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DISCRETE DENOISING FOR CHANNELS WITH MEMORY∗

RUI ZHANG† AND TSACHY WEISSMAN†

Abstract. We consider the problem of estimating a discrete signal Xn = (X1, . . . , Xn) based

on its noise-corrupted observation signal Zn = (Z1, . . . , Zn). The noise-free, noisy, and reconstruc-

tion signals are all assumed to have components taking values in the same finite M -ary alphabet

{0, . . . , M − 1}. For concreteness we focus on the additive noise channel Zi = Xi + Ni, where ad-

dition is modulo-M , and {Ni} is the noise process. The cumulative loss is measured by a given loss

function. The distribution of the noise is assumed known, and may have memory restricted only to

stationarity and a mild mixing condition. We develop a sequence of denoisers (indexed by the block

length n) which we show to be asymptotically universal in both a semi-stochastic setting (where the

noiseless signal is an individual sequence) and in a fully stochastic setting (where the noiseless signal

is emitted from a stationary source). It is detailed how the problem formulation, denoising schemes,

and performance guarantees carry over to non-additive channels, as well as to higher-dimensional

data arrays. The proposed schemes are shown to be computationally implementable. We also discuss

a variation on these schemes that is likely to do well on data of moderate size. We conclude with

a report of experimental results for the binary burst noise channel, where the noise is a finite-state

hidden Markov process (FS-HMP), and a finite-state hidden Markov random field (FS-HMRF), in

the respective cases of one- and two-dimensional data. These support the theoretical predictions and

show that, in practice, there is much to be gained by taking the channel memory into account.

1. Introduction. The problem of denoising an unknown discrete-time discrete-

valued signal corrupted by a known discrete memoryless channel (DMC) was recently

studied in [26], which presented a practical denoising algorithm (DUDE), and estab-

lished its asymptotic universal optimality. Subsequent work considered, among other

things, the sequential version of the problem [22], the case of non-discrete noisy signal

components [4], the case of channel uncertainty [7, 8], and applications of the DUDE

in communications [19]. We refer to these papers, and to the references therein, for the

increasing variety of applications where the discrete denoising problem is encountered.

In this work we revisit the setting of [26] for the case where the noise, rather

than being memoryless, is a more generally distributed process. For concreteness, we

focus on the case of additive noise, though indicate how our findings carry over to the

more general case. We first consider a one-dimensional index set in Section 2, where

we begin with a concrete description of our setting and assumptions in Subsection

2-A. We then derive a denoiser, arguing intuitively why it should be effective for our

setting, in Subsection 2-B. In Subsection 2-C we present a result establishing the

asymptotic universal optimality of the scheme suggested in Section 2-B. In Subsec-
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tion 2-D we point out that our schemes and their performance guarantees extend to

accommodate quite general (non-additive) channels. Section 3 presents the extension

of the algorithm and its performance guarantees to higher dimensional data arrays.

We then discuss computational aspects of the denoiser in Section 4. For simplifying

the computation of the denoising rule we establish a result of independent interest

regarding the form of the diagonalizing transform of a “lexicographically circulant”

matrix. In Section 4 we also present a modified version of the denoiser, which is

more efficient than the original one both computationally and, in various scenarios,

statistically. In Section 5 we present and discuss experimental results for both one-

and two-dimensional data arrays. These experiments show discrete signals and im-

ages corrupted by, respectively, a finite-state hidden Markov process (the burst noise

channel), and a finite-state hidden Markov random field (FS-HMRF). We conclude in

Section 6 with a summary of our findings and some remarks.

2. One-Dimensional Data.

2-A. Problem Setting. We consider the problem of estimating a discrete signal

Xn = (X1, . . . , Xn) based on its noise-corrupted observation signalZn = (Z1, . . . , Zn).

For concreteness, we start by assuming that the noise-free, noisy, and reconstruc-

tion signals all have components taking values in the same finite M -ary alphabet

A = {0, . . . ,M − 1}, and that the noise is additive

(1) Zi = Xi ⊕Ni,

⊕ denoting modulo-M addition and {Ni} being the noise process, with A-valued

components as well. Our universality setting is w.r.t. the noiseless source, which is

entirely unknown. As in [26], we assume knowledge of the channel characteristics (i.e.,

of the distribution of the noise process).

A n-block denoiser X̂n is, formally, a mapping taking An into itself. We assume

a given single-letter loss function Λ and denote, for xn, zn ∈ An

(2) L
X̂n(xn, zn) =

1

n

n∑

i=1

Λ
(

xi, X̂i(z
n)
)

,

with X̂i(z
n) denoting the i-th component of the n-tuple X̂n(zn). In words, L

X̂n(xn,

zn) is the normalized cumulative loss of the denoiser X̂n when observing zn while the

underlying signal is xn.

The α-mixing coefficients of an arbitrary process {Ui} with finite-valued compo-

nents are defined by:

(3)

α
(U)
t = sup

{k≤l≤m≤n: m−l≥t}
max
ul

k
,un

m

∣
∣P (U l

k = ul
k, U

n
m = un

m) − P (U l
k = ul

k)P (Un
m = un

m)
∣
∣ ,

where U l
k = (Uk, . . . , Ul), u

l
k = (uk, . . . , ul), etc. We drop the superscript from α

(U)
t

when the process U is clear from the context. The α-mixing coefficients are a measure
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of the effective memory in the process. A process is said to be α-mixing if αt −→ 0 as

t→ ∞. Of the standard types of mixing (α, β, φ, ψ and ρ), α-mixing is the weakest

(most benign) requirement in that it is implied by any of the other types of mixing

[3].

For every k, let Πk
−k denote theM2k+1×M2k+1 matrix with (xk

−k, z
k
−k)-th element

(4) Πk
−k(xk

−k, z
k
−k) = PNk

−k
(zk

−k ⊖ xk
−k),

where ⊖ in zk
−k ⊖xk

−k denotes componentwise modulo-M subtraction and we assume,

for concreteness, lexicographic ordering between the elements of A2k+1. In other

words, Πk
−k is the 2k+1-th order channel matrix whose (xk

−k, z
k
−k)-th element denotes

the probability of zk
−k at the channel output when the underlying noiseless 2k+1-tuple

is xk
−k. Our assumption on the noise distribution is:

Assumption 1. {Ni} is stationary and α-mixing with
∑∞

t=1 α
(N)
t <∞, and Πk

−k

is non-singular for every k.

The condition on the summability of the α-mixing coefficients is rather benign,

and is satisfied by the noise models arising in practice. In fact, the α-mixing co-

efficients of a Markov process of any order with no restricted sequences, as well as

any hidden Markov process with no restricted state sequences, decay exponentially

rapidly [3]. Also, the α-mixing coefficients of finite-length sliding-window functions

of i.i.d. variables, clearly satisfy αt = 0 for all t ≥ t0 (t0 depending on the horizon of

the sliding-window function). The non-singularity stipulation is also rather benign,

holding for the case of memoryless noise whenever Π0
−0 (the “single-letter” channel

matrix) is invertible [26], as well as for all points in parameter spaces associated with

the representations of Markov and hidden Markov processes, with the exception of

a negligible subset of the parameter space [6]. To see why this stipulation is needed

in our universal denoising context consider the following: For a 2k + 1 tuple Xk
−k

let PXk
−k

denote the M2k+1-dimensional column vector specifying the distribution of

Xk
−k, i.e., the xk

−k-th component of PXk
−k

(according to the lexicographic ordering) is

P (Xk
−k = xk

−k). It is then readily verified that the distribution of the 2k + 1 tuple

Zk
−k at the channel output when the input is Xk

−k satisfies

(5) PT
Zk

−k

= PT
Xk

−k

· Πk
−k,

implying equivalently, by the non-singularity of Πk
−k stated in Assumption 1, that

also

(6) PT
Zk

−k

·
(
Πk

−k

)−1
= PT

Xk
−k

.

Evidently, when Πk
−k is invertible, there is a unique correspondence between the

distribution of a noisy 2k + 1-tuple at the channel output and the distribution of

the noiseless 2k + 1-tuple at its input. When Πk
−k is not invertible, there may be
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a multitude of possible input distributions consistent with a given distribution of a

noisy 2k + 1-tuple. Therefore, in this case, the input distribution cannot be inferred

even with complete knowledge of the channel output distribution. It should thus be

clear that the stipulation on the invertibility of Πk
−k, for each k, in Assumption 1 is

necessary in our setting of universality where, at best, one can hope for a good estimate

of the said output statistics. Finally, it should be pointed out that processes arising

in the modelling of noisy channels typically satisfy this invertibility requirement. One

simple example, in the binary setting, is the case of a BSC, where only the case

where the crossover probability is 1/2 does not satisfy this requirement. Additional

examples will be given in Subsection 2-C. It can in fact be shown that, when the

noise is a hidden Markov process, under benign conditions on the parametrization,

all parameter values, except those in a set of zero Lebesgue measure, give rise to a

process satisfying Assumption 1.1

2-B. Derivation of the Denoiser. For an arbitrarily distributed 2k+ 1-tuple

Xk
−k at the channel input, the following relationship is readily verified to hold using

Bayes’ rule and (6):

P (X0 = a|Zk
−k = zk

−k) ∝
∑

xk
−k

:x0=a

PT
Xk

−k

(xk
−k)PNk

−k
(zk

−k ⊖ xk
−k)

=
∑

xk
−k

:x0=a

[

PT
Zk

−k

·
(
Πk

−k

)−1
]

(xk
−k)PNk

−k
(zk

−k ⊖ xk
−k),(7)

where the ∝ notation indicates equality up to normalization of the vector whose a-th

component is given and [PT
Zk

−k

·
(
Πk

−k

)−1
](xk

−k) denotes the xk
−k-th component of the

M2k+1-dimensional (row) vector PT
Zk

−k

·
(
Πk

−k

)−1
. A property of the form on the right

side of (7) of key importance in our setting, which is emphasized in the second line

of the above display, is that explicitly it only involves the distribution of the noisy

2k+ 1-tuple PZk
−k

(and the channel), and not the noiseless source distribution. From

(7) it follows that the optimal estimate of X0 based on Zk
−k under the loss function

Λ (in the sense of minimzing expected loss) is given by

X̂0(z
k
−k) = argmin

x̂
E
[
Λ(X0, x̂)|Zk

−k = zk
−k

]
(8)

= argmin
x̂

∑

a

Λ(a, x̂)




∑

xk
−k

:x0=a

[

PT
Zk

−k

·
(
Πk

−k

)−1
]

(xk
−k)PNk

−k
(zk

−k ⊖ xk
−k)



 .(9)

1E.g., when the HMP is modelled such that the size of the observation space is greater or equal

to the size of the state space, then invertibility of the channel matrices required for Assumption 1

results from invertibility of the state-to-observation channel, and invertibility of the underlying state

process, separately. The channel associated with almost all (in Lebesgue sense) parameterizations is

invertible. The underlying state process can also be shown to be invertible in the required sense for

almost all values of the transition probabilities.
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This further implies that when Xn is emitted by a stationary source, the best k-th

order sliding-window denoiser in the sense of minimizing E
[
∑n−k

i=k+1 Λ
(
Xi, f(Zi+k

i−k )
)]

is given by f(zk
−k) = X̂0(z

k
−k) (the right side explicitly given in (9)). This denoiser

depends on the distribution PZk
−k

which is a priori unknown in our universal setting

where the noiseless (and hence also noisy) source distribution is assumed unknown.

This derivation, however, motivates the following source-distribution-independent n-

block denoiser:

X̂i(z
n) = argmin

x̂

∑

a

Λ(a, x̂)(10)

·




∑

xk
−k

:x0=a

[

P̂Zk
−k

(zn)T ·
(
Πk

−k

)−1
]

(xk
−k)PNk

−k
(zi+k

i−k ⊖ xk
−k)



 ,

for k + 1 ≤ i ≤ n− k,2 with P̂Zk
−k

(zn) denoting the empirical distribution of a noisy

2k + 1-tuple, i.e.,

(11) P̂Zk
−k

(zn)[uk
−k] =

1

n− 2k

n−k∑

i=k+1

1{z
i+k

i−k
=uk

−k}.

In other words, the unknown distribution of a noisy 2k + 1-tuple is replaced by its

empirical estimate (which is based on the observation of the noisy n-tuple). For

obvious reasons, we refer to k as the context parameter. A natural implementation

of this denoiser will be detailed in Section 4. We mention that the scheme of (10)

coincides with the DUDE of [26] when the noise is an i.i.d. process. This can be shown

via a computation similar to that in Section 6 of [4], which showed that the scheme

of [4] coincides with the DUDE of [26] when the channel input and output alphabets

are equal.

2-C. Universal Asymptotic Optimality. To state our main theoretical result

we let, as in [26], Dk(xn, zn) denote the loss of the best k-th order sliding window

denoiser when the clean signal is xn while the observation is zn, i.e.,

(12) Dk(xn, zn) = min
f :A2k+1→A

[

1

n− 2k

n−k∑

i=k+1

Λ
(
xi, f(zi+k

i−k)
)

]

.

Starting from the statement of the theorem that follows, and on, the “semi-

stochastic” setting refers to the case where the noiseless signal is an individual se-

quence while the “stochastic” setting refers to a probabilistic noiseless signal, inde-

pendent of the noise process. ‖ · ‖, when the argument is either a matrix or a vector,

will denote the l∞ norm, i.e., the maximum of the magnitude of all components.

2Similarly as in [26, 4, 7], the reconstruction components located outside the range k + 1 ≤ i ≤

n − k can be arbitrarily defined and are inconsequential in our analysis which assumes k ≪ n.
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Theorem 1. Let Assumption 1 hold and X̂n,k denote the n-block denoiser in

(10). Let further X̂n
univ = X̂n,kn where {kn} satisfies kn → ∞ and

(13)
1

n
knM

12kn

(∥
∥
∥
∥

(

Πkn

−kn

)−1
∥
∥
∥
∥

+ 1

)2

−→ 0 as n→ ∞.

1. Semi-Stochastic Setting: For any sequence {xn}n≥1, x
n ∈ An,

(14) L
X̂n

univ
(xn, Zn) −Dkn

(xn, Zn) −→ 0 in probability.

2. Stochastic Setting: For any stationary process X = (X1, X2, . . .),

(15) lim
n→∞

EL
X̂n

univ
(Xn, Zn) = inf

n≥1
min
X̂n

EL
X̂n(Xn, Zn),

where the minimization on the right side is over all n-block denoisers.

The proof in fact shows that the convergence in (14) is uniform in the sense that,

for every ε > 0,

(16) max
xn∈An

P
(∣
∣
∣LX̂n

univ
(xn, Zn) −Dkn

(xn, Zn)
∣
∣
∣ > ε

)

−→ 0.

Before turning to the proof of Theorem 1, let us consider a few examples to put the

requirement (13) in perspective:

Example 1 (Memoryless noise). For a memoryless channel, i.e. when {Ni}
is an i.i.d. process, Πk

−k = (Π0
−0)

⊗(2k+1) (where ⊗(2k + 1) denotes the 2k + 1-th

order tensor power and Π0
−0 is the matrix associated with one input-output pair).

Thus in this case
∥
∥
∥

(
Πk

−k

)−1
∥
∥
∥ =

∥
∥
∥

(
Π0

−0

)−1
∥
∥
∥

2k+1

and it is readily verified that (13) is

satisfied by kn = c logn for a sufficiently small c (dependent on Π0
−0). For this case,

[26, Theorem 1] indeed shows that for kn = C logn, for C larger than the possible

c implied by Theorem 1, (14) still holds (and, in fact, the convergence holds with

probability one).

Example 2 (Binary noise modulated by an arbitrarily distributed state process).

Let {Si} be an arbitrarily distributed state process with S-valued components and {Ni}
be a binary process whose components are independent when conditioned on {Si},
where Ni|Si = s ∼ Bernoulli(δs) for every s ∈ S (the processes of Section 5 are of

this form, with {Si} being a binary Markov process). Let δ = sups∈S δs and assume

δ < 1/2. For every sk
−k ∈ S2k+1 let Πsk

−k
denote the matrix given by Πsk

−k
(xk

−k, z
k
−k) =

P
(
Zk
−k = zk

−k|xk
−k, S

k
−k = sk

−k

)
. It is then readily checked that Πsk

−k
=
⊗k

i=−k Πsi
,

where Πs is the “single-letter” channel matrix associated with the state s and
⊗

denotes the tensor product. Since the eigenvalues of Πs are 1 and 1 − 2δs it follows

that the minimum eigenvalue of Πsk
−k

is lower bounded by (1 − 2δ)2k+1, for all sk
−k.

Furthermore, [16, Theorem 1] implies that Πsk
−k

has the same diagonalizing transform

(i.e., same set of eigenvectors, namely the columns of the 2k + 1-th order Hadamard

matrix) for all sk
−k. Since Πk

−k =
∫

Πsk
−k
dP (sk

−k) this implies that, for every 1 ≤
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i ≤ 22k+1, λ(i) =
∫
λ

(i)

sk
−k

dP (sk
−k), where λ(i) and λ

(i)

sk
−k

denote, respectively, the i-th

eigenvalue of Πk
−k and Πsk

−k
. This finally implies that the minimum eigenvalue of

Πk
−k is lower bounded by (1− 2δ)2k+1 and, hence, that

∥
∥
∥

(
Πk

−k

)−1
∥
∥
∥ ≤ 1/(1− 2δ)2k+1.

Thus, for this case too, (13) is satisfied by kn = c logn for appropriate c (dependent

on δ).

Example 3 (Contagion channels [1]). Contagion channels are binary additive

noise channels often arising in communications, where the noise process is an M -th

order Markov process with transition probabilities characterized by

(17) P (Nt = 1|N t−1
t−M = nt−1

t−M ) =
ε+ w(nt−1

t−M )δ

1 +Mδ
,

where w denotes Hamming weight, ε = P (Nt = 1). The distribution of this process

is completely characterized by the triplet (M, ε, δ). Note that this family includes all

first-order binary Markov processes. Theorem 3 of [16] implies that for this noise

process, assuming ε < 1/2, the minimum eigenvalue of Πk
−k is positive and lower

bounded by
(

1−2ε
1+Mδ

)2k+1

. Hence
∥
∥
∥

(
Πk

−k

)−1
∥
∥
∥ ≤

(
1−2ε
1+Mδ

)−(2k+1)

and (13) is satisfied,

for appropriate c = c(M, ε, δ) > 0, by kn = c logn.

Note that in the above examples it was seen that kn = c logn, for appropriate c,

satisfies (13). This is the largest growth rate allowable if (13) is to be achieved, since

clearly a necessary condition for (13) to hold is that 1
n
knM

12kn −→ 0, which already

requires that kn grow not faster than c logn.

Defining now

(18) qk(zn, xn)[a, uk
−k] =

1

n− 2k
|{k + 1 ≤ i ≤ n− k : xi = a, zi+k

i−k = uk
−k}|,

where | · | here denotes cardinality, and

(19) q̂k(zn)[a, uk
−k] =

∑

xk
−k

:x0=a

[P̂Zk
−k

[zn]T ·
(
Πk

−k

)−1
](xk

−k)PNk
−k

(uk
−k ⊖ xk

−k),

it follows from the definition of X̂n,k (recall (10)) and a direct application of [26,

Lemma 1] that for all xn, zn ∈ An

(20) |L
X̂n,k(xn, zn) −Dk(xn, zn)| ≤ ΛmaxM

2k+2‖qk(zn, xn) − q̂k(zn)‖,

where Λmax = maxx,x̂ Λ(x, x̂). It is hence clear that for proving the first item of

Theorem 1 it suffices to establish the smallness of ‖qk(Zn, xn) − q̂k(Zn)‖, with high

probability. This is done in the following theorem, whose proof is given in Appendix

A.

Theorem 2. For all n, k, xn ∈ An and ε > 0

(21)

P (‖q̂k(Zn) − qk(Zn, xn)‖ ≥ ε) ≤M8k+2
(4k + 1 + 2

∑∞
t=1 α

(N)
t )

(∥
∥
∥

(
Πk

−k

)−1
∥
∥
∥+ 1

)2

ε2(n− 2k)
.
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Proof of Theorem 1 assuming Theorem 2. The combination of (20) and Theorem

2 implies

P
(∣
∣L

X̂n,k(xn, Zn) −Dk(xn, Zn)
∣
∣ > ε

)

≤M8k+2
(4k + 1 + 2

∑∞
t=1 α

(N)
t )

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

(
ε

ΛmaxM2k+2

)2

(n− 2k)
(22)

= ΛmaxM
12k+6

(4k + 1 + 2
∑∞

t=1 α
(N)
t )

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

ε2(n− 2k)
.(23)

Condition (13) guarantees that taking k = kn on the right side of (23) gives an

expression converging to 0, implying (16) (since X̂n
univ = X̂n,k). This proves the first

item. Proof of the second item is similar, given the first item, to that of [26, Theorem

3]. Specifically, note that for every fixed k and all sufficiently large n

(24) Dk(xn, zn) ≥ Dkn
(xn, zn) ∀xn, zn ∈ An.

It thus follows from the first item that for any ε > 0 and all sufficiently large n

(25) P
(

L
X̂n

univ
(Xn, Zn) ≥ Dk(Xn, Zn) + ε

)

≤ ε

and therefore

(26) EL
X̂n

univ
(Xn, Zn) ≤ EDk(Xn, Zn)+ε+εΛmax = EDk(Xn, Zn)+ε(1+Λmax).

Now, it follows from the joint stationarity of (X,Z), exactly as in the proof of [26,

Theorem 3] (cf. display (72) therein), that

(27) EDk(Xn, Zn) ≤ E

[

min
x̂∈A

E
[
Λ(X0, x̂)|Zk

−k

]
]

.

Furthermore, Claim 2 and Lemma 4 of [26], along with their proofs, hold verbatim

for our present setting, implying in particular

(28) lim
k→∞

E

[

min
x̂∈A

E
[
Λ(X0, x̂)|Zk

−k

]
]

= inf
n≥1

min
X̂n

EL
X̂n(Xn, Zn).

Displays (26), (27) and (28), combined with the arbitrariness of ε, imply

(29) lim sup
n→∞

EL
X̂n

univ
(Xn, Zn) ≤ inf

n≥1
min
X̂n

EL
X̂n(Xn, Zn),

which completes the proof since, trivially,

(30) lim inf
n→∞

EL
X̂n

univ
(Xn, Zn) ≥ inf

n≥1
min
X̂n

EL
X̂n(Xn, Zn).
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2-D. General Stationary Channels. Suppose now that, instead of the addi-

tive noise channel, we have a general channel characterized by {P (·|x∞−∞)}x∞
−∞

where,

for every x∞−∞, P (·|x∞−∞) stands for the law of the channel output process when the

input is x∞−∞. In this case, our assumptions on the channel, which are analogous to

those of Assumption 1, are:

1. Stationarity: If Z∞
−∞ ∼ P (·|x∞−∞) and U∞

−∞ ∼ P (·|T
(
x∞−∞

)
) then U∞

−∞
d
=

T
(
Z∞
−∞

)
(where T denotes the shift transformation).

2. For all m,n, P (zn
−m|x∞−∞) = P (zn

−m|x̃∞−∞) whenever xn
−m = x̃n

−m. We thus

write P (zn
−m|xn

−m) instead of P (zn
−m|x∞−∞), as the latter depends on x∞−∞

only through xn
−m.

3. Given the previous assumption, we can define

(31) Πk
−k(xk

−k, z
k
−k) = P (zk

−k|xk
−k),

and we assume that Πk
−k is non-singular for every k.

4.
∑∞

t=1 αt <∞, where the α-mixing coefficients are now defined as:

(32)

αt = sup
{k≤l≤m≤n: m−l≥t}

max
x∞
−∞

,zl
k
,zn

m

∣
∣P (zl

k, z
n
m|x∞−∞) − P (zl

k|x∞−∞)P (zn
m|x∞−∞)

∣
∣ .

As an example for a rich family of channels satisfying the above assumptions,

consider the case where the channel input-output relationship can be expressed as

(33) Zi = f(xi, N
i+l
i−l ),

for a finite l, and an f whose range is A. The channel matrix would now be defined

by

(34) Πk
−k(xk

−k, z
k
−k) = P

(
Zk
−k = f(xk

−k, N
k+l
−k−l)

)
,

where with slight abuse of notation f(xk
−k, N

k+l
−k−l) denotes the 2k+1-tuple whose i-th

component is f(xi, N
i+l
i−l ), and the probability in the right side of (34) assumes the

semi-stochastic setting where xk
−k is an individual sequence. Note that (34) reduces

to (4) in the additive case. It is readily verified that the channel in (33) satisfies the

above four assumptions whenever the noise process {Ni} satisfies Assumption 1 (with

Πk
−k defined via (34) instead of via (4)).

The denoising rule for this more general channel assumes the form

X̂i(z
n) = argmin

x̂

∑

a

Λ(a, x̂)(35)

·




∑

xk
−k

:x0=a

[

P̂Zk
−k

(zn)T ·
(
Πk

−k

)−1
]

(xk
−k)Πk

−k(xk
−k, z

i+k
i−k)



 ,

which is similar to that in (10), with PNk
−k

(zi+k
i−k ⊖ xk

−k) replaced by the more general

Πk
−k(xk

−k, z
i+k
i−k).
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Theorem 1 holds verbatim in this more general setting (replacing Assumption 1

by the above four assumptions and with X̂n,k denoting the denoiser in (35)). The

proof is also readily verified to carry over essentially verbatim, replacing throughout

PNk
−k

(uk
−k ⊖ yk

−k) by Πk
−k(yk

−k, u
k
−k).

3. Multi-Dimensional Data Arrays. We now detail how the problem for-

mulation, schemes, and results of the previous section extend to data arranged in a

multi-dimensional array. To avoid cumbersome notation we assume the data set is of

dimension d = 2, i.e., an image, with the implication that the extension to any higher

number of dimensions is straightforward.

3-A. Problem Setting and Notation. A = {0, . . . ,M − 1} will continue to

denote the finite alphabet where the components of the clean, the noise-corrupted,

and the reconstructed image take their values. Following the notation of [20], for

any S ⊆ Z
2 we denote x(S) = {xi}i∈S , z(S) = {zi}i∈S , etc. Thus, x(S) is a |S|-

dimensional vector with A-valued components indexed by the elements of S, and we

denote by AS the set of all such vectors. For m,n ∈ N let Vm×n denote the m × n

rectangle {(ix, iy) ∈ N
2 : ix ≤ m, iy ≤ n}. To simplify notation, we shall write xm×n

for x(Vm×n), zm×n for z(Vm×n), and Am×n for AVm×n . Also, for S ⊆ Z
2 and i ∈ Z

2

we let S + i = {j + i : j ∈ S}.
A neighborhood is a finite subset of Z

2 containing the origin (0, 0) (the center

of the neighborhood). Analogously as in previous sections, PX(S) will denote the

M |S|-dimensional column vector specifying the distribution of X(S), i.e., the x(S)-th

component of PX(S) according to, say, the lexicographic order3, is P (X(S) = x(S)).

Analogously as in (11), we let P̂Z(S)(zm×n) denote the empirical distribution of a

noisy S-configuration induced by zm×n, i.e.,

(36) P̂Z(S)(zm×n)[u(S)] =
|{i ∈ Vm×n : S + i ⊆ Vm×n, z(S + i) = u(S)}|

|{i ∈ Vm×n : S + i ⊆ Vm×n}|
.

We assume that the noiseless image (for which no statistical model is available)

is corrupted by additive noise. In other words, the channel model (1) remains intact,

this time i being a two-dimensional index and {Ni} being the random noise field.

With any finite S ⊆ Z
2 we associate a channel matrix ΠS , which is a M |S| ×M |S|

matrix such that the entry indexed by the pair (x(S), z(S)) is

(37) ΠS [x(S), z(S)] = P (N(S) = z(S) ⊖ x(S)).

The definition of the α-mixing coefficients is extended to our current multi-

3The lexicographic order on the elements of Z
2 induces a natural order on the elements of any

S ⊆ Z
2 which, in turn, induces a natural order on AS . The latter is what we refer to as the

‘lexicographic order’ in this context.
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dimensional setting as

α
(N)
t = sup

{S,S′: d(S,S′)≥t}
max

u(S),u(S′)
|P (N(S) = u(S), N(S′) = u(S′))(38)

−P (N(S) = u(S)) · P (N(S′) = u(S′))| ,

with S,S′ in the supremum being subsets of Z
2, and d denoting the distance between

S and S′ defined by d(S,S′) = mini∈S,i′∈S′ ‖i − i′‖. Assumption 1, when extended

to the present two-dimensional setting, assumes the following form

Assumption 2. {Ni} is spatially stationary and α-mixing with
∑∞

t=1 α
(N)
t <∞,

and ΠS is non-singular for every neighborhood S.

Similarly as was argued for the one-dimensional case, the summability condition

is rather benign. In fact, most finite-alphabet noise field models arising in practice

have exponentially decaying α-mixing coefficients, including Markov Random Fields

(MRFs) with a finite neighborhood structure and positive transition probabilities and

Gibbs fields with a summable potential [9, 15].

A m×n image denoiser is a mapping X̂m×n : Am×n→Am×n. For xm×n, zm×n∈
Am×n we let L

X̂m×n(xm×n, zm×n) denote the normalized denoising loss, as measured

by the single-letter loss function Λ, of the image denoiser X̂m×n when the observed

noisy image is zm×n and the underlying one is xm×n, i.e.,

(39) L
X̂m×n(xm×n, zm×n) =

1

mn

∑

i∈Vm×n

Λ(xi, X̂
m×n(zm×n)[i]),

with X̂m×n(zm×n)[i] denoting the component of X̂m×n(zm×n) at the i-th location.

3-B. Description of the Denoiser. For a neighborhood S ⊆ Z
2 define the

m× n image denoiser X̂m×n
S , for locations i such that S + i ⊆ Vm×n, by

X̂m×n
S (zm×n)[i] = argmin

x̂

∑

a

Λ(a, x̂)

·




∑

x(S):x0=a

[

P̂Z(S)(zm×n)T · Π−1
S

]

x(S)
· PN(S)[z(S) ⊖ x(S)]



 ,(40)

where [·]x(S) denotes the component of the AS-dimensional argument indexed by x(S).

The denoiser output for locations i where S + i 6⊆ Vm×n does not affect the validity

of the theoretical results below and, for concreteness, can be assumed set to some

arbitrary symbol in A.

To define our denoiser let Br denote the l∞ ball4 of radius r in Z
2 centered at

(0, 0), i.e., Br = {i ∈ Z
2 : ‖i‖1 ≤ r}. Our m×n image denoiser can now be defined as

(41) X̂m×n
univ

= X̂m×n
Br(m,n)

,

4The particular choice of the l∞ norm in this context is not crucial. It corresponds to taking

square contexts, whereas, e.g., l1 would have corresponded to diamond-shaped contexts, l2 to ball-

shaped contexts, etc.
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i.e., the denoiser defined in (40) when taking for the neighborhood S = Br, where

the radius of the ball r = r(m,n) depends on the image dimensions in a way to be

specified below. The radius r(m,n) can be thought of as the two-dimensional analog

of the context length kn.

3-C. Asymptotic Optimality. A sliding window denoiser of radius r is one

that determines the denoised value at a location i as a function of z(Br + i). Let

Dr(xm×n, zm×n) denote the r-th order denoisability of (xm×n, zm×n), defined by

(42) Dr(xm×n, zm×n) = min
f :ABr→A




1

mn

∑

i:Br+i∈Vm×n

Λ (xi, f (z(Br + i)))



 .

This can be interpreted as the denoising performance of a “genie-aided” scheme,

allowed to select the best sliding-window denoiser of radius ≤ r, based on knowledge

of both the noisy and the underlying noiseless image. Note that most image denoisers

applied in practice, such as median filters, morphological operators , and context-

dependent spatial operators (cf., e.g., [11, 25]) are sliding-window denoisers, so the

r-th order denoisability is a lower bound on the performance of all such schemes (for r

large enough). Theorem 3 below is the two-dimensional version of Theorem 1: its first

part guarantees that the image denoiser X̂m×n
univ

does essentially as well as this genie-

aided scheme, regardless of the underlying noiseless image. Its second part guarantees

that optimum performance is universally achieved also in the fully stochastic setting

where the underlying image is a realization of a spatially stationary random field.

This result can also be viewed as the extension of those in [20, Section 4] to the

case of channels with memory. Its proof, which is based on straightforward extensions

to the multi-dimensional case of the ideas in the proof of Theorem 1, is omitted.

Theorem 3. Let Assumption 2 hold and g : N → N be any function satisfying

liml→∞ g(l) = ∞ yet slowly enough so that

(43)
1

l2
g(l)2M12g(l)2

∥
∥ΠBg(l)

∥
∥

2 −→ 0 as l → ∞.

Let X̂m×n
univ

be the denoiser defined in (41) taking r(m,n) = g(min{m,n}).
1. Semi-Stochastic Setting: For any collection of images {xm×n}m,n, xm×n ∈

Am×n,

(44) L
X̂

m×n

univ

(xm×n, Zm×n) −Dr(m,n)(xm×n, Zm×n) −→ 0 in probability

as m,n→ ∞.

2. Stochastic Setting: For any spatially stationary process X = {Xi},
(45)

lim
m,n→∞

E
[

L
X̂

m×n
univ

(Xm×n, Zm×n)
]

= inf
m,n≥1

min
X̂m×n

E
[
L

X̂m×n(Xm×n, Zm×n)
]
,

where the minimization on the right side is over all m× n-image denoisers.
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4. Complexity and Implementation. For concreteness below, our discussion

refers to the scheme X̂n,k of Section 2. It applies also to the scheme X̂m×n
Br

of Section

3 under the association n→ mn and k → r2.

4-A. Algorithm Description. The proposed denoising scheme is described in

the following steps. A rough count of the computation time-complexity in each step

is given in terms of the number of arithmetic operations required.

• Pre-processing. Before the data is read, the inverse of the channel transition

matrix, (Πk
−k)−1, is computed for being used in Computation of Decoding

Rule (to follow). The matrix dimension of Πk
−k is M2k+1 × M2k+1, so a

standard computation of its inverse requires O(M6k) operations (cf., e.g.,

[13]). For additive noise channels, we show in the next subsection that this

complexity can be significantly reduced to O(kM2k) operations.

• Computation of Counts. The noise-corrupted data is scanned and the

2k + 1-tuple empirical distribution of the noisy data, P̂Zk
−k

(zn), is computed

through counting the number of appearances of the different 2k+ 1-tuples in

one pass, as they appear in the noisy data. This requires O(kn) operations.

• Computation of Decoding Rule. The decoding rule of the denoiser in

(10) (or more generally in (35)) is determined. With P̂Zk
−k

(zn), the 2k + 1-

tuple distribution of the noise-free source, PT
Xk

−k

, is estimated as P̂Zk
−k

[zn]T ·
(Πk

−k)−1, which requires 2M4k+2 number of operations (for the special case

of additive noise, this complexity can be further reduced by the efficient

algorithm presented in the next subsection). Next, the decoding rule for

estimating the source symbol given its associated 2k+ 1-tuple is determined.

Because each 2k+1-tuple requires at most 2M2k+1 operations for computing

its associated decoding rule in (10), the total number of operations required

for all possible 2k + 1-tuples observed is at most 2M4k+2. Adding 2M4k+2

operations in the estimation of PXk
−k

, the total number of operations required

in this step is 4M4k+2, i.e., O(M4k).

• Denoising. The noise-corrupted data is scanned in a second time. At each

location, the source symbol is decoded according to its associated 2k+1-tuple

in the observed data and the decoding rule developed. This requires a number

of operations, similarly as in the Computation of Counts stage, O(kn).

To sum up, the total computational time-complexity is O(kn +M4k), excluding

the computation in the Pre-processing stage (which need not be done in “real-time”,

and is performed once, after which time the same algorithm can be reapplied on

different data sets). By taking kn to be say5 ≤ 1
4 logn, we get total time-complexity

5Note that for the theoretical performance guarantees only an upper bound on the growth rate of

kn is required, and any lesser growth rate will do, so long as kn → ∞. Thus, even when kn = C log n

is allowed for C > 1/4 from the viewpoint of Theorem 1, taking kn = 1
4

log n will still comply with
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O(n log n).

4-B. Efficient Computation of P̂Xk
−k

for Additive Noise. In this subsec-

tion, we present an efficient algorithm for computing the estimated empirical distri-

bution of the 2k + 1-tuple noiseless source signal, P̂T
Xk

−k

= P̂T
Zk

−k

· (Πk
−k)−1, for the

case of additive noise. As already noted, when the noise is additive, the 2k + 1-tuple

channel transition matrix, Πk
−k, satisfies

Πk
−k

(
xk
−k, z

k
−k

)
= Πk

−k

(
x̃k
−k, z̃

k
−k

)
whenever zk

−k ⊖ xk
−k = z̃k

−k ⊖ x̃k
−k,

a property we shall refer to as lexicographically circulant. For matrices with this

property we have the following result, whose proof is given in Appendix B.

Theorem 4. Let FM denote the M ×M Fourier matrix

(46) FM (l,m) =
1√
M

exp

{

−j 2π
M
lm

}

0 ≤ l ≤M − 1, 0 ≤ m ≤M − 1,

and

(47) Hn = F⊗n
M .

Then:

1. H2k+1 diagonalizes Πk
−k, i.e., Πk

−k = H∗
2k+1ΓH2k+1, where Γ is diagonal and

∗ denotes conjugate transpose.

2. diag(Γ) = H2k+1 · PNk
−k

, where diag(X ) denotes a column vector consisting

of the diagonal elements of a square matrix X .

For the binary additive noise case, the diagonalizing matrix, H2k+1, becomes the

well-known Walsh-Hadamard matrix [16], and this leads to an efficient algorithm for

computing (Πk
−k)−1 that requires O(k22k) number of operations [12], as compared to

the O(26k) which would be required by direct computation. Here we generalize the

results of [16, 12] to additive noise over a general finite alphabet. P̂Xk
−k

can be now

computed as

(48) P̂Xk
−k

=
(
Πk

−k

)−T · P̂Zk
−k

= H2k+1 ·
[(

H∗
2k+1 · P̂Zk

−k

)

⊘
(

H2k+1 · PNk
−k

)]

,

where ⊘ denotes component-wise division, i.e., (X ⊘ Y )[i] = Xi/Yi, and the right-

most equality in (48) follows from Theorem 4. Let H2k+1(X) and Hinv

2k+1(X) denote,

respectively, the “generalized” Fourier transform and inverse Fourier transform of a

vector X , i.e., H2k+1(X) = H2k+1 ·X , and Hinv

2k+1(X) = H∗
2k+1 ·X . It is noted that

when k = 0, these two transforms become standard Fourier transform and inverse

Fourier transform, respectively. Now, P̂Xk
−k

in (48) can be obtained through comput-

ing two generalized Fourier transforms and one generalized inverse Fourier transform.

It is shown in Lemma 4 of Appendix B that both H2k+1(X) and Hinv

2k+1(X) can be

the requirement of that theorem, while being preferable from a computational viewpoint.
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computed by a fast algorithm that requires only O(kM2k) operations. Therefore,

the total time-complexity for computing P̂Xk
−k

becomes also O(kM2k), instead of the

O(M6k) that direct computation would require.

4-C. Considerations for a Modified Version.

4-C.1. Context-length Selection. Both the theoretical results of Section 2-

C and the complexity bounds mentioned in Subsection 4-A provide guidelines for

a reasonable choice of asymptotic growth order for k with n. However, for the case

where n is of moderate value, the choice of k has a considerable effect on the denoising

performance. Two main considerations in selecting the value of k are:

• Lack of Sufficient Counts. The denoiser first counts the noise-corrupted

data to obtain the 2k + 1-tuple empirical distribution, P̂Zk
−k

(zn), and then

uses it to estimate the 2k + 1-tuple source distribution, PXk
−k

. On the one

hand, a very large k tends to render the empirical distribution, P̂Zk
−k

(zn),

a less reliable estimate of the true distribution because there may not be a

sufficient number of samples counted for many of the 2k+1-tuples. As a result,

the inaccuracy in P̂Zk
−k

(zn) propagates into the estimation of PXk
−k

and causes

the degradation of the denoising performance. On the other hand, if the true

source distribution, PXk
−k

, is a priori known instead of being estimated from

the noisy data, a larger k is always preferable because the denoiser estimates

the source signal at each location based on more information. Therefore,

there is a tradeoff in choosing k between an accurate distribution estimation

and a large context for our sliding-window based denoiser. This tradeoff is

clearly demonstrated by the DUDE over DMC channels [26, Section 8-A]

(cf. also [21]), where it is seen that for a fixed data length, n, the denoising

performance improves when k increases, but starts to degrade when k exceeds

a critical value.

• Matrix Inversion. One key step in implementing the denoiser is the com-

putation of the inverse of the 2k+1-tuple channel transition matrix, (Πk
−k)−1,

which, as discussed, requires, when done brute force, O(M6k) multiplication

and summation operations. As is shown in Section 4-B, for the special case of

additive noises, this complexity can be significantly reduced to be O(kM2k),

i.e., complexity essentially linear in the matrix dimension, allowing the use of

significantly larger window sizes than would otherwise be practical. In any

case, there seems to be no avoiding the exponential dependence on k of the

required complexity (as the size of the channel matrix has such dependence

on k).

4-C.2. A Modified Denoiser. With the above two points in mind, we now

introduce a modified version of the original denoiser for one-dimensional data array.

The extension of the proposed modified denoiser to multi-dimensional data arrays is
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also possible after necessary modifications. The basic idea of the modified denoiser is

as follows: Suppose that the original denoiser is designed for a context-length para-

meter k. The modified denoiser first starts with a smaller context-length parameter

k′, where k′ < k, and, as is in the original scheme, obtains an empirical estimate of

the 2k′ + 1-tuple distribution of the noisy data, P̂
Zk′

−k′
[zn]. The value of k′ is selected

such that: 1. There are sufficient counts for the estimate of the empirical distribution

P̂
Zk′

−k′
to be reliable; 2. The inverse of the 2k′ + 1-tuple channel transition matrix,

(Πk′

−k′ )−1, can be computed with a moderate amount of computational effort. The

denoiser then obtains an estimate of the 2k′ + 1-tuple source distribution as

(49) P̂
Xk′

−k′
= P̂

Xk′

−k′
[zn] =

(

Πk′

−k′

)−T

· P̂
Zk′

−k′
[zn].

Next, the denoiser proceeds to estimate the 2k + 1-tuple source distribution, PXk
−k

,

by extending P̂
Xk′

−k′
from both left and right sides, assuming that the source signal is

a Markov process of order no greater than 2k′. More specifically,

P̂Xk
−k

(xk
−k) =P̂Xk′

−k′

(

xk′

−k′

) k−k′

∏

i=1

[

P̂Xk′

−k′

(

xk′+i|xk′+i−1
−k′+i

)

P̂Xk′

−k′

(

x−k′−i|xk′−i
−k′−i+1

)]

,

(50)

where the first term in the square brackets denotes the conditional distribution of a

symbol given a 2k′-tuple on its left, and the second denotes the conditional distribution

of a symbol given a 2k′-tuple on its right, both as induced by the distribution on a

2k′ + 1-tuple P̂
Xk′

−k′
. The denosing algorithm in (10) is now modified to be

(51) X̂i(z
n) = argmin

x̂

∑

a

Λ(a, x̂)




∑

xk
−k

:x0=a

P̂Xk
−k

(xk
−k)PNk

−k
(zi+k

i−k ⊖ xk
−k)



 ,

i.e., we use P̂Xk
−k

as defined in (50) in lieu of P̂T
Zk

−k

·
(
Πk

−k

)−1
. The idea is that the

denoiser first achieves an accurate estimate of the 2k′+1-tuple source distribution with

a smaller k′ that overcomes the problem of lacking sufficient counts when the larger k

is implemented directly. Secondly, the actual denoising is implemented with the larger

k by extending the 2k′+1-tuple source distribution into the needed 2k+1-tuple source

distribution. This is the modified denoiser’s way of handling the conflict between an

accurate distribution estimation and a large context for the sliding-window denoising.

While initial experimentation indicates that this modified scheme can significantly

improve denoising over the original one, basic theoretical questions are still under

investigation. For example, it is not clear whether for a fixed k′ there exists a way

to increase k with n such that universality will be guaranteed at least with respect

to the class of 2k′-th order Markov processes. Recent results for the filtering (causal

denoising) problem [18] seem to hint that this will indeed be the case, at least under

a mild positivity assumption on the Markov transition kernel.
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5. Experimental Results and Discussion. In this section we report on ex-

perimental results obtained by applying the proposed denoisers to data sets corrupted

by a burst-noise channel [10], which is often encountered in practice.

5-A. 1D Denoising.

5-A.1. The 1D Burst Noise Channel Model. The noise sequence {Ni} in

1D burst noise channel can be modeled as a finite-state hidden-Markov-process (FS-

HMP). At each time i, the said FS-HMP is characterized by a channel state, Si, where

{Si} is an irreducible, aperiodic and stationary Markov chain with a finite state-space

C = {1, . . . , C} and a state transition probability matrix Ps. The noise components are

independent given the state sequence. To each channel state corresponds a different

noise distribution pc, where pc(m) = P (Ni = m|Si = c), m ∈ A, and c ∈ C. Also

given is π(c), which denotes the stationary distribution of the cth channel state, so

that PT
s π = π. Therefore, the 2k + 1-tuple distribution of Nk

−k can be expressed as

P (Nk
−k = nk

−k) =
∑

sk
−k

P (Nk
−k = nk

−k|Sk
−k = sk

−k)P (Sk
−k = sk

−k)(52)

=
∑

sk
−k

ps−k
(n−k)π(s−k)

k∏

i=−k+1

psi
(ni)Ps(si−1, si).(53)

A typical FS-HMP generates a burst-like noise process because the channel prop-

agates through C different channel states, each having some persistent memory and

being characterized by a different noise distribution. We assume the channel parame-

ters are such that Assumption 1 is satisfied, which can be shown to hold for “most”

points of the parameter space [6]. The burst noise channel becomes memoryless if and

only if Ps(c
′, c) = Ps(c

′′, c), ∀c, c′, c′′ ∈ C. In this case, the channel becomes an equiv-

alent DMC, i.e., with i.i.d. additive noise components distributed as
∑C

c=1 π(c)pc.

5-A.2. 1D Denoising Performance. We implemented our denoiser for a bi-

nary burst noise channel for which the noise process is a binary HMP with two channel

states, i.e., M = C = 2, which is the well-known Gilbert-Elliot Channel [10]. The

channel state “1” corresponds to a “Good” binary symmetric channel (BSC) with a

crossover probability, p1(1) , εG, while the channel state “2” corresponds to a “Bad”

BSC with a crossover probability, p2(1) , εB. 0 ≤ εG < εB ≤ 1. The state transition

probability from the “Good” channel to the “Bad” channel is denoted PGB while

the transition probability from the “Bad” to the “Good” is denoted PBG. There-

fore, the vector, βC , [εG, εB, PGB, PBG], completely characterizes the binary burst

noise channel. A total number of four different burst noise channels are considered in

the simulation: (C1) βC1 = [0.01 0.2 0.01 0.1]; (C2) βC2 = [0.01 0.8 0.01 0.1]; (C3)

βC3 = [0.01 0.2 0.01 0.01]; (C4) βC4 = [0.01 0.8 0.01 0.01]. Compared with channels

C1 and C2 that have PBG = 0.1, channels C3 and C4 with PBG = 0.01 have a higher
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tendency to persist when in a “Bad” channel state. Compared with channels C1 and

C3 that have εB = 0.2, channels C2 and C4 with εB = 0.8 have more noisy “Bad”

channels. The source signal is a first-order symmetric binary Markov process with

probability of transition from one state to the other p = 0.01. In each experiment,

only one realization of the source and the noise is generated and the data sequence

length, n, is 106.

Table 5-A.2 shows the bit error rate (BER), expressed as a multiple of δ, of the

denoised signal obtained by different denoising schemes, where δ is the raw BER

before any denoising. The denoising schemes are listed as follows:

• Median Filter. The 2k + 1 sliding-window median filter with binary input

and output alphabets decodes the source symbol at each location by a ma-

jority vote from the value of the observed symbol at that location and the

values of 2k observed symbols in its context. The minimum BER obtained

through the median filtering is shown in Table 1 and the associated best filter

order k in each case is also shown in the bracket following the BER.

• Genie-aided[k]. The genie-aided 2k + 1 sliding-window denoiser decodes

the source symbol using the achiever of the minimum in (12), i.e., based on

knowledge of both the noisy and noise-free signals. As such, it provides the

performance bound on all sliding window denoisers of order 2k + 1.

• Proposed[k]. Refers to the proposed 2k + 1-tuple denoiser. For k = 4, the

original denoiser in (10) is used while for k = 7, the modified denoiser of

Subsection 4-C.2 is used with k′ = 2.

• DUDE[k]. The 2k + 1 sliding-window denoiser (DUDE) in [26] for DMC is

applied here, by ignoring the memory in the burst noise process and taking

the burst noise channel as a DMC with crossover probability pe = p1(1)π(1)+

p2(1)π(2).

• BCJR. The BCJR-based denoiser has perfect knowledge of the source statis-

tics and decodes the source symbol at each location based on all the observed

symbols using the BCJR algorithm [2] (agglomerating the noiseless signal

component and the channel state into one state). In other words, it is an

implementation of the optimal distribution-dependent denoiser.

We make the following observations:

• The median filter that is easily implemented without any knowledge of the

source or the channel can perform reasonably well for channels C1, C2 and C3,

but fails in improving the BER for channel C4. Furthermore, the optimum

values of the filter order appear quite random and a sound rule for designing

the filter order seems unlikely.

• The proposed denoiser designed for the burst noise channel achieves a signif-

icant BER improvement compared with the DUDE of [26], which is applied

here by ignoring the memory in the channel.
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Table 1

Bit error rate in denoising sequences emitted by a Markov source and corrupted by a binary

burst noise channel.

C1 C2 C3 C4

Denoising Schemes δ = 0.0269 δ = 0.0808 δ = 0.1038 δ = 0.4011

Median Filter 0.1491δ[4] 0.6720δ[16] 0.1349δ[7] 1.0000δ[0]

Genie-aided[4] 0.1190δ 0.6733δ 0.1618δ 0.4291δ

Proposed[4] 0.1190δ 0.6733δ 0.1618δ 0.4298δ

DUDE[4] 0.4764δ 0.9208δ 0.4461δ 1.1653δ

Genie-aided[7] 0.0669δ 0.4975δ 0.0790δ 0.3089δ

Proposed[7] 0.0929δ 0.5371δ 0.1012δ 0.3219δ

DUDE[7] 0.4647δ 0.9084δ 0.4644δ 1.1735δ

BCJR 0.0855δ 0.2859δ 0.0790δ 0.0738δ

• The proposed denoiser essentially attains the performance of the best genie-

aided sliding-window denoiser for k = 4. For k = 7, the modified sliding-

window denoiser provides a consistent BER improvement. However, a no-

table BER gap is observed as compared with the genie-aided denoiser. This

is because even assuming the modified denoiser can achieve the same perfor-

mance as that of the actual proposed denoiser with the same context length,

the data block length, n(= 106), becomes insufficient for the applied context

length, k(= 7).

• The best genie-aided sliding-window denoiser for the semi-stochastic setting

can outperform the BCJR-based denoiser that is the optimal denoiser for

the stochastic setting, e.g., for channel C1. However, for channels that have

longer consecutive burst errors, e.g., channel C2 and C4, there is a notable

BER gap between the sliding-window denoiser and the BCJR-based denoiser

that operates optimally based on all the data and complete knowledge of the

source and channel. This can be explained by the fact that the BCJR-based

denoiser implemented via the backward-forward recursions, jointly estimates

the source symbol and the channel state at each location. The sliding-window

based denoiser, on the other hand, determines the decoding rule at each

location inevitably by mixing the statistics of “Good” and “Bad” states since,

for the small window-lengths used, it is unable to “lock in on” the true state,

as the BCJR-based denoiser that has access to all the noisy data is typically

able to do.
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5-B. Binary Image Denoising.

5-B.1. 2D Burst Noise Channel Model. The noise field6 Nm×n = {Ni,j

}(i,j)∈Vm×n
in a two-dimensional burst noise channel can be modelled as a finite-state

hidden- Markov-Random-Field (FS-HMRF). This field is characterized by Sm×n, the

channel state field, i.e., Si,j denotes the channel state at the location (i, j) ∈ Vm×n

and takes a value from the finite state-space C = {1, . . . , C}. Sm×n is a MRF, which

means that the conditional distribution of Si,j given the channel states at all the other

locations in the 2D data array satisfies:

(54)

P (Si,j = si,j |S (Vm×n \ (i, j)) = s (Vm×n \ (i, j))) = P (Si,j = si,j |SNi,j
= sNi,j

),

where Ni,j is the set of points neighboring (i, j), and the neighboring relationship has

the following two properties: (1) (i, j) /∈ Ni,j ; (2)(i, j) ∈ Nk,l ⇔ (k, l) ∈ Ni,j . The

noise components are independent given the state values. As in the one dimensional

case, each channel state is associated with a noise distribution, pc, where pc(a) =

P (Ni,j = a|Si,j = c), a ∈ A, and c ∈ C.

The joint distribution for the MRF in (54) is well known to be given by the Gibbs

distribution [17, 9, 15], which takes the form:

(55) P (Sm×n = sm×n) = Z−1 exp− 1
T

U(sm×n),

where Z =
∑

sm×n
exp− 1

T
U(sm×n) is the normalization factor called the partition

function, T is referred to as the temperature which we shall take to be 1, and

U(sm×n) is the energy function. For example, for the ‘8-nearest-neighbor’ neigh-

borhood Ni,j = {(i, j± 1), (i± 1, j), (i± 1, j± 1)}, the energy function can be written

as

(56) U(sm×n) =
∑

(i,j)

V1(si,j) +
∑

(i,j)

∑

(k,l)∈Ni,j

V2(si,j , sk,l),

where V1 and V2 are clique potential functions. The conditional distribution in (54)

can then be brought to the form

(57) P (Si,j = si,j |SNi,j
= sNi,j

) =
exp

−
h
V1(si,j)+

P
(i,j)

P
(k,l)∈Ni,j

V2(si,j ,sk,l)
i

∑

si,j
exp

−
h
V1(si,j)+

P
(i,j)

P
(k,l)∈Ni,j

V2(si,j ,sk,l)
i .

5-B.2. 2D Denoising Performance. We have implemented our denoiser for a

burst noise channel for which the noise process is a binary HMRF with two channel

states, i.e., M = C = 2. The channel state “1” corresponds to a “Good” BSC with

6Recall notation for 2D data from Subsection 3-A which we use throughout this subsection,

with the exception of using a double index (i, j) (one for each coordinate), rather than a single

(two-dimensional) index, to denote a location in the image.
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Table 2

Bit error rate in denoising images corrupted by a two-dimensional binary burst noise channel.

C1 C2 C3

Images Denoising Schemes δ = 0.0337 δ = 0.1046 δ = 0.1117

Shannon Genie-aided 0.2077δ 0.2170δ 0.5838δ

1000× 1000 Proposed 0.2107δ 0.2170δ 0.6124δ

DUDE 0.5371δ 0.4178δ 1.0090δ

Median Filter 0.3442δ 0.2639δ 1.0143δ

Morphological Filter 1.5282δ 0.7945δ 0.8478δ

Einstein Genie-aided 0.8012δ 0.8202δ 0.8422δ

900× 900 Proposed 0.8012δ 0.8221δ 0.8457δ

DUDE 0.8392δ 0.8382δ 1.0717δ

Median Filter 4.1988δ 1.6660δ 1.7049δ

Morphological Filter 7.0673δ 2.9791δ 2.5753δ

Lenna Genie-aided 0.2945δ 0.2570δ 0.4702δ

256× 256 Proposed 0.2946δ 0.2696δ 0.4919δ

DUDE 0.4189δ 0.3395δ 0.9611δ

Median Filter 0.6243δ 0.3240δ 0.5325δ

Morphological Filter 1.2021δ 0.8513δ 0.8087δ

a crossover probability p1(1) , εG, while the channel state “2” corresponds to a

“Bad” BSC with a crossover probability p2(1) , εB. We assume that V1(si,j) = αsi,j

and V2(si,j , sk,l) = 2γ(si,j, sk,l) − 1, where γ(a, b) = 1 if a = b and zero otherwise.

Therefore, the vector βC , [εG, εB, α1, α2] completely characterizes the burst noise

channel. Three different burst noise channels are considered in the simulation: (C1)

βC1 = [0.01 0.2 0.2 0]; (C2) βC2 = [0.01 0.2 0 0]; (C3) βC3 = [0.01 0.8 0.2 0].

Compared with channel C1, C2 and C3 are more noisy channels.

The source signals are three binary images: (1) a scanned copy of the first page of

[24] with the size of 103×103, i.e., m = n = 103; (2) a 900×900 half-toned portrait of

a famous physicist; (3) a 256× 256 image of “Lenna”. The binary MRF is generated

by the Gibbs sampling method [17] with 50 iterations.

Table 2 shows the bit error rate (BER), expressed as a multiple of δ, of the

denoised signal obtained by different denoising schemes, where δ is the raw BER

before any denoising. The denoising schemes are listed as follows:

• Genie-aided. The genie-aided 3 × 3 sliding-window denoiser decodes using

the achiever of the minimum in (42), with r = 1.

• Proposed. Refers to X̂m×n
univ

, as defined in (41), with r = 1. In the experi-

ment we have used an estimate of the joint distribution of a 3 × 3 square of

noise components, taken as the empirical distribution induced by a randomly
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generated 103 × 103 hidden MRF (independent of the noise field that cor-

rupted the data). This estimate was taken in lieu of the true distribution of

such a 3×3 square (required in the denoising rule (40)), which would be diffi-

cult to obtain precisely (ideally needing to marginalize the distribution in (55)

to a 3 × 3 square). The inverse of the estimated channel matrix (associated

with the estimated noise distribution) was used, as is, in the denoising rule,

though we believe methods for regularizing the channel inverse could yield

performance gains. Such methods are well developed and widely applied in

statistics (cf., e.g., [5]) and communications (cf., e.g., [23]).

• DUDE. The 3 × 3 sliding-window denoiser of [20], assuming a DMC with

crossover probability pe. Because it is difficult to obtain closed-form ex-

pressions for marginal distributions of “Good” and “Bad” channels in a 2D

Markov random field, i.e., π(1) and π(2), the equivalent raw BER, pe =

p1(1)π(1) + p2(1)π(2), is also not available. Therefore, in the simulation, we

instead take pe to be the number of bit errors divided by the total number of

bits in each observed noisy binary image.

• Median Filter. The 3×3 sliding-window median filter decodes by majority

vote.

• Morphological Filter. A Morphological filter, available in MATLAB, uses

a 3 × 3 structure element and implements the CLOSE and then the OPEN

operation to the noise corrupted image.

The proposed image denoiser is observed to achieve a better BER improvement for

the tested images and all the channels simulated compared with more conventional

filters like the Median and Morphological filters. It also approaches the performance

of the best genie-aided sliding-window based denoiser, and outperforms the DUDE

in [26] that takes into account the channel crossover probability assuming it is a

DMC. Portions of the noiseless image, the noisy image, the image denoised by the

proposed denoiser, and the image as denoised by the DUDE of [26], are shown in

Figure 1 for the experiment of the text image corrupted by channel C1, Figure 2 for

the half-toned image corrupted by channel C3, and Figure 3 for the black and white

image corrupted by channel C3. It is observed that the proposed denoising scheme

improves not only the BER, but also the visual quality of the noise-corrupted images.

Of course, this in no way indignifies the DUDE of [26], which was not designed to

accommodate memory in the noise. It does, however, exemplify the gain in taking the

channel memory into account. Further empirical evidence supporting this conclusion,

for sources and channels of types different than those experimented with here, is

reported on in [12].

6. Conclusion. Discrete denoising for channels with memory was considered,

with particular focus on the case of additive noise. A sequence of denoisers that
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Fig. 1. Denoising of a scanned text image. top-left: noiseless image; top-right: noisy image;

bottom-left: denoised image by the proposed denoiser; bottom-right: denoised image by DUDE in

[26].

operates without knowledge of the noiseless data or its distribution was derived, and

shown to be universal under a mild mixing condition on the channel noise. Algorithmic

aspects were also considered, including a variation on the first scheme, which was

argued likely to improve performance in practice. Experimental results for binary

data corrupted by burst noise were presented, where it was found that the suggested

schemes outperform current popular denoisers.

On the theoretical front, an attempt has not been made to refine the analysis

beyond the asymptotics, and to get the tightest possible non-asymptotic performance

bounds. For example, it is possible that a bound tighter than that in Theorem 2

(decaying faster than ∼ 1/n) can be obtained. Furthermore, under a requirement for

exponential decay of the mixing coefficients (under possibly a slightly stronger form

of mixing), the bound should be improvable to exponential decay in n, similarly as

was done in [7].

It will be interesting to explore further the modified denoising scheme of Section

4-C.2, from both experimental and theoretical viewpoints. It should be noted that the

idea on which this scheme is based can be also applied (with obvious modifications)
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Fig. 2. Denoising of a half-toned image. top-left: noiseless image; top-right: noisy image;

bottom-left: denoised image by the proposed denoiser; bottom-right: denoised image by DUDE in

[26].

in other discrete denoising settings, including the original one of [26], and those of

[4, 22]. Initial theoretical results justifying this approach are developed in [18].
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Appendix A. Proof of Theorem 2.

In this Appendix, we prove Theorem 2 in the main text. Two facts will be needed

in the proof. The first follows directly from the definition of α-mixing (recall (3)):

Fact 1. Let {Si} be a process with ESi = 0, |Si| ≤M , and α-mixing coefficients

{α(S)
t }. Then for all i, j

|ESiSj | ≤M2α
(S)
|i−j|.

The second is:

Lemma 1. Let {Vi} be a sequence of random variables satisfying |Vi| ≤ M and
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Fig. 3. Denoising of a black and white image. top-left: noiseless image; top-right: noisy image;

bottom-left: denoised image by the proposed denoiser; bottom-right: denoised image by DUDE in

[26].

|EViVj | ≤ R(i− j) for all i, j, where R(·) satisfies C
△
=
∑∞

i=1 R(i) <∞. Then

Var

(

1

n

n∑

i=1

Vi

)

≤ M2 + 2C

n
.

Proof.

Var

(

1

n

n∑

i=1

Vi

)

≤ E





(

1

n

n∑

i=1

Vi

)2




=
1

n2
E





n∑

i=1

V 2
i + 2

n∑

i=2

i−1∑

j=1

ViVj





≤ 1

n2



nM2 + 2

n∑

i=2

i−1∑

j=1

R(i− j)





≤ 1

n2



nM2 + 2n

∞∑

j=1

R(i− j)





=
M2 + 2C

n
.
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Proof of Theorem 2. Assume throughout this proof a fixed xn. For each a, uk
−k,

∣
∣q̂k(Zn)[a, uk

−k] − qk(zn, xn)[a, uk
−k]
∣
∣

=

∣
∣
∣
∣
∣
∣




∑

xk
−k

:x0=a

[P̂Zk
−k

[Zn]T ·
(
Πk

−k

)−1
](xk

−k)PNk
−k

(uk
−k ⊖ xk

−k)



− qk(Zn, xn)[a, uk
−k]

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣




∑

xk
−k

:x0=a




∑

vk
−k

P̂Zk
−k

[Zn](vk
−k).

(
Πk

−k

)−1
[vk

−k, x
k
−k]



PNk
−k

(uk
−k ⊖ xk

−k)





− 1

n− 2k

n−k∑

i=k+1

1{xi=a,Z
i+k

i−k
=uk

−k}

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣




∑

yk
−k

:y0=a




∑

vk
−k

∑n−k

i=k+1 1{Z
i+k

i−k
=vk

−k}
n− 2k

·
(
Πk

−k

)−1
[vk

−k, y
k
−k]



PNk
−k

(uk
−k ⊖ yk

−k)





−
∑

yk
−k

:y0=a

n−k∑

i=k+1

1{x
i+k

i−k
=yk

−k
,Z

i+k

i−k
=uk

−k}
n− 2k

∣
∣
∣
∣
∣
∣

≤ 1

n− 2k

∑

yk
−k

:y0=a

|
n−k∑

i=k+1




∑

vk
−k

1{Z
i+k

i−k
=vk

−k} ·
(
Πk

−k

)−1
[vk

−k, y
k
−k]





·PNk
−k

(uk
−k ⊖ yk

−k) − 1{x
i+k

i−k
=yk

−k
,Z

i+k

i−k
=uk

−k}|
(58)

where
(
Πk

−k

)−1
[vk

−k, x
k
−k] denotes the (vk

−k, x
k
−k)-th element of

(
Πk

−k

)−1
. Now, for

each i, uk
−k and yk

−k,

E










∑

vk
−k

1{Z
i+k

i−k
=vk

−k} ·
(
Πk

−k

)−1
[vk

−k, y
k
−k]



PNk
−k

(uk
−k ⊖ yk

−k)







= PNk
−k

(uk
−k ⊖ yk

−k)
∑

vk
−k

E1{Z
i+k

i−k
=vk

−k} ·
(
Πk

−k

)−1
[vk

−k, y
k
−k]

= PNk
−k

(uk
−k ⊖ yk

−k)
∑
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−k

E




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−k

1{x
i+k

i−k
=sk

−k
,Z

i+k

i−k
=vk

−k}



 ·
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Πk
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)−1
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−k, y
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= PNk
−k

(uk
−k ⊖ yk

−k)
∑

vk
−k

∑

sk
−k
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−k}PNk
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[vk
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k
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= PNk
−k

(uk
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−k)
∑
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−k
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i+k

i−k
=s

i+k

i−k}
∑
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−k
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−k[sk

−k, v
k
−k] ·

(
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)−1
[vk
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= PNk
−k

(uk
−k ⊖ yk

−k)
∑

sk
−k

1{x
i+k

i−k
=sk

−k} · 1{yk
−k

=sk
−k

}

= PNk
−k

(uk
−k ⊖ yk

−k)1{x
i+k

i−k
=yk

−k}
= Pr(Zi+k

i−k = uk
−k)1{x

i+k

i−k
=yk

−k}
= E1{x

i+k

i−k
=yk

−k
,Z

i+k

i−k
=uk

−k}.(59)

Evidently, defining

Ti = Ti(N
i+k
i−k , u

k
−k, y

k
−k) =




∑

vk
−k

1{Z
i+k

i−k
=vk

−k} ·
(
Πk

−k

)−1
[vk

−k, y
k
−k]



(60)

·PNk
−k

(uk
−k ⊖ yk

−k) − 1{x
i+k

i−k
=yk

−k
,Z

i+k

i−k
=uk

−k},

the sum over i in (58) is

n−k∑

i=k+1

Ti,

which is a sum of zero mean variables, bounded in magnitude by ‖
(
Πk

−k

)−1 ‖ + 1,

the i-th variable being a deterministic function of N i+k
i−k . It is therefore also clear

that the mixing coefficients of the process {Ti}, {α(T )
t }, satisfy α

(T )
t ≤ α

(N)
t−2k for all

t ≥ 2k (and trivially α
(T )
t ≤ 1 for t < 2k). Summarizing, {Ti} is a sequence of zero-

mean variables, bounded by ‖
(
Πk

−k

)−1 ‖ + 1, with α-mixing coefficients satisfying

α
(T )
t ≤ α

(N)
t−2k. Combined with Fact 1 and Lemma 1 this implies

Var

(

1

n− 2k

n−k∑

i=k+1

Ti

)

≤

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

+ 2 (2k +
∑∞

t=1 αt)
(

‖
(
Πk

−k

)−1 ‖ + 1
)2

n− 2k
(61)

=
(4k + 1 + 2

∑∞
t=1 αt)

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

n− 2k
,(62)

where in (61) and on αt = α
(N)
t . Applying Chebychev’s inequality gives

(63) Pr

(∣
∣
∣
∣
∣

1

n− 2k

n−k∑

i=k+1

Ti

∣
∣
∣
∣
∣
≥ ε

)

≤
(4k + 1 + 2

∑∞
t=1 αt)

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

ε2(n− 2k)
.

Now, in terms of the random variables Ti(N
i+k
i−k , u

k
−k, y

k
−k), the expression in (58)

becomes

(64)
∑

yk
−k

:y0=a

∣
∣
∣
∣
∣

1

n− 2k

n−k∑

i=k+1

Ti(N
i+k
i−k , u

k
−k, y

k
−k)

∣
∣
∣
∣
∣
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and

Pr




∑

yk
−k

:y0=a

∣
∣
∣
∣
∣

1

n− 2k

n−k∑

i=k+1

Ti(N
i+k
i−k , u

k
−k, y

k
−k)

∣
∣
∣
∣
∣
≥ ε





≤
∑

yk
−k

:y0=a

Pr

(∣
∣
∣
∣
∣

1

n− 2k

n−k∑

i=k+1

Ti(N
i+k
i−k , u

k
−k, y

k
−k)

∣
∣
∣
∣
∣
> ε/M2k

)

≤M2k
(4k + 1 + 2

∑∞
t=1 αt)

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

(ε/M2k)2(n− 2k)
(65)

= M6k
(4k + 1 + 2

∑∞
t=1 αt)

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

ε2(n− 2k)
,(66)

where (65) follows by applying (63) on each summand. Combining (66) with (58)

gives

Pr
(∣
∣q̂k(Zn)[a, uk

−k] − qk(Zn, xn)[a, uk
−k]
∣
∣ ≥ ε

)
(67)

≤M6k
(4k + 1 + 2

∑∞
t=1 αt)

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

ε2(n− 2k)
.

So

Pr (‖q̂k(Zn) − qk(Zn, xn)‖ ≥ ε)

≤
∑

a,uk
−k

Pr
(∣
∣q̂k(Zn)[a, uk

−k] − qk(Zn, xn)[a, uk
−k]
∣
∣ ≥ ε

)
(68)

≤M2k+2 ·M6k
(4k + 1 + 2

∑∞
t=1 αt)

(

‖
(
Πk

−k

)−1 ‖ + 1
)2

ε2(n− 2k)
.(69)

Appendix B. Proof of Theorem 4. In this Appendix, we first prove Theo-

rem 4 (of Section 4-B) and then derive the time-complexity required for computing

the “generalized” Fourier and inverse Fourier transforms, both used for the efficient

algorithm presented in Section 4-B (recall (48) therein).

Consider a matrix An ∈ R
N×N , with N = Mn. The element of An at the ith

row and the jth column is denoted as An(i, j), i = 0, . . . ,Mn − 1, j = 0, . . . ,Mn − 1.

We represent the row and the column index of each matrix element of An by an

equivalent vector, i and j, respectively. Each element of i and j takes values from

a finite alphabet, A = {0, . . . ,M − 1} and has the following correspondence with i

and j: i = [i0, . . . , in−1], j = [j
0
, . . . , j

n−1
], and i =

∑n−1
k=0 ikM

k, j =
∑n−1

k=0 jk
Mk

(known as a lexicographic correspondence). We thus have An(i, j) = An(i, j). We

assume further that An is lexicographically circulant, i.e., An(i, j) = An(i
′

, j
′

), if

j
k
⊖ ik = j

′

k
⊖ i

′

k, ∀k = 0, . . . , n − 1, where ⊖ denotes modulo-M subtraction. It is
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noted that the 2k+1-tuple channel transition matrix, Πk
−k, defined in (4) for additive

noise channels with modulo-M addition, has this property. Therefore, we prove the

result in this Appendix for a general lexicographically circulant matrix, An, which will

then be directly applicable to the channel transition matrix of our original interest.

We begin by stating two lemmas concerning the cyclic decomposition of lexico-

graphically circulant matrices, and the special structure of the “generalized” Fourier

transform matrix, Hn defined in (47).

Lemma 2. If An is lexicographically circulant, it has the following cyclic decom-

position:

An =












B
(0)
n−1 B

(M−1)
n−1 · · · · · · B

(1)
n−1

B
(1)
n−1 B

(0)
n−1 B

(M−1)
n−1 · · · B

(2)
n−1

...
. . .

. . .
. . .

...

B
(M−2)
n−1 · · · B

(1)
n−1 B

(0)
n−1 B

(M−1)
n−1

B
(M−1)
n−1 · · · · · · B

(1)
n−1 B

(0)
n−1












(70)

where B
(k)
n−1 is a lexicographically circulant matrix of dimension Mn−1 ×Mn−1, k =

0, . . . ,M − 1.

Proof. Let An[l,m] denote the Mn−1 × Mn−1 sub-matrix of An defined by

(An[l,m]) (i, j) = An(i
′

, j
′

), where i
′

= [i, l], j
′

= [j,m], l = 0, . . . ,M − 1,m =

0, . . . ,M − 1. The fact that An is lexicographically circulant implies that An[l,m]

depends on l,m only through l ⊖m. Thus, An decomposes according to (70), with

B
(l⊖m)
n−1 = An[l,m]. 2

Consider the “generalized” Fourier transform matrix, Hn defined in (47), i.e.,

Hn = F⊗n
M , where ⊗n denotes the n-th tensor-power, and FM is the M ×M Fourier

matrix.

Lemma 3. Hn is unitary, i.e., H−1
n = H∗

n ∀n, where ∗ denotes conjugate trans-

pose.

Proof. For n = 1 this is the well-known property of the Fourier matrix. The case

n > 1 easily follows by induction, using the tensor product properties (A ⊗ B)∗ =

A∗ ⊗B∗ and (A⊗B)−1 = A−1 ⊗B−1.

We are now ready to prove Theorem 4 for a general lexicographically circulant

matrix An. It is noted that the proof for the binary alphabet, M = 2, has been given

in [16]. To recapitulate, we need to prove the following:

1. Hn diagonalizes An, i.e., An = H∗
nΛnHn, where Λn is diagonal.

2. diag(Λn) = Hn · An(:, 0), where An(:, 0) denotes the first column of An.

Proof. Consider first n = 1. In this case, H1 = FM and the assertions are well

known properties of circulant matrices (cf., e.g., [14]). Suppose that the theorem

is true for a lexicographically circulant matrix, An−1, of size Mn−1 × Mn−1. By

Lemma 2, B
(k)
n−1 is lexicographically circulant and of size Mn−1 ×Mn−1, therefore,
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B
(k)
n−1 = H∗

n−1Λ
(k)
n−1Hn−1, for k = 1, . . . ,M − 1, and diag(Λ

(k)
n−1) = Hn−1 · B(k)

n−1(:, 0).

Then

(Hn · An)[l,m] =
M−1∑

k=0

FM (l, k)Hn−1 · An[k,m](71)

=

M−1∑

k=0

FM (l, k)Hn−1 · B(k⊖m)
n−1(72)

=

M−1∑

k=0

FM (l, k)Hn−1 ·
(

H∗
n−1Λ

(k⊖m)
n−1 Hn−1

)

(73)

=

M−1∑

k=0

FM (l, k)Λ
(k⊖m)
n−1 · Hn−1(74)

=

(
M−1∑

k=0

FM (l, k ⊖m)Λ
(k⊖m)
n−1

)

FM (l,m)Hn−1(75)

=
M−1∑

k=0

FM (l, k)Λ
(k)
n−1

︸ ︷︷ ︸

Λn[l,l]

·Hn[l,m](76)

Therefore, Hn · An = Λn · Hn. Since H−1
n = H∗

n, An = H∗
nΛnHn is established.

Furthermore, from (76),

diag(Λn[l, l]) =

M−1∑

k=0

FM (l, k)diag(Λ
(k)
n−1)(77)

=

M−1∑

k=0

FM (l, k)diag
(

Hn−1 · B(k)
n−1(:, 0)

)

(78)

= Hn[l, :] ·An(:, 0).(79)

Therefore, diag(Λn) = Hn ·An(:, 0), completing the induction and the proof.

Finally, we provide the time-complexity analysis for computing the “generalized”

Fourier transform and inverse Fourier transform, i.e., Hn(X) = Hn·X , and Hinv

n (X) =

H∗
n ·X , which are used in the efficient algorithm presented in Section 4-B. Because

of the special structure of Hn and H∗
n we can develop a fast algorithm for computing

the matrix transforms.

Consider first Hn(X) = Hn ·X and let Cn denote the time-complexity associated

with this computation. The fast algorithm first considers XT = [XT
0 , . . . , X

T
M−1],

where Xl is of size Mn−1 × 1, for l = 0, . . . ,M − 1. Since Hn[l,m] = FM (l,m)Hn−1,

we can first compute Hn−1 ·Xl, each having a time-complexity of Cn−1. Then Hn ·X
can be obtained by multiplying the Fourier matrix coefficients, FM (l,m), for each

Hn−1 ·Xl and then summing up those vectors after multiplication corresponding to

the same l, which requires at most 2Mn+1 arithmetic operations. To sum up, the
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time-complexity of this recursive algorithm satisfies

(80) Cn ≤MCn−1 + 2Mn+1,

from which we derive Cn ≤ Mn−1C1 + 2Mn+1(n − 1) = O(nMn), where C1 corre-

sponds to the number of operations required for the standard Fourier transform for

M -dimensional vectors, and can be computed with O(M logM) operations, e.g., us-

ing the well-known fast Fourier transform (FFT). A similar fast recursive algorithm,

and analysis, can be carried through for the computation of Hinv

n (X) = H∗
n ·X . We

have thus established the following:

Lemma 4. Both the “generalized” Fourier transform, Hn(X) = Hn ·X, and the

“genaralized” inverse Fourier transform, Hinv

n (X) = H∗
n ·X, can be implemented with

O(nMn) arithmetic operations.
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