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COMMON PITFALLS USING THE NORMALIZED COMPRESSION

DISTANCE: WHAT TO WATCH OUT FOR IN A COMPRESSOR

MANUEL CEBRIÁN∗, MANUEL ALFONSECA∗, AND ALFONSO ORTEGA∗

Abstract. Using the mathematical background for algorithmic complexity developed by Kol-

mogorov in the sixties, Cilibrasi and Vitanyi have designed a similarity distance named normalized

compression distance applicable to the clustering of objects of any kind, such as music, texts or gene

sequences. The normalized compression distance is a quasi-universal normalized admissible distance

under certain conditions. This paper shows that the compressors used to compute the normalized

compression distance are not idempotent in some cases, being strongly skewed with the size of the

objects and window size, and therefore causing a deviation in the identity property of the distance if

we don’t take care that the objects to be compressed fit the windows. The relationship underlying

the precision of the distance and the size of the objects has been analyzed for several well-known

compressors, and specially in depth for three cases, bzip2, gzip and PPMZ which are examples of

the three main types of compressors: block-sorting, Lempel-Ziv, and statistic.

1. Introduction. A natural measure of similarity assumes that two objects x

and y are similar if the basic blocks of x are in y and vice versa. If this happens

we can describe object x by making reference to the blocks belonging to y, thus the

description of x will be very simple using the description of y.

This is partially what a compressor does to code the catenated xy sequence: a

search for information shared by both sequences in order to reduce the redundancy of

the whole sequence. If the result is small, it means that a lot of information contained

in x can be used to code y, following the similarity conditions described in the previous

paragraph. This was formalized by Rudi Cilibrasi and Paul Vitányi [2], giving rise to

the concept of normalized compression distance (NCD), which is based on the use of

compressors to provide a measure of the similarity between the objects. This distance

may then be used to cluster those objects.

This idea is very powerful, because it can be applied in the same way to all kind

of objects, such as music, texts or gene sequences. There is no need to use specific

features of the objects to cluster. The only thing needed to compute the distance from

one object x to another object y, is to measure the ability of x to turn the description

of y simple and vice versa.

Cilibrasi and Vitányi have perfected this idea in two ways, by stating the con-

ditions that a compressor must hold to be useful in the computation of the NCD,

and by giving formal expression to the quality of the distance in comparison with an

ideal distance proposed by Vitányi and others in [3]. In this paper we show that the
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compressor must be invariant with respect to the size of the objects. This condition

doesn’t hold for some well-known compressors such as bzip2, gzip, pkzip and many

others if the object size exceeds the window size. However, as shown by our results, in

the range of usefulness of these compressors, the NCD is very good for its purposes.

We determine the precision up to which NCD(x, y) = 0 ⇐⇒ x = y holds

for different compressors. For compressors using a certain window size, or block

size, we obtain NCD(x, x) close to 1 once we significantly exceed the window size,

as the compressors no longer compress. Trivially, in computing the NCD(x, y) the

concatenation xy should comfortably fit the window size or block size. Note that the

behavior on (x, x) is possibly different from that on (x, y), with respect to window

size. Namely, a window of size |x| sliding over xx has mostly all of x in the window

(suffix of first instance, prefix of the next instance). The way in which the identity

(of the metric) and the idempotency (of the compressor) are related is the following:

x = y ⇒ C(xy) − C(x) = O(log |x|) ⇒ NCD(x, y) = O

(
log |x|
C(x)

)
−−−−→
|x|→∞

0

These deficiencies observed when measuring identical objects (the easiest scenario)

are obviously generalized to any pair of objects. In this way, speaking about identity-

idempotency problems is the same as speaking about deficiencies in the whole distance.

In sections 2 and 3 we summarize the formalism around the distance: the condi-

tions that the compressors must hold and the properties of the distance. Section 4

describes the materials we have used to perform our experiments. Section 5 presents

our results for the bzip2 and gzip compressors, and the anomalous behavior of the

distance is analyzed in detail. Finally, in our conclusions, we provide empirical advice

for the correct use of the NCD.

2. Definitions. The following definitions describe the conditions under which

the NCD is a quasi-universal normalized admissible distance.

Definition 1. A compressor C is normal if it satisfies, up to an additive O(log n)

term, with n the maximal binary length of an element involved in the (in)equality

concerned, the following axioms:

1. Idempotency: C(xx) = C(x), and C(λ) = 0, where λ is the empty string.

2. Monotonicity: C(xy) ≥ C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz).

Definition 2. A distance d(x, y) is a normalized admissible distance or similarity

distance if it takes values in [0, 1] and satisfies the following conditions for all objects

x, y, z:

1. Identity: d(x, y) = 0 if x = y.

2. Symmetry: d(x, y) = d(y, x).
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3. Triangular inequality: d(x, y) ≤ d(x, z) + d(z, y).

4. Density constraint as in [2].

Definition 3. The Conditional Kolmogorov Complexity K(x|y) is the length of the

shortest binary program that, on a fixed universal Turing machine, outputs x and

halts, when it is fed with input y. The Kolmogorov Complexity K(x) is the Condi-

tional Kolmogorov Complexity for y = λ. K(x|y) and K(x) are both incomputable.

Reference [4] provides a more detailed treatment of algorithmic information theory.

Definition 4. A normalized admissible distance f is quasi-universal if for every

computable normalized admissible distance d and for all sequences x, y it satisfies the

following condition:

(1) f(x, y) = O(d(x, y)),

which means that two objects (of any kind) are similar (i.e. they have a small distance)

with respect to a specific feature (pitch, sequence alignment, etc) when they are also

similar with respect to a quasi-universal distance.

3. Normalized Compression Distance. A universal distance is the final goal

for universal clustering, because in principle it will be as good as any other distance

specialized in measuring some specific feature.

Reference [3] proposes an incomputable distance that fulfills that goal, the nor-

malized information distance (NID):

(2) NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
Inspired by this incomputable distance, the following normalized compression

distance was designed, which would make the role of a quasi-universal distance:

(3) NCD(x, y) =
max{C(xy) − C(x), C(yx) − C(y)}

max{C(x), C(y)}
C(xy) is the compressed size of the catenation of x and y. NCD generates a non-

negative number 0 ≤ NCD(x, y) ≤ 1. Distances near 0 indicate similarity between

objects, while those near 1 they reveal dissimilarity. If x = y, NCD becomes

(4) NCD(x, x) =
C(xx) − C(x)

C(x)

As mentioned in the introduction, there exists an obvious linkage between the

idempotency and the identity properties. Assume the compressor is normal. By the

idempotency property (Definition 1) C(xx)−C(x) = O(log |x|) and thus replacing in

the Equation 6 results:
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(5) NCD(x, x) = O

(
log |x|
C(x)

)
−−−−→
|x|→∞

0

which means that if the sequence is large enough and the idempotency property

holds up to a logarithmic term then the identity property is preserved. The next

lines summarize the most important results proved on this distance (the proofs are

available in [2]).

Theorem 1. If the compressor is normal, the NCD is a normalized admissible dis-

tance satisfying the metric inequalities.

Theorem 2. Let d be a normalized admissible distance and C be a normal compressor.

Then, NCD(x, y) ≤ αd(x, y) + ε where α and ε are well-defined constants (the details

can be found in [2]).

The last theorem states that, if the compressor is chosen carefully, then the NCD

is a quasi-universal normalized distance, a golden standard for clustering.

4. Materials. The remainder of the paper analyzes the behavior of two real

implementations of the distance. The CompLearn toolkit1 is a package implemented

by Rudy Cilibrasi for clustering purposes. The latest version of this package (0.6.2)2

was used in our experiments. The bzip2 and the gzip compressors can be selected in

the toolkit. Our results cover both.

On the other hand, our experimental set is the well known Calgary Corpus, a

benchmark for compression algorithms since 1989. Nine different types of text are

represented, and to confirm that the performance of schemes is consistent for any

given type, many of the types have more than one representative.

Normal English, both fiction and non-fiction, is represented by two books and

six papers (labeled book1, book2, paper1, paper2, paper3, paper4, paper5, paper6).

More unusual styles of English writing are found in a bibliography (bib) and a batch of

unedited news articles (news). Three computer programs represent artificial languages

(progc, progl, progp). A transcript of a terminal session (trans) is included to indicate

the increase in speed that could be achieved by applying compression to a slow line

in a terminal. All of the files mentioned so far use ASCII encoding. Some non-ASCII

files are also included: two files of executable code (obj1, obj2), some geophysical data

(geo), and a bit-map black and white picture (pic). File geo is particularly difficult

to compress, because it contains a wide range of data values, while file pic is highly

compressible, because of large amounts of white space in the picture, represented

by long runs of zeros. More reasons for choosing this benchmark are explained in

reference [5].

1All the experiments published in [2] were performed using this toolkit.
2Available in the Internet at http://www.complearn.org
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Table 1

Name, description and size in Kbytes of the files in the Calgary Corpus.

bib Bibliographic files (refer format) 109

book1 Hardy: Far from the madding crowd 751

book2 Witten: Principles of computer speech 597

geo Geophysical data 100

news News batch file 369

obj1 Compiled code for Vax: compilation of progp 21

obj2 Compiled code for Apple Macintosh: Knowledge support system 242

paper1 Witten, Neal and Cleary: Arithmetic coding for data compression 52

paper2 Witten: Computer (in)security 81

paper3 Witten: In search of “autonomy” 46

paper4 Cleary: Programming by example revisited 13

paper5 Cleary: A logical implementation of arithmetic 12

paper6 Cleary: Compact hash tables using bidirectional linear probing 38

pic Picture number 5 from the CCITT Facsimile test files (text + drawings) 502

progc C source code: compress version 4.0 39

progl Lisp source code: system software 70

progp Pascal source code: prediction by partial matching evaluation program 49

trans Transcript of a session on a terminal 92

5. Results. In our experiments, all the objects are considered strings of bytes. If

x is an object, then xn is the object composed by the first n bytes of x. Figures 1 and

9 show the distance NCD(xn, xn) as a function of n in four (bib, book1, book2, pic)

of the eighteen files of the Calgary Corpus3. The files book1 and book2 are selected

to be shown because they are the larger ones, while the file bib is selected because of

its average size. The reason for showing the file pic is because it is a large but highly

compressible file. To analyze the idempotency property, all the objects are compared

with themselves.

5.1. bzip2. The plots in Figure 1, together with many more similar experiments

we have performed, show that NCD(x, x) is between 0.2 and 0.3 in the region where

bzip2 can be used properly, while it gives values between 0.25 and 0.9 outside that

region.

Two plots in Figure 1 (book1 and book2) show two visually different modes of

dependency as a function of n. We call weak dependency the region starting in 1

Kbytes and ending in 450 Kbytes (the bib and pic files only show this dependency

because of the small size of the first one and the high compressibility of the second

one). From that point onwards we call it strong dependency.

The weak dependency displays a fluctuating slowly-increasing dependence with

3The reason for choosing only four of the eighteen files is purely aesthetic. The remaining (not

displayed) graphs are available by request to the authors.
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Fig. 1. Normalized compression distances computed for the first n bytes of four files (bib,

book1, book2 and pic, from left to right and top to bottom) of the Calgary Corpus files using the

bzip2 compressor with the --best option.

n. On the other hand, the strong dependence is logarithmic and almost without

fluctuations. Both dependencies indicate that the distance is skewed by the size of

the objects and therefore displays idempotency-identity deviations (see Definitions 1

and 2).

The bzip2 compression algorithm uses three main ideas. In the first stage of the

compression, the data suffers a Burrows-Wheeler transform; in the second, the move

to front coding is applied to the output of the transformation; finally a statistical

compressor (usually Huffman) is used for redundancy extraction. The default block

size of the bzip2 compressor is 900 Kbytes which means that, if the sizes of the objects

add to more than 900 Kbytes, the catenated object is divided into parts smaller than

900 Kbytes before being compressed. A more detailed explanation of the algorithms

in bzip2 can be found in [6].

Let’s start with the weak dependency, which can be observed in the [1 Kbyte,

450 Kbytes] interval, exactly the half size of the block. In this zone, the size of the

catenated objects is smaller than 900 Kbytes, thus they don’t need to be split.

A simplified example will show how the weak dependency works. Let us assume

that the block size is 16 bytes and the object to compress is the string “drdobbs”. We
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Fig. 2. Rotation matrix for “drdobbsdrdobbs”.

need to compute the distance:

(6) NCD(drdobbs, drdobbs) =
C(drdobbsdrdobbs) − C(drdobbs)

C(drdobbs)

The size of the catenated string is 14 bytes, so it fits in a single block. Let’s

analyze the algorithm step by step:

Burrows-Wheeler transform: A rotation matrix is created from the string “dr-

dobbsdrdobbs” (Figure 2). It can be observed that the lower half of the

matrix is a repetition of the upper half. Then the matrix is lexicographically

sorted and the output for the transformation is the last column of the matrix

“oobbrrssddddbb” (Figure 3).

move to front coding: the coding is applied and the output is “20103040400030”

(see [6]).

Huffman coding: The frequencies of the characters are measured as 0:8, 1:1, 2:1,

3:2, 4:2 and the compressed string is built using 26 bits (see [7]).

Using the same scheme, the string “drdobbs” is compressed using 17 bits, so the

distance is NCD = 26−17
17 = 0.529.

Now another symbol “w” is added to the string, so that the new string whose

distance with itself we want to measure is “drdobbsw”. When the rotation matrix of

“drdobbswdrdobbsw” is built and ordered, the first row whose last column has the

“w” value will be followed by another row that ends in “w” (in fact both rows will be

identical).



374 MANUEL CEBRIÁN, MANUEL ALFONSECA, AND ALFONSO ORTEGA

b b s d r d o b b s d r d o

b b s d r d o b b s d r d o

b s d r d o b b s d r d o b

b s d r d o b b s d r d o b

d o b b s d r d o b b s d r

d o b b s d r d o b b s d r

d r d o b b s d r d o b b s

d r d o b b s d r d o b b s

o b b s d r d o b b s d r d

o b b s d r d o b b s d r d

r d o b b s d r d o b b s d

r d o b b s d r d o b b s d

s d r d o b b s d r d o b b

s d r d o b b s d r d o b b

Fig. 3. Lexicographically ordered rotation matrix for “drdobbsdrdobbs”.

Just by looking at the string (even without constructing the rotation matrix)

we can see that, when the string is coded using move to front, the second “w” of

“drdobbswdrdobbsw” will get the value 0. This means that the cost of adding “w” to

the string will be the cost of coding the first “w” plus the cost of coding the second

(only one bit), due to the symmetry of the rotation matrix.

In this way, when we add a symbol π to a string x giving y, the expected difference

C(yy) − C(y) will be larger that the expected difference C(xx) − C(x) by just one

bit. The codings should not differ too much, because the information of the symbol

is the same in both strings, log( 1
p(π) ) in Shannon terms. This explains that the weak

dependency increases very slowly with n and fluctuates.

In the example, C(drdobbswdrdobbsw) = 33, i.e. after adding two “w” to the

original string (16 bits) the size of the compressed version only increases by 7 bits.

The new distance is NCD = 33−22
22 = 0.5, almost identical to that in the original

string. The compressor has noticed that the second half of the string is identical to

the first, not in a direct way, but by detecting the redundancy of the second half of

the string, and therefore coding that half with very few bits.

Let’s now explain the strong dependency. The objects in this zone have a size

greater than 450 Kbytes, therefore the catenated object has a size greater than the

block size of bzip2 (900 Kbytes). In our explanation, we will assume that the block

size is 8 bytes, and will use a string that, catenated to itself, is bigger than that size.

We use the string “drdobbs” again, so when compressing “drdobbsdrdobbs” it must

be split in the two strings “drdobbsd” and “rdobbs”. Let’s apply the compression
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algorithm to both:

Burrows-Wheeler transform: The rotation matrix for the two strings (Figures

4 and 5) is built and ordered (Figures 6 and 7). There is a big difference

between having the whole string in one block or in two: the upper-lower half

symmetry is lost due to the splitting, and much redundancy achieved in the

weak dependence zone is not achieved here. The outputs are “obsrdddb” and

“obrdsb”, whose equal characters are much less grouped4 than in the previous

example “oobbrrssddddbb”.

move to front coding: The coding of both strings is “21444003” and “213343”.

Huffman coding: The character frequencies are 0:2, 1:1, 2:1, 3:1, 4:3 for the first

string and 1:1, 2:1, 3:3, 4:1 for the second one. The resulting output built

using Huffman coding has a size of 30 bits (4 more than when using a single

block). The main question is not the final size of the string, but the fact

that the second half of the string has been coded using 16 bits, while it was

coded using only 8 bits in the single block example (exactly double). Splitting

the string has caused a worse character-grouping when the Burrows-Wheeler

transform is performed. The long distance redundancies of the string have

been lost, and this introduces a skew in the distance: the same objects are

now farther apart: NCD = 30−17
17 = 0.765.

If the string is divided in two blocks, the expected compression cost of adding

a symbol π to x will be 2 log( 1
p(π) ), therefore an expected increase of log( 1

p(π) ) in

C(xx) − C(x). This explains the logarithmic growth of the strong dependency zone.

In order to compare both dependencies, it should be remembered that the ex-

pected compression cost of adding one symbol is log( 1
p(π) )+1, therefore the expected

value of C(xx) − C(x) is 1 bit when the concatenated string fits into a single block.

We have repeated our experiments with bzip2 in a different situation, by selecting

4Grouping identical characters is the main purpose of the Burrows-Wheeler transform.
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Fig. 8. Normalized compression distances computed for the first n bytes of four files (bib,

book1, book2 and pic, from left to right and top to bottom) of the Calgary Corpus files using the

bzip2 compressor with the --fast option.

the --fast option rather than the --best option (see Figure 8). In this case, the block

size used by the compressor can be seen to be much smaller (about 100 Kbytes, vs. 900

in the --best case) which means that files over 50 Kbytes are not properly managed.

Even the small files in our examples suffer now from this effect and show a strong

dependency region.
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Fig. 9. Normalized compression distances computed for the first n bytes of four files (bib,

book1, book2 and pic, from left to right and top to bottom) of the Calgary Corpus files using the gzip

compressor with the --best option.

5.2. gzip. The plots in Figure 9, together with many more similar experiments

we have performed, show that NCD(x, x) is between 0.0 and 0.1 in the region where

gzip can be used properly, while it gives values which grow to 1 outside that region.

The experimental results obtained using the gzip compressor in the NCD are

displayed in Figure 9. We can observe an initial slow-fluctuating growth with n,

followed by a strong discontinuity, with a jump to 0.9 at 32 Kbytes, and finally a new

slow (but slightly faster) growth, until the distance saturates in 1. We’ll call again

the two zones weak dependency and strong dependency, for analogy with the previous

section.

The kernel of gzip [8] uses a variant of the LZ77 algorithm [9] for preprocessing

and a statistical compressor (usually Huffman) as post-processing. The skew with the

object size is fully explained by the compression scheme of the LZ77 algorithm5.

As in the previous subsection, the two modes will be explained by means of three

simple examples. The string to be compared with itself is again “drdobbs”. This

time there are two parameters that play the same role as the block size in the bzip2

5The Huffman coding does not have a relevant influence in the skew, so it is left out of this

discussion.
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current coding character WS WL coded string

d◦rdobbsdrdobbs empty drbobbs 01

dr◦dobbsdrdobbs d rbobbsd 0101

drd◦obbsdrdobbs dr bobbsdr 010121

drdo◦bbsdrdobbs drd obbsdrd 01012101

drdob◦bsdrdobbs drdo bbsdrdo 0101210101

drdobb◦sdrdobbs drdob bsdrdob 010121010111

drdobbs◦drdobbs drdobb sdrdobb 01012101011101

drdobbsd◦rdobbs drdobbs drdobbs 0101210101110177

Fig. 10. WS= 7 bytes, WL = 7 bytes.

compressor: the sliding window and the lookahead window. The sliding window WS

is a buffer that contains the previous |WS | characters to the character that is being

compressed. On the other side, the lookahead window WL is the buffer that contains

the next |WL| characters that follow the character being coded. The LZ77 algorithm

searches the longest string that begins in the current coding character and is contained

in both windows.

In our first example, let’s assume that |WS | = |WL| = 7 bytes. Remember

that we want to compute C(xx)−C(x)
C(x) . The LZ77 algorithm is applied to the string

“drdobbsdrdobbs”. The sliding window and the lookahead window were large enough,

and the compressor realized that the second half of the string is an exact repetition of

the first. Let’s assume that each compression chunk offsetlength has a size of 2 bytes

(Figure 10). In this way C(xx)−C(x)
C(x) = 2

14 = 0.143. We can generalize: whatever the

size of x, if the windows are large enough, C(xx) − C(x) = 2.

A new scenario is proposed: now |WS | = 7 and |WL| = 3 (see Figure 11). In this

example, the compressor was unable to extract all the redundancy from the string,

due to the insufficient size of the lookahead window. Rather than detecting that the

second half of the string is identical to the first, the compressor only detects three

substrings identical to three other substrings in the sliding window. This is what

underlies the weak dependency. For the Calgary Corpus, the window size (32 Kbytes)

is larger than the size of the object, but the lookahead window is smaller. This is why

the NCD increases slightly with n in this zone: C(xx)−C(x) is proportional to |x|
|WL| .

In our example, the distance has significantly increased: NCD = 20−14
14 = 0.428. This

is a deviation in the distance, which depends little on the size of the objects.

It remains to explain the most important feature, the discontinuity point at 32

Kbytes. In this point, the size of the catenated object overflows the size of the sliding

window.
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current coding character WS WL coded string

d◦rdobbsdrdobbs empty drd 01

dr◦dobbsdrdobbs d rdo 0101

drd◦obbsdrdobbs dr dob 010121

drdo◦bbsdrdobbs drd obb 01012101

drdob◦bsdrdobbs drdo bbs 0101210101

drdobb◦sdrdobbs drdob bsd 010121010111

drdobbs◦drdobbs drdobb sdr 01012101011101

drdobbsd◦rdobbs drdobbs drd 0101210101110173

drdobbsdrdo◦bbs obbsdrd obb 010121010111017373

drdobbsdrdobbs◦ sdrdobb s 01012101011101737371

Fig. 11. WS= 7 bytes, WL = 3 bytes.

In our last example, we will assume that |WS | = 6 and |WL| = 7. The results are

shown in Figure 12. The insufficient size of the sliding window causes the first byte

of the string to be unreachable by the compressor, which loses all the redundancy

detection. A very small change (only 1 byte) in the sliding window size can cause

the compressor to be absolutely blind (the NCD calculation in this example gives
28−14

14 = 1. This is what causes the discontinuity at 32 Kbytes. When the size of the

object is one byte more than the sliding window, the first byte of the first object is lost,

and the compressor becomes unable to detect the full redundancy of the catenation,

giving rise to an NCD value near to absolute dissimilarity (0.9 for almost all files in

the Calgary Corpus).

The purpose of using the LZ77 algorithm in the NCD is based on the fact that it

can use the sequences that appear in the first object to make the coding of the second

object less expensive. If the size of the sliding window is significantly smaller than

the size of any of the objects, the blind effect will outperform the redundancy detec-

tion task. From our experiments (those described in this paper and others) we can

extract the following conclusion: if |WS | � |x| or |WS | � |y| then NCD(x, y) ≈ 1 for

any possible value of max{K(x|y), K(y|x)}/max{K(x), K(y)}, i.e. for any similarity

degree between x and y.

We have also repeated our experiments with gzip, by selecting the --fast option

rather than the --best option (see Figure 13). In this case, the size of the sliding

window used by the compressor does not change, so the results obtained are very

similar to those with the --best option. Only the compress ratio obtained is affected

(see Figure 15).
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current coding character WS WL coded string

d◦rdobbsdrdobbs empty drdobbs 01

dr◦dobbsdrdobbs d rdobbsd 0101

drd◦obbsdrdobbs dr dobbsdr 010121

drdo◦bbsdrdobbs drd obbsdrd 01012101

drdob◦bsdrdobbs drdo bbsdrdo 0101210101

drdobb◦sdrdobbs drdob bsdrdob 010121010111

drdobbs◦drdobbs drdobb sdrdobb 01012101011101

drdobbsd◦rdobbs rdobbs drdobbs 0101210101110151

drdobbsdr◦dobbs dobbsd rdobbs 010121010111015101

drdobbsdrd◦obbs obbsdr dobbs 01012101011101510121

drdobbsdrdo◦bbs bbsdrd obbs 0101210101110151012101

drdobbsdrdob◦bs bsdrdo bbs 010121010111015101210161

drdobbsdrdobb◦s sdrdob bs 01012101011101510121016111

drdobbsdrdobbs◦ drdobb s 0101210101110151012101611101

Fig. 12. WS= 6 bytes, WL= 7 bytes.

6. Conclusions. In this paper, we have reviewed the concept of normalized

compression distance (NCD), which uses compressors to provide a measure of the

distance between two objects of any kind and can be used for clustering applications.

We have analyzed the impact on the NCD quality of some features of two compres-

sors: the block size in bzip2, and the sizes of the two windows (sliding and lookahead)

used by gzip. The well-known Calgary Corpus has been used as a benchmark. Any

similarity distance should measure a 0 distance (or, at least, a very small value) be-

tween two identical objects. The empirical results obtained with both compressors

for the Calgary Corpus reveal that the NCD is skewed by the size of the objects,

independently of their type. For object sizes smaller than certain values (related to

the block and window sizes in the compressors), the distance between two identical

objects is usually quite small, which proves that the NCD is a good tool for this

purpose. However, for larger sizes, when the inner limitations of the compressors

are violated, obviously the distance between two identical objects grows to very high

values, making the NCD practically unusable. Other widely used compressors (such

as winzip and pkzip) also show the same limitations.

The use of block and window sizes in the compressors aims to increasing the

computation speed at the expense of the compression ratio. This paper proves that
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Fig. 13. normalized compression distances computed for the first n bytes of four files (bib,

book1, book2 and pic, from left to right and top to bottom) of the Calgary Corpus files using the gzip

compressor with the --fast option.

this balance between quality and speed should be treated carefully for clustering,

where quality is tantamount. When considering clustering problems, all considera-

tions about speed should be left apart if they imply exceeding the system parameters.

The proper use of this powerful distance depends on selecting compression algorithms

without limiting factors related to the size of the objects like, such as the high com-

pression Markov predictive coder PPMZ [1], which does not set any window or block

limit, but is much slower than those mentioned above. The results of using PPMZ

in our experiments are shown in Figure 14 and are coherent with our conclusions:

the distance computed with PPMZ does not depend on the size of the objects and is

always between zero and a very small value (0.1043). On the other hand, this also

confirms that the NCD is a very good distance measurement, when used in the proper

way.

In the case of bzip2 and gzip, the block, the sliding window and the lookahead

window should be at least as large as the sum of the sizes of the objects to be compared.

The table in Figure 15 summarizes the results obtained for all three compressors under

different circumstances, both as regards the compression ratio obtained and the size

limits where the use of the NCD is acceptable for each.
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Fig. 14. Normalized compression distances computed for the first n bytes of four files (bib,

book1, book2 and pic, from left to right and top to bottom) of the Calgary Corpus files using the

PPMZ compressor.

compressor options comp. ratio acceptable region bad region

ppmz none 25% (0, ∞) none

bzip2 --best 27% (0, 450] (450 , ∞)

bzip2 --fast 29% (0, 50] (50, ∞)

gzip --best 32% (0, 32] (32, ∞)

gzip --fast 38% (0, 32] (32, ∞)

Fig. 15. Comparison table over the Calgary Corpus for all compressors and options used. The

units of the acceptable and bad regions are in Kbytes. Both objects are the same size.
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384 MANUEL CEBRIÁN, MANUEL ALFONSECA, AND ALFONSO ORTEGA


