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A CHARACTERIZATION OF A CLASS OF DISCRETE NONLINEAR

FEEDBACK SYSTEMS

DOROTHY I. WALLACE∗, CLYDE F. MARTIN† , AND MARK STAMP‡

Abstract. A class of discrete dynamical systems with nonlinear feedback is considered. These

systems generalize various maps arising in connection with chaotic dynamical systems, topological

dynamics, and linear systems theory. We give a complete characterization of this class of systems.

1. Introduction. Let F be the finite field {0, 1} and let Bn be the collection of

binary n-tuples. In this paper we consider the discrete dynamical system with control

(1)
~xk+1 = f(~xk) + ukg(~xk)

yk = h(~xk) + uk

as well as the more general system

(2)
~xk+1 = f(~xk) + ukg(~xk)

yk = h(~xk) + ukp(~xk) ,

where ~xk ∈ Bn, uk ∈ F, and f, g : Bn → Bn, and h, p : Bn → F. The functions f ,

g, h and p are necessarily polynomials [2, Theorem 19.1] so that, for example, f is of

the form

f(x1, x2, . . . , xn) =









f1(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)









,

with each xk ∈ F and the fi’s are polynomials from Bn into F.

We refer to the systems (1) and (2) as nonlinear feedback systems. These systems

arise in various contexts. For example, taking uk = 0 for all k we have

~xk+1 = f(~xk)

yk = h(~xk).

This particular system appears in [3] and [4] where it is used to analyze pseudo-random

binary sequence generators.
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Let B∞ be the collection of infinite sequences over F. In [5] the system

(3)
~xk+1 = σ(~xk)

yk = h(~xk)

is considered, where σ is the left-shift, i.e., σ(x1, x2, x3, . . .) = (x2, x3, x4, . . .), and h

is a polynomial in the first n elements of ~x. In [5] it is shown that (3) is equivalent to

the “dyadic system,” which is defined by f : [0, 1) → [0, 1) where

f(x) =

{

2x if 0 ≤ x < 1/2

2x − 1 if 1/2 ≤ x < 1 ,

and the observation is given by the characteristic function of a union of certain half-

open intervals. The dyadic map arises in the study of chaotic dynamical systems; see,

for example, the article by Di Masi and Gombani [1].

If we let f(~x) = (x2, x3, . . . , xn, 0), g(~x) = (0, 0, . . . , 0, 1), p(~x) ≡ 0, and ~u =

(xn+1, xn+2, xn+3, . . .), then (2) is essentially (3). The system (3) is also equivalent

to certain maps studied in topological dynamics [2].

We now define a metric on the space B∞ by

d(~x, ~y) =







0 if ~x = ~y
1

k + 1
otherwise ,

where k is the first index such that xk 6= yk. With this topology, B∞ is a compact,

totally disconnected, perfect, metric space and hence homeomorphic to the Cantor

set.

For any input sequence (or control) (u0, u1, u2, . . .), a nonlinear feedback system

produces an output sequence (y0, y1, y2, . . .) and hence any such systems defines a

maps T : B∞ → B∞.

Lemma 1.1. The map T : B∞ → B∞ defined by (1) is a homeomorphism of B∞

onto B∞ for any choice of f , g, h, and ~x0.

Proof. The proof that T is one-to-one and onto is trivial. To show that T is

continuous, let ε > 0 be given and choose k such that 1/k < ε. Now let δ = 1/(k +n)

and suppose we are given ~u,~v ∈ B∞ with d(~u,~v) < δ. Let ~y = T (~u) and ~x = T (~v).

Then uj = vj for j = 0, 1, . . . , k+n and hence yj = xj for j = 0, 1, . . . , k which implies

d(T (~u), T (~v)) < ε. The continuity of T−1 follows from the fact that B∞ is compact

and metric.

In general, a function T corresponding to (2) need not be one-to-one or onto, but

it will be continuous.

The primary problem of interest in this paper is the inverse problem, i.e., which

functions T : B∞ → B∞ can be represented as nonlinear feedback systems (1) or (2).

In the next section we show that not all maps defined on the sequence space can be
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realized as nonlinear feedback systems. Then in Section 3 we characterize all systems

which can be realized as nonlinear feedback systems.

2. Nonlinear feedback systems. Let T : B∞ → B∞ be the mapping asso-

ciated with (2). Since ~x0 is given, and all functions are polynomial, there exists a

polynomial t0 such that

y0 = h(~x0) + u0p(~x0)

= t0(u0)

and there exists a polynomial t1 such that

y1 = h(~x1) + u1p(~x1)

= h(f(~x0) + u0g(~x0)) + u1p(f(~x0) + u0g(~x0))

= t1(u0, u1)

and so on. In general,

(4) yk = tk(u0, u1, . . . , uk) for k = 0, 1, 2, . . .

where each tk is a polynomial in {u0, u1, . . . , uk}. For such a T we write T = {tk}.

Theorem 2.1. There exist T = {tk} which cannot be realized as nonlinear

feedback systems of the form (1) or (2).

Proof. We give three distinct proofs of this result. The simplest proof is to observe

that the number of nonlinear feedback systems in (1) and (2) is countable, while the

number of T is uncountable.

A more instructive proof is obtained if we let δ ∈ B∞ be a random sequence and

take

(5) yi = ui + δi.

This system maps ~0 to δ. Letting ~u = ~0 in (1) or (2) yields

(6)
~xk+1 = f(~xk)

yk = h(~xk) = δk.

But then (6) is a recursive machine capable of generating a random sequence, which

is impossible, and hence (5) cannot be realized as a nonlinear feedback system.

Finally, a somewhat different example can be given. Suppose T is defined by

(7) yk = tk(u0, u1, . . . , uk) = uk + δk

where, for example,

δ = (0 1 00 11 000 111 0000 1111 . . .).
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In this case T is a homeomorphism of B∞ onto B∞ with T (~0) = δ. Again, letting

~u = ~0 in (1) or (2) gives (6). But since the state space is finite, the output sequence

{yk} is ultimately periodic, i.e., there exists an m such that ym, ym+1, ym+2, . . . is

periodic. Since δ is obviously not eventually periodic, (7) cannot be realized as a

nonlinear feedback system.

Corollary 2.1. Not all T which are homeomorphisms of B∞ onto B∞ can be

realized as nonlinear feedback systems.

In the next section we characterize those T which can be realized as nonlinear

feedback systems.

3. A characterization of nonlinear feedback systems. Let T = {tk} be of

the form (4).

Definition 3.1. We say that T = {tk} is proper if

1. Each tk(u0, u1, . . . , uk) is a polynomial in the preceeding m + 1 variables

uk−m, . . . , uk, so that tk is determined by a list of n = 2m+1 coefficients

tk ↔









a1,k

...

an,k









= Ak.

2. The tk’s are given recursively by

(8) Ak+1 = F (Ak) + ukG(Ak).

Theorem 3.1. If T = {tk} is proper, T can be realized as a nonlinear feedback

system of the form (2).

Proof. Let

~xk =



























uk−1

...

uk−m

a1,k

...

an,k



























=

(

Uk

Ak

)

.

By letting S be the shift, i.e., S(Uk) = (0, uk−1, . . . , uk−m+1)
T , we have

~xk+1 =

(

Uk+1

Ak+1

)

=















uk

...

uk−m+1

Ak+1















=

(

S(Uk)

F (Ak)

)

+ uk

(

e1

G(Ak)

)

= R(~xk) + ukH(~xk),
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for some polynomials R and H .

It remains to show that we can write yk as

yk = P (~xk) + ukQ(~xk).

By assumption, yk = tk(uk−m, . . . , uk), where Ak consists of the coefficients of tk, so

that for any k we have

yk = a1,kuk−m + a2,kuk−m+1 + · · · + am+1,kuk + am+2,kuk−muk−m+1

+ · · · · · · + an,kuk−muk−m+1 · · ·uk.

Factoring out uk we have the desired result, yk = P (~xk) + ukQ(~xk) where P and Q

are polynomials.

Corollary 3.1 follows form the observation that if (2) is onto (as a map from B∞

to B∞) then p ≡ 1.

Corollary 3.1. If T is proper and onto, T can be realized as a nonlinear

feedback system of the form (1).

Next, we show that all nonlinear feedback systems are proper. This result, to-

gether with Theorem 3.1, provides a nice characterization of nonlinear feedback sys-

tems.

Theorem 3.2. A nonlinear feedback system as in (1) or (2) can be represented

by a proper T .

Proof. We have the system

(9)
~xk+1 = f(~xk) + ukg(~xk)

yk = h(~xk) + ukp(~xk) ,

which induces T = {tk} with yk = tk(u0, . . . , uk). We must demonstrate a recursion

of the form (8)

We write ~xk = (xk
1 , xk

2 , . . . , xk
n) and define Ak to be the 2n-tuple

Ak =
(

xk
1 , . . . , xk

n, xk
1xk

2 , . . . , xk
n−1x

k
n, . . . . . . , xk

1xk
2 · · ·x

k
n

)T

.

Now the polynomial h in (9) is determined by a list of 2n coefficients ~h, which we list

in the order corresponding to Ak. We also denote p by its coefficients ~p, so that

tk(u0, u1, . . . , uk) =
〈

~h, Ak

〉

+ uk

〈

~p, Ak

〉

,

where
〈

x, y
〉

is the inner product xT y. Finally, since ~xk+1 = f(~xk) + ukg(~xk), it is

clear that Ak+1 = F (Ak) + ukG(Ak) for an appropriate choice of F and G, and the

theorem is proved.
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4. Conclusion. In this paper we considered a class of discrete nonlinear feedback

systems and it was shown that these systems can be specialized to several well-known

types of systems. We then gave a complete characterization of all systems which can

be realized as such nonlinear feedback systems.

The results in this paper are all given in terms of the binary field. However, the

results will easily generalize to any setting where all functions are polynomials.
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