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SOME MARKOVIAN PROPERTIES OF LINEAR DIFFERENTIAL

SYSTEMS∗

JIANGFENG ZHANG† AND C.P. KWONG‡

Abstract. In this paper we study the Markovian properties of a system of linear partial differ-

ential equations with constant coefficients as initiated by J.C. Willems. In particular, we prove that

his conjecture on Markovianity is true if the characteristic variety of the system has dimension zero.

For the case when the system is defined by a differential operator, we give conditions under which

the conjecture is also valid.
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1. Introduction. The behavioral approach developed by J.C. Willems ([11]) for

systems determined by linear constant coefficient partial differential equations (PDEs)

has attracted research interest recently ([8], [12]). In [12] a general definition of

Markovianity is given in order to study the concept of states and their construction for

n-dimensional systems. A conjecture has also been posed, namely that the behavior

of a system is Markovian if and only if it has a kernel representation that is first order.

In this paper we will use the Ehrenpreis-Palamodov Fundamental Principle in the

study of PDEs (see [3], [6], [7], or Chapter 8 of [1] for an introduction) to show that the

above conjecture is true if the characteristic variety (to be defined in the next section)

of the system is of dimension zero. A system with zero-dimensional characteristic

variety has finite-dimensional behavior. We will show that the conjecture is also valid

for some special infinite-dimensional behaviors.

Whereas the formulation of the Willems’ conjecture aims to understand the prop-

erties of the behavior of a PDE system, our result indicates that the behavior is defined

by a linear space with a finite basis when the characteristic variety of the system is

of dimension zero. It follows that the behavior will become transparent if each com-

ponent of this finite basis can be obtained explicitly. With the introduction of the

notion of characteristic variety this computational problem becomes feasible. We will

show by an example how to apply the theory of Gröbner bases in commutative alge-

bra (see [2] for an introduction) to determine whether the characteristic variety of a

system has dimension zero, and if it is the case, to compute the relevant basis.

The paper is organized as follows. In Section 2 we review the behavioral approach
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to the study of differential systems. The definition of a characteristic variety and

relevant results of PDEs are also given in this section for preparing the derivation of

our main results in the next section, and the presentation of a computational example

in Section 4.

2. Preliminaries. We first give a brief review of the behavioral theory of

Willems and his conjecture ([12]). Let x = (x1, x2, . . . , xn) be n-tuple of real inde-

pendent variables and D′(X) the set of real distributions on X ⊂ Rn. We also write

D′ for D′(Rn). Suppose Lw
n is the set of linear subspaces of (D′)w consisting of the

solutions of a system of linear constant coefficient PDEs, i.e., each element B ∈ Lw
n

is defined by a polynomial matrix R ∈ R•×w[ξ1, ξ2, . . . , ξn] with w columns but any

number of rows, such that

B = {u ∈ (D′)w | R(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
)u = 0}.

A member of Lw
n is called a linear differential n-D system. The above PDE is

called a kernel representation of the behavior B ∈ Lw
n .

Denote by Δ the following set of partitions of Rn:

[(S−, S0, S+) ∈ Δ] ⇔ [(S−, S0, S+ are disjoint subsets of Rn) ∧ (S− ∪ S0 ∪
S+ = Rn) ∧ (S− and S+ are open, and S0 is closed )].

For any subset F of Rw or Cw, and any f−, f+ : Rn → F , let π = (S−, S0, S+) ∈ Δ.

The concatenation of (f−, f+) along π is the map f− ∧π f+ : Rn −→ F defined by

f− ∧π f+(x) =

{
f−(x) for x ∈ S−;

f+(x) for x ∈ S0 ∪ S+.

A behavior B ∈ Lw
n is called Markovian if

[(u−, u+ ∈ B ∩ C∞(Rn, Rw)) ∧ (π = (S−, S0, S+) ∈ Δ) ∧ (u−|S0 = u+|S0)]

⇒ [u− ∧π u+ ∈ B].

A Markovian behavior B is nontrivial if there exist two distinct elements u−, u+ ∈
B ∩ C∞(Rn, Rw) such that u−|S0 = u+|S0 for some partition π = (S−, S0, S+). Note

that we only consider nontrivial Markovian behaviors in this paper.

By the linearity of kernel representation it is easy to prove the following result.

Proposition 1. A behavior B ∈ Lw
n is Markovian if and only if for any u ∈

B ∩ C∞(Rn, Rw) such that u|S0 = 0 for some partition π = (S−, S0, S+) of Rn, we

have u ∧π 0 ∈ B.

Markovianity has an obvious symmetry as shown in the following proposition.

Proposition 2. Suppose a behavior B is Markovian and nontrivial, then both

u− ∧π u+ and u+ ∧π u− belong to B.
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Willems proposes the following conjecture in [12].

Conjecture. The behavior B ∈ Lw
n is Markovian if and only if it has a kernel

representation that is first order, i.e., it has the following kernel representation

R0u + R1
∂

∂x1
u + R2

∂

∂x2
u + · · · + Rn

∂

∂xn
u,

where Ri, i = 0, 1, . . . , n, are constant matrices.

The validity of the conjecture for n = 1 has been proved in [9]. The sufficient

part for general n is straightforward to prove ([12]) while the necessary part remains

open.

For a behavior defined by an s × w polynomial matrix R = (Rjk(x)) where

Rjk(x) = Rjk(x1, x2, . . . , xn) are polynomials in n variables, we denote the PDE

system corresponding to R by R(D) = 0 or R(D)u = 0. The characteristic variety of

this system (or behavior) is defined by the following set

VR = {τ ∈ C
n : the matrix (Rjk(τ)) has rank < w}.

It is clear that if s < w then VR = Cn—the under-determined case in which there are

more unknowns than equations. In this paper we consider only the more interesting

over-determined case, i.e., s ≥ w.

By definition the characteristic variety of R characterizes the common solution

of a system of polynomials where each polynomial is a w × w sub-determinant of

R. Much useful information about the behavior of a system can be obtained from

its characteristic variety. An example is the following proposition, which is an easy

variation of Proposition 8.1.8 in [1].

Proposition 3. With notations given above, let τ = (τ1, τ2, . . . , τn) ∈ VR, then

there exist complex scalars c1, c2, . . . , cw of which at least one is nonzero, such that

(c1e
(x,τ), c2e

(x,τ), . . . , cwe(x,τ)) is an exponential solution of R(D)u = 0, where (x, τ)

denotes the usual Euclidean inner product.

Next we introduce the Ehrenpreis-Palamodov Fundamental Principle for the case

dim(VR) = 0, i.e., VR has only a finite number of elements in Cn. The Principle is

an important result for the integral representation of solutions of linear PDEs with

constant coefficients.

Theorem 1. ([1], Theorem 8.7.1) Suppose dim(VR) = 0, then there exists a finite

set of exponential solutions χj = (qj1(x)e(x,τj), qj2(x)e(x,τj), . . . , qjw(x)e(x,τj)), where

{qjk(x)} are some polynomials in x1, x2, . . . , xn and τj’s belong to VR such that the

following is true: If Ω is some open subset of Rn and if μ = (μ1, μ2, . . . , μw) is some w-

tuple of distributions in Ω satisfying R(D)μ = 0 in Ω, then there exist complex scalars

{cj} such that μ =
∑

cjχj, i.e., each distribution μk is of the form
∑

cjqjk(x)e(x,τj)

and thus the locally defined solution μ extends to an exponential solution in the whole

space Rn.
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The above results describe the solutions for a finite-dimensional behavior. As

for infinite-dimensional behaviors, a simple case is that the matrix R has only one

element, that is, the behavior is modeled by a single differential operator P (D). In

this case the following results [5] are useful.

Suppose a differential operator P (D) is defined by a polynomial

P (x) =
∑

|α|≤m

cαxα

with degree m where α = (α1, α2, . . . , αn) is a multi-index. Define the principal part

of P by Pm =
∑

|α|=m cαxα. If ξ ∈ Rn is a nonzero solution of Pm(x) = 0, then ξ, or

the hyperplane which has ξ as its normal, is called a characteristic of the differential

operator P (D).

Theorem 2. ([5], Theorem 8.6.8) Let X1 and X2 be open convex sets in Rn

such that X1 ⊂ X2, and P (D) be defined as above, then the following statements are

equivalent.

(i) Every u ∈ D′(X2) satisfying the equation P (D)u = 0 in X2 and vanishing in

X1 must also vanish in X2.

(ii) Every hyperplane which is a characteristic with respect to P and intersects

X2 also intersects X1.

The differential operator P (D) (and the polynomial P (x)) is called hypoelliptic

if P (α)(x)/P (x) → 0 as x → ∞ in Rn for any nonzero multi-index α, where P (α)(x)

denotes the partial derivative DαP (x). Theorem 11.1.3 in [5] gives several equivalent

algebraic conditions to check if an operator is hypoelliptic. The following proposition

gives an important analytic condition. Note that elliptic operators and semi-elliptic

operators are special cases of hypoelliptic operator.

Proposition 4. ([5], Theorem 11.1.1) The differential operator P (D) is hypoel-

liptic if and only if, for any open set X ⊂ Rn, u ∈ D′(X), and P (D)u = 0, we have

u ∈ C∞(X).

For the polynomial P (x) and any linear subspace V of Rn, we define the following

functions

P̃V (ξ, t) := sup{|P (ξ + θ)| : θ ∈ V, |θ| ≤ t},
P̃ (ξ, t) := P̃Rn(ξ, t),

σP (V ) := inf
t>1

lim
ξ→∞

P̃V (ξ, t)/P̃ (ξ, t).

Proposition 5. ([5], Theorem 11.3.6) Let X be an open set in Rn, x0 a point in

X and φ1, φ2, . . . , φk ∈ C1(X) real valued functions such that dφ1(x0), dφ2(x0), . . . ,

dφk(x0) are linearly independent. Assume that σP (W ) = 0 for the space W spanned

by dφ1(x0), dφ2(x0), . . . , dφk(x0) and let

X− = {x ∈ X : φj(x) ≤ φj(x0) for some j = 1, 2, . . . , k}.
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If u ∈ D′(X), P (D)u ∈ C∞(X), and u ∈ C∞(X−), then u ∈ C∞ in a neighborhood

of x0 which is independent of u.

Proposition 6. ([5], Theorem 11.3.13) Let Γ be a closed convex set in Rn and

V the largest vector space with Γ + V = Γ. Then u ∈ D′(Rn), P (D)u = 0, and

sing supp u ⊂ Γ implies u ∈ C∞(Rn) if and only if σP (V ′) = 0, where sing supp u is

defined as the set of points in Rn having no open neighborhood to which the restriction

of u is a C∞ function, and V ′ is the subspace orthogonal to V .

3. The Willems’ Conjecture. In this section we give our main results on the

Willems’ conjecture.

Theorem 3. Let the matrix R be defined as before and assume that the character-

istic variety VR has dimension zero. If the behavior B defined by R(D) is Markovian

and nontrivial, then it has a kernel representation which is first order.

Proof. It follows from Theorem 1 that the behavior B has a finite basis χj =

(qj1(x)e(x,τj), qj2(x)e(x,τj), . . . , qjw(x)e(x,τj)) for j = 1, 2, . . . , t and each solution of

the system is a linear combination of these χj ’s. Suppose the kernel representation

of the Markovian behavior is not first order, then there exists a nonzero solution u

which vanishes on S0 for some partition π = (S−, S0, S+). By Proposition 1 the

concatenation of u and 0 belongs to B. Consequently, the concatenation can be

expressed as a linear combination of χj ’s. Therefore we can write u =
∑t

j=1 cjχj, u∧π

0 =
∑t

j=1 djχj , and

t∑
j=1

djχj(x) =

{ ∑t
j=1 cjχj(x), for x ∈ S−;

0, for x ∈ S+.

Since exponential functions are analytic at every point of Cn, the function
∑t

j=1 djχj

is analytic in Cn when x is viewed as an n-tuple of complex variables. Notice that∑t
j=1 djχj is identical to the analytic function 0 on the open set S+. It follows that

the identity holds for the entire Cn by the identity theorem of holomorphic functions

(see, for example, Theorem 1.4.1 of [4]). Since we have assumed that {χj} is a basis,

which means that the χj ’s are linearly independent, then dj = 0 for j = 1, 2, . . . , t.

Hence u = 0 for x ∈ S− by virtue of the identity theorem. This clearly contradicts

Markovianity, and the result follows.

Thus we have shown that the Willems’ conjecture holds for finite-dimensional

behaviors. In the following we consider a special kind of infinite-dimensional behaviors

defined by the kernel of a linear differential operator with constant coefficients, that

is, we consider the case when R is a 1 × 1 matrix.

Let P (D) be a differential operator and its corresponding polynomial P (x) has

degree m ≥ 2. Suppose P (x) has at least two distinct real zeros τ = (τ1, τ2, . . . , τn)T

and δ = (δ1, δ2, . . . , δn)T . It is clear that the two zeros define the following partition
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π = (S−, S0, S+) of Rn:

S− := {x ∈ Cn : (τ − δ)T x < 0},
S0 := {x ∈ Cn : (τ − δ)T x = 0},
S+ := {x ∈ Cn : (τ − δ)T x > 0}.

Lemma 1. If the behavior B corresponds to the above differential operator P (D)

is Markovian, then the function

u(x) =

{
0, if x ∈ S−;

e(x,τ) − e(x,δ), if x ∈ S+ ∪ S0

belongs to B and is not C1–continuous, i.e., not all the first partial derivatives of u(x)

are continuous.

Proof. It is obvious that the solution set of P (x) = 0 is just the characteristic

variety of P (D). Then Proposition 3 tells us that both e(x,τ) and e(x,δ) are solutions

of P (D)u = 0, and so is e(x,τ)−e(x,δ). If the system is Markovian, then by Proposition

1, u(x) ∈ B since u(x) is just the concatenation of 0 and (e(x,τ) − e(x,δ)) with respect

to π.

Since τ and δ are distinct, we may suppose that τk = δk for some k. Then the

partial derivative ∂u(x)
∂xk

does not exist at 0 because the limits in S− and S+ do not

coincide. This completes the proof.

Theorem 4. Let P (D) be a differential operator with degree m ≥ 2. If the

corresponding characteristic variety VP has at least two distinct real elements, then

the behavior is not Markovian under either one of the following conditions.

(i) There exist two distinct real elements τ and δ of VP such that τ − δ is not a

characteristic of P (D), i.e., Pm(τ − δ) = 0, where Pm is the principal part of P (D).

(ii) The operator P (D) is hypoelliptic.

(iii) There exists two distinct real elements τ and δ of VP such that σP (W ) = 0 or

σP (W ′) = 0, where W is the line spanned by (τ − δ) in Rn and W ′ is the orthogonal

subspace of W .

Proof. (i) In Theorem 2, let X2 = Rn, X1 = S−, where S− is defined as in Lemma

1. It is obvious that every hyperplane in Rn except S0 must pass through S−. Since

S0 is not a characteristic of P (D), the second statement of Theorem 2 holds and

hence each u ∈ B that vanishes in S− must vanish in Rn. If B is Markovian, then by

Lemma 1, there exists a u ∈ B that is nonzero in S+ but vanishes in S−, which is a

contradiction. Thus the system is not Markovian.

(ii) Let X = Rn in Proposition 4, then every u ∈ B must be C∞. However,

Lemma 1 gives an explicit u which does not belong to C1(Rn) and hence the behavior

associated with a hypoelliptic operator can not be Markovian.

(iii) Suppose the system is Markovian. For the case σP (W ) = 0, we refer to

Proposition 5 and let k = 1, φ1 =
∑n

j=1 xj(τj − δj), X = Rn, and x0 = 0. Hence
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W is the line spanned by (τ − δ), and X− = S− ∪ S0 where S− and S0 are defined

as in Lemma 1. The distribution u defined in Lemma 1 satisfies all the conditions of

Proposition 5 since P (D)u = 0 ∈ C∞(Rn). Therefore u ∈ C∞ is in a neighborhood of

0, which clearly contradicts the result of Lemma 1. For the case σP (W ′) = 0, we refer

to Proposition 6 and let Γ = S0, where S0 is the same as in Lemma 1. It is obvious

that V = S0 and the distribution u defined in Lemma 1 has its singular support

sing supp u contained in Γ. Then u ∈ C∞(Rn), which contradicts the result of Lemma

1. This completes the proof.

Remark. Note that Condition (i) includes those differential operators which are

hyperbolic with respect to τ − δ. All these three conditions cover a large class of

differential operators. For instance, the behaviors of the following equations are not

Markovian:

∂2

∂x2
1
u + ∂2

∂x2
2
u + · · · + ∂2

∂x2
n
u − a ∂

∂tu = 0,

∂2

∂x2
1
u + ∂2

∂x2
2
u + · · · + ∂2

∂x2
n
u − 1

c2
∂2

∂t2 u = 0,

∂2

∂x2
1
u + ∂2

∂x2
2
u + · · · + ∂2

∂x2
n
u = 0.

4. Computation of Exponential Solutions. We have shown that if the di-

mension dim VR of the characteristic variety of a system of PDEs is zero, then the

behavior of the system, according to the Ehrenpreis-Palamodov Fundamental Prin-

ciple, can be represented by a linear combination of exponentials. We will give in

the following an example to show how we can determine algorithmically whether a

characteristic variety is of dimension zero, and if it is the case, compute the exponen-

tial basis. The principle behind these computations is the theory of Gröbner bases

in computational commutative algebra ([2]) and the software we use is Maple. Note

that when dimVR > 0, the characteristic variety contains infinite elements in Cn

but possibly finite elements in R
n. For this latter finite case all the real exponential

solutions can be found.

Example. Consider the following system of PDEs:

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

( ∂2

∂z2 + ∂2

∂y2 + ∂
∂x + 1)u = 0,

( ∂2

∂y2 + ∂
∂z − 1)u = 0,

( ∂
∂x + 2 ∂

∂z + ∂
∂y )u = 0.

In this example the matrix R is a 3 × 1 matrix and the characteristic variety is

the solution set of the three polynomials in R:

VR = {(x, y, z) ∈ C
3 | z2 + y2 + x + 1 = 0, y2 + z − 1 = 0, x + 2z + y = 0}.

We first use the Maple command ‘hilbertdim’ to find the dimension of this variety.

The returned result is zero. Next, we use the command ‘solve’ to obtain the following
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solution:

(x = −2, y = 0, z = 1), (x = 2a2
j − 2 − aj , y = aj , z = −a2

j + 1), j = 1, 2, 3,

where aj are roots of a3 + a − 1 = 0, j = 1, 2, 3. The approximate values of these aj

are

−0.3411639019− 1.161541400
√−1,−0.3411639019+ 1.161541400

√−1,

0.6823278038.

Thus each solution is a simple zero and the following exponential solutions form

a basis of the behavior of Equations (4.1).

u0 = e−2x+z,

uj = e(2a2
j−2−aj)x+ajy+(−a2

j+1)z , j = 1, 2, 3.

It is also easy to check by definition that the above system is not Markovian.

Note that when the characteristic variety has multiple points, the behavior is the

product of an exponential function with a polynomial. A detailed discussion on the

computation of these polynomials for R with a single column can be found in [10].

Disregarding whether the characteristic variety VR has multiple points, as a finite-

dimensional complex vector space its dimension can be computed once we know the

Gröbner basis of the polynomials. For example, in the above Equations (4.1), the

Gröbner basis for VR with respect to the total degree order z > y > x is

{x+2z + y, 13x+18+4yx+2x2+5y, 2y2− y−x−2, 8x3 +86x2−39y +345x+410}.

The command ‘SetBasis’ of Maple gives further the basis of the residue ring

C[x, y, z]/I : {1, x, y, x2},

where I is the ideal generated by the three polynomials in R. Therefore VR is a four-

dimensional complex vector space since the above basis has only four elements ([2],

Theorem 5.3.6), and so is the behavior B. Knowing the number of basis components

of B will help us to find the missing polynomial-exponential solutions when VR has

multiple points (see [10]).

5. Conclusions. We have shown in this paper that if the characteristic variety

of a system of linear PDEs with constant coefficients has dimension zero, then the

Willems’ conjecture on the Markovianity of behavior is true. For a behavior defined

by a differential operator, we have given several conditions under which the conjecture

is valid. An example has been given to show how to determine, by using computer

algebra software, whether the characteristic variety of a system is of dimension zero.

In case the answer is affirmative, a finite basis of the behavior can be computed by

the same software.
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