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ENHANCEMENT OF STOCHASTIC RESONANCE USING

OPTIMIZATION THEORY∗

XINGXING WU† , ZHONG-PING JIANG‡ , DANIEL W. REPPERGER§ , AND YI GUO¶

Abstract. The traditional stochastic resonance is realized by adding an optimal amount of

noise, while the parameter-tuning stochastic resonance is realized by optimally tuning the system

parameters. This paper reveals the possibility to further enhance the stochastic resonance effect by

tuning system parameters and adding noise at the same time using optimization theory. The further

improvement of the maximal normalized power norm of the bistable double-well dynamic system

with white Gaussian noise input can be converted to an optimization problem with constraints on

system parameters and noise intensity, which is proven to have one and only one local maximum for

the Gaussian-distributed weak input signal. This result is then extended to the arbitrary weak input

signal case. For the purpose of practical implementation, a fast-converging optimization algorithm

to search the optimal system parameters and noise intensity is also proposed. Finally, computer

simulations are performed to verify its validity and demonstrate its potential applications in signal

processing.
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1. Introduction. Since put forward by Benzi in 1981, stochastic resonance has
been increasingly attracting the interest of researchers. It is a phenomenon of certain
nonlinear systems in which the synchronization between the input signal and the noise
occurs when an optimal amount of additional noise is inserted into the system. In
this case, the extra noise will help, rather than hinder, the performance improvement
of the system by maximizing or minimizing the chosen performance measure, such as
output signal-to-noise ratio (SNR), or mutual information. The concept of stochas-
tic resonance was first proposed to address the problem of the periodically recurrent
ice ages [1]. Basically, the stochastic resonance has four elements: nonlinear system,
information-carrying input signal, noise, and performance measure [2]. Many kinds
of nonlinear systems have demonstrated the stochastic resonance phenomena, such
as static systems [3], dynamic systems [4][19], discrete systems [21], and coupled sys-
tems [4][20]. The traditional stochastic resonance requires the information-carrying
signal to be weak and periodic. Now, aperiodic and suprathreshold signals can also
be the input of certain stochastic resonance systems, in terms of aperiodic stochastic
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resonance (ASR) [5] and suprathreshold stochastic resonance (SSR) [6] respectively.
For the noise, it is no longer limited to white Gaussian noise. It can be colored [7], or
non-Gaussian noise [8]. The performance measure is adopted here in order to quantify
the stochastic resonance phenomenon and describe it more exactly. For the periodic
stochastic resonance, the output signal-to-noise ratio [4] is the most commonly used
measure. Other measures, such as cross-correlation [9], mutual information [10], are
used for describing aperiodic stochastic resonance. Over the years, stochastic reso-
nance has found applications in many different areas, such as in physics, chemistry,
biomedical science, and engineering [4][19]. The noise has been used to enhance the
tactile sensation [11]. The suprathreshold stochastic resonance has been applied to
cochlear implant coding [12]. One of the important applications of stochastic res-
onance is in signal processing, such as signal detection [13][22], signal transmission
[14][15], and signal estimation [16]. For a stochastic resonance system, the chosen
performance measure will reach its maximum or minimum when the synchronization
between input signal and the noise occurs. In order to convert noise to a positive
factor, the stochastic resonance system should be adjusted properly to maximize or
minimize the performance measure, such as the signal-to-noise ratio. For traditional
stochastic resonance systems, this is realized by supplementing the input with an opti-
mal amount of additional noise [4]. Recently, it was demonstrated that the stochastic
resonance effect can also be realized by tuning the system parameters to their opti-
mal values without adding noise. This is called parameter-tuning stochastic resonance
[17][23]. It is also shown that tuning system parameters is a better method in some
situations than adding noise, especially when the initial noise intensity is already be-
yond the resonance region [18]. Among this research, either noise is added, or the
system parameters are tuned, but not both. This paper will focus on investigating
the possibility to further enhance the stochastic resonance effect by tuning system
parameters and adding noise at the same time, based on our initial research results
in [26]. This enhancement will cause the chosen performance measure to be further
increased or decreased and will, in turn, have the potential to further improve the
system performance.

The rest of the paper is organized as follows. In Section 2, the normalized power
norm of the bistable double-well dynamic system with a Gaussian-distributed weak
input signal is proven to reach a higher maximum by tuning system parameters and
adding noise at the same time, compared with that by either tuning system parameters
or adding noise. This result will be extended to the situation with an arbitrary weak
input signal in Section 3. In order to meet the high-speed requirement of some tasks,
Section 4 proposes a fast-converging optimization algorithm to search the optimal
system parameters and noise intensity. Section 5 will focus on verifying, via computer
simulations, the improvement of the maximal normalized power norm by comparing
with the traditional stochastic resonance and parameter-tuning stochastic resonance.
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The potential application of this scheme in signal processing is also mentioned in this
section. Finally, Section 6 concludes the paper with some brief remarks.

2. Enhancement of Stochastic Resonance with Gaussian-Distributed

Weak Input Signals. In traditional stochastic resonance systems, the chosen per-
formance measure is taken as a function of the noise intensity, while it is only taken
as a function of the system parameters by fixing the noise intensity at its initial level
in parameter-tuning stochastic resonance systems. In some stochastic resonance sys-
tems, the performance measure is affected by both the system parameters and the
noise intensity [24]. This, however, does not necessarily mean that it is possible to
enhance the stochastic resonance effect by tuning the system parameters and adding
noise at the same time. We have demonstrated this in [26]. Now, we will examine
the interesting situation where the stochastic resonance can be further enhanced by
tuning the system parameters and adding noise at the same time.

In this paper, we will choose the nonlinear bistable double-well dynamic system
as the stochastic resonance system. This is a typical stochastic resonance system
which has been extensively used in the work of others [2][4][9][19]. As shown in past
literature, the bistable double-well systems have found several applications in signal
processing. In [27], it is used to amplify the coherent signals. As a nonlinear filter, it
is also used to recover the multi-frequency signals corrupted by noise [17]. Reducing
the bit-error rate (BER) of the binary signal transmission is another application of
this system [28].

In [9], the aperiodic stochastic resonance was demonstrated in the following non-
linear bistable double-well dynamic system

dx

dt
= −∂U

∂x
+ ξ(t),(1)

where U(x) = −[A − S(t)]x2/2 + x4/4 is the symmetric potential function with a
fluctuating barrier. A is taken as a positive system parameter in this paper and is
used to shift the input signal. S(t) is the input signal with zero-mean average. ξ(t) is
white Gaussian noise with zero mean and an autocorrelation of 〈ξ(t)ξ(s)〉 = 2Dδ(t−s).
The angular brackets denote the ensemble average.

The performance measures chosen to describe this aperiodic stochastic resonance
are cross-correlation measures (power norm C0 and normalized power norm C1) de-
fined as follows [9]

C0 = max{S(t)R(t + τ)},(2)

C1 =
C0

[ S2(t) ]1/2{ [R(t) − R(t) ]2}1/2
,(3)
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where S(t) is the input signal. R(t) is the system response characterized by mean
transition rate of the system. The overbar denotes an average over time. τ is a time
lag.

Usually, there is no explicit expression for the power norm. If the input signal
is weak, (i.e., S(t)2 � A2), and is a Gaussian distribution, the ensemble averaged
power norm 〈C0〉 and the ensemble averaged normalized power norm〈C1〉 can be
approximated by [9]

〈C0〉 � Q0∆0 exp[−Θ0 + ∆2
0 S2(t)/2] S2(t),(4)

〈C1〉 � ∆0[ S2(t) ]1/2

{exp[∆2
0S

2(t)] − 1 + σ(D)Q−2
0 exp[2Θ0 − ∆2

0S
2(t)]}1/2

,(5)

where
σ(D) = K1〈R(t)〉, 〈R(t)〉 � Q0 exp[−Θ0 + ∆2

0S
2(t)/2 ],

Q0 = K0A/
√

2π, Θ0 = A2/4D, ∆0 = A/2D.

According to [9], the parameter K0 is used to account for normalization factors
in the construction of the mean transition rate. The parameter K1 is used for the
estimation of the noise-induced variance σ(D). In this paper, we will set them to the
same constant values as in [9], i.e., K0 = 1, K1 = 0.019.

If the system parameter A is fixed, the normalized power norm 〈C1〉 will reach
its maximal value when an optimal amount of noise is added into this nonlinear
system [9]. We will now investigate whether the stochastic resonance effect of this
system can be further enhanced by tuning the system parameters and adding noise
at the same time. This is in fact a problem of checking whether the optimization
problem of maximizing 〈C1〉 with the constraints on both the system parameters and
noise intensity has a local maximizer. The computer simulations, however, show that
this constrained optimization problem has no local maximizer for some weak input
signals. So two additional parameters are introduced into the system and the new
system equation becomes

τaẋ(t) = [A − S(t)]x(t) − x3(t)
X2

b

+ ξ(t),(6)

where τa is a positive system parameter affecting the system response time and Xb

is a positive system parameter affecting the barrier height of its potential function.

For the system described by (6), its potential function is

U(x) = −[A − S(t)]
x2

2
+

x4

4X2
b

.(7)
If τa = 1, the ensemble-averaged escape rate is expressed as [9]

〈R(t)〉� 1
2π

√
U ′′(xmin)|U ′′(xmax)|exp[

U(xmin) − U(xmax)
D

],(8)
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where U is the potential function, xmin is one of the local minimizers and xmax is the
local maximizer of the potential function.

Using the method of [9], similar to (5), we derive the approximation expression
of 〈C1〉 for system (6)

〈C1〉 � ∆s

{exp[∆2s2] − 1 + K1Q−1exp[cτa∆Q − s2∆2/2]}1/2
,(9)

where

Q =
K0A√
2τaπ

, Θ =
τaX2

b A2

4D
= cτa∆Q, ∆ =

τaX2
b A

2D
, s = [ S2(t) ]1/2, c =

√
2π/2K0.

We will choose the normalized power norm 〈C1〉 as the objective function to be
maximized, because it emphasizes the similarity between the input and the system
output, and it can still predict its real shape even when the noise intensity is outside
its validity range [9]. The enhancement of stochastic resonance can then be converted
to finding the local maximizer of the following optimization problem

max〈C1〉,(10)

subject to: S(t)2 � A2, A > 0, D0 ≤ D ≤ D1.

The constraint S(t)2 � A2 comes from the requirement of weak input signals. The
system parameter A is positive. We assume that the noise cannot be removed from
the system, so the noise intensity D cannot be less than its initial value D0. Of course,
it cannot be arbitrarily large either.

Both A and D will be taken as the optimization parameters for this optimization
problem (10), while τa and Xb are taken as the supporting parameters to ensure that
this constrained optimization problem has local maximizer as shown later. To simplify
the derivation and calculation, the direct optimization parameters of (10) are ∆ and
Q, from which the values of A and D can be calculated.

In order to prove that the constrained optimization problem (10) has a local
maximizer, we will first consider the following unconstrained optimization problem

max 〈C1〉.(11)

Proposition 1. There is one and only one solution (Q∗, ∆∗) to the first-order
necessary condition for the local maximizer of unconstrained optimization problem
(11).

Proof. According to the first-order necessary condition for the local maximizer of
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Fig. 1. f1(∆) and −f2(∆) (a) τa = 1, s = 0.1 (b) τa = 0.1, s = 0.01.

(11), we have

∂〈C1〉
∂∆

= 0 and
∂〈C1〉
∂Q

= 0.(12)

From (12), we can derive Q−1 = cτa∆, and also

(2 − 2s2∆2)exp[s2∆2] − 2 + cτaK1(∆ + s2∆3)exp[1 − s2∆2/2] = 0.(13)

Let

f(∆) = (2 − 2s2∆2)exp[s2∆2] − 2 + cτaK1(∆ + s2∆3)exp[1 − s2∆2/2].(14)

We have

f
′
(∆) = −4s4∆3exp[s2∆2] + cτaK1(1 + 2s2∆2 − s4∆4)exp[1 − s2∆2/2].(15)

From (14) and (15), we know that f(0) = 0 and f(+∞) = −∞. f
′
(∆) will

be positive, if ∆ → 0+. Based on these, we can conclude the first-order necessary
condition has at least one positive solution (∆∗, Q∗).

Let

f1(∆) = (2 − 2s2∆2)exp[ s2∆2 ],(16)

f2(∆) = cτaK1∆(1 + s2∆2)exp[ 1 − s2∆2/2 ]− 2.(17)

f1(∆) will decrease monotonically to −∞ as ∆ → +∞, starting from f1(0) = 2. f2(∆)
will first increase from -2, and then decrease to -2. From the special characteristics of
f1(∆) and f2(∆), it follows readily that the first-order necessary condition can only
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have one positive solution.

It is worth noting that changing the values of τa and s which are positive can
only affect the values of Q∗ and ∆∗. It will not affect the property that the necessary
condition has one and only one solution. This is shown in Figures 1 and 2.

Proposition 2. The system parameter τa can be used to continuously adjust the
value of ∆∗ satisfying the first-order necessary condition for the local maximizer of
(11).

Proof. f2(∆), but not f1(∆), is affected by the system parameter τa. From the
special characteristics of these two functions, we can find out that the increase of τa

value will also increase the value of ∆∗ satisfying (13). If τa is getting close to zero,
∆∗ will also approach zero. This means the value of ∆∗ can be adjusted continuously
by changing τa. This completes the proof of this proposition.

Proposition 3. The unconstrained optimization problem (11) has one and only
one local maximizer when the input is weak (s � 1) and the values of system param-
eters τa and Xb are chosen properly.

Proof. We need to prove that the only solution (∆∗, Q∗) of the first-order neces-
sary condition will also satisfy the second-order sufficient condition for a local maxi-
mizer, that is, the Hessian matrix is negative definite at the point (∆∗, Q∗).
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At the point (∆∗, Q∗), we can get

∂2〈C1〉
∂∆2

=
−2s3∆∗2{s∆∗exp[s2∆∗2] + cτaK1(− 1

2 + s2∆∗2

4 )exp[1 − s2∆∗2

2 ]}
{exp[s2∆∗2] − 1 + K1Q∗−1exp[1 − s2∆∗2

2 ]}3/2
,(18)

∂2〈C1〉
∂Q2

=
−c3τ3

asK1∆∗4exp[1 − s2∆∗2

2 ]

2{exp[s2∆∗2] − 1 + K1Q∗−1exp[1 − s2∆∗2

2 ]}3/2
,(19)

∂2〈C1〉
∂∆∂Q

=
∂2〈C1〉
∂Q∂∆

=
−c2τ2

asK1∆∗2exp[1 − s2∆∗2

2 ]

2{exp[s2∆∗2] − 1 + K1Q∗−1exp[1 − s2∆∗2

2 ]}3/2
.(20)

The numerator of ∂2〈C1〉
∂∆2 can be proven to be negative for the weak input signal

(s � 1), i.e.

−2s2∆∗2exp[s2∆∗2] − 2cτasK1∆∗(−1
2

+
s2∆∗2

4
)exp[1 − s2∆∗2

2
]

= −2exp[s2∆∗2] + 2 − cτaK1∆∗[1 − s + s2∆∗2(1 +
s

2
)]exp[1 − s2∆∗2

2
]

� −2s2∆∗2exp[s2∆∗2] < 0.

From (18), (19), and (20), it follows that ∂2〈C1〉
∂∆2 , ∂2〈C1〉

∂Q2 , and ∂2〈C1〉
∂∆∂Q are all negative

at ∆ = ∆∗, and Q = Q∗.
The Hessian matrix of the optimization problem (11) is defined as

(
∂2〈C1〉

∂∆2
∂2〈C1〉
∂∆∂Q

∂2〈C1〉
∂Q∂∆

∂2〈C1〉
∂Q2

)

At the point (∆∗, Q∗), the determinant value of this Hessian matrix is

c3τ3
aK1s

2∆4{2 exp[s2∆∗2] − 2 + cτaK1(∆∗ − 1
s∆∗ + s2∆∗3)exp[1 − s2∆∗2

2 ]}
4{exp[s2∆∗2] − 1 + K1Q∗−1exp[1 − s2∆∗2

2 ]}3
.(21)

According to Proposition 2, the requirement s∆∗2 	 1 can be satisfied by properly
adjusting the system parameter τa value. In this situation, the determinant value will
be positive, because of

2 exp[s2∆∗2] − 2 + cτaK1(∆∗ − 1
s∆∗ + s2∆∗3)exp[1 − s2∆∗2

2
]

� 2exp[s2∆∗2] − 2 + cτaK1(∆∗ + s2∆∗3)exp[1 − s2∆∗2

2
]

= 2s2∆∗2exp[s2∆∗2] > 0.

Obviously, its denominator is positive. From the standard test on negative-
definiteness of a symmetric matrix, it follows that the Hessian matrix is negative
definite. This completes the proof of Proposition 3.
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Proposition 4. The constrained optimization problem (10) with weak input
signal (s � 1) has one and only one local maximizer, if the system parameters τa and
Xb are chosen properly.

Proof. From (9), we can get A∗ = 2/∆∗. The constraint (A∗)2 	 s2 will be
satisfied if s2(∆∗)2 � 4. Combined with the requirements s(∆∗)2 	 1 and s � 1
used for the derivation of the above propositions, all the constraints on the system
parameter will be met, if τa value is chosen properly such that

s � s2(∆∗)2 � 4.(22)

Also, D∗ will be greater than D0 and less than D1 for the properly chosen pa-
rameter Xb, because of D∗ = τaX2

b /∆∗2.

From these, we prove that the one and only one local maximizer of the uncon-
strained optimization problem (11) will also be the one and only one local maximizer
of the constrained optimization problem (10) for the weak input signal (s � 1), when
the values of τa and Xb are chosen properly.

Obviously, the only local maximizer of (10) is also its global maximizer. This
completes the proof of this proposition.

According to the above propositions, the normalized power norm 〈C1〉 of the
bistable double-well system with Gaussian-distributed weak input signals can be max-
imized by tuning system parameter A and adding noise at the same time and will reach
a higher maximal value compared with that by only tuning the system parameter or
by only adding noise.

3. Enhancement of Stochastic Resonance with Arbitrary Weak Input
Signals. The above propositions are derived under the assumption of only consid-
ering Gaussian-distributed weak input signals. Now, we will prove that all these
propositions can be extended to the case with arbitrary weak input signals.

Under the condition of ∆2S(t)2 � 1, the normalized power norm 〈C1〉 can be
approximated by

〈C1〉 � ∆s

{∆2s2 + ∆4s4

2 + K1
Q (1 − ∆2s2

2 + ∆4s4

8 )exp[cτaQ∆]}1/2
.(23)

The related constrained optimization problem is then changed to

max〈C1〉,(24)

subject to: A > 0, s2 � A2, ∆2s2 � 1, D0 ≤ D ≤ D1.

To prove Proposition 1, the following can be derived from the first-order necessary
condition for a local maximizer of the optimization problem (11) with the new 〈C1〉
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expression (23):

cτa∆Q = 1,(25)

−s4∆3 + cτaeK1(1 + s2∆2 / 2 − 3s4∆4/8) = 0.(26)

From this, Proposition 1 and Proposition 2 can be proven in the similar way as
before.

In order to prove Proposition 3, the following can be determined if the constraint
s2∆∗2 � 1 is satisfied by adjusting τa properly

−cτaeK1s
2∆∗2 + s2∆∗(−4 + 2s2∆∗2) − cτaeK1s

2∆∗2(2 − 3s2∆∗2/4) < 0,(27)

and

−s4∆4/8 + (−1 + s2∆∗2/2) < 0.(28)

From these, ∂2〈C1〉
∂∆2 , ∂2〈C1〉

∂Q2 , and ∂2〈C1〉
∂∆∂Q are all proven to be negative at ∆ = ∆∗,

and Q = Q∗.

For (23), the numerator of the Hessian matrix determinant value can be simplified,
at ∆ = ∆∗ and Q = Q∗, as

s4∆∗3(2 − 2s2∆∗2) + cτaeK1s
4∆∗4(

14
8

− 9s2∆∗2

8
)

+(s4∆∗3 +
3cτaeK1s

4∆∗4

8
− cτaeK1s

2∆∗2

2
) +

s8∆∗7

2
+

15cτaeK1s
8∆∗8

64
.(29)

If s2∆∗2 � 1, this numerator value will be positive. Similarly, Proposition 3 is
shown to hold for this optimization problem (24).

The constraint s2 � A∗2 will be satisfied if s2∆∗2 � 1 is met by properly adjust-
ing τa, because of A∗ = 2/∆∗. Proposition 4 is hereby proved for the optimization
problem (24).

4. Optimization Algorithms. The constrained optimization problem (24) has
no closed-form solution. The optimization algorithm should be developed to search
the optimal system parameter and the optimal noise intensity. In order to meet the
high-speed requirement of some tasks, a fast-converging optimization algorithm is
proposed for (24) with an arbitrary weak input signal in this paper.

Proposition 5. The Newton’s method for solving nonlinear equations can be
used to search the optimal parameters of the constrained optimization problem (24)
with a local Q-quadratic convergence, if the initial value, τa and Xb values are properly
chosen.
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Proof. According to Proposition 4, the constrained optimization problem (24)
has one and only one local maximizer (∆∗, Q∗) which satisfies the equations (25) and
(26), if τa and Xb values are chosen properly. In this case, the optimal parameters
(A∗, D∗) can be obtained by solving the nonlinear equation (26).

Let

f3(∆) = −s4∆3 + cτaeK1(1 + s2∆2/2 − 3s4∆4/8).(30)


f3(∆∗) will be non-singular in this case. According to the standard arguments
from [25], the Newton’s method can be used to solve (26) with a local Q-quadratic
convergence, if the initial value ∆o is sufficiently close to ∆∗.

Based on Proposition 5, our proposed optimization algorithm will first estimate
the initial ∆o value which will be sufficiently close to its optimal value ∆∗, then the
standard Newton algorithm will be called to search the optimal value. The algorithm
is divided into two cases. In the first case, only A and D are adjustable, while the
system parameters τa and Xb are given beforehand. Their values will ensure the
existence of the local maximizer for the constrained optimization problem (24). In
the second case, the system parameters τa and Xb should also be optimized.

Case 1:

In order to estimate the initial values for different input signals, a table is con-
structed which describes the relationship between the input signal average amplitude
value s = [ S2(t) ]1/2 and the optimal value ∆∗ related to this input. In order to
construct the table, we can first select a series of signal average amplitude values.
Usually, these values divide the signal average amplitude range evenly. For each sig-
nal average amplitude s value, the related optimal value ∆∗ satisfying (26) can be
obtained off-line using the standard Newton algorithm. Then, the pair (s, ∆∗) can
be inserted into the table. If the algorithm is implemented in software, the table can
be represented by a one-dimensional array. For any given input, the related initial
value ∆o can then be estimated based on the information provided by this table, such
as using interpolation. It will be sufficiently close to its optimal value to ensure the
required convergence speed, if the table is constructed properly. Algorithm 1 is the
optimization algorithm for the first case.

Algorithm 1:

Step 1:
Calculate the average amplitude s = [ S2(t) ]1/2 for the given input signal;

Step 2:
Estimate initial ∆o, using the constructed table;

Step 3:
Solve (26) using standard Newton algorithm [25];
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Step 4:
Calculate A∗ and D∗, then stop.

Case 2:

In this case, system parameters τa and Xb are unknown and should be optimized
for the constrained optimization problem (24). Here, we also assume τaX2

b is a prop-
erly chosen constant which ensures the existence of the local maximizer of (24). The
equation (23) reveals that the smaller the τa value is, the larger the 〈C1〉 will be if
other parameters are fixed. This means that there will be no local maximizer for
parameter τa. Also, a smaller τa value will generate a smaller ∆∗ satisfying (26)
and make it easier to satisfy the requirement of ∆∗2s2 � 1. Too small τa value,
however, will make it difficult to satisfy the constraints on noise intensity, because of
D∗ = τaX2

b /∆∗2. For a given input signal, there will be a range for τa value in which
the constrained optimization problem (24) will have a local maximizer. The optimal
τa value will take the extremum. In the following algorithm, we will take the smallest
τa value as its optimal value, which will ensure the existence of the local maximizer.

Similarly, tables will be constructed to increase this algorithm’s convergence
speed. Case 2 will have two tables. The first one describes the relationship of ∆∗ with
input signal average amplitude s and system parameter τa. The second one describes
the relationship between input signal average amplitude s and τ∗

a which is the optimal
value under this definition related to this input signal. For the first table, we will first
select a series of (s, τa) values. For each pair (s, τa), the related ∆∗ satisfying (26)
can be calculated off-line using standard Newton algorithm. Then the pair (s, τa, ∆∗)
is inserted into table one. For the second table, a series of input average amplitude
values should also be chosen first. The related optimal value τ∗

a can be obtained off-
line. The pair (s, τ∗

a ) is then inserted into table two. If the algorithm is implemented
in software, table one can be represented by a two-dimensional array, and table two
is represented by a one-dimensional array.

For a given input signal, the optimal τ∗
a value can be estimated based on the

information provided by table two. It will then be used to estimate ∆o from table
one which will be used as the initial value to solve (26) by Newton algorithm. Both of
the estimations can be performed using related interpolation algorithms. The optimal
values of ∆∗, A∗ and D∗ will then be evaluated to decide how the τa value should be
changed for next loop. If ∆∗2s2 � 1 or D∗ ≥ D0 is not satisfied, τa value will then
be decreased. If D∗ ≤ D1 is not met, its value will be increased instead. The detailed
algorithm is shown in Algorithm 2.

Algorithm 2:

Step 1:
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Calculate s = [ S2(t) ]1/2 , set x0 = 0, y0 = +∞;

Step 2:
Estimate τ∗

a , take it as the initial value τa0;

Step 3:
Estimate the initial value ∆0;

Step 4:
Solve (26) using standard Newton algorithm [25];

Step 5:
If τak is too large:

yk+1= τak, xk+1= xk, τa(k+1) = (xk+1+yk+1)
2

else:

yk+1 = yk, xk+1 = τak

if yk+1 = +∞:
τa(k+1) = 2τak

else:

τa(k+1) = (xk+1 + yk+1)/2
Step 6:

If |τa(k+1) − τak| < ε:
If all constraints are satisfied

Calculate A∗, and D∗, then stop.
else

No optimal solution
else:

Go back to Step 3

In the above algorithm, the condition “ too large ” means D < D1. In addition,
the “ no optimal solution ” problem can be solved by adjusting τaX2

b value properly.
The above algorithms are used to search the optimal values of system parameter

A and noise intensity D at the same time. In this algorithm, the nonlinear equation
(26) should be solved to obtain the optimal value ∆∗. It will have no overhead,
compared with the algorithms which are used to search either the optimal value of
system parameter A or the optimal value of the noise intensity D. If only the noise
intensity is adjustable and the value of system parameter A is fixed, the optimization
algorithm for (24) will only search the optimal value D∗ to maximize 〈C1〉. From (9),
we can find that Q will be constant and 〈C1〉 will be the function of ∆. From the
necessary condition for a local maximizer d〈C1〉

d∆ = 0, we can get a nonlinear equation
similar to (26). The optimal value ∆∗ can be obtained by solving this equation. From
∆∗, we can get the optimal noise intensity D∗. Similarly, if only the system parameter
A is adjustable and the noise intensity D is fixed, the optimization algorithm for (24)
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will only search the optimal value A∗ to maximize the 〈C1〉. Also from (9), we can
notice that 〈C1〉 will be the function of Q. From the necessary condition for a local
maximizer d〈C1〉

dQ = 0, we can also get a nonlinear equation similar to (26) from which
the optimal value Q∗ can be calculated. The optimal value A∗ will in turn be obtained.
From above analysis, we can conclude that the optimization algorithm for searching
both A∗ and D∗ will have the same complexity as that for searching either A∗ or D∗.
The only difference is the nonlinear equation which needs to be solved.

5. Simulations. Computer simulations were performed to verify the above pro-
positions and demonstrate the improvement of the maximal normalized power norm
〈C1〉, compared with that by only tuning the system parameter and that by only
adding noise. Figure 3 shows that the constrained optimization problem (24) has
the local maximizer. Figure 4 compares the maximal 〈C1〉 reached by three different
methods: (1) only adjusting system parameter A while letting D = 0.1 (2) only
adjusting noise intensity D while letting A = 1 (3) tuning system parameter A and
adjusting the noise intensity D at the same time. From this figure, we can see the
enhancement of stochastic resonance effect by this scheme.

Also, computer simulations are performed to reveal its potential application in
weak signal recovery. The enhancement of the stochastic resonance effect mentioned
above means the similarity between the input signal and the output of the bistable
double-well dynamic system with white Gaussian noise input is enhanced. The system
output will carry more information about the weak input signal, if it is used for the
weak signal recovery. This will make it easier to recover the weak input signal from
the noisy system output. Figure 5 is the simulation model. In this model, A, a, and
b are the system parameters and a = 1/τa, b = 1/(τaX2

b ). The noise intensity D will
affect the output of the White Noise block. The Constant block with value ”shift” is
used to shift the average value of the input pulse to zero. The User-Defined Functions
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Fig. 5. Simulation model.

block f(u) is used to generate x3. Figure 6 is the original weak input signal and
the white noise. The system outputs under different system parameter values and
different noise intensity are shown in Figure 7. From this simulation, it is obvious
that the similarity between input and output, or the input signal information carried
by the system output, is greatly affected by the choices of the system parameters and
noise intensity. The weak input signal can be better recovered from the noisy system
output when the system parameter values and noise intensity are chosen properly.

6. Conclusion. This paper explicitly reveals that it is possible to further en-
hance the stochastic resonance effect of the bistable double-well dynamic system with
white Gaussian noise input by tuning system parameters and adding noise at the same
time. The fast-converging optimization algorithms introduced enable this scheme
to be applied into applications with high-speed requirements. The enhancement of
stochastic resonance effect means the enhancement of the similarity between the in-
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put signal and system output. This will help the weak signal recovery from the noisy
system output. Our future work will be directed at extending the initial results of the
applications of this scheme in signal processing.
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