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EFFICIENT SOLUTION OF LINEAR MATRIX EQUATIONS WITH

APPLICATION TO MULTISTATIC ANTENNA ARRAY

PROCESSING

HANOCH LEV-ARI∗

Abstract. We present a computationally-efficient matrix-vector expression for the solution

of a matrix linear least squares problem that arises in multistatic antenna array processing. Our

derivation relies on an explicit new relation between Kronecker, Khatri-Rao and Schur-Hadamard

matrix products, which involves a selection matrix (i.e., a subset of the columns of a permutation

matrix). Moreover, we show that the same selection matrix also relates the vectorization-by-columns

operator to the diagonal extraction operator, which plays a central role in our computationally-

efficient solution.

1. Introduction. Linear matrix equations show up in a variety of engineering,

mathematics and physics problems, including linear system analysis, modeling of non-

stationary covariances, and multistatic antenna array processing. For instance, the

Lyapunov equations AHX+XA+Q = 0 and X−AHXA = Q (where the superscript
H denotes conjugate transpose) are used to analyze the stability of continuous-time

and discrete-time systems, respectively [1]. The generalized Lyapunov equation

AXBT + CXDT = Q

has been used to characterize structured covariance matrices, and to construct efficient

matrix factorization and inversion algorithms [2, 3, 4]. Such equations can be readily

converted into the standard linear equation format by using the well-known identity

[5]

(1) vec {AXBT} = (B ⊗ A) vec {X}

where vec {·} denotes vectorization by columns of a matrix. This results in the linear

equation

(B ⊗ A + D ⊗ C ) vec {X} = vecQ

which can be solved for the unknown vec {X}.

A linear matrix equation of a somewhat different flavor arises in multistatic an-

tenna array processing applications. An unknown medium is probed by transmitting

energy into it from a multi-element antenna array, and recording the scattered signal

received by (another) multi-element antenna array. The resulting measurements are
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arranged into a matrix H = {hij}, where hij is the response (at a single fre-

quency) from the j-th transmitting element to the i-th receiving element [6]. When

the medium consists of reasonably spaced point scatterers in a uniform background,

the distorted wave Born approximation [7] provides a simple characterization of the

multistatic data matrix H in terms of the scatterer locations {χi} and scattering

coefficients {τi}, viz.,

(2) H =

L∑

i=1

grec(χi) τi gT
tr(χi)

where L denotes the number of point scatterers, and where gtr(χi) (resp. grec(χi))

is the so-called steering vector associated with wave propagation between the trans-

mitting (resp. receiving) array and the i-th scatterer. The acoustics community

usually refers to multistatic array processing as (mathematical) “time-reversal” [6].

The multistatic antenna array processing problem amounts to recovering the scat-

terer locations and scattering coefficients from the acquired data matrix H . A

subspace analysis technique can be used to determine the scatterer locations via a

MUSIC-like pseudo-distribution [8]. Once the locations are known, the linear equa-

tion (2) can be solved for the unknown {τi}. This equation can be written in matrix

notation as

(3a) H = Grec X GT
tr, X

∆
= diag{τi ; 1 ≤ i ≤ L}

where

(3b)

Gtr =
[

gtr(χ1) gtr(χ2) . . . gtr(χL)
]

, Grec =
[

grec(χ1) grec(χ2) . . . grec(χL)
]

.

Since the unknown matrix X is diagonal, eq. (3a) is over-determined (provided that

the number of elements in H exceeds L), which suggests using a least squares

approach, viz.,

(4) Xopt
∆
= argmin

X

∥
∥
∥ H − Grec X GT

tr

∥
∥
∥

2

F

subject to the constraint that X is a diagonal matrix [9].

Applying the direct vectorization transformation (1) to H − Grec X GT
tr results

in a highly inefficient least squares problem, because vec {X} is very sparse. In this

paper we describe an alternative approach based on:

• a known vectorization identity, viz.,

(5) vec {AXBT } = (B ⊙ A) vecd {X}, X is diagonal

which involves the so-called Khatri-Rao matrix product ⊙ [5], as well as

the diagonal extraction operator vecd {X}, which forms a column vector
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consisting of the diagonal elements of the square matrix X , viz.,

(6) vecd {X}
∆
=

[
x11 x22 . . . xLL

]T

instead of the much longer column vector vec {X};

• several new results about the relation between Kronecker, Khatri-Rao and

Schur-Hadamard matrix products, which lead to a very efficient computa-

tional procedure for solving the matrix least squares problem (4).

We formulate the problem and present our main results in Sec. 2. New results about

the “Kronecker to Khatri-Rao to Schur-Hadamard” conversion are derived in Sec. 3,

and some concluding remarks are provided in Sec. 4.

2. Problem Formulation and Main Results. We consider the matrix

linear least squares (LLS) problem

(7) min
X

∥
∥
∥ Q − AX BT

∥
∥
∥

2

F

where A, B, Q are given (complex valued) matrices of sizes NA ×L, NB ×L, and

NA × NB, respectively, and where the unknown L × L matrix X is diagonal. We

also assume that L < NA NB, so that the linear matrix equation AXBT = Q is

over-determined.

Using the identity (1) we can transform (7) into the vector LLS form

min
X

∥
∥
∥ vec {Q} − (B ⊗ A) vec {X}

∥
∥
∥

2

2

which has the well-known solution

vec {X} =
[

(B ⊗ A)H(B ⊗ A)
]−1

(B ⊗ A)H vec {Q}.

As we have observed earlier, when the unknown matrix X is diagonal, solving for

vec {X} is highly inefficient, since most of the elements of X vanish.

Instead we can use the more compact vectorization identity (5) to rewrite the

matrix LLS problem (7) in the reduced-order vector form

(8) min
X

∥
∥
∥ vec {Q} − (B ⊙ A) vecd {X}

∥
∥
∥

2

2

where ⊙ denotes the Khatri-Rao matrix product [5]: the k-th column of B ⊙ A is

the Kronecker product of the k-th column of B by the k-th column of A, for

k = 1, 2, . . . L. Notice that vecd {X} consists of only the nontrivial (i.e., diagonal)

elements of the matrix X . The explicit solution of (8) is

(9) vecd {X} =
[

(B ⊙ A)H(B ⊙ A)
]−1

(B ⊙ A)H vec {Q}.

It turns out that this expression can also be implemented using Schur-Hadamard

products (i.e., element-wise array multiplication), resulting in a significant reduction

in computational cost, as implied by the following result.
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Theorem 2.1. Given two matrices, A (of size NA × L) and B (of size

NB × L), we have

(10) (A ⊙ B)H(A ⊙ B) = (AHA) ◦ (BHB)

where ◦ denotes a Schur-Hadamard matrix product. In addition, if Q is any matrix

of size NA × NB, then

(11) vecd {AT QB} = (B ⊙ A)T vec {Q}.

Corollary. When L < min{NA, NB} it follows from (10) that

(12a) rank {A ⊙ B} = L ⇐⇒ (AHA) ◦ (BHB) > 0

and thus also

(12b) rank {A} = L = rank {B} =⇒ rank {A ⊙ B} = L.

The proof of this theorem relies on certain properties of the Khatri-Rao product and

the diagonal extraction operator vecd{·}, which we establish in the following section.

We observe that the left-hand-side expression in (10) requires NANBL+NANBL(L+

1)/2 multiplications, while forming the equivalent right-hand-side expression requires

only (NA + NB + 1)L(L + 1 )/2 multiplications. Thus the latter offers significant

computational savings, especially when NANB ≫ NA + NB + 1.

Now, using (10) and (11) we can rewrite (9) in the more compact form

(13) vecd {X} =
[

(BHB) ◦ (AHA)
]−1

vecd {AHQ conj(B)}.

The expression (13), which requires O(L3) + O([NA + NB]L2) (multiply and add)

operations is much more efficient than (9), which requires O(L3)+O([NANB] L2) op-

erations. The computational advantage of using (13) is particularly evident when the

LLS problem (7) is “strongly over-determined,” i.e., when

(14) L ≪ min(NA, NB)

which implies that NA NB ≫ NA + NB ≫ L.

In order to be able to use (13) we must ascertain that the matrix (BHB) ◦

(AHA) is invertible. This will hold, for instance, when both A and B have full

column rank. Such is indeed the case in multistatic antenna array processing: both

Gtr and Grec have full column rank (except in very rare pathological cases [10]). In

the full rank case AHA > 0 and BHB > 0, so that their Schur-Hadamard product
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is positive definite as well [11]. In general, for any two Hermitian positive semidefinite

matrices R = [rij ] and Q = [qij ] we have [11]

(min
i

qii)λmin(R) ≤ λmin(R ◦ Q) ≤ λmax(R ◦ Q) ≤ (max
i

qii)λmax(R).

In particular, when both matrices are positive definite, then λmin(R) > 0, as well as

qii > 0 for all i, so that λmin(R ◦ Q) > 0 and , therefore, R ◦ Q > 0, as stated.

3. Diagonal Extraction and the Khatri-Rao Product. Given two matrices,

A (of size NA × L) and B (of size NB × L), let {ai ; 1 ≤ i ≤ L} denote the

columns of A, and {bi ; 1 ≤ i ≤ L} denote the columns of B, namely,

A = [ a1 a2 . . . aL ], B = [ b1 b2 . . . bL ].

The columns of the Kronecker product A⊗B are {ai⊗bj} for all i, j combinations

in lexicographic order, namely,

A ⊗ B =
[

a1 ⊗ b1 a1 ⊗ b2 . . . a1 ⊗ bL a2 ⊗ b1 a2 ⊗ b2 . . . aL ⊗ bL

]

.

Thus, the Khatri-Rao product

(15) A ⊙ B
∆
=

[

a1 ⊗ b1 a2 ⊗ b2 . . . aL ⊗ bL

]

consists of a subset of the columns of A ⊗ B. This observation can be expressed in

the form
(
A ⊗ B

)
SL = A ⊙ B, where the selection matrix SL is

(16a) SL
∆
=

[
e1 eL+2 e2L+3 . . . eL2

]

and ek is an L2 × 1 column vector with a unity element in the k-th position and

zeros elsewhere, viz.,

(16b) ek
∆
=

[
0 . . . 0 1
︸ ︷︷ ︸

k

0 . . . 0
]T

, 1 ≤ k ≤ L2.

Applying the (L2 ×L) matrix SL from the right selects only ai ⊗ bj combinations

with i = j so that indeed
(
A ⊗ B

)
SL = A ⊙ B.

Next, we observe that for any two sets of columns of the same length N , say

{aj ; 1 ≤ j ≤ L} and {bj ; 1 ≤ j ≤ L}, we have

aj ⊙ bj ≡ aj ⊗ bj =









a1j bj

a2j bj

...

aNj bj









.

Now, the elements of the N × 1 column vector

aj ◦ bj =









a1j b1j

a2j b2j

...

aNj bNj
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are clearly a subset of the elements of aj ⊗ bj and, in fact,

aj ◦ bj = ST
N

(
aj ⊗ bj

)

so that ST
N

(
A ⊙ B

)
= A ◦ B for any two matrices A, B of the same size.

In summary, we have the following fundamental result, which relates Kronecker,

Khatri-Rao and Schur-Hadamard products.

Theorem 3.1. Given two matrices, A (of size NA × L) and B (of size

NB × L), we have

(17a)
(
A ⊗ B

)
SL = A ⊙ B

where the selection matrix SL is as defined in (16). In addition, if both matrices

have the same size (i.e., NA = NB = N) then we also have

(17b) ST
N

(
A ⊙ B

)
= A ◦ B

and thus also

(17c) ST
N

(
A ⊗ B

)
SL = A ◦ B.

As for the diagonal extraction operator vecd {·}, we observe that

vecd {A} = ST
N vec {A}

for any square (N × N) matrix A = {aij ; 1 ≤ i ≤ N , 1 ≤ j ≤ N}. This is so

because vec {·} vectorizes a matrix by columns, so that

vec {A} =
[
a11 a21 . . . aN1 a12 . . . aN2 . . . aNN

]T

and we notice that the diagonal elements { a11, a22, . . . , aNN } are evenly spaced

within vec {A}, occupying the 1-st, (N + 2)-nd, (2N + 3)-rd, . . . , N2-th posi-

tions. Pre-multiplying vec {A} by ST
N selects the 1-st, (N + 2)-nd, (2N + 3)-

rd, etc. elements of this vector, which results in the (much shorter) column vector
[
a11 a22 . . . aNN

]T
≡ vecd {A}. Conversely, for a diagonal matrix D, the

N2 × 1 column vector vec {D} is sparse, and can be generated by inserting zeros

into vecd {D}, viz.,

vec {D} = SN vecd {D}.

Notice that combining the two last results produces vecd {D} = ST
NSN vecd {D},

which holds true for every (N × N) diagonal matrix D, so that we must have

ST
NSN = IN .

In summary, we have established the following result, which relates the vectoriza-

tion-by-columns operator vec {·} to the diagonal extraction operator vecd {·}.
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Theorem 3.2. Given a square (N × N) matrix A, we have

(18a) vecd {A} = ST
N vec {A}.

If A is diagonal, then also

(18b) vec {A} = SN vecd {A}, A is diagonal.

Moreover, the columns of the (N2 × N) selection matrix SN are mutually ortho-

normal, viz.,

(18c) ST
NSN = IN .

Proof of Theorem 2.1. From
(
A ⊗ B

)
SL = A ⊙ B it follows that

(A ⊙ B)H(A ⊙ B) = ST
L (A ⊗ B)H(A ⊗ B)SL = ST

L

[

(AHA) ⊗ (BHB)
]

SL.

Applying (17c) results in ST
L

[

(AHA) ⊗ (BHB)
]

SL = (AHA) ◦ (BHB), so that

(A ⊙ B)H(A ⊙ B) = (AHA) ◦ (BHB)

which establishes (10). Next, observe that for any given matrices A, B, and Q of

sizes NA × L, NB × L, and NA × NB, respectively, we have

vecd {AT QB} = ST
L vec {AT QB}

= ST
L (BT ⊗ AT ) vec {Q} =

[

(B ⊗ A)SL

]T

vec {Q}

where we used the identities (18a) and (1). In view of (17a) we conclude that

vecd {AT QB} = (B ⊙ A)T vec {Q}

which establishes (11). Finally, (17c) is obtained by combining (17a) and (17b), which

concludes our proof of the theorem.

4. Concluding Remarks. We have established an explicit characterization of

the mappings

A ⊗ B =⇒ A ⊙ B =⇒ A ◦ B

in terms of the selection matrix SL (Theorem 3.1). We have also observed that

the same matrix relates the two operators vec {·} and vecd {·} (Theorem 3.2).

We used these relations to derive our main result (Theorem 2.1) and, subsequently,

to construct a computationally-efficient solution of the matrix least-squares problem

(8), requiring O(L3)+O([NA + NB]L2) (multiply and add) operations. In contrast,

the most efficient known alternative (i.e., eq. (9)) requires O(L3) + O([NANB] L2)



130 HANOCH LEV-ARI

operations, which is significantly higher when L ≪ min(NA, NB). Furthermore,

preliminary inquiries indicate that our (Schur-Hadamard type) solution (13) is less

sensitive to roundoff errors than the known (Khatri-Rao type) solution (9).

The fundamental relations presented in Theorems 3.1 and 3.2 can be exploited

to derive a variety of useful results. For instance, (11) implies that, for a diagonal

matrix D,

vecd {AT DB} = (B ⊙ A)T vec {D} = (B ⊙ A)T SL vecd {D}

=
[

ST
L (B ⊙ A)

]T

vecd {D} = (B ◦ A)T vecd {D}

where we used (18b) and (17b). Thus, we get the new identity

(19) vecd {AT DB} = (B ◦ A)T vecd {D}

which should be contrasted with the known result (5).
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