents the fraction of the total variance around the mean value ȳ that is explained
by the linear relation between xi and y. Correlation criteria can only detect linear
dependencies between variables and target [8].

4.2. Weights from SVR. There have been some feature selection methods
based on the weights from the SVM classification model [3, 11, 16, 18]. Using the
weights from SV-regression works in the same way.

Using the kernel function K(x, xi), Equations (1) and (2) can be written as:

w =
l∑

i=1

(αi − α∗
i)K(xi),

f(x) =
l∑

i=1

(αi − α∗
i)K(xi, x) + b.

Like in neural networks, the output prediction is of the form:

predict(x) = G(
∑

j

wjxj + b),

where G(x) is an activation function. A feature j with a larger weight wj has more
effect on the prediction than a feature with a smaller weight [16, 18]. Shih et al. jus-
tified in [20] that the features with higher weights are more influential in determining
the width of the margin. Thus ||w||2 is a suitable criterion for feature selection.

4.3. Combinational method. It is known that a good preconditioner can im-
prove the condition number of a matrix [19]. The preconditioner M is a matrix which
approximates A in some sense, such that the auxiliary linear system Mx = b is in-
expensive to solve. We compare the condition number as well as the matrix features
of the original matrix and the preconditioned matrix to find out which features con-
tribute more to the improvement of the condition number. Certain features have
larger influence on the condition number and should be kept in feature selection.
Assume we have l matrix examples, and kA represents the condition number vector
for all the original matrices, while kM represents the condition number vector for all
the preconditioned matrices. vA

i is the vector of features for the ith original matrix,
likewise, vM

i is the vector of features for the ith preconditioned matrix. Then we can
obtain the weight vector wcmp to rank the features:

(3) wcmp =
l∑

i=1

(|kA
i − kM

i | ∗ |vA
i − vM

i |) .

wcmp seems to be a reasonable criterion for feature selection. However, as we cannot
successfully construct a useful preconditioner for all the general matrices, wcmp is

332 SHUTING XU AND JUN ZHANG

biased towards the features of the matrices that can be preconditioned. To remedy
this problem, we propose to use the weight wcomb, which combines wcmp and the
weight from SVM regression wSV M , as

(4) wcomb = nml(wcmp) + nml(wSV M)

where the function nml(x) normalizes vector x. Thus wcomb is the sum of the nor-
malized wcmp and wSV M .

5. Experiments and Results. In this section, we report our experiments on
the accuracy and response time of the condition number prediction methods. We
use SV MLight [12] for SVM regression. There are 277 matrices from Matrix Market
[15] tested in the experiments. We use altogether 60 matrix features, most of which
are explained in Section 3. The experiments are carried out on a SunBlade 150
workstation.

5.1. Accuracy. First, we test how accurate the predicted condition numbers are,
compared with the directly computed condition numbers. The accuracy is obtained
using a 5-fold cross validation. We choose C to be 10000 for SVR which works best
according to the results of the 5-fold cross validation. Other parameters for the kernels
are chosen in the same way. The feature selection criteria used are correlation, wSV M ,
wcmp, and wcomb. We compare them together with the SVR without feature selection
on three kernels: linear kernel, polynomial kernel and RBF kernel. Here all the feature
selection methods choose 50% of the features.

Figure 1 shows the accuracy comparison using a RBF kernel (γ = 0.1). The figure
illustrates the percentage of all matrices for which the relative differences between the
computed values and the predicted values of the condition number are within 10, 102,
103, 104, respectively. For the RBF kernel, wcmp does not work well. Its accuracy is
the lowest. For all the other methods, we can safely say that more than 70% of the
matrices have relative differences smaller than 102. Among them, feature selection
with wcomb works best for all the difference scales except the first one. Using feature
selection with wcomb, 76.2% of the matrices have relative differences smaller than
102. It has better accuracy than using SVR alone, although it only uses half of the
features. Other feature selection methods can also obtain similar accuracy to that
obtained from SVR without feature selection.

Figure 2 displays the accuracy comparison using a linear kernel. Here both feature
selection criteria wcomb and wSV M work well. Their accuracy are higher than using
SVR alone for all the difference scales. For the first two difference scales, wSV M is
better than wcomb, while for the last two, wcomb exceeds wSV M . Correlation criterion
performs worst for the linear kernel.

The accuracy obtained using a polynomial kernel (d = 2) is depicted in Figure 3.
In this figure, all the feature selection methods obtain much better accuracy than that

A NEW DATA MINING APPROACH 333

RBF Kernel

40
45
50
55
60
65
70
75
80
85
90

<10^1 <10^2 <10^3 <10^4

Difference

P
e
rc
e
n
ta
g
e SVM

FS-Corr

FS-Cm p

FS-SVM

FS-Com b

Fig. 1. Comparison of accuracy with a RBF kernel.

without feature selection. Here wSV M and wcomb perform similarly, both are better
than the other methods.

Put these 3 figures together, we can see that the best accuracy is obtained using
the RBF kernel, then the linear kernel, and the polynomial kernel does not seem to
fit for this job. For the RBF kernel SVR without feature selection works rather well,
thus the advantage of the feature selection methods over it is moot. However, for the
polynomial kernel, when SVR without feature selection performs poorly, using feature
selection methods can remarkably improve accuracy. Among the feature selection
methods, the performance of the criteria using wcomb or wSV M are consistently good.

Next, we compare the performance of the feature selection methods with differ-
ent number of features selected. We test the accuracy using 25%, 50%, 75% of the
features respectively, and make comparison with using 100% of the features, that is,
running SVM without any feature selection. Here we choose the percentage of matri-
ces with relative condition number differences smaller than 102 as accuracy. Figure 4
illustrates the results obtained with a RBF kernel (γ = 0.1). Only feature selection
with correlation has the property that with more features used the system becomes
more accurate. For feature selection using wcomb and wSV M , choosing 50% of the
features seems to yield optimal results, with which they gain the highest accuracy.
For feature selection using wcmp it is an opposite story, choosing 50% of the features
gives the worst results.

For linear kernel, all feature selection criteria except wcmp seem to find their

334 SHUTING XU AND JUN ZHANG

Linear Kernel

40
45
50
55
60
65
70
75
80
85
90

<10^1 <10^2 <10^3 <10^4

Difference

P
e
rc
e
n
ta
g
e SVM

FS-Corr

FS-Cm p

FS-SVM

FS-Com b

Fig. 2. Comparison of accuracy with a linear kernel.

optimized feature sets with 50% of the features. They get the best accuracy with
50% of the features. wcmp, like using RBF kernel, performs the worst with 50% of
the features (see Figure 5).

In Figure 6, nearly all the feature selection criteria get their best accuracy with
25% of the features. Even with the only exception wSV M , the accuracy obtained with
25% of the features is very close to its best accuracy obtained with 50% of the features.
Figure 6 explains why polynomial kernel (d = 2) does not work as well as RBF kernel
and linear kernel in Figures 1 - 3. In these 3 figures, 50% of the features are used.
Thus almost all the feature selection methods find their optimal feature sets for RBF
kernel and linear kernel, but not for the polynomial kernel. The feature selection
methods work well with 25% of the features for the polynomial kernel. Figure 6 also
suggests that the polynomial kernel is worthwhile to try, as the fewer features used,
the less the response time.

5.2. Response Time. Given a matrix, the time used to obtain the condition
number is referred to as the response time. The response time for the LAPACK
method is the time to compute the condition number using LAPACK routines. The
response time for the prediction method includes the time to compute matrix features
and the time for prediction. Here we also compare the response time for prediction
using the whole matrix features and using half of the features selected based on wSV M .

Table 1 shows the average response time for the 277 matrices used in our tests.
The prediction methods are 15 times faster than using LAPACK on average. 6 seconds

A NEW DATA MINING APPROACH 335

Polynom ial Kernel

30

40

50

60

70

80

90

<10^1 <10^2 <10^3 <10^4

Difference

P
e
rc
e
n
ta
g
e SVM

FS-Corr

FS-Cm p

FS-SVM

FS-Com b

Fig. 3. Comparison of accuracy with a polynomial kernel.

RBF Kernel

60

65

70

75

80

25% 50% 75% 100%

Features Selected

P
e
rc
e
n
ta
g
e

FS-Corr

FS-Cm p

FS-SVM

FS-Com b

Fig. 4. Comparison of accuracy with a RBF kernel with different percentage of features selected.

is also an acceptable time for an online query system. Prediction with feature selection
is only slightly faster than without any feature selection. Using half of the features
does not mean reducing the time cost by half. In our system, we usually compute a
group of features in a function. Thus the time cost for calculating one feature using
the function is the same as calculating all the features provided by the function. We
will consider code optimization to make feature selection more beneficial in response

336 SHUTING XU AND JUN ZHANG

Linear Kernel

55

60

65

70

75

25% 50% 75% 100%

Features Selected

P
e
rc
e
n
ta
g
e

FS-Corr

FS-Cm p

FS-SVM

FS-Com b

Fig. 5. Comparison of accuracy with a linear kernel with different percentage of features selected.

Polynom ial Kernel

50

55

60

65

70

75

25% 50% 75% 100%

Features Selected

P
e
rc
e
n
ta
g
e

FS-Corr

FS-Cm p

FS-SVM

FS-Com b

Fig. 6. Comparison of accuracy with a polynomial kernel with different percentage of features

selected.

time, once we decide which selected features are to be computed.

The prediction method is especially advantageous in response time for large size
matrices. For example, in Table 2 the average LAPACK response time for the 78
matrices with size larger than 2000 is around 6 minutes, while using the prediction
methods, the response time is only about 20 seconds. A matrix with size greater than
1000 is large in our experiments though this may not be true in reality. As LAPACK

A NEW DATA MINING APPROACH 337

Table 1

Average response time (in seconds).

LAPACK prediction(all) prediction(FS)

99.23 6.56 6.32

Table 2

Average response time for larger size matrices (in seconds).

Size NumMat LAPACK prediction(all) prediction(FS)

≥ 1000 119 227.22 15.17 14.62

≥ 2000 78 340.74 22.81 21.99

will run out of memory on our computers with matrices of size larger than 20000, we
can only test matrices under this size for comparison.

Table 3

Performance comparison for some large size matrices (in seconds).

Matrix name Size nnz LAPACK prediction(all) prediction(FS)

ADD20 2395 13151 8206.7 0.94 0.81

CRY10000 10000 49699 2262.4 23.41 24.01

LNS 3937 3937 25407 2977.0 1.38 1.33

PSMIGR 1 3140 543160 2129.8 15.82 3.31

Table 3 gives some examples of how the prediction methods exceed the LAPACK
method in response time. For instance, LAPACK uses about two and a half hours
to compute the condition number of the matrix ADD20, the prediction methods only
need less than one second. Although this may not be true for all the matrices, the
significantly reduced response time is exactly our motivation for using prediction and
feature selection.

6. Concluding Remarks. In this paper we propose a new approach to esti-
mating the condition number of a matrix - predicting them from the matrix features.
We use SVM regression with feature selection. The experiments show that around
75% of the matrices can be predicted with a relative difference from the computed
condition number within 102. The accuracy is low compared with direct computation
or estimation, but it is enough for those people who just want to know whether the
matrix in question is well-conditioned or ill-conditioned. The advantage of the predic-
tion method is that the response time is very low, especially for large size matrices.
Thus it is desirable for an online condition number query. It is also fitted for our IPRS
system. As we will use condition number as one of the matrix features to predict the
solvability of a matrix, It is crucial to obtain it with a low time cost.

338 SHUTING XU AND JUN ZHANG

We also tried several feature selection methods. We proposed a combinational
feature selection criterion which uses both the weights from SVR and from comparison
of a matrix and its preconditioned counterpart. The experimental results show that
using feature selection can reduce the time cost and improve or maintain the accuracy.
The combinational feature selection criterion is one of the best methods tested.

Our future works include further improving the accuracy of the prediction method.
We will also work out the error bound for the accuracy of the proposed method to
increase the confidence of the user. We need to find more representative matrix
features, as well as try other feature selection methods to better utilize these features.
Then we will use the predicted condition number in our IPRS. Following the idea of
this paper, we may also try to predict other important matrix attributes such as rank
and eigenvalue distribution.

REFERENCES

[1] E. Anderson, Z. Bai, and C. Bischof, et al, LAPACK Users’ Guide. SIAM, Philadelphia,

PA, 3rd Edition, 1999.

[2] R. Barrett, M. Berry, and T. F. Chan, et al, Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 2nd Edition,

1994.

[3] P. S. Bradley and O. L. Mangasarian, Feature selection via concave minimization and

support vector machines, in: Proceedings of the Fifteenth International Conference on

Machine Learning, 1998.

[4] K. P. Bennett and C. Campbell, Support vector machines: Hype or Hallelujah? SIGKDD

Explorations, 2:2(2000), pp. 1–13.

[5] J. J. Dongarra, J. R. Bunch, and C. B. Moler, et al, LINPACK Users’ Guide. SIAM,

Philadelphia, PA, 1979.

[6] G. H. Golub and C. F. van Loan, Matrix Computation, John Hopkins Univ. Press, Baltimore,

3rd Edition, 1996.

[7] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.

[8] I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of

Machine Learning Research, 3(2003), pp. 1157–1182.

[9] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer-

Verlag, New York, 2001.

[10] N. J. Higham, Fortran codes for estimating the one-norm of a real or complex matrix, with

applications to condition estimation, ACM Trans. Math. Soft., 14(1988), pp. 381–396.

[11] R. Jin and H. Liu, Robust feature induction for support vector machines, in: Proceedings of

the 21st International Conference on Machine Learning, Banff, Canada, 2004.

[12] T. Joachims, Making large-scale SVM learning practical, Advances in Kernel Methods -

Support Vector Learning, B. Schölkopf, C. Burges and A. Smola (ed.), MIT-Press, 1999.

[13] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comput.,

20(1966), pp. 369–378.

[14] Y. Li, S. Gong, and H. Liddell, Support vector regression and classification based multi-

view face detection and recognition, in: Proc. of the IEEE International Conference on

Automatic Face and Gesture Recognition (FGR’00)., Grenoble, France, 2000.

[15] http://math.nist.gov/MatrixMarket/

[16] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling, Feature selection using lin-

A NEW DATA MINING APPROACH 339

ear classifier weights: interaction with classification models, in: Proceedings of SIGIR’04,

Sheffield, UK, July, 2004.

[17] L. C. Molina, L. Belanche, and A. Nebot, Feature selection algorithms: A survey and

experimental evaluation, in: Proceedings of 2002 IEEE International Conference on Data

Mining (ICDM’02), Maebashi City, Japan, 2002.

[18] A. Rakotomamonjy, Variable selection using SVM-based criteria, Journal of Machine Learn-

ing Research, 3(2003), pp. 1357–1370.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, New York, 1996.

[20] L. Shih, Y. Chang, and J. Rennie, et al, Not too hot, not too cold: The Bundled-SVM is

just right! in: Workshop on Text Learning (TextML-2002), Sydney, Australia, 2002.

[21] A. J. Smola, B. Scholköpf, A tutorial on support vector regression, NeuroCOLT Technical

Report Series, NC2-TR-1998-030, 1998.

[22] T. B. Trafalis and H. Ince, Support vector machine for regression and applications to

financial forecasting, in: Proceedings of IEEE-INNS-ENNS International Joint Conference

on Neural Networks (IJCNN’00), Como, Italy, 2000.

[23] V. N. Vapnik Statistical Learning Theory, John Wiley and Sons, New York, 1998.

[24] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.

[25] S. Xu, E. Lee, and J. Zhang, Designing and building an intelligent preconditioner recommen-

dation system (a progress report), in: Abstracts of the 2003 International Conference on

Preconditioning Techniques for Large Sparse Matrix Problems in Scientific and Industrial

Applications, Napa, CA, 2003.

[26] S. Xu, E. Lee, and J. Zhang, An interim analysis report on preconditioners and matrices,

Technical Report No. 388-03, Department of Computer Science, University of Kentucky,

Lexington, KY, 2003.

[27] H. Yang, L. Chan, and I. King, Support vector machine regression for volatile stock market

prediction, in: Proceedings of the Third International Conference on Intelligent Data

Engineering and Automated Learning, 2002.

340 SHUTING XU AND JUN ZHANG

