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MAXIMUM LIKELIHOOD ESTIMATION OF POINT SCATTERERS

FOR COMPUTATIONAL TIME-REVERSAL IMAGING∗

GANG SHI† AND ARYE NEHORAI†

Abstract. We present a statistical framework for the fixed-frequency computational time-

reversal imaging problem assuming point scatterers in a known background medium. Our statistical

measurement models are based on the physical models of the multistatic response matrix, the dis-

torted wave Born approximation and Foldy-Lax multiple scattering models. We develop maximum

likelihood (ML) estimators of the locations and reflection parameters of the scatterers. Using a sim-

plified single-scatterer model, we also propose a likelihood time-reversal imaging technique which is

suboptimal but computationally efficient and can be used to initialize the ML estimation. We gener-

alize the fixed-frequency likelihood imaging to multiple frequencies, and demonstrate its effectiveness

in resolving the grating lobes of a sparse array. This enables to achieve high resolution by deploying

a large-aperture array consisting of a small number of antennas while avoiding spatial ambiguity.

Numerical and experimental examples are used to illustrate the applicability of our results.

1. Introduction. The time reversal approach, which traces its origin to “phase
conjugation” in nonlinear optics [1], was later developed using acoustic experiments
[2] and now attracts increasing interests with broad applications. The key idea behind
the so-called physical time-reversal methods is to record a signal emitted by sources or
reflected by targets using an array of transducers; then transmit the time-reversed and
complex conjugated version of the measurements back into the medium. In a recip-
rocal medium, the back-propagated wave will then retrace the original trajectory and
focus around the original source locations without the need to solve the inverse of the
channel. In a homogeneous medium, the diffraction resolution of the refocused field in
the direction parallel to the array (or cross-range resolution) is λR/a [3], [4], where λ
is the carrier wavelength, R is the range between the array and the source, and a is the
array aperture. The resolution in the perpendicular direction (or range resolution) is
λ(R/a)2 [3], [4]. For physical time-reversal methods in a non-homogeneous medium,
experimental and theoretical evidence show that the refocusing is much tighter and
the Fresnel zones are reduced [5]-[19]. This superior focusing resolution quality is in-
terpreted intuitively due to taking advantage of the inhomogeneity which distributes
the wave over a larger part of the medium and therefore carries more information
about the source location [6]. The enhanced resolution is called super-resolution,
making the time-reversal methods attractive.

Field measurements conducted by a group of the University of California at San
Diego demonstrated that a time-reversed acoustic signal can be focused up to 30
kilometers away in water about 120 meters deep [2], [5]. Recent experiments [20]-[22]
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confirm that the spatial and temporal focusing property holds also for electromagnetic
waves. This refocusing property is currently being explored and has a great potential
for numerous applications, including radar, underwater acoustics, biomedicine, detec-
tion of defects in metals, communications, etc. In [23], [24] Cramér-Rao bounds are
computed to evaluate the performance of physical time reversal for estimating the
reflectivity of an unknown environment.

One application of this time-reversal refocusing property is to detect and locate
a target by computational or virtual time reversal through imaging [3], [6]. In this
case, after receiving the signal reflected from the target, a back-propagated process
is computed rather than implemented in the real medium. The reversed signal then
refocus in the computed image around the target location, and the peaks indicate
existence of possible targets. Various computational imaging strategies have been
proposed, which in general fall under three categories: (a) time domain methods that
use mostly times of arrival and amplitude information recorded by the array, (b)
fixed-frequency methods that use mostly differential phase information on the array,
and (c) intensity measurement based methods (see [3] for more details).

In Section 2, we employ two physical models used in computational time-reversal
imaging methods assuming point scatterers: one ignores the multiple scattering among
the scatterers using the distorted wave Born approximation [25] and the other incor-
porates them using the Foldy-Lax models [26], [27]. We then formulate the computa-
tional time-reversal imaging in a statistical framework by establishing a measurement
model. In Section 3 we develop maximum likelihood estimation (MLE) and subop-
timal methods to estimate the parameters of interest, including the locations and
scattering coefficients of the scatterers. In Section 4 we propose a likelihood compu-
tational time-reversal imaging method using a simplified single-scatterer model, and
generalize it into multiple-frequency version in Section 5, which is demonstrated to
be useful in resolving the spatial ambiguity of a sparse array. Numerical and exper-
imental examples are presented in Section 6, and conclusions are given in Section
7.

2. Physical and Statistical Measurement Models. We present physical and
statistical measurement models of the multistatic response matrix [28] made by an
array of antennas, which we will employ in later sections for solving the computational
time-reversal imaging in a statistical signal processing framework.

2.1. Multistatic Response Matrix. We introduce the so-called multistatic
response matrix [28] by considering transmit and receive antenna arrays of Nt and Nr

isotropic point antennas, centered at known positions α1,α2, . . . ,αNt and β1,β2, . . .,
βNr , respectively. Suppose a known signal s(t) = [s1(t), s2(t), . . . , sNt(t)]

T is trans-
mitted to illuminate the scenario of interest, i.e., the j-th antenna transmits sj(t),
j = 1, . . . , Nt, and the resulting backscattered returns are measured by all the receive



MAXIMUM LIKELIHOOD ESTIMATION OF POINT SCATTERERS 229

antennas. Consider this system in the frequency domain and ignore noise, the received
signal is represented as y(ω) = K(ω)s(ω), where y(ω) = [y1(ω), y2(ω), . . . , yNr(ω)]T ,
s(ω) = [s1(ω), s2(ω), . . . , sNt(ω)]T are the Fourier transforms of the received and
transmitted signals, respectively. The matrix K = [Kj,k(ω)] is the multistatic re-
sponse matrix [28] of dimension Nr ×Nt. The element Kj,k(ω) can be interpreted as
the received signal at a frequency ω at the j-th receive antenna due to an impulse
excitation (in the frequency domain) applied by the k-th transmit antenna [28].

Let y(t) be the received signal in the time domain, i.e., the inverse Fourier trans-
form of y(ω), then its time reversed complex conjugated version y∗(−t) in the time
domain corresponds to phase conjugation in frequency domain y∗(ω), where “∗” de-
notes the complex conjugate. Consider a special case with co-located transmit and
receive arrays, i.e., Nt = Nr = N and α1 = β1,α2 = β2 · · ·αN = βN , after the
time reversed complex conjugated y∗(−t) is transmitted back into the medium, the
measured backscattered signal on the receive array could be modeled as

(1) y(b)(ω) = K(ω)y∗(ω) = K(ω)K∗(ω)s∗(ω),

where the superscript “(b)” denotes the measurement of the back-propagated time-
reversed and complex conjugated signal, or equivalently,

(2) y(b)∗(ω) = K∗(ω)K(ω)s(ω).

We can see thatK∗(ω)K(ω) works as a time-reversal operator, defined as time-reversal
matrix in [29]-[31], and the information about the probed scenario is encoded in the
multistatic matrix K(ω). It is shown in [31] that for well-resolved scatterers, the
eigenvectors of the time-reversal matrix that correspond to the nonzero eigenvalues
are associated in a one-to-one manner with the scatterers. In the computational time-
reversal imaging, the back-propagated field or “pseudo-spectrum” [31] is computed
from K(ω) and the inference on the scenario is made through the created image. It is
worth noting that the time-reversal methods are different from inverse filtering where
the former exploits the reciprocity of the channel whereas the latter tries to find the
inverse of a channel.

In the rest of this paper, the numbers of transmit and receive antennas Nt and Nr

are not necessarily equal, we consider a scenario where M discrete point scatterers are
embedded in a known background medium (see Figure 1 for an illustration). The loca-
tions and (frequency-dependent) scattering coefficients of the scatterers are assumed
unknown, which are denoted by x1,x2, . . . ,xM , and τ1(ω), τ2(ω), . . . , τM (ω), respec-
tively. Alternatively to the conventional computational time-reversal imaging [3],
we will estimate the locations and scattering coefficients using statistical maximum-
likelihood (ML) method, which is known asymptotically unbiased and efficient [32]
under mild conditions.
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Fig. 1. scenario illustration.

2.2. Multistatic Matrix Using the Distorted Wave Born Approxima-

tion. In this section we use the distorted wave Born approximation (DWBA) [25],
meaning that we neglect the multiple scattering among the scatterers. Then, the
scattered field at a position r induced by the k-th transmit antenna is given by [31]

(3) ψ
(s)
k (r, ω) =

M∑
m=1

G(r,xm, ω)τm(ω)G(xm,αk, ω)sk(ω), k = 1, 2, . . . , Nt,

where G(·) is the scalar time harmonic background Green function satisfying the
reduced wave equation [3]

(4) ∇2G(r,x′, ω) + (ω/c0)2n2(x)G(r,x′ω) = −δ(r − x′),

here c0 is a reference propagation speed and n(x) is the refraction index of the medium
at a position x. Hence, the knowledge of the background medium is fully incorporated
into the Green function, and in this paper we assume that the background Green
function is known. For example, in a homogeneous medium the three-dimensional
Green function that satisfies the radiation condition is given by [33]

(5) G(r,x′, ω) =
exp(i2π|r − x′|/λ)

4π|r − x′|
=

exp(iω|r − x′|/c)
4π|r − x′|

,

where λ is the wavelength and c is the propagation speed; note that we use | · | to
represent both the Euclidean norm of a vector and modulus of a complex number.
The Green function (5) represents a spherical wave case, and its variations have been
used for general channel modeling in [23], [24], [34].



MAXIMUM LIKELIHOOD ESTIMATION OF POINT SCATTERERS 231

According to (3), the multistatic matrix K(ω) is found as
(6)

Kj,k(ω) =
M∑

m=1

G(βj ,xm, ω)τm(ω)G(xm,αk, ω), j = 1, 2, . . . , Nr, k = 1, 2, . . . , Nt.

Define x = [xT
1 ,x

T
2 , . . . ,x

T

M ]T as the unknown scatterer location parameter vector
of dimension 3M , and τ (ω) = [τ1(ω), τ2(ω), . . . , τM (ω)]T unknown scattering coeffi-
cients. The above model is formulated in a matrix form as

K(x, τ (ω), ω) =
M∑

m=1

τm(ω)gr(xm, ω)gT

t (xm, ω),(7)

= Ar(x, ω)T (τ (ω))AT

t (x, ω),(8)

where “T ” stands for a matrix transpose, T (τ (ω)) = diag{τ (ω)},

Ar(x, ω) = [gr(x1, ω), gr(x2, ω) · · · gr(xM , ω)],(9)

At(x, ω) = [gt(x1, ω), gt(x2, ω) · · · gt(xM , ω)],(10)

and the Nr-dimensional receive Green function vector gr(x′, ω) and Nt-dimensional
transmit Green function vector gt(x′, ω) are defined as

gr(x
′, ω) = [G(β1,x

′, ω), G(β2,x
′, ω), . . . , G(βNr ,x

′, ω)]T ,(11)

gt(x
′, ω) = [G(x′,α1, ω), G(x′,α2, ω), . . . , G(x′,αNt , ω)]T .(12)

The receive and transmit Green function vectors incorporate all of the spatial charac-
teristics of the response of the receive and transmit arrays to a point scatterer located
at x′, hence can be interpreted as the generalization of the conventional array re-
sponse vector or steering vector [35]. In the following, we will drop the dependence
on frequency ω in all notations for notational simplicity except for Section 5 where
we consider multiple frequencies.

2.3. Multistatic Matrix Using the Foldy-Lax Multiple Scattering

Model. To incorporate the multiple scattering among the scatterers, the physical
model of the multistatic matrix (6) could be generalized using the so-called Foldy-
Lax multiple scattering model [26], [27]

(13) Kj,k =
M∑

m=1

G(βj ,xm)τmG(xm,αk), j = 1, 2, . . . , Nr, k = 1, 2, . . . , Nt,

where G(·) is the background Green function and G(·) represents the full Green func-
tion of the background plus scatterers system. In a matrix form, the multistatic
matrix

K(x, τ ) =
M∑

m=1

τmgr(xm)gT

t (xm) = Ar(x)T (τ )AT

t (x),(14)
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where At(x) = [gt(x1),gt(x2) · · ·gt(xM )], and gt(xm) = [G(xm,α1),G(xm,α2), . . .,
G(xm,αNt)]

T , for m = 1, 2, . . . ,M .
The Green functions G and G satisfy the Foldy-Lax equations [26], [27]:

G(xm,αk) = G(xm,αk) +
∑

m′ 6=m

G(xm,xm′)τm′G(xm′ ,αk),(15)

m = 1, 2, . . . ,M, k = 1, 2, . . . , Nt.

We reformulate the above MNt Foldy-Lax equations into an M ×Nt matrix form as

(16) AT

t (x) = AT

t (x) + S(x)T (τ )AT

t (x),

where

S(x) =



0 G(x1,x2) · · · G(x1,xM )
G(x2,x1) 0 · · · G(x2,xM )

...
. . .

...
G(xM−1,x1) · · · 0 G(xM−1,xM )
G(xM ,x1) · · · G(xM ,xM−1) 0


.

Solving At(x) = At(x)[I − T (τ )S(x)]−1 from (16) and substituting it into (14), we
derive the closed-form physical model of the multistatic matrix K that includes the
multiple scatterings as

K(x, τ ) = Ar(x)[T−1(τ )− S(x)]−1AT

t (x).(17)

Observing (17), we could see that when |τm|, m = 1, 2, . . . ,M are small or the dis-
tances between the scatterers are large enough, [T−1(τ )− S(x)]−1 ≈ T (τ ), then the
physical model K(x, τ ) = Ar(x)[T−1(τ )−S(x)]−1AT

t (x) ≈ Ar(x)T (τ )AT
t (x), namely

it becomes the model (8) that uses the Born approximation.

2.4. Statistical Measurement Model. In the fixed-frequency computational
time-reversal imaging, the multistatic matrix is evaluated at only one specific fre-
quency. The back-propagated field or “pseudo-spectrum” [31] is computed from K

directly assuming it is obtained in advance. Obviously the measurement and modeling
of the multistatic matrix will have inaccuracies, hence we assume that it is perturbed
by an additive noise. The statistical measurement model of the multistatic matrix is

(18) Y = K(x, τ ) +W,

where Y is the Nr ×Nt measurement matrix, W is a noise matrix whose entries wj,k

are assumed zero-mean jointly circularly symmetric complex Gaussian distributed,
i.e.,

E [Re{wj,k}] = E [Im{wj,k}] = 0,

E [Re{wj,k} Im{wj,k}] = 0,

E [(Re{wj,k})2] = E [(Im{wj,k})2] = σ2
j,k/2,(19)
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where j = 1, 2, . . . , Nr, k = 1, 2, . . . , Nt, and Re{·}, Im{·} take the real and imagi-
nary parts, respectively. We further assume that the elements of W are independent
identically distributed, i.e.,

(20) E[wj,kw
∗
j′,k′ ] = σ2δ(j − j′)δ(k − k′),

where j, j′ = 1, 2, . . . , Nr, k, k′ = 1, 2, . . . , Nt, and δ(·) stands for Kronecker delta
function. Here the assumptions of whiteness and homogeneity are made for simplicity,
we plan to extend the covariance structure of the noise matrix to a more general case
in future work.

Note that the Green function representations in the multistatic matrixK(x, τ ) are
completely general in the sense that the formulation could easily be adapted to mod-
eling different operating scenarios by applying appropriate Green functions. Further-
more, since we make no assumptions on the antenna locations, our model can include
various calibrated array configurations for instance, linear, planar, three-dimensional,
etc., as long as the coherence among the antennas are preserved. Throughout this
paper, we assume the number of scatterers M is a priori known, otherwise it could
be estimated by examining the profile of the singular values of the multistatic matrix
[36], or determined according to the information theoretic criteria [37], [38].

3. Scattering Parameter Estimation. Using the above statistical measure-
ment models for the fixed-frequency computational time-reversal imaging methods,
we develop maximum likelihood (ML) and suboptimal methods for estimating the
location x and scattering coefficients τ vectors.

Based on the same measurements of the scenario as in the computational time-
reversal imaging, we derive ML estimators, which is known asymptotically unbiased
and efficient [32]. Given the measurement Y , the likelihood function of unknown
parameters x, τ , and σ2 is given in the form of the probability density function of
the measurement as

(21) l0(x, τ , σ2;Y ) = p(Y ;x, τ , σ2) =
1

(πσ2)NrNt
exp(−‖Y −K(x, τ )‖2

F/σ
2),

where ‖ · ‖F represents the Frobenius norm of a matrix and exp(·) stands for the
exponential function. The ML estimates of x, τ and nuisance parameter σ2 are found
by maximizing the likelihood function (21), i.e.,

(22) x̂, τ̂ , σ̂2 = arg max
x,τ ,σ2

1
(πσ2)NrNt

exp(−‖Y −K(x, τ )‖2
F/σ

2).

Taking the derivative of l0(x, τ , σ2;Y ) with respect to σ2 and solving the estima-
tion equation

(23)
∂l0(x, τ , σ2;Y )

∂σ2
= 0,
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we get the MLE of σ2 given x and τ as

(24) σ̂2 =
1

NrNt
‖Y −K(x, τ )‖2

F.

Substituting σ̂2 back into (21), we concentrate the likelihood function with respect to
x and τ as

(25) l1(x, τ ;Y ) =
(NrNt)NrNt

(π‖Y −K(x, τ )‖2
F)NrNt

exp(−NrNt).

Now the MLE of x and τ are found by

(26) x̂, τ̂ = arg min
x,τ

‖Y −K(x, τ )‖2
F.

To find the MLEs of x and τ for the three-dimensional problem, we would need
to solve the 5M -dimensional nonlinear least-squares optimization problem in (26). In
the following sections, we will solve this problem based on the physical models (8)
and (17), respectively.

Note that if the transmit and receive arrays are co-located, the models (8) and (17)
of the multistatic matrix will have a symmetric structure K(x, τ ) = KT (x, τ ) since
Ar(x) = At(x) using the reciprocity of the medium G(r,x′, ω) = G(x′, r, ω). Then,
we could replace the measurement matrix Y by its symmetric part Ỹ = (Y + Y T )/2
due to the following identity

(27) ‖Y −K(x, τ )‖2
F = ‖Ỹ −K(x, τ )‖2

F + ‖Y − Ỹ ‖2
F.

The proof follows from Lemma 1 (see the Appendix A for the proof).

3.1. Estimation Using the Distorted Wave Born Approximation. When
the multiple scatterings among the scatterers can be assumed to be weak and negli-
gible, we apply the physical model of the multistatic matrix using the distorted wave
Born approximation. Substituting (8) into the cost function in (26), we have the
following metric for estimating locations x and scattering coefficients τ

l2(x, τ ;Y ) = ‖Y −Ar(x)T (τ )AT

t (x)‖2
F(28)

= ‖vec(Y )−At(x)�Ar(x)τ‖2
F,(29)

where vec(·) stacks the first to the last columns of the matrix one under another to
form a long vector, At(x) � Ar(x) = [gt(x1) ⊗ gr(x1) · · · gt(xM ) ⊗ gr(xM )], here �
stands for the Khatri-Rao product [39], and ⊗ represents the Kronecker product [39].
In the second equality, we used the identity vec(AVD) = (DT �A)vecd(V ) where V
is diagonal and vecd(·) forms a vector from the diagonal elements of the matrix (see
T3.13 in [39]).

Observe the linearity of the vector in (29) in τ . Hence, given x we estimate τ as
a function of x and Y using the ordinary least-squares solution

(30) τ̂ = [AH

�(x)A�(x)]−1AH

�(x)vec(Y ),
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where “H” represents conjugate transpose and

(31) A�(x) , At(x)�Ar(x).

By Theorem 1 in [31], Ar(x) and At(x) are of full rank M under mild conditions if
M ≤ Nr, Nt. Then, it is not difficult to prove further that A�(x) is also of rank M ,
hence the inverse of AH

�(x)A�(x) exists in (30), or the scattering coefficient τ will
not be identifiable anymore. We further concentrate (29) with respect to the location
parameters x by substituting (30) into (29), and have

l3(x;Y ) = ‖vec(Y )−A�(x)τ̂‖2
F

= ‖vec(Y )−A�(x)[AH

�(x)A�(x)]−1AH

�(x)vec(Y )‖2
F

= ‖P⊥A�(x)vec(Y )‖2
F,(32)

where P⊥A�(x) = I − A�(x)[AH
�(x)A�(x)]−1AH

�(x) is the projection matrix that
projects to the orthogonal complement subspace of the range of matrix A�(x), I is an
identity matrix with appropriate dimension. Now the dimension of the optimization
problem has been reduced from 5M in (29) to 3M in (32).

Observing (32), the likelihood-based optimization problem using the physical
model (8) and measurement model (18) could be eventually interpreted as a subspace-
based method: the vector vec(Y ) representing the measured signal subspace should
be orthogonal to the noise subspace P⊥A�(x), the orthogonal complement subspace of
the range of A�(x) = At(x)�Ar(x) in CNrNt .

To summarize, to compute MLEs of x and τ , we

1. solve

(33) x̂ = arg min
x

‖P⊥A�(x)vec(Y )‖2
F,

2. compute

(34) τ̂ = [AH

�(x̂)A�(x̂)]−1AH

�(x̂)vec(Y ),

3. and

(35) σ̂2 =
1

NrNt
‖Y −K(x̂, τ̂ )‖2

F.

The first step of the above MLE procedure is nonlinear, requiring a numerical
approach. Starting from an initial estimate of x, we solve (33) by a quasi-Newton
algorithm consisting of: (i) update the approximation of the Hessian matrix and
compute the search direction using the BFGS algorithm [40]-[43], and (ii) update the
estimation using the mixed quadratic and cubic polynomial method. We implemented
these two phases by the MATLAB optimization toolbox.
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3.2. Estimation Using the Foldy-Lax Multiple Scattering Model. For
the case where multiple scattering among the scatterers are non-negligible, for example
when the scatterers are closely located and their scattering amplitudes are large, it
is necessary to apply an appropriate physical model incorporating the underlying
multiple scattering effect to obtain accurate estimation. We will then use the physical
model (17), which is based on the Foldy-Lax multiple scattering model.

The ML estimate of x and τ based on the Foldy-Lax multiple scattering model
is

(36) x̂, τ̂ = arg min
x,τ

‖Y −Ar(x)[T−1(τ )− S(x)]−1AT

t (x)‖2
F.

Since K(x, τ ) is nonlinear with respect to both the location parameters x and scatter-
ing coefficient parameters τ , it is difficult to reduce the dimension of the optimization
problem (36) by finding a concentrated metric as we did in (32), and it is inevitable
to resort to an iterative algorithm or gradient-based numerical procedure. A similar
quasi-Newton algorithm as in Section 3.1 could be used for solving x̂ and τ̂ . Here, we
propose a sub-optimal estimation method, which is a tradeoff between computation
complexity and optimality.

It is shown in [27] that the MUSIC-based time-reversal imaging method (see (47)
in Section 4), which was first developed using the distorted wave Born approximation
model, is still applicable to the multiple scattering scenario. This conclusion is also
supported by the observation that the range of Ar(x)[T−1(τ ) − S(x)]−1AT

t (x) is
equal to the range of Ar(x), which is the signal subspace using the distorted wave
Born approximation model, as long as T−1(τ )− S(x) is a full rank matrix.

However, a similar conclusion does not hold in the likelihood-based method. It is
interesting to note that when using the wave Born approximation, the signal subspace
for the measurement vec(Y ) is the range of A�(x) = At(x)�Ar(x), which is spanned
by gt(xm)⊗gr(xm), m = 1, 2, . . . ,M ; whereas, when the Foldy-Lax model is applied,
the signal subspace becomes the range of A⊗(x) , At(x)⊗ Ar(x), which is spanned
by gt(xm)⊗ gr(xm′), m,m′ = 1, 2, . . . ,M due to the following equality

(37) vec
(
Ar(x)[T−1(τ )− S(x)]−1AT

t (x)
)

= At(x)⊗Ar(x)vec
(
[T−1(τ )− S(x)]−1

)
.

Here we used the identity vec(ADB) = (BT ⊗A)vecD.
By this observation, we propose a sub-optimal estimator of x for the Foldy-Lax

model that minimizes the following metric

l4(x;Y ) = ‖P⊥A⊗(x)vec(Y )‖2
F

= ‖(PAt(x) ⊗ PAr(x))⊥vec(Y )‖2
F,(38)

where the second equality follows by the Corollary in Appendix B. It is easy to show
that PA⊗(x) is of rank M2 under mild conditions. The metric (38) is essentially a
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modification of (32) by applying appropriate subspace for the multiple scattering case,
but the dimension of the signal subspace increases from M to M2.

Denoting B =
(
[T−1(τ )−S(x)]−1

)
and b = vec(B), the statistical interpretation

of this metric is that minimizing (38) will give an “ML” estimate of x for the problem
in which the inner structure of b is ignored, i.e., treat b as an unconstrained vector in
CM2

. Once we obtain x̂, we could estimate τ as

(39) τ̂ = vecd([S(x̂) + B̂−1]−1),

where vec(B̂) = b̂ and

b̂ = [(At(x̂)⊗Ar(x̂))H(At(x̂)⊗Ar(x̂))]−1(At(x̂)⊗Ar(x̂))Hvec(Y )

=
{(

[AH

t (x̂)At(x̂)]−1AH

t (x̂)
)
⊗

(
[AH

r (x̂)Ar(x̂)]−1AH

r (x̂)
)}

vec(Y ).(40)

The second equality could be proved by the same steps as the proof of Lemma 2 in
Appendix B.

4. Likelihood Time-reversal Imaging. In this section, we propose an imaging
metric for the fixed-frequency time-reversal imaging methods using the likelihood
function for a simplified physical model of the multistatic matrix, namely for a single-
scatterer model where

(41) K(x1, τ1) = τ1gr(x1)gT

t (x1).

That is, we apply this model even if in reality the number of scatterers is larger than
one, thus reducing the optimization to a dimension of five. The resulting simplified
estimation or scanning scheme is similar to [44] and is useful for example to initialize
the numerical optimization of the MLE for the full physical model.

Note that this single-scatterer model is a special case of the one using the distorted
wave Born approximation (8) (of course, also a special case of the one using Foldy-
Lax model (17)) and location parameter x = x1. We plug Ar(x) = gr(x) and
At(x) = gt(x) into (30), the least-squares solution of τ1 given x1 is found as

τ̂1 =
[gH

t (x)⊗ gH
r (x)]vec(Y )

[gH
t (x)⊗ gH

r (x)][gt(x)⊗ gr(x)]

=
[gH

t (x)⊗ gH
r (x)]vec(Y )

gH
t (x)gt(x)⊗ gH

r (x)gr(x)

=
gH

t (x)⊗ gH
r (x)

[gH
t (x)gt(x)][gH

r (x)gr(x)]
vec(Y ),(42)

where the second equality follows by the identity (A⊗B)(C⊗D) = AC⊗BD. Then,
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the concentrated cost function for solving x̂ is

l5(x;Y ) = ‖P⊥gt(x)⊗gr(x)vec(Y )‖2
F(43)

= ‖vec(Y )− [gt(x)⊗ gr(x)]
gH

t (x)⊗ gH
r (x)

[gH
t (x)gt(x)][gH

r (x)gr(x)]
vec(Y )‖2

F

= ‖[I − gt(x)gH
t (x)⊗ gr(x)gH

r (x)
[gH

t (x)gt(x)][gH
r (x)gr(x)]

]vec(Y )‖2
F

= ‖Y − gr(x)gH

r (x)Y g∗t (x)gT

t (x)/[gH

t (x)gt(x)]/[gH

r (x)gr(x)]‖2
F,(44)

where the last equality follows by the identities vec(ADB) = (BT ⊗A)vecD, vec(A+
B) = vec(A) + vec(B), and ‖A‖F = ‖vec(A)‖F.

Now, the only unknown parameter in this concentrated metric (44) is the location
parameter x of one scatterer, thus the dimension of the optimization problem in (44)
has been reduced to 3, rather than 3M searches necessary in (32) and (38). We propose
to create the likelihood time-reversal image by evaluating the following metric over a
fine grid of the probed scenario

(45) ls(x;Y ) = 1/l5(x;Y ) =
1

‖P⊥gt(x)⊗gr(x)vec(Y )‖2
F

,

and use it as the imaging metric. Note that the final concentrated likelihood function
using the single scatterer model is

(46) l6(x;Y ) =
(NrNt)NrNt

(π‖P⊥gt(x)⊗gr(x)vec(Y )‖2
F)NrNt

exp(−NrNt),

and both the concentrated metrics (45) and (46) are monotonically decreasing func-
tions with respect to ‖P⊥gt(x)⊗gr(x)vec(Y )‖2

F, thus the imaging metric (45) is a mono-
tonically increasing function of the concentrated likelihood function (46). Therefore,
the image represents the approximated relative likelihood, supported by the measure-
ment Y , of the existence of a single scatterer at each imaging location, and the peaks
in the image will indicate locations of the possible scatterers. Since this imaging is
based on the simplified physical model (41), it is sub-optimal in its nature, but it
useful also to initialize the non-linear optimization procedures in Section 3.1 and Sec-
tion 3.2 by using the locations of the first M local maxima as the initial estimates of
x1,x2, . . . ,xM .

We note that in [31], the following MUSIC-based pseudo-spectrum is used as a
fixed-frequency computational time-reversal imaging metric for the co-located trans-
mit and receive arrays case, (where Nr = Nt = N , and gr(x) = gt(x) = g(x))

(47) D(x) =
1∑N

m0=M+1 |〈µ∗m0
, g(x)〉|2

,

where µm0
is the m0-th eigenvector of time-reversal matrix T = Y ∗Y having zero

eigenvalue. This MUSIC algorithm makes use of the fact that the time-reversal matrix
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T has the same range as the subspace spanned by the complex conjugates of the
Green function vectors when noiseless, which is the so-called signal subspace in [31],
and the noise subspace is spanned by the eigenvectors of T corresponding to zero
eigenvalues. Similar to the observation we made in Section 3.1, the likelihood-based
optimization problem (43) finally becomes a subspace-based method. However, the
orthogonality between the signal subspace and noise subspaces is employed differently
in the likelihood-based (43) and MUSIC-based (47). In the likelihood-based (43),
both the signal and noise subspaces are in CNrNt , the noise subspace represented
by P⊥gt(x)⊗gr(x) arises from the physical model (41) and the signal subspace from
the measurement vec(Y ), whereas in the MUSIC-based (47), the signal and noise
subspaces are in CN , the noise subspace is estimated from the measurement Y and
the signal space comes from the Green function vector g(x). In addition, during the
likelihood-based imaging process the noise subspace is a function x, thus evaluated
at every imaging position, but in the MUSIC-based imaging the signal subspace g(x)
is evaluated. Comparing (47) with (32) and (38), the MUSIC-based imaging does not
employ the physical model of the multistatic matrix except for the array manifold and
the orthogonality between the signal and noise subspaces, thus could be less accurate
if the model is accurate. Moreover, the MUSIC-based method cannot be extended
to more complex models, such as unknown spatially correlated noise. The proposed
statistically based estimator, instead, is more scalable in the sense that it could be
extended to account for spatially correlated noise by employing a more realistic noise
model as well as a more general physical model. All these extensions will finally result
in more general optimization metrics, of course at the expense of higher computational
complexity.

5. Multiple-frequency Likelihood Time-reversal Imaging. In this section,
we generalize our fixed-frequency likelihood time-reversal imaging method to multiple
frequencies by combining the imaging metrics at various frequencies. We demonstrate
its usefulness in resolving the spatial ambiguity of a sparse array.

The original motivation for this generalization is to solve the dilemma in the
tradeoff between the array size and resolution capability in the fixed-frequency meth-
ods by introducing a new degree of freedom. Using a homogeneous medium as an
example, in order to keep the cross-range and range diffraction resolutions unchanged
with the increasing of the range R, we need to increase the array aperture a linearly
accordingly, due to facts that the diffraction resolution of the refocused field in the
cross-range direction is λR/a, and λ(R/a)2 in the range direction [3], [4]. This re-
quires a large number of antennas when R is large for arrays with antennas densely
spaced. One possible solution to avoid the need for this large number of antennas
is to employ a sparse array whose antenna spacing is much larger than half of the
wavelength. However, it is well-known that a spatial aliasing will occur when we
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undersample in the spatial domain, and the introduced spatial ambiguity cannot be
resolved without any a priori information.

To illustrate this spatial ambiguity, we use the coherent point spread function
(CPSF) [31] of a co-located array, which is defined as

(48) H(r,x′) , 〈g(r), g(x′)〉.

The CPSF of the array represents an “image” of a point source at position x′ formed
by the antenna array from the measurement of the outgoing wave Green function
G(r,x′) at various array elements [31]. Note that if we normalize the coherent point
spread function of the antenna array in by the number of antennas, the quantity
1
NH(r,x′) is exactly a generalization of the conventional beam pattern [45] of an
array, thus intrinsic to the array. We plot the amplitudes of the CPSF (48) for two
uniform linear arrays (ULAs) with antennas uniformly distribute on the line between
(-20,1) and (20,1): in Figure 2, the antenna spacing is 1/2 and in Figure 3 it is
5. Wavelength λ = 1 in both figures and we assume the point source is located at
x′ = (−5, 20). Compared with the dense array having no spatial aliasing in Figure
2, we could see that the CPSF of the sparse array in Figure 3 has a complicated
structure that consists of ridges and valleys and local maxima appear besides the true
source location, and these local maxima correspond to grating lobes. To resolve this
spatial ambiguity, we propose to introduce the frequency diversity.

Many techniques dealing with wideband signal processing have been proposed for
passive direction finding under the conventional array signal processing framework in
the existing literature. Wideband beamforming aims at producing frequency-invariant
beam-patterns for a wide signal bandwidth [46]. Nonoverlapping narrowbands are
combined to obtain direction of arrival (DOA) estimates in [47], [48]. A coherent
signal-subspace (CSS) method [49] decomposes the wideband signal into narrowband
components, and transforms the narrowband array manifold matrices into a matrix
corresponding to a selected reference frequency, then apply narrowband (DOA) esti-
mation methods. For reviews on wideband sensor array processing, see [46], [50].

Unlike these techniques, we will make use of the distinctness embedded in the
measurements at different frequencies for the purpose of resolving the spatial ambi-
guity of a sparse array. In Figure 4, we display the amplitude of the CPSF under the
same setup as in Figure 3 except using wavelength λ = 0.8. Compared with Figure
3, we can see that the ambiguity patterns, i.e., the distribution of the grating lobes
is a function of the wavelength, however, the peak at the scatterer location, which is
indicated by “◦”, remains. For this reason, we prefer not to treat the multistatic ma-
trices at different frequencies as simple repeated measurements in frequency domain,
but observations of the probed scenario from diverse perspectives. Using multistatic
matrices measured at multiple frequencies, we generalize the fixed-frequency likeli-
hood time-reversal imaging methods to the multiple-frequency version by combining
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Fig. 2. amplitude of the coherent point spread function (CPSF) for a uniform linear array

(ULA) with a point source located at (-5,20), wavelength λ = 1 and antenna spacing of half wave-

length. ∗: antenna, ◦: scatterer.

Fig. 3. amplitude of the CPSF for a ULA with a point source located at (-5,20), wavelength

λ = 1 and antenna spacing of 5.
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Fig. 4. amplitude of the CPSF for a ULA with a point source located at (-5,20), wavelength

λ = 0.8 and antenna spacing of 5.

likelihood imaging metrics at different frequencies via multiplication, i.e., using the
following metric for the multiple-frequency likelihood imaging

l7(x;Y1, Y2 · · ·YL) =
L∏

l=1

ls(x;ωl, Yl),

=
1∏L

l=1 ‖P⊥gt(x,ωl)⊗gr(x,ωl)
vec(Yl)‖2

F

,(49)

where Yl is the multistatic matrix measured at the l-th frequency ωl, l = 1, 2, . . . , L,
and L is the number of total frequencies used. Here we recall that ls(·) depends on
the frequency through the receive Green function vector gr(x) and transmit Green
function vector gt(x). We emphasize this by changing the notations into ls(x;ω, Y ),
gr(x, ω), and gt(x, ω). Intuitively, the imaging metric l7(x;Y1, Y2 · · ·YL) will peak at
the position where x coincides with the scatterer location, since every ls(x;ωl, Yl) has
a local maximum at the true scatterer location for l = 1, 2, . . . , L; on the other hand,
when l7(x;Y1, Y2 · · ·YL) is evaluated at the grating lobes for some frequency, there
exists at least one frequency ωl′ such that ls(x;ωl′ , Yl′) is small due to the different
ambiguity patterns at different frequencies.

Assuming independence between different frequencies [51], the choice of the multi-
plication instead of an addition as the scheme of combining information from multiple-
frequency data in (49) is justified by the concentrated likelihood function of the fol-
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lowing estimation problem. Let Yl be modeled as

(50) Yl = τ1(ωl)gr(x1, ωl)gT

t (x1, ωl) +W (ωl),

where W (ω1),W (ω2), . . . ,W (ωL) are zero-mean jointly circularly symmetric complex
Gaussian distributed, E{vec(W (ωl))vec(W (ωl))H} = σ2

l I, and W (ωl) and W (ωl′) are
independent for l 6= l′. The concentrated likelihood with respect to x = x1 is found
as

(51) l8(x;Y1, Y2 · · ·YL) =
(NrNt)LNrNt exp(−LNrNt)

πLNrNt
∏L

l=1 ‖P⊥gt(x,ωl)⊗gr(x,ωl)
vec(Yl)‖

2NrNt
F

,

see Appendix C for the derivation. Since the imaging metric (49) is a monotonically
increasing function of (51), the multiple-frequency imaging scheme could still be inter-
preted using a likelihood argument as in the fixed-frequency likelihood time-reversal
imaging.

Observing that (49) is simply a product of the imaging metrics at every single fre-
quency, the multiple-frequency image could be easily updated if more measurements
are obtained at additional frequencies. In the time domain time-reversal imaging
methods [3], the backpropagated waves on the whole spectrum are combined coher-
ently using the inverse Fourier transform, which is more computationally expensive
compared with the multiple-frequency methods. Furthermore, the proposed multiple-
frequency imaging should not be considered as a simplification of the time domain
imaging methods since it is much more flexible in the sense that the metric selected for
imaging and the way of synthesizing are more diverse than those in the time domain
methods.

6. Numerical and Experimental Examples. We present numerical and ex-
perimental examples to demonstrate the applicabilities and the performance of the
proposed methods, namely the fixed-frequency likelihood time-reversal imaging, mul-
tiple-frequency likelihood time-reversal imaging, ML and sub-optimal estimators.

6.1. Numerical Examples. For convenience of visualization, we consider the
two-dimensional case, i.e., the antenna elements and scatterers are parallel lines and
they are embedded in homogeneous background; then, from a mathematical point of
view the locations of targets and antennas could be represented as points in R2. The
Green function for this two-dimensional case is

(52) G(r,x′) =
i

4
H0(2π|r − x′|/λ),

where H0 is the zero order Hankel function of the first kind, see [33]. We will drop
the unessential constant i/4 in the simulations. In each example, all the multistatic
matrices are computed using (17), i.e., incorporating all the multiple scattering among
the scatterers, and corrupted by the white Gaussian noise using (18). In all the
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Fig. 5. likelihood time-reversal image of point scatterers located at (-5,20), (0,25), and (5,20)

using a ULA with wavelength λ = 1 and antenna spacing of half wavelength.

numerical examples, we employ co-located ULAs as transmit and receive arrays and
scatterers is assumed to have unit scattering coefficients.

In the first example, we demonstrate the time-reversal image using the likelihood
imaging metric (45). The transmit and receive ULAs are located between (-20,1) and
(20,1) with antenna spacing 1/2, the wavelength λ = 1, three scatterers, which are
represented by “◦”, locate at (-5,20), (0,25), and (5,20), respectively. The image is
generated over the grid of 301×301 and the antennas are denoted as “*”. In Figure 5,
the peaks indicate the correct scatterer locations. However, when the antenna spacing
increases to 5 a spatial ambiguity appears in Figure 6. We can see a number of grating
lobes in this image.

In the second example, seven frequencies are used in the multiple-frequency like-
lihood imaging, which correspond to the wavelength λ = 0.60, 0.73, 0.87, 1, 1.13, 1.27,
and 1.4. The simulation setup is the same as that of Figure 6, and the multiple-
frequency likelihood image using the (49) is shown in Figure 7, from which we could
see that the grating lobes are suppressed effectively and the true scatterer locations
are resolved without ambiguities. Note that 81 antennas are used in Figure 5, whereas
only 9 antennas are used in Figure 7.

In the third example, we examine the performances of the ML and three sub-
optimal estimators of the location parameters in terms of the mean-squared error
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Fig. 6. likelihood time-reversal image of point scatterers located at (-5,20), (0,25), and (5,20)

using a ULA with wavelength λ = 1 and antenna spacing of 5.

Fig. 7. multiple-frequency likelihood time-reversal image of point scatterers located at (-5,20),

(0,25), and (5,20) using a ULA with wavelengths λ = 0.60, 0.73, 0.87, 1, 1.13, 1.27, and 1.4 and

antenna spacing of 5.
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Fig. 8. mean-squared error (MSE) of performance metrics: (43) in the likelihood imaging, (32)

using the distorted wave Born approximation, (38) that partially explores the Foldy-Lax model, and

(36) which uses the full Foldy-Lax model.

(MSE) and the signal-to-noise ratio (SNR) is defined as

(53) SNR =
‖K(x, τ )‖2

F

E{‖W‖2
F}

=
‖K(x, τ )‖2

F

N2σ2
.

By 1500 Monte Carlo runs, we compute the MSEs of the MLE (36) which uses the full
Foldy-Lax model, (43) in the likelihood imaging, (32) using the distorted wave Born
approximation, and (38) that partially employs the Foldy-Lax model. The setups
of the antennas, wavelength, and scatterers are the same as those in Figure 7. We
assume knowledge of the scatterer locations in this example so that we do not have
to resolve the spatial ambiguity of the sparse array when using only single frequency
measurement. As expected, the likelihood imaging scheme has the largest MSE among
the four estimators, and the MLE (36) based on full Foldy-Lax model performs the
best. Note that the performance of the estimator based on the metric (38) improves
quickly with increasing of SNR in Figure 8, whereas the estimator using (32) using
the Born approximation does not improve much, thus less efficient in high SNR case.
The subspace-based metric (38) that partially exploits the Foldy-Lax model is proved
to be a good trade-off between performance and complexity.

6.2. Experimental Examples. In this section, we use experimental data pro-
vided by our colleagues at Carnegie Mellon University to demonstrate the applicability
of the proposed methods in this paper. The experimental setup is illustrated in Figure
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Fig. 9. Carnegie Mellon University experiment setup illustration. x: transmit antenna, +:

receive antenna, ◦: scatterer, units are in centimeter.

9, where a transmit array (represented by “x”) and a receive array (represented by
“+”) are spatially separated, both are located on the y-axis. In the experiment, the
transmit and receive arrays are realized by one pair of transmit and receive antennas
at different element positions, and Kj,k is measured as the channel from the trans-
mit antenna (located at the position of the k-th element of the transmit array) to
the receive antenna (located at the position of the j-th element of the receive array).
Cylinder pipes are used as scatterers, they are placed perpendicular to the x-y plane,
and are represented by their their cross-sections (circles) in Figure 9. An absorb-
ing wall is employed behind the test scenario preventing interference scattering from
the laboratory environment. The measurements were taken at 201 frequency points
ranging from 4 G Hz to 6 G Hz by a vector network analyzer.

In the first experimental example, we demonstrate the fixed-frequency and mul-
tiple-frequency likelihood imaging. We use the three scatterers data set, where the
experiment was conducted using three copper pipes as scatterers located at (302.7,
32.3), (224.7, -14), and (265.9, 8.6) in the x-y plane with a distance unit of centimeter.
The transmit array antennas are of 10 elements located uniformly from (0, 123.4) to
(0, 32.0) with spacing 10.16 cm (4 inches), and the receive array antennas are of 10
elements located uniformly from (0, -25.4) to (0, -116.8) with spacing 10.16 cm, too.
Figure 10 shows the likelihood image using the measurement of the multistatic matrix
at central frequency 5 G Hz, from which we could see that the likelihood image peaks
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Fig. 10. fixed-frequency likelihood image using measurement at central frequency 5 G Hz.

around the locations of the three scatterers and grating lobes appear in the imaging
domain. The multiple-frequency likelihood image is shown in Figure 11, in which we
use the measurements at 4 G Hz, 4.5 G Hz, 5 G Hz, 5.5 G Hz, and 6 G Hz. Compared
with the fixed-frequency image, we observe that the quality of the multiple-frequency
case is improved (i.e. the grating lobes are mitigated).

In the second example, we show the scatterer location estimation by the likelihood
imaging and ML estimates. Using the same setup and data set at 5 G Hz in the last
example, we applied the quasi-Newton algorithm to estimate the scatterer locations by
minimizing corresponding metrics. Using the single-scatterer model (41) for likelihood
imaging, we find the estimates of the locations of the three scatterers as the three local
maxima of the metric (45). Using the estimates from the likelihood imaging as the
initial values, we found the ML estimate (33) using the Born approximation. These
estimates are displayed in Figure 12, which show that the likelihood imaging provide a
good initial estimation and the ML method refine the estimation further. Minimizing
(38), we find the estimates based on the Foldy-Lax model, which gives estimates very
close to those using the Born approximation, thus the multiple scattering is weak in
this experiment.

In the third set of examples, we demonstrate the application of the likelihood time-
reversal imaging in detecting a target in a rich scattering scenario. In these examples,
one copper pipe is used as the target located at (238.5, 21.6) and 17 dielectric pipes
as local scatterers. The scenario is probed in both cases with and without the target,
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Fig. 11. multiple-frequency likelihood image using measurements at 4 G Hz, 4.5 G Hz, 5 G Hz,

5.5 G Hz, and 6 G Hz.

Fig. 12. scatterer location estimations using likelihood imaging and maximum likelihood esti-

mation. x: transmit antenna, +: receive antenna, ◦: scatterer, 2: likelihood imaging estimation,

M: maximum likelihood estimation.
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Fig. 13. target detection by fixed-frequency likelihood image using measurement at 5 G Hz. ∗:
dielectric scatterers, ◦: copper target.

and the difference of the two measurements is used for the likelihood time-reversal
imaging. The image created by the measurements at 5 G Hz is shown in Figure 13,
and we can see that the image, which represents the approximated likelihood of the
existence of a target at the imaging positions, has a peak around the target location,
thus successfully detects the target. In Figure 14, we use five frequencies at 4 G Hz,
4.5 G Hz, 5 G Hz, 5.5 G Hz, and 6 G Hz to create the multiple-frequency likelihood
image which has a significant enhanced imaging performance compared the the fixed
frequency one in Figure 13.

7. Conclusions. In this paper, we presented a statistical framework for the
fixed-frequency computational time-reversal imaging problem assuming point scat-
terers in a known background medium. Our statistical measurement models were
based on the physical models of the multistatic response matrix, the distorted wave
Born approximation and Foldy-Lax multiple scattering models. We developed max-
imum likelihood (ML) estimators of the locations and reflection parameters of the
scatterers. Using a simplified single-scatterer model, we also proposed the likelihood
time-reversal imaging (scanning) technique which is different than the current back-
propagated field or “pseudo-spectrum” imaging strategies. We generalized the pro-
posed fixed-frequency likelihood imaging to multiple frequencies, and demonstrated
that it is effective in resolving the grating lobes of a sparse array. This make it possible
to achieve high resolution by deploying a large-aperture array consisting of a small
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Fig. 14. target detection by multiple-frequency likelihood image using measurements at 4 G Hz,

4.5 G Hz, 5 G Hz, 5.5 G Hz, and 6 G Hz. ∗: dielectric scatterers, ◦: copper target.

number of antennas while avoiding spatial ambiguity.

In future work, we will evaluate the estimation performance by computing the
Cramér-Rao lower bounds and derive statistical detectors for a target in the presence
of scatterers. We will also extend the results of additive spatially white Gaussian
noise to a spatially correlated case and consider the random scattering.

Appendix A.

Lemma 1. Let A and B be complex matrices with the same dimensions and
B = BT , then

(A-1) ‖A−B‖2
F = ‖Ã−B‖2

F + ‖A− Ã‖2
F,

where Ã = (A+AT )/2 is the symmetric part of A, and ‖ · ‖F represents the Frobenius
norm of a matrix.

Proof. Denotes the Frobenius inner product 〈A,B〉F = trAHB and Frobenius
norm ‖A‖2

F = 〈A,A〉F, where “tr” represents the trace of matrix, then

‖A−B‖2
F = 〈A−B,A−B〉F

= 〈A− Ã+ Ã−B,A− Ã+ Ã−B〉F
= 〈A− Ã, A− Ã〉F + 〈Ã−B, Ã−B〉F

+〈A− Ã, Ã−B〉F + 〈Ã−B,A− Ã〉F.(A-2)
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Note that

〈A− Ã, Ã−B〉F = tr(A− Ã)H(Ã−B)

= − tr(A− Ã)∗(Ã−B)T

= − tr[(Ã−B)(A− Ã)H ]T

= − tr(Ã−B)(A− Ã)H

= − tr(A− Ã)H(Ã−B)

= −〈A− Ã, Ã−B〉F,

where the second identity follows from the fact that Ã−B is symmetrical (Ã−B)T =
Ã− B and A− Ã is antisymmetrical (A− Ã)T = −(A− Ã), and the fourth identity
from trA = trAT . We conclude 〈A− Ã, Ã−B〉F = 0, similarly 〈Ã−B,A− Ã〉F = 0,
then (A-1) is proved.

Appendix B.

Lemma 2. Let PA = A[AHA]−1AH is the orthogonal projector onto the range of
matrix A, A and B are of full column rank, then

(B-1) PA⊗B = PA ⊗ PB .

Proof.

PA⊗B = (A⊗B)[(A⊗B)H(A⊗B)]−1(A⊗B)H

= (A⊗B)[(AH ⊗BH)(A⊗B)]−1(AH ⊗BH)

= (A⊗B)[AHB ⊗AHB]−1(AH ⊗BH)

= (A⊗B)[(AHB)−1 ⊗ (AHB)−1](AH ⊗BH)

= A(AHA)−1AH ⊗B(BHB)−1BH

= PA ⊗ PB ,

where we use (A⊗B)H = AH⊗BH in the second equality, (A⊗B)(D⊗G) = AD⊗BG
in the third and fifth equalities, and (N ⊗M)−1 = N−1⊗M−1 in the fourth identity.

Corollary. P⊥A⊗B = (PA ⊗ PB)⊥.

Proof.

P⊥A⊗B = I − PA⊗B = I − PA ⊗ PB = (PA ⊗ PB)⊥.
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Appendix C. In this appendix, we derive the concentrated likelihood function
with respect to x based on statistical model (50). By the independence between Yl

and Yl′ for l 6= l′ the joint likelihood function could be found as

l9(x, τ1(ω1), τ1(ω2), . . . , τ1(ωL), σ2
1 , σ

2
2 , . . . , σ

2
L;Y1, Y2 · · ·YL)

=
L∏

l=1

1
(πσ2

l )NrNt
exp(−‖Yl − τ1(ωl)gr(x, ωl)gT

t (x, ωl)‖2
F/σ

2
l ),(C-1)

where x = x1. Following steps similar to those in Section 3, we first solve

∂

∂σ2
l

l9(x, τ1(ω1), τ1(ω2), . . . , τ1(ωL), σ2
1 , σ

2
2 , . . . , σ

2
L;Y1, Y2 · · ·YL) = 0,(C-2)

l = 1, 2, . . . , L,

and substitute the solutions

(C-3) σ2
l =

1
NrNt

‖Yl − τ1(ωl)gr(x, ωl)gT

t (x, ωl)‖2
F

into (C-1). Then, we have the concentrated likelihood function

l10(x, τ1(ω1), τ1(ω2), . . . , τ1(ωL);Y1, Y2 · · ·YL)

=
(NrNt)LNrNt exp(−LNrNt)

πLNrNt
∏L

l=1 ‖Yl − τ1(ωl)gr(x, ωl)gT
t (x, ωl)‖

2NrNt
F ,

(C-4)

which could be further concentrated with respect to x getting (51)

l8(x;Y1, Y2 · · ·YL) =
(NrNt)LNrNt exp(−LNrNt)

πLNrNt
∏L

l=1 ‖P⊥gt(x,ωl)⊗gr(x,ωl)
vec(Yl)‖

2NrNt
F

using the least-squares solutions

(C-4) τ̂1(ωl) =
gH

t (x, ωl)⊗ gH
r (x, ωl)

[gH
t (x, ωl)gt(x, ωl)][gH

r (x, ωl)gr(x, ωl)]
vec(Yl), l = 1, 2, . . . , L.
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