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FINDING MINIMAL AND MAXIMAL SETS OF SPATIAL

RELATIONSHIPS IN PICTORIAL RETRIEVAL SYSTEMS∗

QING-LONG ZHANG† AND STEPHEN S.-T. YAU‡

Abstract. Spatial reasoning is an important component in pictorial retrieval systems. There are

two approaches to handling spatial relationships: the well-known one is to use algorithms on which

most earlier work such as [13, 17, 21] is based, and the recent one [30] is to construct deductive

rules that allow spatial relationships to be deduced. Sistla et al. [30] developed a system of rules

R on reasoning about basic spatial relationships that are of common interest in pictorial databases.

In this paper, we consider the following two problems with that system of rules R: the deduction

problem (that is, to deduce new spatial relationships from a given set F of spatial relationships) and

the reduction problem (that is, to eliminate redundant spatial relationships from F .

We use the mathematically simple matrix representation approach to show that these two prob-

lems can be solved by efficient (i.e., polynomial-time) algorithms. The time required by both of them

is at most a constant multiple of the time to compute the transitive reduction of a directed graph

with n vertices or to compute the transitive closure of a directed graph with n vertices or to perform

n × n Boolean matrix multiplication, and thus is always bounded by time complexity O(n3) (and

space complexity O(n2)), where n is the number of all involved objects.

1. Introduction. Image database systems have been much studied over the

past 20 years. One of the most important problems in the design of image database

systems is how images are stored in the image databases [7, 8, 11, 13, 14, 31]. While

the use of indexing to allow database accessing has been well established in traditional

database systems, content-based picture indexing techniques need to be developed for

facilitating pictorial information retrieval from a pictorial database.

Tanimoto [32] suggested the use of picture icons as picture indexes, thus intro-

ducing the concept of iconic indexing. Subsequently, Chang et al. [13] developed the

concept of iconic indexing by introducing the 2D string representation of the image.

The 2D string approach is based on the idea that the spatial knowledge contained

in a real picture can be suitably represented by a symbolic picture (i.e., a matrix of

symbols) where every symbol corresponds to a significant element of the image. The

position of a symbol in the grid corresponds to the position of the centroid of the rep-

resented significant element. Depending on the application, the significant elements

of the image can be pixels, lines, regions, and objects, etc. A 2D string representing
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a symbolic picture is derived from the picture by orthogonally projecting its symbols

by columns and by rows. This approach gives an efficient and natural way to con-

struct iconic indexes for two-dimensional pictures. With the 2D string approach, the

problem of pictorial information retrieval for 2D pictures becomes a problem of 2D

string subsequence matching [13, 26]. Since then, the 2D string approach has been

studied further in the literature (see, e.g., [4, 15, 33]}. Some forms of extensions of

the 2D string approach can be found in [9, 10, 12, 24, 25]. For three-dimensional

pictures, representations such as the octree [23, 27] were developed, and an extension

of the 2D string to three dimensions was suggested in [14], and a unified approach to

iconic indexing for 2D and 3D pictures was then proposed by Costagliola et al. [16].

Other methods on image representation and retrieval can be found in the literature

(see, e.g., [6, 19, 21, 22, 29]).

Sistla et al. [30] developed a rule system R for reasoning about spatial relation-

ships in picture retrieval systems. In their paper, a real picture is assumed to be

associated with some meta-data describing its contents, that is, information about

the objects in the picture, their properties, and the spatial or nonspatial relationships

among them. This meta-data information is generated and stored in the database.

Sistla et al. considered various spatial relationships: left-of, right-of, in-front-of, be-

hind, above, below, inside, outside, and overlaps. For the first time, they presented

a set of rules R that can be used to deduce new relationships from a given set of

relationships. These rules are sound, and R is complete for 3D pictures. However,

they presented a counterexample to show that R is incomplete for 2D pictures.

There are three obvious distinctions between the work of Sistla et al. [30] and

the work such as [13, 17, 21] on handling spatial relationships. First, the sets of

spatial operators are not identical. For example, the operators overlaps, inside, and

outside in [30] are not present in the other approaches. Second, the operators in [30]

are defined by absolute spatial relationships among objects, while the operators in

the other approaches are defined by relative spatial relationships among objects. For

example, consider two significant objects A and B in a real picture. Then the spatial

relationship “ A is left of B” (written as “A left-of B”) in [13] means that the position

of the centroid of A is left of that of B (and we say “A left-of B” is relative), whereas

in [30] it means that A is absolutely left of B (and we say “A left-of B” is absolute).

Note that the operator left-of has the weaker meaning in [13] than in [30] in the sense

that “A left-of B” is true in [13] whenever it is true in [30], and “A left-of B” is

not necessarily true in [30] when it is true in [13]. Third, the approach to handling

spatial relationships in [30] is to construct rules that allow spatial relationships to be

deduced, but the other studies are based mostly on algorithms.

In this paper we consider the following two critically important problems with the

system of rules R in general-purpose pictorial retrieval systems. The first one, called



SPATIAL RELATIONSHIPS IN PICTORIAL RETRIEVAL SYSTEMS 313

the deduction problem, is to deduce new spatial relationships from a given set F of

spatial relationships. More precisely, we are interested in generating all deducible

spatial relationships from F (i.e., the maximal set of F ). The second one, called the

reduction problem, is to eliminate redundant spatial relationships from a given set F

of spatial relationships. More precisely, we are interested in finding all nonredundant

spatial relationships in F (i.e., the minimal set of F ). Suppose, for example, two

spatial relationships in a real picture are specified: A left-of B and B left-of C. Then

the new spatial relationship A left-of C can be deduced from A left-of B and B left-of

C by the deduction mechanism. Conversely, suppose three spatial relationships in

a real picture are specified: A left-of B, B left-of C, and A left-of C. Note that A

left-of C is deducible from A left-of B and B left-of C. Thus, A left-of C is redundant

and can be deleted by the reduction mechanism. Both the deduction mechanism and

reduction mechanism can be considered to be reverse procedures of each other, and

should be invoked by the query-processing systems that retrieve images by content.

The deduction problem is crucial because of the following reasons [30]. First,

current existing image-processing algorithms may not be able to detect all objects

and spatial relationships in a picture. Although the missing information may have

been introduced manually, some deducible relationships may have been left out in

order to save time for entering these relationships manually. Thus, the content-based

information about each picture, stored in the database, may not be complete. Second,

the deducible spatial relationships may not have to be stored explicitly in the database

in order to save storage space (also see the next paragraph).

The reduction problem is crucial because of the following reasons. First, for

every picture stored in the database, the storage space requirement for the set of

spatial relationships in the content-based information can be minimized by simply

storing its minimal set. Second, the communication costs can be minimized by simply

transmitting the minimal set for the set of spatial relationships in each picture if the

content-based information needs to be transferred from one site to another site. Third,

for a query specified by a user to find pictures satisfying certain spatial relationships

among their objects, the execution time can be saved by simply retrieving pictures

satisfying the minimal set of the set of these spatial relationships in the user query.

We use the mathematically simple matrix representation approach to show that,

given a consistent set of spatial relationships F , one can find its minimal and maximal

sets from F under the system of rules R by efficient (i.e., polynomial-time) algorithms.

The time required by both of them is at most a constant multiple of the time to

compute the transitive reduction of a directed graph with n vertices or to compute

the transitive closure of a directed graph with n vertices or to perform n×n Boolean

matrix multiplication, and thus is always bounded by time complexity O(n3) (and

space complexity O(n2)), where n is the number of all involved objects. We also show
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that the minimal set of F is unique.

The rest of this paper is organized as follows. In Section 2, we present the

concepts, notations, definitions, and facts used in the remainder of the paper. In

Section 3, we consider the deduction and reduction problems, and show how to find

the maximal and minimal sets of a given consistent set of spatial relationships under

R. The main theorem is proved, and the detailed algorithms for finding minimal and

maximal sets are also given in this section. Conclusions are presented in Section 4.

2. Definitions and Basic Facts. In this section we present some concepts,

notations, definitions, and basic facts.

2.1. The Rules for Reasoning about Absolute Spatial Relationships.

Here first recall the semantic definitions of absolute spatial relationships, introduced

in [30].

It is assumed that a three-dimensional picture p consists of finitely many objects

and each object in p corresponds to a nonempty set of points in the three-dimensional

Cartesian space (the left-handed coordinate system), where each point is given by

its three x-, y- and z-coordinates. Given an object X in a picture p, p(X) denotes

its corresponding nonempty set of points. A two-dimensional picture is defined simi-

larly. Let p be a picture in which objects A and B are contained. Now define when

p satisfies the following absolute spatial relationships involving basic spatial relation-

ship operators, left-of, right-of, above, below, behind, in-front-of, inside, outside, and

overlaps.

• p satisfies the relationship A left-of B, stating that A is to the left of B

in the picture p, iff the x-coordinate of each point in p(A) is less than the

x-coordinate of each point in p(B).

• p satisfies the relationship A above B, stating that A is above B in the picture

p, iff the y-coordinate of each point in p(A) is greater than the y-coordinate

of each point in p(B).

• p satisfies the relationship A behind B, stating that A is behind B in the

picture p, iff the z-coordinate of each point in p(A) is greater than the z-

coordinate of each point in p(B).

• p satisfies the relationship A inside B, stating that A is inside B in the picture

p, iff p(A) ⊆ p(B).

• p satisfies the relationship A outside B, stating that A is outside B in the

picture p, iff p(A) ∩ p(B) = ∅.

• p satisfies the relationship A overlaps B, stating that A overlaps B in the

picture p, iff p(A) ∩ p(B) 6= ∅.

The semantics of spatial relationship symbols right-of, below, and in-front-of are

defined similarly. Notice that these relationship symbols right-of, below, and in-front-
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of are actually duals of left-of, above, and behind, respectively.

A finite set of spatial relationships F is said to be consistent if there is a picture

satisfying all the relationships in F . A spatial relationship r is said to be implied by

a finite set of spatial relationships F if every picture satisfying all the relationships in

F also satisfies the relationship r.

A deductive rule is in the following form

r :: r1, r2, . . . , rk

where r and ri (1 ≤ i ≤ k, k ≥ 0) are spatial relationships. The relationship r

and the list of relationships r1, r2, . . . , rk are called the head and the body of the

rule, respectively. A relationship r is said to be deducible in one step from a set of

relationships F by using a rule, if the head of the rule is r and every relationship in

the body of the rule is in F . Let R be a set of rules. A relationship r is said to be

deducible from a set of relationships F by using the rules in R, if r is in F , or there

is a finite sequence of relationships r1, r2, . . . , rl = r(l ≥ 1), such that r1 is deducible

in one step from F by using a rule in R, and for each 2 ≤ i ≤ l, ri is deducible in one

step from F ∪ {r1, r2, . . . , ri−1} by using a rule in R. The sequence r1, r2, . . . , rl(= r)

is called a derivation of r from F by using the rules in R and k is called the length

of this derivation.

A deductive rule is called sound if every picture satisfying all the spatial relation-

ships in the body of the rule also satisfies the spatial relationship given by the head

of the rule. A set of rules R is called sound if every rule in R is sound. A set of rules

R is said to be complete if it satisfies the following requirement for every consistent

set of spatial relationships F : a spatial relationship implied by F is always deducible

from F by using the rules in R.

Now let us present the system of rules R, rules I-VIII, introduced in [30], for

reasoning about absolute spatial relationships.

I. (Transitivity of left-of, above, behind, and inside) For each x ∈ {left-of, above,

behind, inside}, we have

A x C :: A x B, B x C

II. For each x ∈ {left-of, above, behind}, we have

A x D :: A x B, B overlaps C, C x D

III. For each x ∈ {left-of, above, behind, outside}, we have the following two types of

rules.

(a) A x C :: A inside B, B x C

(b) A x C :: A x B, C inside B

IV. (Symmetry of overlaps and outside) For each x ∈ {overlaps, outside}, we have

A x B :: B x A

V. For each x ∈ {left-of, above, behind}, we have
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A outside B :: A x B

VI. A overlaps B :: A inside B

VII. A overlaps B :: C inside A, C overlaps B

VIII. A inside A ::

For two-dimensional pictures, one does not have the spatial relationship symbol

behind and the rules referring to it.

Notice that, the relationship symbols right-of, below, and in-front-of are excluded

in the above rules of R, since they are duals of left-of, above, and behind, respectively.

They can be handled by additional rules that simply relate them to their duals (see

rules IX-XI in [30]).

Sistla et al. [30] proved that the set of rules R given above is sound for two-

dimensional and three-dimensional pictures, and R is complete for three-dimensional

pictures. However, they presented a counterexample to show that R is incomplete

for two-dimensional connected pictures (Note that the connectedness requirement

prevents an object in a picture from having disjoint parts). Without the connectedness

assumption, R can also be shown to be complete for two-dimensional pictures.

Unless it is otherwise stated, R will be used to represent the set of rules I-VIII

given above.

2.2. Minimal and Maximal Sets of Spatial Relationships. When we men-

tion a set of spatial relationships E we always assume that E is consistent, that is,

there exists a picture p satisfying all the relationships in E. Note that p could have

some objects that do not involve a relationship in E. However, without loss of gen-

erality, we can assume that the maximal set of E defined below involves only those

objects appearing in E. Now we give the definitions of minimal and maximal sets.

Definition 2.1. Given a set E of spatial relationships, a subset F ⊆ E is called

a minimal set of E under the system of rules R if (i) each r ∈E is deducible from F

using the rules in R, and (ii) no proper subset of F satisfies condition (i).

Definition 2.2. Given a set E of spatial relationships, a superset F ⊇ E is

called a maximal set of E under the system of rules R if (i) each r ∈ F is deducible

from E using the rules in R, and (ii) no proper superset of F satisfies condition (i).

Proposition 2.3 establishes the existence of the minimal sets.

Proposition 2.3. Given a set E of spatial relationships, there exists one minimal

set F of E under R.

Proof. Suppose E has k relationships r1, r2, . . . , rk, that is, E= {r1, r2, . . . , rk}.

Now, if r1 can be deducible from E−{r1} using rules in R, then r1 is redundant and

so can be deleted from E; otherwise, r1 cannot be deleted from E. Thus, we define E1

to be E−{r1} if r1 is deducible from E−{r1} by using rules in R, and E otherwise.

Similarly, we define Ei to be Ei−1 −{ri} if ri is deducible from Ei−1−{ri} by using
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rules in R, and Ei−1 otherwise, where 2 ≤ i ≤ k. Let F be Ek. Then F is a minimal

set of E under R.

Proposition 2.4 establishes the existence and uniqueness of the maximal set.

Proposition 2.4. Given a set E of spatial relationships, there exists exactly one

maximal set F of E under R.

Proof. For each possible relationship AxB, where objects A and B appear in E

and x ∈{left-of, above, behind, inside, outside, overlaps}, we put it into F if and only

if it is deducible from E under R. Then F satisfies the required properties.

The above two propositions only establish the existence of minimal and maximal

sets. Later, we will show how to find them efficiently. We will also show that the

minimal set is unique if we identify AxB with BxA, where A and B are any involved

objects and x is either overlaps or outside.

2.3. Directed Graph, Transitive Closure, and Transitive Reduction. A

directed graph (or digraph) G is a subset of V × V , where V is a finite set. The

elements in V and G are called the vertices and arcs of the graph, respectively. Given

two vertices u and v in V , a directed path in G from u to v is a sequence of distinct

arcs α1, α2, . . . , αk(k ≥ 1), such that there exists a corresponding sequence of vertices

u = v0, v1, v2, . . . , vk = v satisfying αi+1 = (vi, vi+1) ∈ G, for 0 ≤ i ≤ k − 1. A cycle

is a directed path beginning and ending at the same vertex and passing through at

least one other vertex. An arc in the form (v, v) is called a loop. A graph is called

acyclic if it contains no cycles or loops.

A graph G is called transitive if, for every pair of vertices u and v, not necessarily

distinct, (u, v) ∈ G whenever there exists a directed path in G from u to v. The

transitive closure GT of G is the least subset of V ×V that contains G and is transitive.

Given a directed graph G, one often wishes to know whether there is a path

from one vertex to another in G. This path information in the directed graph G can

possibly be represented by another directed graph with fewer arcs than G. In [28], a

minimum equivalent graph of a directed graph G is defined to be a smallest subgraph

G′ of G which satisfies the following property for every pair of vertices u and v: there

is a directed path from u to v in G′ whenever there is a directed path from u to v

in G. In [1], a transitive reduction of a directed graph G is defined to be a graph Gt

which satisfies: (i) for every pair of vertices u and v, there is a directed path from u

to v in Gt if and only if there is a directed path from u to v in G, and (ii) there is no

graph that has fewer arcs than Gt and meets condition (i). Notice that the important

distinction between the notions of minimum equivalent graph and transitive reduction

is that a transitive reduction should not be a subgraph of the original directed graph.

Though the two notions yield the same unique reduced representation for a directed

graph without cycles, the transitive reduction of a directed graph G with cycles can
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be smaller and easier to compute than a minimum equivalent graph of G.

For a directed graph G without cycles, the transitive reduction of G can be found

by successively checking the arcs of G in any order and deleting those redundant arcs,

where an arc α = (u, v) is redundant if there is a directed path in G from u to v which

does not contain α.

For a directed graph G with cycles, the transitive reduction of G may not be

unique; that is, there may be more than one such graph, with fewest arcs, having the

same transitive closure as G. However, in [1], all such minimal graphs for the given

graph G are showed to have similar structure, and a natural canonical representative

can then be selected as the unique transitive reduction of G.

It was shown in [20] that finding the transitive closure of a graph with n vertices

requires at most a constant multiple of the time to perform n × n Boolean matrix

multiplication, and the converse was shown in [18]. In their paper [1], Aho et al. pro-

vided an efficient algorithm for finding the transitive reduction of any given directed

graph, and they showed that finding the transitive reduction of an n vertex graph

has the same time complexity as finding the transitive closure of an n vertex graph

or performing n× n Boolean matrix multiplication. Therefore, we have the following

fact.

Fact 2.5. It takes the same equivalent time complexity to compute the transitive

reduction of a graph with n vertices, or to compute the transitive closure of a graph

with n vertices, or to perform n × n Boolean matrix multiplication.

In this paper, all directed graphs that we derive are acyclic. Hence, each of them

has a unique transitive reduction.

Let G be a directed graph. We will use GT and Gt, respectively, to denote the

transitive closure and the transitive resduction of G. It is assumed that a directed

graph G is represented by its adjacency matrix M , the matrix with a 1 in row i and

column j if there is an arc from the ith vertex to the jth vertex and a 0 there otherwise.

For simplicity, sometimes we identify a graph G with its adjacency matrix M , and also

use MT and M t, respectively, to denote adjacency matrices of the transitive closure

GT and transitive reduction Gt. For a set E of “x” relationships, where x ∈{left-

of, above, behind, inside, outside, overlaps}, we also associate it with its adjacency

matrix, the matrix with a 1 in row i and column j if the relationship “(the ith object)

x (the jth object)” is in E and a 0 there otherwise, and identify E with its adjacency

matrix. However, the intended meaning will be clear from the context.

One important relationship between Gt and GT of an acyclic graph G is stated be-

low. (It should be noted that the following Proposition 2.6 is indeed a straightforward

consequence of Theorem 3 in [1].)

Proposition 2.6. Gt = G − G ∗ GT , where G is an acyclic directed graph

and multiplication ‘∗’ denotes Boolean matrix multiplication (i.e., addition ‘+’ and
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multiplication ‘∗’ on two Boolean values are defined in this way: 0+ 0 = 0, 0+ 1 = 1,

1 + 0 = 1, and 1 + 1 = 1; 0 ∗ 0 = 0, 0 ∗ 1 = 0, 1 ∗ 0 = 0, and 1 ∗ 1 = 1).

Proof. Note that an arc (u, v) is in G ∗ GT if and only if there exists some w,

distinct from u and v, such that (u, w) is an arc of G and there is a path from w to

v in G. Now, an arc (u, v) is in Gt if and only if (u, v) is in G, and there does not

exist any path from u to v in G that does not contain arc (u, v), in other words, if

and only if (u, v) is in G, but not in G ∗ GT .

Proposition 2.6 tells us that, for an acyclic directed graph G, the transitive reduc-

tion Gt of G can be easily computed from the transitive closure GT of G by applying

Boolean matrix multiplication (and subtraction). Notice that we can easily compute

both GT and Gt of an acyclic graph G using efficient standard algorithms with time

complexity O(n3) and space complexity O(n2). where n is the total number of vertices

in G (see, e.g., [1, 2, 3, 5]).

Let SR be a set of spatial relationships and n be the number of all objects involved

in SR. We assume that these n objects involved in SR are always arranged in some

order from first to nth. Note that, two identical objects located in different positions

in a real picture are represented by different subscripts among 1, 2, . . . , n. This is

required for the description of spatial relationships and the 2D string representation

of a picture. Certainly they will be matched to the same object during pictorial

retrieval.

Definition 2.7. Let SR be a set of spatial relationships and x be a relationship

symbol chosen from {left-of, above, behind, inside}. A dependency graph derived by x

(and SR implicitly) is defined as a directed graph Gx, its vertex set is the set of all

objects involved in SR, and an arc (A, B) is in Gx if and only if AxB is in SR.

Note that, from Rule VIII, any relationship A inside A is always redundant for

any involved object A and thus could be deleted from SR immediately when we begin

to delete redundant relationships of SR. Furthermore, all of them must be added

into the maximal set of SR when we generate it. Therefore, we can assume that the

derived dependency graph Ginside does not include any arc (A, A). Now it is obvious

that four derived dependency graphs, Gleft-of , Gabove, Gbehind, and Ginide are acyclic

for any consistent set SR of spatial relationships.

Let E be a set of spatial relationships and x be a relationship symbol. We will

use E
x to denote the subset of all “x” relationships that are in E. For example, if

E={A left-of B, B left-of C, A outside C}, then E
left-of= {A left-of B, B left-of C},

E
outside= {A outside C}, and E

inside=∅. Let F be a set of spatial relationships in-

volving only overlaps or outside. We will use F
s to denote the set of all corresponding

symmetrical relationships from F . For example, if F 1={A overlaps B, C overlaps D,

D overlaps C}, then F
s
1={B overlaps A, D overlaps C, C overlaps D}, and if F 2={A

outside B, C outside D}, then F
s
2={B outside A, D outside C}.
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3. Deduction and Reduction Algorithms. Now we begin to present the

deduction and reduction Algorithms. Note that, given a consistent set SR of spatial

relationships, deleting redundant relationships in SR and deducing new relationships

from SR, under the system of rules R, are both interleaving in some way.

We divide the deletion of redundant relationships in SR under R into four parts:

(i) deleting redundant relationships involving left-of, above, and behind; (ii) deleting

redundant overlaps relationships; (iii) deleting redundant outside relationships; and

(iv) deleting redundant inside relationships. Among these four parts, the first part

is the hardest and the last part is the easiest. Generating all deducible relationships

from SR under R will be done during the process of the above deletion.

We begin with Part (i).

3.1. Deleting left-of, above, and behind Relationships. We have only the

first three rules, I, II, and III, to deduce relationships involving left-of, above, and

behind. To apply Rule III to delete redundant relationships, we should guarantee

that all deducible inside relationships be generated from SR. To apply Rule II to

delete redundant relationships, we should also guarantee that all deducible overlaps

relationships be generated from SR.

3.1.1. Generating inside Relationships. We have only rules I and VIII to

deduce inside relationships. As mentioned before, Ginside denotes the dependency

graph derived by the relationship symbol inside (and SR), which does not contain any

arc (A, A), where A is an object. Obviously the set of all deducible inside relationships

is

GT
inside ∪ {A inside A| A is any involved object},

denoted by INSIDE. Later we will use the set

INSIDE+ = GT
inside=INSIDE −{A inside A| A is any involved object}.

Suppose, for example, SRinside= {A inside B, B inside C}. Then INSIDE+=

SRinside∪{A inside C}.

3.1.2. Generating overlaps Relationships. We have only three rules, IV,

VI, and VII, to deduce overlaps relationships.

Let O0=SRoverlaps, O1 = O0 ∪ Os
0, and O2 be the set of all deducible overlaps

relationships from INSIDE using Rules VI and IV. O1 and O2 could have a nonempty

intersection set. Note that O1 ∪ O2 is the set of all deducible overlaps relationships

from O0∪INSIDE using only Rules IV and VI.

When C is set to be A, Rule VII will become

A overlaps B :: A inside A, A overlaps B,

and this is trivial by Rule VIII. Similarly, when C is set to be B, Rule VII will become

A overlaps B :: B inside A, B overlaps B,
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and this is trivial by Rule IV, VI, and VIII. Thus, we can assume that C is always

not equal to A or B whenever we apply Rule VII.

Any new deducible relationships A overlaps B (i.e., not in O1 ∪ O2) should have

to be obtained from O1 ∪ O2 and INSIDE+ using Rule VII at least once and Rule

IV. Let O3 be the set of all overlaps relationships deducible in one step from O1 ∪O2

and INSIDE+ using Rule VII, and let O4 = Os
3, and O5 be the set of all overlaps

relationships deducible in one step from O4 and INSIDE+ using Rule VII.

Suppose, for example, SR = {C inside A, D inside B, C overlaps D}. Then O0

= {C overlaps D}, O1 = {C overlaps D, D overlaps C }, INSIDE+= {C inside A,

D inside B} and O2= {C overlaps A, A overlaps C, D overlaps B, B overlaps D}∪{z

overlaps z|z ∈ {A, B, C, D}}. All new deducible relationships in O3 are A overlaps D

and B overlaps C, since

A overlaps D :: C inside A, C overlaps D

B overlaps C :: D inside B, D overlaps C.

Hence, O4 contains D overlaps A and C overlaps B. Now all new deducible relation-

ships in O5 are A overlaps B and B overlaps A, since

A overlaps B :: C inside A, C overlaps B

B overlaps A :: D inside B, D overlaps A.

Claim 3.1. The set of all new (i.e., not in O1 ∪ O2) deducible overlaps rela-

tionships is contained in O3 ∪ O4 ∪ O5. Therefore, the set of all deducible overlaps

relationships is

5⋃

i=1

Oi

denoted by OVERLAPS.

Proof. The reader may refer to Appendix for the proof of Claim 3.1.

Note that, for each object A, A inside A is in INSIDE , so A overlaps A is in

O2 by Rule VI, and thus is in OVERLAPS . Let

OVERLAPS+ = OVERLAPS - {A overlaps A | A is any involved object}.

We will use OVERLAPS+ later.

3.1.3. Deletion of left-of, above, and behind Relationships. We now con-

sider the deletion of redundant relationships involving left-of, above, and behind.

This deletion process can be divided into three steps: (a) deleting those redundant

relationships that can be deduced by using only Rule I; (b) deleting those redundant

relationships that can be deduced by using only both Rules I and II; and (c) deleting

those redundant relationships that can be deduced by using Rules I, II, and III. Since

any redundant relationship involving left-of, above, and behind is deducible, in the
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presence of OVERLAPS+ and INSIDE+, using only Rules I, II, and III, it should

be removed from SR at one of the steps (a), (b), and (c).

Note that Rule II will become rule I whenever B is identical to C, and Rule III

will become trivial whenever A is identical to B for case (a) or B is identical to C

for case (b). Hence, we can assume that applying Rule II requires the condition “B

is not identical to C” and applying Rule III requires the condition “A is not identical

to B for case (a) or B is not identical to C for case (b).”

The deletion process goes through (a), then (b), then (c), one time for each

relationship symbol x ∈{left-of, above, behind}.

Step (a) Using only Rule I

Recall that Gx, defined in Section 2.3, is the dependency graph derived by x (and

SR implicitly) and is acyclic. It is obvious that, by Proposition 2.6, GT
x is the set of

all “x” relationships deducible by using only Rule I and Gt
x = Gx −Gx ∗GT

x is the set

of left “x” relationships that cannot be deleted by using only Rule I after this step.

Suppose, for example, SR = {A above B, B above C, A above C}. Then GT
above

= SR and Gt
above= {A above B, B above C}.

Step (b) Using only Rules I and II

Let Mov be the adjacency matrix of OVERLAPS+, the matrix with 1 in row

i and column j if the relationship “(the ith object) overlaps (the jth object)” is

in OVERLAPS+ and a 0 there otherwise. Then GT
x ∗ Mov ∗ GT

x represents the

set of those “x” relationships that are deducible in the presence of OVERLAPS+

using Rule II exactly once and Rule I zero or more times. It is easy to see that
⋃

2≤r≤3
(GT

x ∗Mov)
r∗GT

x represents the set of those “x” relationships that are deducible

in the presence of OVERLAPS+ using Rule II exactly two times and Rule I zero

or more times. Furthermore,
⋃

r≥1
(GT

x ∗ Mov)
r ∗ GT

x represents the set of those “x”

relationships that are deducible in the presence of OVERLAPS+, using Rule II at

least once and Rule I zero or more times. Clearly
⋃

r≥1
(GT

x ∗Mov)
r ∗GT

x is the set of

all new redundant “x” relationships at this step, and thus should be removed from Gt
x.

Therefore, the set of left “x” relationships after step (b) is Gt
x−

⋃
r≥1

(GT
x ∗Mov)

r∗GT
x ,

denoted by Mx1. And
⋃

r≥0
(GT

x ∗ Mov)
r ∗ GT

x , denoted by Mx2, is the set of all “x”

relationships deducible in the presence of OVERLAPS+, using only Rules I and II.

Let Mx denote GT
x ∗ Mov. It is easy to see that

Mx2 =
⋃

r≥0

(GT
x ∗ Mov)

r ∗ GT
x

= GT
x + (GT

x ∗ Mov)
T ∗ GT

x

= GT
x + MT

x ∗ GT
x ,
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and

Mx1 = Gt
x −

⋃

r≥1

(GT
x ∗ Mov)

r ∗ GT
x

= Gt
x − (GT

x ∗ Mov)
T ∗ GT

x

= Gt
x − MT

x ∗ GT
x .

Note that Mx = GT
x ∗ Mov represents an “entire-x-partial” relation among objects,

that is, (A, C) ∈ GT
x ∗Mov if and only if there exists some object B other than A and

C such that AxB and B overlaps C, that means Ax(B ∩ C), the entire object A is

x to B ∩ C, the part of the object C. This “entire-x-partial” relation among objects

satisfies the transitive rule. Thus,
⋃

r≥1
(GT

x ∗ Mov)
r = (GT

x ∗ Mov)
T = MT

x is the

transitive closure of Mx = GT
x ∗ Mov. It is obvious that MT

x2 = Mx2.

Suppose, for example, SR ={A above B, C overlaps B, C above D, D above E,

C above E, E overlaps F, F above G, A above G }. At Step (a), GT
above = Gabove =

SRabove, Gabove ∗GT
above = {C above E}, and Gt

above=SRabove-{C above E}. Hence,

C above E is deleted from SRabove after Step (a). At Step (b), OVERLAPS+={C

overlaps B, B overlaps C, E overlaps F, F overlaps E}. Then

Mabove = GT
above ∗ Mov = {(A, C), (D, F ), (C, F )},

MT
above = Mabove ∪ {(A, F )} = {(A, C), (D, F ), (C, F ), (A, F )}

and

MT
above ∗ GT

above = {A above D, A above E, D above G, CaboveG, AaboveG}.

Since

A above D :: A above B, B overlaps C, C above D

A above E :: A above E, B overlaps C, C above E

D above G :: D above E, E overlaps F, F above G

C above G :: C above E, E overlaps F, F above G

A above G :: A above D, D above G.

Therefore, A above G is deleted from SRabove after Step (b).

Step (c) Using Rules I, II, and III

For the purpose of ease of disposition, here we introduce the spatial relationship

symbol contains, which says that A contains B iff B inside A. Let

CONTAINS+ = {A contains B | B inside A∈INSIDE+},

and Min and Mco respectively, be the adjacency matrices of the directed graphs

INSIDE+ and CONTAINS+ . Note that INSIDE+ =GT
inside and Mco = M ′

in,

where M ′
in denotes the transpose matrix of Min.

After the spatial relationship symbol contains is introduced, Rule III(b) can be

rewritten as follows:
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A x C:: A x B, B contains C.

Now it is obvious that Min ∗ Mx2 and Mx2 ∗ Mco (i.e., Mx2 ∗ M ′
in) represent

the sets of all “x” relationships deducible in one step from Mx2 and INSIDE+

using Rule III(a) and Rule III(b), respectively. Furthermore, Min ∗ Mx2 ∗ Mco (i.e.,

Min ∗ Mx2 ∗ M ′
in) represents the set of all “x” relationships deducible in two steps

from Mx2 and INSIDE+, using both Rule III(a) and Rule III(b) exactly once each.

Furthermore, if AxD ∈ MinMx2Mco, then

A x D :: A inside B, B x C, C contains D

where

A inside B∈INSIDE+, B x C ∈ Mx2

and

C contains D ∈CONTAINS+.

Note that A x D can be derived by using Rule III(a) first, followed by using Rule

III(b), that is,

A x C:: A inside B, B x C

A x D :: A x C, C contains D

and AxD can also be derived by using Rule III(b) first, followed by using Rule III(a),

that is,

B x D :: B x C, C contains D

A x D :: A inside B, B x D.

Suppose, for example, SR = {A inside B, B above C, D inside C, A above C, A

above D }. At Step (a), Gt
above = GT

above = Gabove= SRabove. At Step (b), OVER-

LAPS+= {A overlaps B, B overlaps A, D overlaps C, C overlaps D }, MT
above =

Mabove ={(A, D), (A, C), (B, D)}, and MT
above∗GT

above = ∅. Hence, Mabove1 = Mabove2

=SRabove. This means that no above relationships are deleted from SRabove at Steps

(a) and (b). At Step (c), INSIDE+ = {A inside B, D inside C} and CONTAINS+

= {B contains A, C contains D}.

Then Min ∗ Mabove2 = {A above C}, since

A above C :: A inside B, B above C.

Mabove2 ∗ Mco = {B above D, A above D}, since

B above D :: B above C, C contains D,

A above D :: A above C, C contains D.

And Min ∗ Mabove2 ∗ Mco = {A above D}, since

A above D :: A inside B, B above C, C contains D.

Claim 3.2. Mx2 ∪ MinMx2 ∪ Mx2M
′
in ∪ MinMx2M

′
in, denoted by MAX(x), is

the set of all “x” relationships that are deducible, in the presence of OVERLAPS+

and INSIDE+, by using Rules I, II, and III.

Proof. The reader may refer to Appendix for the proof of Claim 3.2.
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Therefore, MinMx2 ∪Mx2M
′
in ∪MinMx2M

′
in is the set of all new redundant “x”

relationships at Step (c) and should be removed from Mx1. Then, the set of left “x”

relationships after Step (c) is

Mx1 − (MinMx2 ∪ Mx2M
′
in ∪ MinMx2M

′
in),

denoted by MIN (x). And it is obvious that MAX (x)T =MAX (x).

3.2. Deleting overlaps Relationships. We already have O0, O1, O2, O3, O4,

and O5 in the process of generating overlaps relationships in Section 3.1.2. Let M12

be the adjacency matrix of O1 ∪ O2. Then it is easy to see that O3, O4, and O5,

respectively, have the adjacency matrices, M ′
in∗M12, (M

′
in∗M12)

′ (i.e., M12∗Min, note

that M ′
12 = M12), and M ′

in ∗M12 ∗Min. Let O = O0 −
⋃5

i=2
Oi, and MIN (overlaps)

be one minimal set of O under only the Symmetry Rule of overlaps. Note that

MIN (overlaps) could have more than one choice from O. For example, if O =

{A overlaps B, B overlaps A, Boverlaps C}, then MIN (overlaps) could be either

{A overlaps B, B overlaps C} or {B overlaps A, B overlaps C}. But if we identify A

overlaps B with B overlaps A for any involved objects A and B, then MIN (overlaps)

is unique. Now MIN (overlaps) is just the minimal set of SRoverlaps under the system

of rules R.

3.3. Generating and Deleting outside Relationships. We have only three

rules, III(a) (Rule III(b) is redundant for the outside relationship), IV, and V, that

can be used to deduce outside relationships. Because deducing outside relationships

by using Rules III(a), IV, and V is similar to deducing overlaps relationships by using

Rules VII, IV, and VI. Hence, we will generate all the outside relationships from SR

similar to generating all the overlaps relationships in Section 3.1.2. We also will use

the outside deletion process similar to the overlaps deletion process in Section 3.2.

We already have INSIDE from Section 3.1.1, and MAX (x) for each x ∈{left-of,

above, behind} from Section 3.1.3.

Let U0=SRoutside, U1 = U0 ∪ Us
0 , and U2 be the set of all deducible outside

relationships from MAX (left-of) ∪ MAX (above) ∪ MAX (behind) by using Rules

V and IV. Then U1 ∪ U2 is the set of all deducible outside relationships from U0 and

MAX (x), where x ∈{left-of, above, behind}, using only Rules IV and V.

Since, when B is identical to A, Rule III(a) for “x” chosen as “outside” will

become

A outside C :: A inside A, A outside C

and this is trivial by Rule VIII. Thus, we can assume that B is always not identical

to A whenever we apply Rule III(a) for outside relationships.

Any new deducible relationship A outside C (i.e., not in U1 ∪ U2) should have

to be derived from U1 ∪ U2 and INSIDE+ using Rule III(a) at least once and Rule

IV. Let U3 be the set of all outside relationships deducible in one step from U1 ∪ U2
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and INSIDE+ using Rule III(a), and let U4 = Us
3 , and U5 be the set of all outside

relationships deducible in one step from U4 and INSIDE+ using Rule III(a). Then,

we have the following claim.

Claim 3.3. The set of all new (i.e., not in U1∪U2) deducible outside relationships

is contained in U3 ∪ U4 ∪ U5. Therefore, the set of all deducible outside relationships

is

5⋃

i=1

Ui

denoted by OUTSIDE.

Proof. Similar to the proof of Claim 3.1 in Section 3.1.2, which is placed in

Appendix.

Let U12 be the adjacency matrix of U1 ∪ U2. Then it is easy to see that U3, U4,

and U5, respectively, have the adjacency matrices Min ∗ U12, (Min ∗ U12)
′ ( i. e.,

U12 ∗ M ′
in, Note that U12 = U ′

12), and Min ∗ U12 ∗ M ′
in. Let U = U0 − ∪5

i=2Ui, and

MIN (outside) be one minimal set of U under only the Symmetry Rule of outside.

Note that MIN (outside) could have more than one choice from U . For example, if

U = {A outside B, B outside A, B outside C}, then MIN (outside) could be either

{A outside B, B outside C} or {B outside A, B outside C}. But if we identify A

outside B with B outside A for any involved objects A and B, then MIN (outside) is

unique. Now MIN (outside) is just the minimal set of SRoutside under the system

of rules R.

3.4. Deleting inside Relationships. It is obvious that Gt
inside is the minimal

set of SRinside under the system of rules R. This completes the deduction and

reduction procedures.

3.5. The Minimal and Maximal Sets. It is easy to see that
⋃
{MIN (x) |x ∈{left-of, above, behind, overlaps, outside} }

⋃
Gt

inside

is the minimal set of a given set SR of spatial relationships under the system of rules

R; and
⋃
{MAX (x) |x ∈{left-of, above, behind} }

⋃
OVERLAPS

⋃
OUTSIDE

⋃
INSIDE

is the set of all spatial relationships deducible from SR using rules in R, that is, the

maximal set of SR under R. The minimal set of SR is unique in the sense that we do

not distinguish between AxB and BxA for any objects A and B, and x ∈{overlaps,

outside}.

The algorithms, for finding the minimal and maximal sets of a given consistent

set of spatial relationships, are summarized as follows. In these algorithms, addi-

tion ‘+’ and multiplication ‘∗’ denote Boolean matrix addition and multiplication,
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respectively; subtraction ‘−’ denotes Boolean matrix subtraction corresponding to

the difference operation of two sets of “x” relationships, where x ∈{left-of, above,

behind, inside, outside, overlaps}, more precisely, let X = (xij)n×n and Y = (yij)n×n

be two n×n Boolean matrices, then X −Y is an n×n Boolean matrix Z = (zij)n×n

satisfying the condition that, for 1 ≤ i, j ≤ n, zij = xij − yij , where the subtraction

‘−’ on two Boolean values is defined in this way: 0 − 0 = 0, 0 − 1 = 0, 1 − 0 = 1,

and 1 − 1 = 0. The following algorithms assume that we already have efficient stan-

dard algorithms for computing the transitive closure GT and transitive reduction Gt

of a given (acyclic) directed graph G. The algorithms for computing GT and Gt of

G are represented by TranC(G, GT ) and TranR(G, Gt), respectively, where G is a

directed graph as input, and GT and Gt are directed graphs as outputs of TranC and

TranR, respectively. For each x ∈{left-of, above, behind, inside, outside, overlaps},

all sets of “x” relationships are identified with their associated adjacency matrices.

Let I be an n × n identity matrix, where n is the number of all objects involved in

SR. Then I can denote either the set {A inside A |A is any involved object} if the

intended relationship is inside or the set {A overlaps A |A is any involved object } if

the intended relationship is overlaps.

Algorithm. Find the maximal set of a given consistent set of spatial relation-

ships.

Input: a given consistent set SR of spatial relationships.

Output: the maximal set of SR.

Step (1). Generate inside relationships

/* Ginside denotes the dependency graph derived by inside and SR */

(la). Compute INSIDE+= GT
inside by calling algorithm

TranC(Ginside,INSIDE+);

(lb). INSIDE=INSIDE+ + I.

Step (2). Generate overlaps relationships

/* O0 = SRoverlaps denotes the subset of all overlaps relationships in SR */

(2a). O1 = O0 + O′
0, O2=INSIDE+INSIDE′, and set M12 = O1 + O2;

/* Min is the adjacency matrix of INSIDE+ */

(2b). O3 = M ′
in ∗ M12, O4 = O′

3 and O5 = O3 ∗ Min;

(2c). OVERLAPS= M12 + O3 + O4 + O5, and set

OVERLAPS+= OVERLAPS−I.

Step (3). Generate left-of, above, and behind relationships

/* Gx denotes the dependency graph derived by x and SR */

For each x ∈{left-of, above, behind}, go through (3a)-(3c):

(3a). Compute GT
x by calling algorithm TranC(Gx, GT

x );

/* Mov is the adjacency matrix of OVERLAPS+ */

(3b). Mx = GT
x ∗ Mov, and compute MT

x by calling algorithm
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TranC(Mx, MT
x ),

then set Mx2 = GT
x + MT

x ∗ GT
x ;

(3c). MAX (x)=Mx2 + Min ∗ Mx2 + Mx2 ∗ M ′
in + Min ∗ Mx2 ∗ M ′

in.

Step (4). Generate outside relationships

/* U0=SRoutside denotes the subset of all outside relationships in SR */

(4a). U1 = U0 + U ′
0, U2 = MAX (left-of) + MAX (above) + MAX (behind)

and reset U2 = U2 + U ′
2, then U12 = U1 + U2;

(4b). U3 = Min ∗ U12, U4 = U ′
3 and U5 = Min ∗ U4;

(4c). OUTSIDE = U12 + U3 + U4 + U5.

/∗ End of the algorithm for finding the maximal set ∗/

Algorithm. Find the minimal set of a given consistent set of spatial relation-

ships.

Input: a given consistent set SR of spatial relationships.

Output: the minimal set of SR.

Step (1). Delete left-of, above, and behind relationships

(la). Generate inside relationships

Same as Step (1) in the algorithm for finding the maximal set.

(lb). Generate overlaps relationships

Same as Step (2) in the algorithm for finding the maximal set.

(lc). Main deletion process

/* Gx denotes the dependency graph derived by x and SR */

For each x ∈{left-of, above, behind}, go through (lc.l)-(lc.3):

(lc.l). Same as (3a) in the algorithm for finding the maximal set.

(lc.2). Same as (3b) in the algorithm for finding the maximal set.

(lc.3). Compute Gt
x by calling algorithm TranR(Gx, Gt

x),

then set Mx1 = Gt
x − MT

x ∗ GT
x and

MIN (x) = Mxl − (Min ∗ Mx2 + Mx2 ∗ M ′
in + Min ∗ Mx2 ∗ M ′

in).

Step (2). Delete overlaps relationships

(2a). Same as (2a) in the algorithm for finding the maximal set.

(2b). Same as (2b) in the algorithm for finding the maximal set.

(2c). O = O0 − (O2 + O3 + O4 + O5), and set MIN (overlaps)

be one minimal set of O under only the Symmetry Rule of overlaps.

Step (3). Delete outside relationships

(3a). Same as (4a) in the algorithm for finding the maximal set.

(3b). Same as (4b) in the algorithm for finding the maximal set.

(3c). U = U0 − (U2 + U3 + U4 + U5), and set MIN (outside)

be one minimal set of U under only the Symmetry Rule of outside.

Step (4). Delete inside relationships
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/* Ginside denotes the dependency graph derived by inside and SR */

(4a). Compute Gt
inside by calling algorithm TranR(Ginside, G

t
inside).

/* End of the algorithm for finding the minimal set */

At Step (2c) of the algorithm for finding the minimal set, MIN (overlaps) can

be obtained from O as follows. Let W = (wij)n×n be an n × n matrix with all zero

entries initially, where n is the number of objects involved in SR. For each relationship

“the ith object overlaps the jth object” (denoted by r) in O, check “wij = 1?”. If

wij = 1, then continue to test the next available relationship in O; otherwise, put r

in MIN (overlaps) and set wij = wji = 1, then continue to test the next available

relationship in O. Clearly, each relationship in O is tested only once. Thus, MIN

(overlaps) can be found from O in time O(n2), since the number of relationships in O

is bounded by n2. Similarly, MIN (outside) can also be found from U in time O(n2)

at Step (3c).

It is easy to see that, for the above two algorithms, every computation at each

step, excluding computing the transitive reduction and transitive closure of a directed

graph and performing Boolean matrix multiplication, can be done by time complexity

O(n2) and space complexity O(n2). Notice that computing the transitive reduction of

a directed graph or computing the transitive closure of a directed graph or performing

Boolean matrix multiplication each has to take at least time O(n2). For example, as

mentioned in [1], an algorithm, for finding the transitive reduction in any reasonable

graph representation, will have to examine all the arcs and thus require at least time

O(n2). Hence, by Fact 2.5, each of both the above algorithms will require time that

is at most a constant multiple of the time to compute the transitive reduction of a

graph or to compute the transitive closure of a graph or to perform Boolean matrix

multiplication. Note that we can easily compute both GT and Gt of an acyclic graph

G, using efficient standard algorithms with time complexity O(n3) and space com-

plexity O(n2) (see, e.g., [1, 2, 3, 5]), and perform Boolean matrix multiplication using

usual matrix multiplication with time complexity O(n3) and space complexity O(n2).

Therefore, the time complexity and space complexity of both the above algorithms

are bounded by O(n3) and O(n2), respectively. Now we have the following theorem.

Theorem 3.4. Given a consistent set of spatial relationships SR, one can find

its minimal and maximal sets from SR under the system of rules R by efficient

algorithms. The time required by both of them is at most a constant multiple of the

time to compute the transitive reduction of a directed graph with n vertices or to

compute the transitive closure of a directed graph with n vertices or to perform n× n

Boolean matrix multiplication, and thus is always bounded by time complexity O(n3)

(and space complexity O(n2)), where n is the number of all involved objects. The

minimal set of SR is unique in the sense that one does not distinguish between AxB



330 QING-LONG ZHANG AND STEPHEN S.-T. YAU

and BxA for any objects A and B, and x ∈{overlaps, outside}.

Given a consistent set SR of three-dimensional spatial relationships, we can use

the above two algorithms to find the minimal and maximal sets of SR under the

system of rules R. Since R is complete for three-dimensional pictures, the minimal

and maximal sets of SR under R coincide with the minimal and maximal sets implied

by SR under R, respectively. For two-dimensional pictures, we will not have the

relationship symbol behind and the rules referring to it in R. Similarly, we can use the

above two algorithms (discarding those computations involving behind relationships)

to find the minimal and maximal sets of a given consistent set F of two-dimensional

spatial relationships under R. However, since R is incomplete for two-dimensional

connected pictures, the minimal and maximal sets of F under R may not coincide with

the minimal and maximal sets implied by F under R, respectively. More precisely,

the minimal set of F under R may contain properly the minimal set implied by F

under R, while the maximal set of F under R may be contained properly in the

maximal set implied by F under R.

4. Conclusions. In this paper we have studied the deduction and reduction

problems. We have shown that, given a consistent set of spatial relationships SR,

one can find its minimal and maximal sets from SR under the system of rules R

by efficient (i.e., polynomial-time) algorithms. The time required by both of them

is at most a constant multiple of the time to compute the transitive reduction of

a directed graph with n vertices or to compute the transitive closure of a directed

graph with n vertices or to perform n × n Boolean matrix multiplication, and thus

is always bounded by time complexity O(n3) (and space complexity O(n2)), where n

is the number of all involved objects. The minimal set of SR is unique in the sense

that one does not distinguish between AxB and BxA for any objects A and B, and

x ∈{overlaps, outside}. The detailed algorithms are also given and can be directly

programmed into executable computer codes.

We note that both the deduction mechanism and reduction mechanism can be

implemented by an existing deductive system. However, the performance is likely to

be much less efficient than the algorithmic approach we have presented in this paper.

The interested reader may refer to [34, 35, 36, 37. 39, 41, 42, 43, 44] for our further

developments in content-based image database systems. In particular, in our paper

[39], we proposed the consistency problem on content-based pictorial description in

pictorial database systems. We then suggested a framework for Content-based Image

Database Systems (CIDBS). In [38], We also considered the consistency problem for

spatial relationships in a picture, and used the same approach of mathematically

simple matrix representation as in this paper to present an efficient (i.e., polynomial-

time) algorithm for consistency checking of spatial relationships. Future research is
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required to further investigate the CIDBS model for facilitating fast image indexing

and retrieval.

Appendix. In this appendix, we provide the complete proofs of Claim 3.1 in

Section 3.1.2 and Claim 3.2 in Section 3.1.3.

Proof. (Proof of Claim 3.1)

Let A overlaps B be any new deducible relationship. Hence, A overlaps B is

not in U1 ∪ U2. Let k be the minimum length of a derivation of A overlaps B from

O1 ∪O2 and INSIDE+ using Rules VII and IV. We use induction on kto prove that

A overlaps B is in O3 ∪ O4 ∪ O5.

k = 1: Then A overlaps B should be deducible in one step from O1∪O2 and INSIDE+

using Rule VII. Hence, A overlaps B is in O3.

k =2:

If the last step in the derivation uses Rule VII, then

A overlaps B :: C inside A, C overlaps B

where C inside A ∈ INSIDE+(1)

and C overlaps B is still new.

But C overlaps B now is deducible in one step from O1 ∪ O2 and INSIDE+ using

Rule VII:

C overlaps B :: D inside C, D overlaps B

where D inside C ∈ INSIDE+

and D overlaps B ∈ O1 ∪ O2.

Combining these two steps into one step, we have

A overlaps B :: D inside A, D overlaps B

where D inside A ∈ INSIDE+

and D overlaps B ∈ O1 ∪ O2.

Hence, k = 1, contradicting the assumption k = 2. Thus, the last step in the deriva-

tion cannot use Rule VII.

If the last step in the derivation uses Rule IV, then

A overlaps B :: B overlaps A(2)

where B overlaps A is still new.

Clearly B overlaps A now is deducible in one step from O1∪O2 and INSIDE+ using

Rule VII. Hence, B overlaps A is in O3, and thus A overlaps B is in O4.
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k =3:

If the last step in the derivation uses Rule VII, then (1) holds. Now the minimum

length of a derivation of C overlaps B from O1 ∪O2 and INSIDE+ using Rules VII

and IV is 2. Hence, C overlaps B is in O4 from the case k = 2, and thus A overlaps

B is in O5.

If the last step in the derivation uses Rule IV, then (2) holds. Clearly B overlaps

A now is deducible in two steps from O1 ∪ O2 and INSIDE+ using Rules VII and

IV. Hence, B overlaps A is in O4 from the case k = 2, and thus A overlaps B should

be in O3. Therefore, k = 1, contradicting the assumption k = 3. This means that the

last step in the derivation cannot use rule IV.

k =4:

If the last step in the derivation uses Rule VII, then (1) holds. Now the minimum

length of a derivation of C overlaps B from O1 ∪O2 and INSIDE+ using Rules VII

and IV is 3. Hence, C overlaps B is in O5 from the case k = 3. Thus, we have

C overlaps B :: D inside C, D overlaps B

where D inside C ∈ INSIDE+

and D overlaps B ∈ O4.

Combining both derivations of A overlaps B and C overlaps B, we have

A overlaps B :: D inside A, D overlaps B

where D inside A ∈ INSIDE+

and D overlaps B ∈ O4.

Therefore, A overlaps B has the minimum length 3 of a derivation from O1 ∪O2 and

INSIDE+ using Rules VII and IV, contradicting the assumption k = 4. Thus, the

last step in the derivation cannot use Rule VII.

If the last step in the derivation uses Rule IV, then (2) holds. Clearly B overlaps

A now is deducible in three steps from O1 ∪ O2 and INSIDE+ using Rules VII and

IV. Hence, B overlaps A is in O5 from the case k = 3. Thus we have

B overlaps A :: C inside B, C overlaps A

where C inside B ∈ INSIDE+

and C overlaps A ∈ O4.

Since C overlaps A is in O4, it can be derived from A overlaps C using Rule IV, where

A overlaps C∈ O3. Then

A overlaps C :: D inside A, D overlaps C

where D inside A ∈ INSIDE+

and D overlaps C ∈ O1 ∪ O2.
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Now we have the following derivation of A overlaps B from O1∪O2 and INSIDE+

using Rules VII and IV (note that both C overlaps D and D overlaps C are in O1∪O2

at the same time):

B overlaps D :: C inside B, C overlaps D

D overlaps B :: B overlaps D

A overlaps B :: D inside A, D overlaps B

Therefore, k ≤ 3, contradicting the assumption k = 4. Thus, the last step in the

derivation also cannot use Rule IV. Therefore, k cannot be 4.

k ≥ 5:

We use induction on k to prove that this case is impossible. Recall that k cannot be 4.

Assume that there is a situation such that k ≥ 5. Then, the last step in the derivation

of A overlaps B uses either Rule VII or Rule IV. If the former rule is used, then (1)

holds. Clearly C overlaps B now has the minimum length (k − 1) ≥ 4 of a derivation

from O1 ∪ O2 and INSIDE+ using Rules VII and IV, and by inductive assumption,

this is impossible. If the latter rule is used, then (2) holds. Clearly B overlaps A now

has the minimum length (k − 1 ≥ 4 of a derivation from O1 ∪ O2 and INSIDE+

using Rules VII and IV, and by inductive assumption, this is also impossible.

Thus, we have now proved that k is at most 3. This means that any new deducible

overlaps relationships (i.e., not in O1 ∪ O2) can be derived within three steps from

O1 ∪ O2 and INSIDE+ using Rules VII and IV.

This completes the proof of Claim 3.1.

Proof. (Proof of Claim 3.2)

Recall that Mx2 is the set of all “x” spatial relationships deducible, in the presence

of OVERLAPS+ (and INSIDE+), by using only Rules I and II. Let Pk be the set of all

“x” spatial relationships deducible within k steps, in the presence of OVERLAPS+

and INSIDE+, by using Rules I, II, and III, where k is a nonnegative integer. To

prove this claim, we need only to prove that for each k, Pk ⊆ MAX (x), that is,

Pk ⊆ Mx2 ∪ MinMx2 ∪ Mx2Mco ∪ MinMx2Mco.

Now let us use induction on the derivation length k to prove it.

k =0:

P0 = Gx ⊆ Mx2.

k = 1 :

It is easy to see that

P1 ⊆ Gt
x ∪ GxMovGx ∪ MinGx ∪ GxMco

⊆ Mx2 ∪ MinMx2 ∪ Mx2Mco.

Inductive Step:
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Assume Pk ⊆MAX (x), where k ≥ 1. Then we wish to prove that Pk+1 ⊆MAX (x).

Let AxE ∈ Pk+1, and let AxE have a derivation with the derivation length k+1.

We consider the following four cases (a)-(d).

Case (a) Use Rule I at the last step of its derivation. Then

AxE :: AxC, CxE

where both AxC and CxE are in Pk.

Hence, by the inductive assumption, both A x C and C x E are in MAX (x).

We consider the following 16 subcases. Let Mx2, MinMx2, Mx2Mco, and Min

Mx2Mco be called, respectively, the first, second, third, and fourth forms that the

two relationships AxC and CxE each can take. Then, each subcase (ak) corresponds

to the condition that AxCand CxE take the ith and jth forms, respectively, where

k = 4(i − 1) + j, 1 ≤ i, j ≤ 4.

Subcase (al) If both AxC and CxE are in Mx2, so is AxE.

Subcase (a2) If AxC ∈ Mx2 and CxE ∈ MinMx2, then

CxE :: C insideD, DxE

where C inside D ∈ INSIDE+ and DxE ∈ Mx2.(3)

Note that C overlaps D is in OVERLAPS+ by Rule VI. Now AxE can have another

derivation that uses Rule II at the last step, namely,

AxE ::AxC, C overlaps D, DxE

Thus AxE ∈ Mx2. This actually means that AxE can be deduced by using only

Rules I and II.

Subcase (a3) If AxC ∈ Mx2 and CxE ∈ Mx2Mco, then

CxE:: C x D, D contains E

where CxD ∈ Mx2 and D contains E∈CONTAINS+.

Now AxD can be derived from AxC and CxD by using Rule I. Thus, it is in

Mx2. Therefore, AxE can have another derivation that uses Rule III(b) at the last

step, namely,

AxE :: A x D, D contains E

This means AxE ∈ Mx2Mco.

Subcase (a4) If AxC ∈ Mx2 and CxE ∈ MinMx2Mco, then

CxE :: C insideD, DxD′, D′ contains E

where C inside D ∈ INSIDE+ , DxD′ ∈ Mx2

and D′ containsE ∈ CONTAINS+.

By Rule III(a), we have

CxD′ :: C inside D, DxD′
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Hence, CxD′ ∈ MinMx2. By Rule I, we have

AxD′ :: A x C, C x D’

Then, similar to Subcase (a2), we have AxD′ ∈ Mx2. Furthermore, AxE can be

derived from AxD′ and D’ contains E by using Rule III(b), namely,

AxE :: AxD′, D′ contains E.

Thus AxE ∈ Mx2Mco.

Subcases (a5–a8) Each subcase (ai), where 5 ≤ i ≤ 8, can be considered as

the subcase (a(i-4)) followed by using Rule III(a) at the last step. Thus AxE is,

respectively, in MinMx2 for Subcases (a5) and (a6), and in MinMx2Mco for Subcases

(a7) and (a8).

Subcase (a9) If AxC ∈ Mx2Mco and CxE ∈ Mx2, then

AxC :: AxB, B contains C

where AxB ∈ Mx2 and B contains C ∈ Mco.(4)

Note that B overlaps C can be derived from C inside B by using Rules VI and IV.

Now AxEcan have another derivation that uses Rule II at the last step, namely,

AxE:: A x B, B overlaps C, C x E.

Thus AxE ∈ Mx2.

Subcase (a10) If AxC ∈ Mx2Mco and CxE ∈ MinMx2, then (4) and (3) hold.

Now we can derive C overlaps D by Rule VI, and B overlaps D from C inside B and

C overlaps D by Rule VII. Moreover, AxE can have another derivation that uses Rule

II at the last step, namely,

AxE:: A x B, B overlaps D, D x E.

Thus AxE ∈ Mx2.

Subcases (all–al2) Both subcases (all) and (al2) can be considered to be the

subcases (a9) and (al0), respectively, followed by using Rule III(b) at the last step.

Thus AxE ∈ Mx2Mco.

Subcases (al3–al6) Each subcase (ai), where 13 ≤ i ≤ 16, can be considered as

the subcase (a(i - 4)) followed by using Rule III(a) at the last step. Thus AxE is,

respectively, in MinMx2 for Subcases (al3) and (al4), and in MinMx2Mco for Subcases

(al5) and (al6).

We summarize Case (a) in Table 1. If AxC and CxE take the forms in the posi-

tions (i, 0) and (0, j), respectively, where 1 ≤ i, j ≤ 4, then AxE has the form in the

position (i, j).
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Case (b)

Use Rule II at the last step of its derivation. Then

AxE :: AxE, C overlaps C′, C′xE

where both AxC and C′xE are in Pk

and C overlaps C′ ∈ OVERLAPS+.

Hence, by the inductive assumption, both AxC and CxE are in MAX (x).

Similar to Case (a), we also consider the following 16 subcases. Let Mx2, MinMx2,

Mx2Mco, and MinMx2Mco be called, respectively, the first, second, third, and fourth

forms that the two relationships AxC and C′xE each can take. Then, each subcase

(hk) corresponds to the condition that AxC and C′xE take the ith and jth forms,

respectively, where k = 4(i − 1) + j, 1 ≤ i, j ≤ 4.

Table 1

Matrix Forms for the first Two Cases

Mx2 MinMx2 Mx2Mco MinMx2Mco

Mx2 Mx2 Mx2 Mx2Mco Mx2Mco

MinMx2 MinMx2 MinMx2 MinMx2Mco MinMx2Mco

Mx2Mco Mx2 Mx2 Mx2Mco Mx2Mco

MinMx2Mco MinMx2 MinMx2 MinMx2Mco MinMx2Mco

Subcase (bl) If both AxC and C′xE are in Mx2, so is AxE.

Subcase (b2) If AxC ∈ Mx2 and C′xE ∈ MinMx2,then

C′xE :: C inside D, DxE

where C′ inside D ∈ INSIDE+ and DxE ∈ Mx2.(5)

We can derive C′ overlaps C from C overlaps C′ by using Rule IV, and D overlaps

C from C′ inside D and C′ overlaps C by using Rule VII, and C overlaps D from

D overlaps C by using Rule IV. Hence, AxE can have another derivation that uses

Rule II at the last step as follows:

AxE :: A x C, C overlaps D, D x E.

Thus AxE ∈ Mx2.

Subcases (b3–b4) Both subcases (b3) and (b4) can be considered to be the subcases

(bl) and (b2), respectively, followed by using Rule III(b) at the last step. Thus,

AxE ∈ Mx2Mco for these two subcases (b3) and (b4).

Subcases (b5–b8) Each subcase (bi), where 5 ≤ i ≤ 8, can be considered as

the subcase (b(i-4)) followed by using Rule III(a) at the last step. Thus AxE is,

respectively, in MinMx2 for Subcases (b5) and (b6), and in MinMx2Mco for Subcases

(b7) and (b8).
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Subcase (b9) If AxC ∈ Mx2Mco and C′xE ∈ Mx2, then (4) holds. Now we can

derive B overlaps C′ from C inside B and C overlaps C′ by using Rule VII. Then

AxE can have another derivation that uses Rule II at the last step as follows:

Ax E :: AxB, B overlaps C’, C’ x E.

Thus AxE ∈ Mx2.

Subcase (bl0) If AxC ∈ Mx2Mco and C′xE ∈ MinMx2, then (4) and (5) hold.

We can derive B overlaps C′ from C inside B and C overlaps C′ by Rule VII, then

C′ overlaps B from B overlaps C′ by Rule IV, and D overlaps B from C′ inside D

and C′ overlaps B by Rule VII, and B overlaps D from D overlaps D by Rule IV. So

AxE can have another derivation that uses Rule II at the last step as follows:

AxE :: A x B, B overlaps D, D x E.

Thus AxE ∈ Mx2.

Subcases (bll–bl2) Both subcases (bll) and (bl2) can be considered to be the

subcases (b9) and (bl0), respectively, followed by using Rule III(b) at the last step.

Thus AxE ∈ Mx2Mco.

Subcases (bl3–bl6) Each subcase (bi), where 13 ≤ i ≤ 16, can be considered as

the subcase (b(i − 4)) followed by using Rule III(a) at the last step. Thus AxE is,

respectively, in MinMx2 for Subcases (bl3) and (bl4), and in MinMx2Mco for Subcases

(bl5) and (bl6).

Therefore, in Case (b), we have the same summary table (Table 1) for the forms

of AxE as in Case (a). If AxC and C′xE take the forms in the positions (i, 0) and

(0, j), respectively, where 1 ≤ i, j ≤ 4, then AxE has the form in the position (i, j).

Case (c)

Use Rule III(a) at the last step of its derivation. Then

AxE :: A inside C, CxE

where A inside C ∈ INSIDE+and CxE ∈ Pk.

Hence, by the inductive assumption, CxE are in MAX (x).

We consider the following four subcases.

Subcase (cl) If CxE ∈ Mx2, then AxE ∈ MinMx2.

Subcase (c2) If CxE ∈ MinMx2, then (3) holds. Now A inside D can be deduced

in one step from A inside C and C inside D by using Rule I. Furthermore, AxE can

have another derivation that uses Rule III(a) at the last step as follows:

AxE :: A inside D, D x E

Thus AxE ∈ MinMx2.

Subcase (c3) If CxE ∈ Mx2Mco, this case can be considered to be Subcase (cl),

followed by using Rule III(b) at the last step. Thus AxE ∈ MinMx2Mco.

Subcase (c4) If CxE ∈ MinMx2Mco, this case can be considered to be Subcase

(c2), followed by using Rule III(b) at the last step. Thus AxE ∈ MinMx2Mco.
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Case (d)

Use Rule III(b) at the last step of its derivation. Then

AxE :: AxC, C contains E

where AxC ∈ Pk and C contains E ∈ CONTAINS+.

Hence, by the inductive assumption, AxC are in MAX (x).

Similar to Case (c), we also consider the following four subcases.

Subcase (dl) If AxC ∈ Mx2, then AxE ∈ Mx2Mco.

Subcase (d2) If AxC ∈ MinMx2, then AxE ∈ MinMx2Mco.

Subcase (d3) If AxC ∈ Mx2Mco, then (4) holds. Now B contains E can be

deducible from B contains C and C contains E. Furthermore, AxE can have another

derivation that uses Rule III(b) at the last step as follows:

AxE:: A x B, B contains E.

Thus AxE ∈ Mx2Mco.

Subcase (d4) If AxC ∈ MinMx2Mco, this case can be considered to be Subcase

(d3), followed by using Rule III(a) at the last step. Thus AxE ∈ MinMx2Mco. This

completes the proof of Claim 3.2.
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